Lunar simulant behaviour variability and implications on terrestrial based lunar testing
The detrimental effects and challenges of Lunar dust for Lunar exploitation were first identified during the Apollo missions. During the extra vehicle activities (EVAs) undertaken by astronauts, the dust clogged mechanisms, disrupted sensors, and caused several health issues for the astronauts. Desp...
Saved in:
Published in | Icarus (New York, N.Y. 1962) Vol. 422; p. 116257 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The detrimental effects and challenges of Lunar dust for Lunar exploitation were first identified during the Apollo missions. During the extra vehicle activities (EVAs) undertaken by astronauts, the dust clogged mechanisms, disrupted sensors, and caused several health issues for the astronauts. Despite numerous studies, there is no definite understanding as to why different Apollo missions experienced varying levels of dust disruptions. The variations in dust behaviour could be attributed to the amount of radiation the Lunar soil is exposed to, as well as mineralogy and particle sizes. To enhance our understanding of Lunar dust behaviour this study investigated Space Recourse Technologies, formally known as Exolith, simulant at different mineral compositions, and their surface detachment characteristics were measured. Experiments measuring the individual minerals and their mixed simulant-like counterparts were conducted using electrostatic fields. Inclusive to this, non-dried and dried samples were compared by measuring adhesion to target plates when subject to electrostatic forces. The results found that Highlands simulant exhibited a higher buildup on a target plate than its Mare counterpart by an average of 33% under the same conditions, likely due to particle size differences. In addition to these findings, evidence of particle reactivity decay was observed under repeated tests with up to 60% less Mare simulant and 36% Highlands deposition being measured compared to the first set of experiments. A possible explanation may be particle reactivity. Microscope images identified that particles are transported in groups as opposed to individual grains. These results will help researchers in tailoring dust mitigation solutions based on different regions on the Lunar surface and influence mission planning from the perspective of dust mitigation and contamination.
•A novel method for quantitative measurements of simulant and particle buildup on surfaces using thresholding.•Highlands simulants exhibit more lofting potential than its Mare counterpart correlated towards their particle size distribution.•Moisture reduction within simulants increases lofting potential.•Lunar simulants lose their natural electrostatic working capacity over repeated use.•Particles were found to transport in clusters as opposed to individual grains when subject to an electrostatic field. |
---|---|
AbstractList | The detrimental effects and challenges of Lunar dust for Lunar exploitation were first identified during the Apollo missions. During the extra vehicle activities (EVAs) undertaken by astronauts, the dust clogged mechanisms, disrupted sensors, and caused several health issues for the astronauts. Despite numerous studies, there is no definite understanding as to why different Apollo missions experienced varying levels of dust disruptions. The variations in dust behaviour could be attributed to the amount of radiation the Lunar soil is exposed to, as well as mineralogy and particle sizes. To enhance our understanding of Lunar dust behaviour this study investigated Space Recourse Technologies, formally known as Exolith, simulant at different mineral compositions, and their surface detachment characteristics were measured. Experiments measuring the individual minerals and their mixed simulant-like counterparts were conducted using electrostatic fields. Inclusive to this, non-dried and dried samples were compared by measuring adhesion to target plates when subject to electrostatic forces. The results found that Highlands simulant exhibited a higher buildup on a target plate than its Mare counterpart by an average of 33% under the same conditions, likely due to particle size differences. In addition to these findings, evidence of particle reactivity decay was observed under repeated tests with up to 60% less Mare simulant and 36% Highlands deposition being measured compared to the first set of experiments. A possible explanation may be particle reactivity. Microscope images identified that particles are transported in groups as opposed to individual grains. These results will help researchers in tailoring dust mitigation solutions based on different regions on the Lunar surface and influence mission planning from the perspective of dust mitigation and contamination.
