Biological Activities and Emerging Roles of Lignin and Lignin-Based ProductsA Review
Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue engineering. In recent years, plant-based bioactive substances such as flavonoids, vitamins, terpenes, and lignin have received considerable att...
Saved in:
Published in | Biomacromolecules Vol. 22; no. 12; pp. 4905 - 4918 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue engineering. In recent years, plant-based bioactive substances such as flavonoids, vitamins, terpenes, and lignin have received considerable attention due to their human health benefits and pharmaceutical/medical applications. Among them is lignin, an amorphous biomacromolecule mainly derived from the combinatorial radical coupling of three phenylpropane units (p-hydroxypenyl, guaiacyl, and syringyl) during lignification. Lignin possesses intrinsic bioactivities (antioxidative, antibacterial, anti-UV activities, etc.) against phytopathogens. Lignin also enhances the plant resistance (adaptability) against environmental stresses. The abundant structural features of lignin offer other significant bioactivities including antitumor and antivirus bioactivities, regulation of plant growth, and enzymatic hydrolysis of cellulose. This Review reports the latest research results on the bioactive potential of lignin and lignin-based substances in biomedicine, agriculture, and biomass conversion. Moreover, the interfacial reactions and bonding mechanisms of lignin with biotissue/cells and other constituents were also discussed, aiming at promoting the conversion or evolution of lignin from industrial wastes to value-added bioactive materials. |
---|---|
AbstractList | Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue engineering. In recent years, plant-based bioactive substances such as flavonoids, vitamins, terpenes, and lignin have received considerable attention due to their human health benefits and pharmaceutical/medical applications. Among them is lignin, an amorphous biomacromolecule mainly derived from the combinatorial radical coupling of three phenylpropane units (p-hydroxypenyl, guaiacyl, and syringyl) during lignification. Lignin possesses intrinsic bioactivities (antioxidative, antibacterial, anti-UV activities, etc.) against phytopathogens. Lignin also enhances the plant resistance (adaptability) against environmental stresses. The abundant structural features of lignin offer other significant bioactivities including antitumor and antivirus bioactivities, regulation of plant growth, and enzymatic hydrolysis of cellulose. This Review reports the latest research results on the bioactive potential of lignin and lignin-based substances in biomedicine, agriculture, and biomass conversion. Moreover, the interfacial reactions and bonding mechanisms of lignin with biotissue/cells and other constituents were also discussed, aiming at promoting the conversion or evolution of lignin from industrial wastes to value-added bioactive materials. Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue engineering. In recent years, plant-based bioactive substances such as flavonoids, vitamins, terpenes, and lignin have received considerable attention due to their human health benefits and pharmaceutical/medical applications. Among them is lignin, an amorphous biomacromolecule mainly derived from the combinatorial radical coupling of three phenylpropane units ( -hydroxypenyl, guaiacyl, and syringyl) during lignification. Lignin possesses intrinsic bioactivities (antioxidative, antibacterial, anti-UV activities, etc.) against phytopathogens. Lignin also enhances the plant resistance (adaptability) against environmental stresses. The abundant structural features of lignin offer other significant bioactivities including antitumor and antivirus bioactivities, regulation of plant growth, and enzymatic hydrolysis of cellulose. This Review reports the latest research results on the bioactive potential of lignin and lignin-based substances in biomedicine, agriculture, and biomass conversion. Moreover, the interfacial reactions and bonding mechanisms of lignin with biotissue/cells and other constituents were also discussed, aiming at promoting the conversion or evolution of lignin from industrial wastes to value-added bioactive materials. Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue engineering. In recent years, plant-based bioactive substances such as flavonoids, vitamins, terpenes, and lignin have received considerable attention due to their human health benefits and pharmaceutical/medical applications. Among them is lignin, an amorphous biomacromolecule mainly derived from the combinatorial radical coupling of three phenylpropane units (p-hydroxypenyl, guaiacyl, and syringyl) during lignification. Lignin possesses intrinsic bioactivities (antioxidative, antibacterial, anti-UV activities, etc.) against phytopathogens. Lignin also enhances the plant resistance (adaptability) against environmental stresses. The abundant structural features of lignin offer other significant bioactivities including antitumor and antivirus bioactivities, regulation of plant growth, and enzymatic hydrolysis of cellulose. This Review reports the latest research results on the bioactive potential of lignin and lignin-based substances in biomedicine, agriculture, and biomass conversion. Moreover, the interfacial reactions and bonding mechanisms of lignin with biotissue/cells and other constituents were also discussed, aiming at promoting the conversion or evolution of lignin from industrial wastes to value-added bioactive materials.Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue engineering. In recent years, plant-based bioactive substances such as flavonoids, vitamins, terpenes, and lignin have received considerable attention due to their human health benefits and pharmaceutical/medical applications. Among them is lignin, an amorphous biomacromolecule mainly derived from the combinatorial radical coupling of three phenylpropane units (p-hydroxypenyl, guaiacyl, and syringyl) during lignification. Lignin possesses intrinsic bioactivities (antioxidative, antibacterial, anti-UV activities, etc.) against phytopathogens. Lignin also enhances the plant resistance (adaptability) against environmental stresses. The abundant structural features of lignin offer other significant bioactivities including antitumor and antivirus bioactivities, regulation of plant growth, and enzymatic hydrolysis of cellulose. This Review reports the latest research results on the bioactive potential of lignin and lignin-based substances in biomedicine, agriculture, and biomass conversion. Moreover, the interfacial reactions and bonding mechanisms of lignin with biotissue/cells and other constituents were also discussed, aiming at promoting the conversion or evolution of lignin from industrial wastes to value-added bioactive materials. |
Author | Shu, Fan Jiang, Bo Li, Mohan Yuan, Yufeng Wu, Wenjuan Jin, Yongcan Xiao, Huining |
AuthorAffiliation | Department of Chemical Engineering Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials – name: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology |
Author_xml | – sequence: 1 givenname: Fan surname: Shu fullname: Shu, Fan organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology – sequence: 2 givenname: Bo surname: Jiang fullname: Jiang, Bo organization: Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials – sequence: 3 givenname: Yufeng surname: Yuan fullname: Yuan, Yufeng organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology – sequence: 4 givenname: Mohan surname: Li fullname: Li, Mohan organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology – sequence: 5 givenname: Wenjuan surname: Wu fullname: Wu, Wenjuan email: wenjuanwu@njfu.edu.cn organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology – sequence: 6 givenname: Yongcan orcidid: 0000-0002-0748-3629 surname: Jin fullname: Jin, Yongcan email: jinyongcan@njfu.edu.cn organization: Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials – sequence: 7 givenname: Huining orcidid: 0000-0003-3500-2308 surname: Xiao fullname: Xiao, Huining organization: Department of Chemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34806363$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtuFDEQhi0URB5wARaol2x68LPdXk6i8JBGAkUglpYf1SNH3XawuxNxEq7CqTgDTnqyYRGxqlLV95dU_3-KjmKKgNBrgjcEU_LOuLKxIU3GbYjDuMfiGTohgnYt7zA9euhFK6WSx-i0lGuMsWJcvEDHjPe4Yx07Qd_PQxrTPjgzNls3h9swByiNib65nCDvQ9w3V2msozQ0u7CPIT4s17Y9NwV88yUnv7i5_Pn1e9tcwW2Au5fo-WDGAq8O9Qx9e3_59eJju_v84dPFdtcaJsXcMiXxwEAKaimYQUkLQopBKuI7aXsPnsmhx84r0QH1tSplCVjwtnNcWnaG3q53b3L6sUCZ9RSKg3E0EdJSNK1vcsm54P-BVg-JohxX9M0BXewEXt_kMJn8Uz_6VoF-BVxOpWQYtAuzmUOKczZh1ATr-4h0jUivEelDRFVK_5E-Xn9StFlF97vrtORYTX1K8Bcc3KgO |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_129877 crossref_primary_10_1016_j_indcrop_2024_118460 crossref_primary_10_3390_polysaccharides5040043 crossref_primary_10_1016_j_ijpharm_2025_125323 crossref_primary_10_1016_j_fbio_2024_104022 crossref_primary_10_1016_j_ijbiomac_2024_133695 crossref_primary_10_1016_j_eti_2023_103216 crossref_primary_10_1039_D2GC04319J crossref_primary_10_3390_su141710897 crossref_primary_10_1016_j_indcrop_2023_116685 crossref_primary_10_1007_s40883_024_00357_x crossref_primary_10_1016_j_jpowsour_2025_236211 crossref_primary_10_1021_acssuschemeng_3c08482 crossref_primary_10_1002_smll_202406733 crossref_primary_10_1021_acssuschemeng_2c04284 crossref_primary_10_1016_j_ijbiomac_2024_133443 crossref_primary_10_1016_j_arabjc_2022_104420 crossref_primary_10_1016_j_ijbiomac_2024_138613 crossref_primary_10_1016_j_mser_2023_100761 crossref_primary_10_1016_j_jclepro_2024_143151 crossref_primary_10_1021_acs_biomac_2c01385 crossref_primary_10_1016_j_jece_2022_107773 crossref_primary_10_3390_horticulturae10030289 crossref_primary_10_1021_acsestwater_4c00551 crossref_primary_10_1021_acsapm_1c01817 crossref_primary_10_3390_molecules29235575 crossref_primary_10_1016_j_desal_2024_118348 crossref_primary_10_1016_j_cej_2023_144285 crossref_primary_10_1007_s11426_024_2016_8 crossref_primary_10_1016_j_envres_2024_119903 crossref_primary_10_1016_j_mcat_2024_114697 crossref_primary_10_1016_j_foodchem_2024_138602 crossref_primary_10_1039_D2NA00423B crossref_primary_10_1016_j_indcrop_2025_120644 crossref_primary_10_1002_asia_202200566 crossref_primary_10_1080_10408398_2023_2181762 crossref_primary_10_1021_acssuschemeng_3c07477 crossref_primary_10_1016_j_ijbiomac_2024_138327 crossref_primary_10_1186_s12917_024_04241_2 crossref_primary_10_1016_j_envpol_2022_120665 crossref_primary_10_1039_D2GC00092J crossref_primary_10_1016_j_cej_2022_139688 crossref_primary_10_1021_acsapm_2c00420 crossref_primary_10_1016_j_cej_2023_142370 crossref_primary_10_3390_polym15153177 crossref_primary_10_1038_s41467_022_33273_1 crossref_primary_10_1016_j_ijbiomac_2024_138047 crossref_primary_10_1002_adfm_202417206 crossref_primary_10_1007_s10068_024_01543_x crossref_primary_10_1016_j_jobab_2023_05_001 crossref_primary_10_3389_fbioe_2021_817768 crossref_primary_10_3390_ijms231911165 crossref_primary_10_3390_molecules27051466 crossref_primary_10_1016_j_foodchem_2024_140513 crossref_primary_10_1016_j_ijbiomac_2022_03_182 crossref_primary_10_1016_j_scitotenv_2023_162383 crossref_primary_10_1016_j_ijbiomac_2024_130718 crossref_primary_10_1016_j_jiec_2025_03_001 crossref_primary_10_3390_molecules28083589 crossref_primary_10_1002_cssc_202201230 crossref_primary_10_1080_09540105_2024_2384420 crossref_primary_10_1002_advs_202206055 crossref_primary_10_1016_j_eurpolymj_2022_111732 crossref_primary_10_1016_j_ijbiomac_2024_139366 crossref_primary_10_1007_s10570_024_06261_5 crossref_primary_10_1016_j_cej_2024_153772 crossref_primary_10_1016_j_jechem_2025_02_045 crossref_primary_10_1021_acssuschemeng_3c01471 crossref_primary_10_1039_D4PY00998C crossref_primary_10_3389_fpls_2023_1230792 crossref_primary_10_1016_j_gee_2023_05_001 crossref_primary_10_3390_polym15040992 crossref_primary_10_3389_fpls_2024_1389379 crossref_primary_10_1016_j_jobab_2024_10_002 crossref_primary_10_1016_j_xcrp_2022_100867 crossref_primary_10_3390_plants13131839 crossref_primary_10_1016_j_ijbiomac_2025_140519 crossref_primary_10_3390_catal12091031 crossref_primary_10_26599_PBM_2023_9260011 crossref_primary_10_1016_j_foodchem_2024_138412 crossref_primary_10_1016_j_colsurfa_2025_136311 crossref_primary_10_1016_j_agrcom_2023_100018 crossref_primary_10_1016_j_ijbiomac_2024_137609 crossref_primary_10_1016_j_chemosphere_2022_136564 crossref_primary_10_1039_D4TB00458B crossref_primary_10_1080_14620316_2024_2404511 crossref_primary_10_1002_slct_202402768 crossref_primary_10_1016_j_jece_2024_113647 crossref_primary_10_1088_2752_5724_ad93ea crossref_primary_10_1016_j_indcrop_2022_115930 crossref_primary_10_1016_j_indcrop_2024_118209 crossref_primary_10_1021_acs_biomac_3c00841 crossref_primary_10_1016_j_jafr_2025_101649 crossref_primary_10_1021_acs_biomac_4c00615 crossref_primary_10_1080_21645698_2025_2469942 crossref_primary_10_1016_j_enceco_2025_02_005 crossref_primary_10_1016_j_indcrop_2024_118720 crossref_primary_10_1021_acsami_4c07918 crossref_primary_10_1016_j_ijbiomac_2024_130475 crossref_primary_10_1007_s10570_022_04504_x crossref_primary_10_1016_j_biortech_2023_129006 crossref_primary_10_3390_coatings12050577 crossref_primary_10_1021_acsabm_4c01295 crossref_primary_10_1515_hf_2022_0155 crossref_primary_10_1021_acsapm_3c02981 crossref_primary_10_1111_pce_15437 crossref_primary_10_3390_agronomy13112819 crossref_primary_10_1021_acs_biomac_4c00681 crossref_primary_10_1080_23311932_2023_2176280 crossref_primary_10_1016_j_ijbiomac_2025_140059 crossref_primary_10_1016_j_joei_2024_101884 crossref_primary_10_1016_j_ijbiomac_2022_07_002 crossref_primary_10_1016_j_ijbiomac_2024_129378 crossref_primary_10_1021_acssuschemeng_4c05891 crossref_primary_10_1007_s13726_023_01210_8 |
Cites_doi | 10.1016/j.copbio.2019.02.018 10.1080/01635589809514637 10.1074/jbc.M704257200 10.4236/as.2017.85025 10.1126/science.1193748 10.1002/jctb.5656 10.3177/jnsv.61.449 10.1111/j.1742-7843.2010.00575.x 10.1111/jipb.12422 10.1038/nature13084 10.1016/j.carbpol.2020.117429 10.1039/C6RA01866A 10.1016/j.biortech.2021.126142 10.1007/s12155-012-9273-4 10.1104/pp.114.245597 10.13360/j.issn.2096-1359.201909026 10.1111/1751-7915.13392 10.1007/s10584-006-9210-7 10.1021/acssuschemeng.8b03262 10.3390/nano11040846 10.1111/j.1365-3040.2005.01432.x 10.1016/j.ijbiomac.2014.09.044 10.1094/MPMI-10-14-0320-R 10.1080/02773813.2013.851246 10.1016/j.msec.2019.110002 10.1371/journal.pone.0131219 10.1021/acsabm.8b00445 10.1016/j.biortech.2012.10.065 10.1016/j.fsi.2017.11.037 10.1007/s11104-014-2131-8 10.2147/COPD.S10770 10.1016/j.copbio.2013.09.008 10.1016/j.bbrc.2015.04.104 10.1016/j.pupt.2012.12.009 10.1021/jf502062b 10.1111/j.1469-8137.2004.01143.x 10.3390/molecules201119671 10.1016/j.pecs.2019.100788 10.1016/j.actbio.2021.01.016 10.1016/S2095-3119(18)61905-7 10.1016/j.phytochem.2007.03.022 10.1021/acssuschemeng.0c02880 10.1007/s12298-015-0289-z 10.1177/088532828700200406 10.1016/j.biortech.2020.124441 10.1021/sc500087z 10.1016/j.biortech.2015.01.026 10.1016/j.bmc.2007.11.041 10.1016/j.ijbiomac.2016.11.100 10.1186/1754-6834-6-156 10.1039/C5GC03043A 10.1016/j.pharmthera.2010.05.004 10.3390/ijms18030619 10.1016/j.biortech.2019.122133 10.1007/s00344-017-9696-4 10.1016/j.bmc.2006.07.066 10.1007/s11104-015-2780-2 10.1039/C6NP00112B 10.18632/oncotarget.24990 10.1007/s13346-017-0441-0 10.1038/nnano.2015.141 