•A novel method for quantitative measurements of simulant and particle buildup on surfaces using thresholding.•Highlands simulants exhibit more lofting potential than its Mare counterpart correlated towards their particle size distribution.•Moisture reduction within simulants increases lofting potential.•Lunar simulants lose their natural electrostatic working capacity over repeated use.•Particles were found to transport in clusters as opposed to individual grains when subject to an electrostatic field. |
ArticleNumber | 116257 |
Author | Brooks, Geoffrey Zanon, Philipp Dunn, Michelle |
Author_xml | – sequence: 1 givenname: Philipp orcidid: 0009-0005-2785-9215 surname: Zanon fullname: Zanon, Philipp email: Pzanon@swin.edu.au – sequence: 2 givenname: Michelle surname: Dunn fullname: Dunn, Michelle – sequence: 3 givenname: Geoffrey surname: Brooks fullname: Brooks, Geoffrey |
BookMark | eNqFkE1LAzEQQHOoYFv9Bx7yB7Zmkt1t14MgxS8oeFHwFibZrE7ZZkuSLfTfu3Y9edBTYMh7zLwZm_jOO8auQCxAQHm9XZDF0MeFFDJfAJSyWE7YVAioMhCqOGezGLdCiGJVqSl73_QeA4-061v0iRv3iQfq-sAPGAgNtZSOHH3NabdvB3WizkfeeZ5cCC6m4VPLDUZX8_akSsOQ_McFO2uwje7y552zt4f71_VTtnl5fF7fbTJUyyJlCnJlljmosnHO5RbkCktTQlnkdQ3SyKYSFhQaUeVYgJRlXVTGmEahsqIGNWc3o9eGLsbgGm0pnbZMAanVIPR3F73VYxf93UWPXQY4_wXvA-0wHP_DbkfMDYcdyAUdLTlvXU3B2aTrjv4WfAF56IUw |
CitedBy_id | crossref_primary_10_1016_j_elstat_2025_104045 |
Cites_doi | 10.1029/2011GL050321 10.1029/2008GL034785 10.1016/j.elstat.2006.07.010 10.1016/j.icarus.2016.08.027 10.1007/s10509-020-3740-8 10.1063/1.4937368 10.1016/j.asr.2014.12.027 10.1016/0019-1035(62)90011-8 10.1016/j.pss.2011.04.017 10.1002/app.1975.070190112 10.1038/s41570-019-0115-1 10.1016/j.asr.2005.04.048 10.1145/361237.361242 10.1016/j.epsl.2010.04.042 10.1002/2016GL069491 10.1134/S0038094620060076 10.1111/j.1945-5100.2009.tb00781.x 10.1016/j.epsl.2006.12.004 10.1007/BF00562976 10.1016/j.asr.2015.10.005 10.1016/j.asr.2018.05.027 10.1016/j.pss.2013.08.020 10.1063/5.0009741 10.1016/j.powtec.2023.119029 10.1029/2009JE003464 10.1029/97JA03523 10.1016/j.pss.2018.02.010 10.1016/j.pss.2013.07.008 10.1021/acsomega.2c05629 10.1016/j.pss.2011.04.016 10.1134/S0038094614050050 10.1038/nature14159 10.1016/j.actaastro.2023.09.031 10.1016/j.powtec.2020.07.078 10.1029/2001GL014428 10.1103/PhysRevLett.102.028001 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.icarus.2024.116257 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
ExternalDocumentID | 10_1016_j_icarus_2024_116257 S0019103524003178 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ABNEU ABQEM ABQYD ACDAQ ACFVG ACGFS ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ RXW SDF SDG SDP SES SEW SHN SPC SPCBC SSE SSQ SSZ T5K TAE ZMT ZU3 ~02 ~G- 29I 6TJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB HMA HME HVGLF HZ~ LG5 LY3 LZ4 M41 MVM OHT PVJ R2- SEP SSH UQL VOH WUQ XJT ZY4 |
ID | FETCH-LOGICAL-a375t-3143b74136feee4c128a6b61654dd12b2f90c13ab094a51226d59bbbf3a3c0d13 |
IEDL.DBID | .~1 |
ISSN | 0019-1035 |
IngestDate | Tue Jul 01 04:19:00 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Sat Sep 07 15:50:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lunar dust Lunar dust mitigation testing Dust mineralogy characterisation Electrostatic lofting Chemical reactivity Regolith dynamics |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a375t-3143b74136feee4c128a6b61654dd12b2f90c13ab094a51226d59bbbf3a3c0d13 |
ORCID | 0009-0005-2785-9215 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0019103524003178 |
ParticipantIDs | crossref_citationtrail_10_1016_j_icarus_2024_116257 crossref_primary_10_1016_j_icarus_2024_116257 elsevier_sciencedirect_doi_10_1016_j_icarus_2024_116257 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Icarus (New York, N.Y. 1962) |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kureshi, Tripathi, Mishra (b21) 2020; 365 Office of the cheif Engineer (b32) 2021 Fujii, Yoshihara, Saito (b9) 2009 Freeman, Ibrahim (b8) 1975; 14 Space Resource Technologies (b43) 2023 Wallace, Phillips, Jeevarajan, Chen, Taylor (b47) 2010; 295 Duda, Hart (b3) 1972; 15 Popel, Zelenyi, Golub, Dubinskii (b35) 2018; 156 Wallace, Taylor, Liu, Cooper, McKay, Chen, Jeevarajan (b48) 2009; 44 Schulz, Hilchenbach, Langevin, Kissel, Silen, Briois, Engrand, Hornung, Baklouti, Bardyn, Cottin, Fischer, Fray, Godard, Lehto, Le Roy, Merouane, Orthous-Daunay, Paquette, Rynö, Siljeström, Stenzel, Thirkell, Varmuza, Zaprudin (b39) 2015; 518 O’Brien (b31) 2011; 59 Lacks, Levandovsky (b23) 2007; 65 Jackson, Farrell, Zimmerman (b19) 2015; 55 Cheever (b1) 1975; 19 Liu, Kolehmainen, Nwogbaga, Ozel, Sundaresan (b26) 2020; 375 Poppe, Halekas, Delory, Farrell, Angelopoulos, McFadden, Bonnell, Ergun (b36) 2012; 39 Stubbs, Vondrak, Farrell (b45) 2006; 37 Hartzell, Scheeres (b15) 2011; 59 Slyuta (b41) 2014; 48 Nitter, Havnes, Melandsø (b30) 1998; 103 Lab (b22) 2023 Zhang, Ozel, Hartzell (b53) 2024; 431 Feuerbacher, B. and Anderegg, M. and Fitton, B. and Laude, L. and Willis, R. and Grard (b6) 1971; 3 Farrell, Stubbs, Delory, Vondrak, Collier, Halekas, Lin (b4) 2008; 35 Gan, Li, Wei, Wang (b11) 2015; 56 Lee, James, Waitukaitis, Jaeger (b25) 2018; 2 Chi, Russell, Wei, Farrell (b2) 2013; 89 Purrington (b37) 2022 Zanon, Dunn, Brooks (b51) 2023; 213 Halekas, Mitchell, Lin, Hood, Acuña, Binder (b13) 2002; 29 Sotthewes, Gardeniers, Desmet, Jimidar (b42) 2022; 7 Mishra (b29) 2020; 27 Zakharov, Zelenyi, Popel (b50) 2020; 54 Stubbs, Farrell, Halekas, Burchill, Collier, Zimmerman, Vondrak, Delory, Pfaff (b44) 2014; 90 Huynh (b18) 2020 Gaier (b10) 2007 (b28) 1973 Reasoner, Burke (b38) 1973 The MathWorks Inc. (b46) 2023 Hongbo (b16) 2017 Harris, Lim, Jaeger (b14) 2019; 3 Forward, Lacks, Sankaran (b7) 2009; 102 Mack (b27) 2007 Hurowitz, Tosca, McLennan, Schoonen (b17) 2007; 255 Grün, Horányi (b12) 2013; 89 Wang, Schwan, Hsu, Grun, Horanyi (b49) 2016; 43 Zhan, Jiang, Chen, Zhang, Song (b52) 2014; 14 Orger, Cordova Alarcon, Toyoda, Cho (b33) 2018; 62 Singer, Walker (b40) 1962; 1 Farrell, Stubbs, Halekas, Killen, Delory, Collier, Vondrak (b5) 2010; 115 Jordan, Stubbs, Wilson, Schwadron, Spence (b20) 2017; 283 Lacks, Shinbrot (b24) 2019; 3 Popel, Zelenyi, Atamaniuk (b34) 2015; 22 Huynh (10.1016/j.icarus.2024.116257_b18) 2020 (10.1016/j.icarus.2024.116257_b28) 1973 Stubbs (10.1016/j.icarus.2024.116257_b44) 2014; 90 Zanon (10.1016/j.icarus.2024.116257_b51) 2023; 213 Wallace (10.1016/j.icarus.2024.116257_b48) 2009; 44 The MathWorks Inc. (10.1016/j.icarus.2024.116257_b46) 2023 Zakharov (10.1016/j.icarus.2024.116257_b50) 2020; 54 Hartzell (10.1016/j.icarus.2024.116257_b15) 2011; 59 Mishra (10.1016/j.icarus.2024.116257_b29) 2020; 27 Halekas (10.1016/j.icarus.2024.116257_b13) 2002; 29 Zhang (10.1016/j.icarus.2024.116257_b53) 2024; 431 Mack (10.1016/j.icarus.2024.116257_b27) 2007 Harris (10.1016/j.icarus.2024.116257_b14) 2019; 3 Singer (10.1016/j.icarus.2024.116257_b40) 1962; 1 Poppe (10.1016/j.icarus.2024.116257_b36) 2012; 39 Gaier (10.1016/j.icarus.2024.116257_b10) 2007 Orger (10.1016/j.icarus.2024.116257_b33) 2018; 62 Slyuta (10.1016/j.icarus.2024.116257_b41) 2014; 48 Nitter (10.1016/j.icarus.2024.116257_b30) 1998; 103 Duda (10.1016/j.icarus.2024.116257_b3) 1972; 15 Liu (10.1016/j.icarus.2024.116257_b26) 2020; 375 Sotthewes (10.1016/j.icarus.2024.116257_b42) 2022; 7 Cheever (10.1016/j.icarus.2024.116257_b1) 1975; 19 Fujii (10.1016/j.icarus.2024.116257_b9) 2009 Chi (10.1016/j.icarus.2024.116257_b2) 2013; 89 Lacks (10.1016/j.icarus.2024.116257_b23) 2007; 65 Hongbo (10.1016/j.icarus.2024.116257_b16) 2017 Lee (10.1016/j.icarus.2024.116257_b25) 2018; 2 Space Resource Technologies (10.1016/j.icarus.2024.116257_b43) 2023 Purrington (10.1016/j.icarus.2024.116257_b37) 2022 Lab (10.1016/j.icarus.2024.116257_b22) 2023 Lacks (10.1016/j.icarus.2024.116257_b24) 2019; 3 Reasoner (10.1016/j.icarus.2024.116257_b38) 1973 Popel (10.1016/j.icarus.2024.116257_b35) 2018; 156 Farrell (10.1016/j.icarus.2024.116257_b5) 2010; 115 Wallace (10.1016/j.icarus.2024.116257_b47) 2010; 295 O’Brien (10.1016/j.icarus.2024.116257_b31) 2011; 59 Wang (10.1016/j.icarus.2024.116257_b49) 2016; 43 Stubbs (10.1016/j.icarus.2024.116257_b45) 2006; 37 Gan (10.1016/j.icarus.2024.116257_b11) 2015; 56 Schulz (10.1016/j.icarus.2024.116257_b39) 2015; 518 Office of the cheif Engineer (10.1016/j.icarus.2024.116257_b32) 2021 Feuerbacher, B. and Anderegg, M. and Fitton, B. and Laude, L. and Willis, R. and Grard (10.1016/j.icarus.2024.116257_b6) 1971; 3 Grün (10.1016/j.icarus.2024.116257_b12) 2013; 89 Hurowitz (10.1016/j.icarus.2024.116257_b17) 2007; 255 Kureshi (10.1016/j.icarus.2024.116257_b21) 2020; 365 Popel (10.1016/j.icarus.2024.116257_b34) 2015; 22 Zhan (10.1016/j.icarus.2024.116257_b52) 2014; 14 Farrell (10.1016/j.icarus.2024.116257_b4) 2008; 35 Freeman (10.1016/j.icarus.2024.116257_b8) 1975; 14 Forward (10.1016/j.icarus.2024.116257_b7) 2009; 102 Jackson (10.1016/j.icarus.2024.116257_b19) 2015; 55 Jordan (10.1016/j.icarus.2024.116257_b20) 2017; 283 |
References_xml | – volume: 27 year: 2020 ident: b29 article-title: Role of photoelectric charge fluctuation in dust detachment from the lunar surface publication-title: Phys. Plasmas – volume: 39 start-page: 1 year: 2012 end-page: 6 ident: b36 article-title: A comparison of ARTEMIS observations and particle-in-cell modeling of the lunar photoelectron sheath in the terrestrial magnetotail publication-title: Geophys. Res. Lett. – volume: 255 start-page: 41 year: 2007 end-page: 52 ident: b17 article-title: Production of hydrogen peroxide in Martian and lunar soils publication-title: Earth Planet. Sci. Lett. – volume: 37 start-page: 59 year: 2006 end-page: 66 ident: b45 article-title: A dynamic fountain model for lunar dust publication-title: Adv. Space Res. – volume: 15 start-page: 11 year: 1972 end-page: 15 ident: b3 article-title: Use of the hough transformation to detect lines and curves in pictures publication-title: Commun. ACM – year: 2023 ident: b43 article-title: Lunar simulants – volume: 48 start-page: 330 year: 2014 end-page: 353 ident: b41 article-title: Physical and mechanical properties of the lunar soil (a review) publication-title: Sol. Syst. Res. – volume: 115 start-page: E03004 year: 2010 ident: b5 article-title: Anticipated electrical environment within permanently shadowed lunar craters publication-title: J. Geophys. Res. – year: 2017 ident: b16 article-title: Dielectrics under electric field publication-title: Electric Field – start-page: 99 year: 2021 ident: b32 article-title: Classifications and Requirements for Testing Systems and Hardware to Be Exposed to Dust in Planetary Environments – volume: 56 start-page: 2432 year: 2015 end-page: 2438 ident: b11 article-title: Work function measurements of olivine: Implication to photoemission charging properties in planetary environments publication-title: Adv. Space Res. – volume: 62 start-page: 896 year: 2018 end-page: 911 ident: b33 article-title: Lunar dust lofting due to surface electric field and charging within Micro-cavities between dust grains above the terminator region publication-title: Adv. Space Res. – volume: 213 start-page: 627 year: 2023 end-page: 644 ident: b51 article-title: Current lunar dust mitigation techniques and future directions publication-title: Acta Astronaut. – volume: 44 start-page: 961 year: 2009 end-page: 970 ident: b48 article-title: Lunar dust and lunar simulant activation and monitoring publication-title: Meteorit. Planet. Sci. – year: 2023 ident: b22 article-title: Exolith Simulants Constituent Report – start-page: 347 year: 1973 end-page: 361 ident: b28 article-title: Plasma and potential at the lunar surface publication-title: Photon and Particle Interactions with Surfaces in Space – volume: 55 start-page: 1710 year: 2015 end-page: 1720 ident: b19 article-title: Rover wheel charging on the lunar surface publication-title: Adv. Space Res. – volume: 35 start-page: L19104 year: 2008 ident: b4 article-title: Concerning the dissipation of electrically charged objects in the shadowed lunar polar regions publication-title: Geophys. Res. Lett. – volume: 7 start-page: 41828 year: 2022 end-page: 41839 ident: b42 article-title: Triboelectric charging of particles, an ongoing matter: From the early onset of planet formation to assembling crystals publication-title: ACS Omega – volume: 89 start-page: 2 year: 2013 end-page: 14 ident: b12 article-title: A new look at Apollo 17 LEAM data: Nighttime dust activity in 1976 publication-title: Planetary and Space Science – volume: 283 start-page: 352 year: 2017 end-page: 358 ident: b20 article-title: The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions publication-title: Icarus – volume: 90 start-page: 10 year: 2014 end-page: 27 ident: b44 article-title: Dependence of lunar surface charging on solar wind plasma conditions and solar irradiation publication-title: Planet. Space Sci. – volume: 156 start-page: 71 year: 2018 end-page: 84 ident: b35 article-title: Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems publication-title: Planet. Space Sci. – year: 2022 ident: b37 article-title: Prospecting for Lunar Volatiles Using Thermal Methods – volume: 22 start-page: 1 year: 2015 end-page: 9 ident: b34 article-title: Dusty plasma sheath-like structure in the region of lunar terminator publication-title: Phys. Plasmas – start-page: 369 year: 1973 end-page: 387 ident: b38 article-title: Measurement of the Lunar Photoelectron Layer in the Geomagnetic Tail publication-title: Photon and Particle Interactions with Surfaces in Space – volume: 59 start-page: 1708 year: 2011 end-page: 1726 ident: b31 article-title: Review of measurements of dust movements on the moon during apollo publication-title: Planet. Space Sci. – volume: 375 start-page: 199 year: 2020 end-page: 209 ident: b26 article-title: Effect of particle size on tribocharging publication-title: Powder Technol. – year: 2023 ident: b46 article-title: MATLAB – start-page: 1 year: 2007 end-page: 16 ident: b10 article-title: The effects of lunar dust on EVA systems during the apollo missions publication-title: Nasa/Tm-2005-213610/Rev1 – volume: 29 year: 2002 ident: b13 article-title: Evidence for negative charging of the lunar surface in shadow publication-title: Geophys. Res. Lett. – volume: 59 start-page: 1758 year: 2011 end-page: 1768 ident: b15 article-title: The role of cohesive forces in particle launching on the Moon and asteroids publication-title: Planet. Space Sci. – volume: 2 year: 2018 ident: b25 article-title: Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer publication-title: Phys. Rev. Mater. – volume: 54 start-page: 455 year: 2020 end-page: 476 ident: b50 article-title: Lunar Dust: Properties and Potential Hazards publication-title: Sol. Syst. Res. – volume: 431 year: 2024 ident: b53 article-title: A macroscopic donor–acceptor-based discrete element model for contact electrification of insulating granular materials publication-title: Powder Technol. – volume: 65 start-page: 107 year: 2007 end-page: 112 ident: b23 article-title: Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems publication-title: J. Electrost. – volume: 89 start-page: 21 year: 2013 end-page: 28 ident: b2 article-title: Observations of narrowband ion cyclotron waves on the surface of the Moon in the terrestrial magnetotail publication-title: Planet. Space Sci. – volume: 3 year: 1971 ident: b6 article-title: Photoemission from lunar surface fines and the lunar photoelectron sheath publication-title: Geochim. Cosmochim. Acta – volume: 102 year: 2009 ident: b7 article-title: Charge segregation depends on particle size in triboelectrically charged granular materials publication-title: Phys. Rev. Lett. – volume: 14 start-page: 433 year: 2014 end-page: 455 ident: b52 article-title: Lunar surface potential and electric field publication-title: Res. Astron. Astrophys. – volume: 43 start-page: 6103 year: 2016 end-page: 6110 ident: b49 article-title: Dust charging and transport on airless planetary bodies publication-title: Geophys. Res. Lett. – volume: 295 start-page: 571 year: 2010 end-page: 577 ident: b47 article-title: Nanophase iron-enhanced chemical reactivity of ground lunar soil publication-title: Earth Planet. Sci. Lett. – volume: 518 start-page: 216 year: 2015 end-page: 218 ident: b39 article-title: Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years publication-title: Nature – volume: 365 start-page: 1 year: 2020 end-page: 13 ident: b21 article-title: Electrostatic charging of the sunlit hemisphere of the Moon under different plasma conditions publication-title: Astrophys. Space Sci. – start-page: 515 year: 2007 ident: b27 article-title: Fundamental Principles of Optical Lithography: The Science of Microfabrication – volume: 1 start-page: 112 year: 1962 end-page: 120 ident: b40 article-title: Electrostatic dust transport on the lunar surface publication-title: Icarus – volume: 19 start-page: 147 year: 1975 end-page: 163 ident: b1 article-title: Electrostatic charge acceptance and decay of powder coating particles publication-title: J. Appl. Polym. Sci. – start-page: 22 year: 2020 ident: b18 article-title: Analyzing Reflectance Data for Various Black Paints and Coatings – volume: 103 start-page: 6605 year: 1998 end-page: 6620 ident: b30 article-title: Levitation and dynamics of charged dust in the photoelectron sheath above surfaces in space publication-title: J. Geophys. Res. Space Phys. – volume: 3 year: 2019 ident: b14 article-title: Temperature dependence of nylon and PTFE triboelectrification publication-title: Phys. Rev. Mater. – volume: 14 start-page: 103 year: 1975 end-page: 114 ident: b8 article-title: Lunar electric fields, surface Potential and Associated Plasma Sheaths publication-title: The Moon – start-page: 2008 year: 2009 end-page: 2009 ident: b9 article-title: Indication of mineral work function in lunar dust electrostatic migration publication-title: Lunar and Planetary Science Conference – volume: 3 start-page: 465 year: 2019 end-page: 476 ident: b24 article-title: Long-standing and unresolved issues in triboelectric charging publication-title: Nat. Rev. Chem. – volume: 39 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.icarus.2024.116257_b36 article-title: A comparison of ARTEMIS observations and particle-in-cell modeling of the lunar photoelectron sheath in the terrestrial magnetotail publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL050321 – volume: 35 start-page: L19104 issue: 19 year: 2008 ident: 10.1016/j.icarus.2024.116257_b4 article-title: Concerning the dissipation of electrically charged objects in the shadowed lunar polar regions publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL034785 – volume: 65 start-page: 107 issue: 2 year: 2007 ident: 10.1016/j.icarus.2024.116257_b23 article-title: Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems publication-title: J. Electrost. doi: 10.1016/j.elstat.2006.07.010 – start-page: 2008 year: 2009 ident: 10.1016/j.icarus.2024.116257_b9 article-title: Indication of mineral work function in lunar dust electrostatic migration – volume: 2 issue: 3 year: 2018 ident: 10.1016/j.icarus.2024.116257_b25 article-title: Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer publication-title: Phys. Rev. Mater. – volume: 283 start-page: 352 year: 2017 ident: 10.1016/j.icarus.2024.116257_b20 article-title: The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions publication-title: Icarus doi: 10.1016/j.icarus.2016.08.027 – volume: 365 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.icarus.2024.116257_b21 article-title: Electrostatic charging of the sunlit hemisphere of the Moon under different plasma conditions publication-title: Astrophys. Space Sci. doi: 10.1007/s10509-020-3740-8 – volume: 22 start-page: 1 issue: 12 year: 2015 ident: 10.1016/j.icarus.2024.116257_b34 article-title: Dusty plasma sheath-like structure in the region of lunar terminator publication-title: Phys. Plasmas doi: 10.1063/1.4937368 – volume: 55 start-page: 1710 issue: 6 year: 2015 ident: 10.1016/j.icarus.2024.116257_b19 article-title: Rover wheel charging on the lunar surface publication-title: Adv. Space Res. doi: 10.1016/j.asr.2014.12.027 – year: 2023 ident: 10.1016/j.icarus.2024.116257_b43 – volume: 1 start-page: 112 issue: 1–6 year: 1962 ident: 10.1016/j.icarus.2024.116257_b40 article-title: Electrostatic dust transport on the lunar surface publication-title: Icarus doi: 10.1016/0019-1035(62)90011-8 – volume: 59 start-page: 1758 issue: 14 year: 2011 ident: 10.1016/j.icarus.2024.116257_b15 article-title: The role of cohesive forces in particle launching on the Moon and asteroids publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2011.04.017 – volume: 19 start-page: 147 issue: 1 year: 1975 ident: 10.1016/j.icarus.2024.116257_b1 article-title: Electrostatic charge acceptance and decay of powder coating particles publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1975.070190112 – volume: 3 start-page: 465 issue: 8 year: 2019 ident: 10.1016/j.icarus.2024.116257_b24 article-title: Long-standing and unresolved issues in triboelectric charging publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0115-1 – volume: 37 start-page: 59 issue: 1 year: 2006 ident: 10.1016/j.icarus.2024.116257_b45 article-title: A dynamic fountain model for lunar dust publication-title: Adv. Space Res. doi: 10.1016/j.asr.2005.04.048 – volume: 15 start-page: 11 issue: 1 year: 1972 ident: 10.1016/j.icarus.2024.116257_b3 article-title: Use of the hough transformation to detect lines and curves in pictures publication-title: Commun. ACM doi: 10.1145/361237.361242 – year: 2017 ident: 10.1016/j.icarus.2024.116257_b16 article-title: Dielectrics under electric field – year: 2022 ident: 10.1016/j.icarus.2024.116257_b37 – volume: 295 start-page: 571 year: 2010 ident: 10.1016/j.icarus.2024.116257_b47 article-title: Nanophase iron-enhanced chemical reactivity of ground lunar soil publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.04.042 – volume: 89 start-page: 2 year: 2013 ident: 10.1016/j.icarus.2024.116257_b12 article-title: A new look at Apollo 17 LEAM data: Nighttime dust activity in 1976 – volume: 3 issue: 8 year: 2019 ident: 10.1016/j.icarus.2024.116257_b14 article-title: Temperature dependence of nylon and PTFE triboelectrification publication-title: Phys. Rev. Mater. – volume: 43 start-page: 6103 issue: 12 year: 2016 ident: 10.1016/j.icarus.2024.116257_b49 article-title: Dust charging and transport on airless planetary bodies publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL069491 – volume: 54 start-page: 455 issue: 6 year: 2020 ident: 10.1016/j.icarus.2024.116257_b50 article-title: Lunar Dust: Properties and Potential Hazards publication-title: Sol. Syst. Res. doi: 10.1134/S0038094620060076 – volume: 44 start-page: 961 issue: 7 year: 2009 ident: 10.1016/j.icarus.2024.116257_b48 article-title: Lunar dust and lunar simulant activation and monitoring publication-title: Meteorit. Planet. Sci. doi: 10.1111/j.1945-5100.2009.tb00781.x – volume: 255 start-page: 41 issue: 1 year: 2007 ident: 10.1016/j.icarus.2024.116257_b17 article-title: Production of hydrogen peroxide in Martian and lunar soils publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2006.12.004 – volume: 14 start-page: 103 issue: 1 year: 1975 ident: 10.1016/j.icarus.2024.116257_b8 article-title: Lunar electric fields, surface Potential and Associated Plasma Sheaths publication-title: The Moon doi: 10.1007/BF00562976 – start-page: 22 year: 2020 ident: 10.1016/j.icarus.2024.116257_b18 – volume: 56 start-page: 2432 issue: 11 year: 2015 ident: 10.1016/j.icarus.2024.116257_b11 article-title: Work function measurements of olivine: Implication to photoemission charging properties in planetary environments publication-title: Adv. Space Res. doi: 10.1016/j.asr.2015.10.005 – volume: 62 start-page: 896 issue: 4 year: 2018 ident: 10.1016/j.icarus.2024.116257_b33 article-title: Lunar dust lofting due to surface electric field and charging within Micro-cavities between dust grains above the terminator region publication-title: Adv. Space Res. doi: 10.1016/j.asr.2018.05.027 – volume: 89 start-page: 21 year: 2013 ident: 10.1016/j.icarus.2024.116257_b2 article-title: Observations of narrowband ion cyclotron waves on the surface of the Moon in the terrestrial magnetotail publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2013.08.020 – start-page: 1 year: 2007 ident: 10.1016/j.icarus.2024.116257_b10 article-title: The effects of lunar dust on EVA systems during the apollo missions – volume: 27 issue: 5 year: 2020 ident: 10.1016/j.icarus.2024.116257_b29 article-title: Role of photoelectric charge fluctuation in dust detachment from the lunar surface publication-title: Phys. Plasmas doi: 10.1063/5.0009741 – volume: 431 year: 2024 ident: 10.1016/j.icarus.2024.116257_b53 article-title: A macroscopic donor–acceptor-based discrete element model for contact electrification of insulating granular materials publication-title: Powder Technol. doi: 10.1016/j.powtec.2023.119029 – volume: 3 year: 1971 ident: 10.1016/j.icarus.2024.116257_b6 article-title: Photoemission from lunar surface fines and the lunar photoelectron sheath publication-title: Geochim. Cosmochim. Acta – start-page: 347 year: 1973 ident: 10.1016/j.icarus.2024.116257_b28 article-title: Plasma and potential at the lunar surface – start-page: 515 year: 2007 ident: 10.1016/j.icarus.2024.116257_b27 – volume: 115 start-page: E03004 issue: E3 year: 2010 ident: 10.1016/j.icarus.2024.116257_b5 article-title: Anticipated electrical environment within permanently shadowed lunar craters publication-title: J. Geophys. Res. doi: 10.1029/2009JE003464 – volume: 103 start-page: 6605 issue: A