10.1016/j.indcrop.2011.06.002 10.1007/s12649-020-01088-0 10.1016/j.thromres.2014.08.024 10.1186/1471-2229-13-44 10.1016/S0960-8524(97)00181-8 10.1016/j.ijbiomac.2018.06.067 10.1016/j.plantsci.2014.10.005 10.1021/acsomega.8b00697 10.1016/j.renene.2018.02.079 10.1016/j.procbio.2018.05.007 10.1186/1753-6561-5-S7-P103 10.3144/expresspolymlett.2009.46 10.1016/j.ijbiomac.2014.12.044 10.1097/SS.0b013e3181bf1e03 10.1021/acs.biomac.0c00695 10.1016/j.biortech.2005.11.014 10.1016/j.jobab.2020.04.001 10.1016/j.biomaterials.2016.12.034 10.1016/j.indcrop.2007.07.019 10.1016/j.msec.2019.04.038 10.11648/j.ijnfs.20140303.16 10.1111/j.1744-7909.2010.00892.x 10.1016/S1001-0742(08)62296-2 10.1016/j.biotechadv.2019.107416 10.3389/fpls.2020.00581 10.1016/j.indcrop.2016.07.023 10.1007/s11104-014-2290-7 10.1016/j.ijbiomac.2019.12.085 10.3390/catal7120374 10.1007/s11103-019-00849-3 10.1063/1.4824019 10.1016/j.jddst.2017.09.017 10.1016/j.indcrop.2016.09.046 10.1080/19476337.2012.688219 10.1016/j.biortech.2004.02.024 10.1016/j.ijbiomac.2020.03.016 10.1002/app.42069 10.1039/C8GC04059A 10.1016/j.copbio.2018.11.012 10.1007/s12033-012-9538-3 10.1039/C4GC01333F 10.1016/j.ijbiomac.2015.01.012 10.1016/j.pmatsci.2017.12.001 10.1007/s13399-019-00458-6 10.1007/s00425-006-0300-6 10.15376/biores.2.3.363-370 10.1271/bbb.100645 10.1007/s10570-014-0237-z 10.1016/j.ijbiomac.2018.08.109 10.1016/j.rser.2015.04.091 10.1371/journal.pone.0035906 10.1002/app.28097 10.1016/j.ijbiomac.2016.01.109 10.3390/cosmetics7040085 10.1016/j.actbio.2021.05.032 10.1016/j.ijantimicag.2016.08.014 10.1016/j.antiviral.2007.03.010 10.1126/science.1227491 10.1160/TH09-07-0454 10.1016/j.cbpa.2015.06.009 10.1021/acssuschemeng.8b02011 10.3389/fpls.2013.00273 10.1016/j.jobab.2020.07.002 10.1016/j.foodchem.2010.10.113 10.1111/j.1365-313X.2009.03996.x 10.1111/jth.13254 10.3390/ijms14046960 10.1016/j.jobab.2021.01.002 10.1016/j.bioactmat.2020.04.007 10.1039/C5GC01054C 10.1186/s13068-020-1659-5 10.1016/j.msec.2017.07.054 10.1111/1541-4337.12322 10.1002/bbb.1670 10.1016/0166-3542(91)90039-T 10.1016/j.mehy.2018.09.003 10.1016/j.jbiotec.2003.09.011 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.biomac.1c00805 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Medicine |
EISSN | 1526-4602 |
EndPage | 4918 |
ExternalDocumentID | 34806363 10_1021_acs_biomac_1c00805 b005900802 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | - 02 23N 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED F5P GGK GNL IH9 JG P2P RNS ROL TN5 UI2 VF5 VG9 W1F X XKZ --- -~X AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ ED~ JG~ ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a375t-3970f3e752b2eaf97be575f791d67b8ded37f80cd956e2dcd999b1ebedb6c47b3 |
IEDL.DBID | ACS |
ISSN | 1525-7797 1526-4602 |
IngestDate | Fri Jul 11 15:48:17 EDT 2025 Fri Jul 11 03:26:31 EDT 2025 Thu Jan 02 22:55:22 EST 2025 Tue Jul 01 04:08:15 EDT 2025 Thu Apr 24 23:08:18 EDT 2025 Wed Dec 15 03:13:55 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a375t-3970f3e752b2eaf97be575f791d67b8ded37f80cd956e2dcd999b1ebedb6c47b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0748-3629 0000-0003-3500-2308 |
PMID | 34806363 |
PQID | 2600819240 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2636474454 proquest_miscellaneous_2600819240 pubmed_primary_34806363 crossref_citationtrail_10_1021_acs_biomac_1c00805 crossref_primary_10_1021_acs_biomac_1c00805 acs_journals_10_1021_acs_biomac_1c00805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-13 |
PublicationDateYYYYMMDD | 2021-12-13 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref3/cit3 ref81/cit81 Lopez B. S. G. (ref58/cit58) 2009; 23 ref16/cit16 ref52/cit52 Loomis T. (ref71/cit71) 1953; 109 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref120/cit120 ref13/cit13 ref122/cit122 ref105/cit105 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 Balas A. (ref99/cit99) 2007; 2 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 Wang H. J. (ref109/cit109) 2005; 17 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref143/cit143 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 Sakagami H. (ref61/cit61) 2011; 25 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref26/cit26 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref95/cit95 ref108/cit108 Li J. F. (ref107/cit107) 2002; 01 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref16/cit16 doi: 10.1016/j.copbio.2019.02.018 – ident: ref62/cit62 doi: 10.1080/01635589809514637 – ident: ref73/cit73 doi: 10.1074/jbc.M704257200 – ident: ref106/cit106 doi: 10.4236/as.2017.85025 – ident: ref54/cit54 doi: 10.1126/science.1193748 – ident: ref36/cit36 doi: 10.1002/jctb.5656 – ident: ref81/cit81 doi: 10.3177/jnsv.61.449 – ident: ref86/cit86 doi: 10.1111/j.1742-7843.2010.00575.x – ident: ref88/cit88 doi: 10.1111/jipb.12422 – ident: ref87/cit87 doi: 10.1038/nature13084 – ident: ref108/cit108 doi: 10.1016/j.carbpol.2020.117429 – ident: ref63/cit63 doi: 10.1039/C6RA01866A – ident: ref135/cit135 doi: 10.1016/j.biortech.2021.126142 – ident: ref131/cit131 doi: 10.1007/s12155-012-9273-4 – ident: ref18/cit18 doi: 10.1104/pp.114.245597 – volume: 23 start-page: 1011 issue: 6 year: 2009 ident: ref58/cit58 publication-title: In Vivo – ident: ref125/cit125 doi: 10.13360/j.issn.2096-1359.201909026 – ident: ref44/cit44 doi: 10.1111/1751-7915.13392 – ident: ref112/cit112 doi: 10.1007/s10584-006-9210-7 – ident: ref67/cit67 doi: 10.1021/acssuschemeng.8b03262 – ident: ref104/cit104 doi: 10.3390/nano11040846 – ident: ref114/cit114 doi: 10.1111/j.1365-3040.2005.01432.x – ident: ref22/cit22 doi: 10.1016/j.ijbiomac.2014.09.044 – ident: ref123/cit123 doi: 10.1094/MPMI-10-14-0320-R – ident: ref139/cit139 doi: 10.1080/02773813.2013.851246 – volume: 17 start-page: 650 issue: 4 year: 2005 ident: ref109/cit109 publication-title: J. Environ. Sci. – ident: ref48/cit48 doi: 10.1016/j.msec.2019.110002 – ident: ref55/cit55 doi: 10.1371/journal.pone.0131219 – ident: ref28/cit28 doi: 10.1021/acsabm.8b00445 – ident: ref138/cit138 doi: 10.1016/j.biortech.2012.10.065 – ident: ref56/cit56 doi: 10.1016/j.fsi.2017.11.037 – ident: ref95/cit95 doi: 10.1007/s11104-014-2131-8 – ident: ref76/cit76 doi: 10.2147/COPD.S10770 – ident: ref128/cit128 doi: 10.1016/j.copbio.2013.09.008 – ident: ref57/cit57 doi: 10.1016/j.bbrc.2015.04.104 – ident: ref77/cit77 doi: 10.1016/j.pupt.2012.12.009 – ident: ref85/cit85 doi: 10.1021/jf502062b – ident: ref91/cit91 doi: 10.1111/j.1469-8137.2004.01143.x – ident: ref100/cit100 doi: 10.3390/molecules201119671 – ident: ref10/cit10 doi: 10.1016/j.pecs.2019.100788 – ident: ref6/cit6 doi: 10.1016/j.actbio.2021.01.016 – ident: ref119/cit119 doi: 10.1016/S2095-3119(18)61905-7 – ident: ref24/cit24 doi: 10.1016/j.phytochem.2007.03.022 – ident: ref17/cit17 doi: 10.1021/acssuschemeng.0c02880 – ident: ref118/cit118 doi: 10.1007/s12298-015-0289-z – ident: ref5/cit5 doi: 10.1177/088532828700200406 – ident: ref98/cit98 doi: 10.1016/j.biortech.2020.124441 – ident: ref20/cit20 doi: 10.1021/sc500087z – ident: ref137/cit137 doi: 10.1016/j.biortech.2015.01.026 – ident: ref52/cit52 doi: 10.1016/j.bmc.2007.11.041 – ident: ref82/cit82 doi: 10.1016/j.ijbiomac.2016.11.100 – ident: ref132/cit132 doi: 10.1186/1754-6834-6-156 – ident: ref11/cit11 doi: 10.1039/C5GC03043A – ident: ref23/cit23 doi: 10.1016/j.pharmthera.2010.05.004 – ident: ref121/cit121 doi: 10.3390/ijms18030619 – ident: ref143/cit143 doi: 10.1016/j.biortech.2019.122133 – ident: ref101/cit101 doi: 10.1007/s00344-017-9696-4 – ident: ref72/cit72 doi: 10.1016/j.bmc.2006.07.066 – ident: ref94/cit94 doi: 10.1007/s11104-015-2780-2 – ident: ref14/cit14 doi: 10.1039/C6NP00112B – ident: ref68/cit68 doi: 10.18632/oncotarget.24990 – ident: ref42/cit42 doi: 10.1007/s13346-017-0441-0 – ident: ref39/cit39 doi: 10.1038/nnano.2015.141 – ident: ref26/cit26 doi: 10.1016/j.indcrop.2011.06.002 – ident: ref70/cit70 doi: 10.1007/s12649-020-01088-0 – ident: ref74/cit74 doi: 10.1016/j.thromres.2014.08.024 – ident: ref115/cit115 doi: 10.1186/1471-2229-13-44 – ident: ref126/cit126 doi: 10.1016/S0960-8524(97)00181-8 – ident: ref50/cit50 doi: 10.1016/j.ijbiomac.2018.06.067 – ident: ref122/cit122 doi: 10.1016/j.plantsci.2014.10.005 – ident: ref103/cit103 doi: 10.1021/acsomega.8b00697 – volume: 25 start-page: 229 issue: 2 year: 2011 ident: ref61/cit61 publication-title: In Vivo – ident: ref130/cit130 doi: 10.1016/j.renene.2018.02.079 – ident: ref133/cit133 doi: 10.1016/j.procbio.2018.05.007 – ident: ref117/cit117 doi: 10.1186/1753-6561-5-S7-P103 – ident: ref4/cit4 doi: 10.3144/expresspolymlett.2009.46 – ident: ref66/cit66 doi: 10.1016/j.ijbiomac.2014.12.044 – ident: ref96/cit96 doi: 10.1097/SS.0b013e3181bf1e03 – ident: ref43/cit43 doi: 10.1021/acs.biomac.0c00695 – ident: ref93/cit93 doi: 10.1016/j.biortech.2005.11.014 – ident: ref15/cit15 doi: 10.1016/j.jobab.2020.04.001 – ident: ref65/cit65 doi: 10.1016/j.biomaterials.2016.12.034 – ident: ref105/cit105 doi: 10.1016/j.indcrop.2007.07.019 – ident: ref47/cit47 doi: 10.1016/j.msec.2019.04.038 – ident: ref3/cit3 doi: 10.11648/j.ijnfs.20140303.16 – ident: ref25/cit25 doi: 10.1111/j.1744-7909.2010.00892.x – ident: ref110/cit110 doi: 10.1016/S1001-0742(08)62296-2 – ident: ref97/cit97 doi: 10.1016/j.biotechadv.2019.107416 – ident: ref102/cit102 doi: 10.3389/fpls.2020.00581 – ident: ref29/cit29 doi: 10.1016/j.indcrop.2016.07.023 – ident: ref111/cit111 doi: 10.1007/s11104-014-2290-7 – ident: ref35/cit35 doi: 10.1016/j.ijbiomac.2019.12.085 – ident: ref140/cit140 doi: 10.3390/catal7120374 – ident: ref92/cit92 doi: 10.1007/s11103-019-00849-3 – ident: ref30/cit30 doi: 10.1063/1.4824019 – ident: ref45/cit45 doi: 10.1016/j.jddst.2017.09.017 – ident: ref38/cit38 doi: 10.1016/j.indcrop.2016.09.046 – ident: ref79/cit79 doi: 10.1080/19476337.2012.688219 – ident: ref27/cit27 doi: 10.1016/j.biortech.2004.02.024 – ident: ref33/cit33 doi: 10.1016/j.ijbiomac.2020.03.016 – ident: ref21/cit21 doi: 10.1002/app.42069 – ident: ref142/cit142 doi: 10.1039/C8GC04059A – ident: ref1/cit1 doi: 10.1016/j.copbio.2018.11.012 – ident: ref116/cit116 doi: 10.1007/s12033-012-9538-3 – ident: ref32/cit32 doi: 10.1039/C4GC01333F – ident: ref80/cit80 doi: 10.1016/j.ijbiomac.2015.01.012 – ident: ref12/cit12 doi: 10.1016/j.pmatsci.2017.12.001 – ident: ref84/cit84 doi: 10.1007/s13399-019-00458-6 – ident: ref89/cit89 doi: 10.1007/s00425-006-0300-6 – volume: 2 start-page: 363 issue: 3 year: 2007 ident: ref99/cit99 publication-title: BioResources doi: 10.15376/biores.2.3.363-370 – ident: ref59/cit59 doi: 10.1271/bbb.100645 – ident: ref136/cit136 doi: 10.1007/s10570-014-0237-z – ident: ref41/cit41 doi: 10.1016/j.ijbiomac.2018.08.109 – ident: ref8/cit8 doi: 10.1016/j.rser.2015.04.091 – ident: ref51/cit51 doi: 10.1371/journal.pone.0035906 – ident: ref37/cit37 doi: 10.1002/app.28097 – volume: 01 start-page: 99 year: 2002 ident: ref107/cit107 publication-title: Chinese Forestry Science and Technology – ident: ref64/cit64 doi: 10.1016/j.ijbiomac.2016.01.109 – ident: ref31/cit31 doi: 10.3390/cosmetics7040085 – ident: ref7/cit7 doi: 10.1016/j.actbio.2021.05.032 – ident: ref49/cit49 doi: 10.1016/j.ijantimicag.2016.08.014 – ident: ref60/cit60 doi: 10.1016/j.antiviral.2007.03.010 – ident: ref124/cit124 doi: 10.1126/science.1227491 – ident: ref75/cit75 doi: 10.1160/TH09-07-0454 – ident: ref9/cit9 doi: 10.1016/j.cbpa.2015.06.009 – ident: ref141/cit141 doi: 10.1021/acssuschemeng.8b02011 – ident: ref113/cit113 doi: 10.3389/fpls.2013.00273 – ident: ref13/cit13 doi: 10.1016/j.jobab.2020.07.002 – ident: ref83/cit83 doi: 10.1016/j.foodchem.2010.10.113 – volume: 109 start-page: 21 issue: 1 year: 1953 ident: ref71/cit71 publication-title: J. Pharmacol. Exp. Ther. – ident: ref90/cit90 doi: 10.1111/j.1365-313X.2009.03996.x – ident: ref78/cit78 doi: 10.1111/jth.13254 – ident: ref120/cit120 doi: 10.3390/ijms14046960 – ident: ref46/cit46 doi: 10.1016/j.jobab.2021.01.002 – ident: ref2/cit2 doi: 10.1016/j.bioactmat.2020.04.007 – ident: ref19/cit19 doi: 10.1039/C5GC01054C – ident: ref134/cit134 doi: 10.1186/s13068-020-1659-5 – ident: ref40/cit40 doi: 10.1016/j.msec.2017.07.054 – ident: ref34/cit34 doi: 10.1111/1541-4337.12322 – ident: ref129/cit129 doi: 10.1002/bbb.1670 – ident: ref53/cit53 doi: 10.1016/0166-3542(91)90039-T – ident: ref69/cit69 doi: 10.1016/j.mehy.2018.09.003 – ident: ref127/cit127 doi: 10.1016/j.jbiotec.2003.09.011 |
SSID | ssj0009345 |
Score | 2.6452549 |
SecondaryResourceType | review_article |
Snippet | Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4905 |
SubjectTerms | biocompatibility Biomass Cellulose enzymatic hydrolysis evolution flavonoids human health Humans Hydrolysis lignification lignin Lignin - chemistry medicine plant growth plant pathogens Plants - chemistry terpenoids value added |
Title | Biological Activities and Emerging Roles of Lignin and Lignin-Based ProductsA Review |
URI | http://dx.doi.org/10.1021/acs.biomac.1c00805 https://www.ncbi.nlm.nih.gov/pubmed/34806363 https://www.proquest.com/docview/2600819240 https://www.proquest.com/docview/2636474454 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTuQwEC3xWcBm-AwwzU9GQpoFpElsx-4smxYIIUCIAcEushMHIVB6NOnecBGuwqk4A1VxmhECWqwSJbYjl8uq55T9HsC20cYoaVwQqqQTyMTgnOOhC3DFbEMTa13UZNWnZ-roSh7fxDcTsPtFBp9Heyar2nQUHZuPMgI48SRMc4WzmIBQ789_il1RSxKToA9ixkQ3R2Q-b4OCUVa9D0ZfIMw60hzOwenovI7fYHLfHg5sO3v8SN_4rU7Mw48GcrKu95EFmHDlIsz0RkpvP-HaC1LScLFuVstJ4PqZmTJn9M-KZIzYBRE_sX7BTu5uy7uyfulvg30MhDk799Sx1cvTc5f5jMMSXB0eXPaOgkZwITBCx4MAsUlYCKdjbrkzRaKtQzRX6CTKlbad3OVCF50wy3FR5XiO1ySxEbpBblUmtRXLMFX2S_cLmDPYz9hSos_JwmJBjIfWFIq7RFnhWvAbbZI2E6ZK61w4j1J66A2VNoZqQTQaozRreMtJPuNhbJ2dtzp_PWvH2NJbo6FP0fKUMTGl6w-rlNj7iTFOhuPKEAW_lLFswYr3m7dvCtlBCKjE6rd7uwaznHbNRDyIxDpMDf4N3QbCnoHdrL39Fdnc_qE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB4VeoALbfldSouRkDigQGI78ea4XRUtsIsQLIJbZCcOQqAsIruXvkhfpU_VZ2DGye4K1K7glMjx73is-ZyxvwHY1UrrSGrr-VHc9GSscc1x33q4Yza-DpXKHVl17yzqXMmTm_CmvsdNd2GwEyXWVDon_pRdIDikNLqRjq0EKeGccA4-IhrhpNat9uWUaVe4yMQU1wehY6zqmzL_roNsUlq-tEn_AZrO4Bx9gv6kq-6cyf3BaGgO0l-vWBzfOZbPsFQDUNaqNOYLfLDFMiy0x3HfVuC6Ck9Jk8daqQsugbtppouM0R8sCmrELogGig1y1r27Le4K97F69X6gWczYeUUkW_79_afFKv_DKlwd_ey3O14dfsHTQoVDD5GKnwurQm641XmsjEVsl6s4yCJlmpnNhMqbfprhFsvyDJ9xbAJUisxEqVRGrMF8MSjsBjCrcZyhIbeflbnBjGgdjc4jbuPICNuAPZRJUi-fMnGecR4klFgJKqkF1YBgPFVJWrOYUzCNh5ll9idlHisOj5m5d8YakKDkyX-iCzsYlQlx-RN_nPRn5SFCfilD2YD1Sn0mbQrZREAYic03j3YbFjr9XjfpHp-dfoVFTudpAu4FYgvmh08j-w0B0dB8dwvgGY8JBxE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED_BkMZeGAzYysYw0qQ9oJQkduLmsStUBUZVDSr6FtmxPU2b0om0L3wRvso-FZ9hd07aaWirEE-JEv89n3Vnn_37ARwoqVQqlA3CNOsEIlM45-LQBrhi1qFKpHQerPrrMB2MxedJMmm2LuguDDaiwpIqH8SnWX1pXIMwEL2n73QrHWuKCvJ1kofwiOJ2pNrd3rcbtF3u2YmJ2wfdx0w2t2XuLoPsUlHdtkv3OJve6PQ3YbJsrj9rct6ez3S7-PUXkuN_9OcpPGkcUdatNecZPLDlFjzuLfjfnsOPmqaSBpF1C08ygatqpkrDaCeLyI3YCcFBsaljx2en5Vnpf9avwRGaR8NGNaBs9ef3VZfVcYgXMO5__N4bBA0NQ6C4TGYBeiyh41YmsY6tcpnUFn08J7PIpFJ3jDVcuk5YGFxq2djgM8t0hMphdFoIqflLWCunpd0BZhX2M9EU_rPCaUyIVlIrl8Y2SzW3LThEmeTNNKpyHyGPo5w-1oLKG0G1IFoMV140aOZEqnGxMs-7ZZ7LGstjZeq3Cy3IUfIUR1Glnc6rnDD9CUdOhKvSEDC_EIlowXatQss6ueigY5jyV__c2zewPvrQz48_Db_swkZMx2qiOIj4HqzNfs7ta_SLZnrfz4FrAYAJlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+Activities+and+Emerging+Roles+of+Lignin+and+Lignin-Based+Products%E2%94%80A+Review&rft.jtitle=Biomacromolecules&rft.au=Shu%2C+Fan&rft.au=Jiang%2C+Bo&rft.au=Yuan%2C+Yufeng&rft.au=Li%2C+Mohan&rft.date=2021-12-13&rft.issn=1526-4602&rft.eissn=1526-4602&rft.volume=22&rft.issue=12&rft.spage=4905&rft_id=info:doi/10.1021%2Facs.biomac.1c00805&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |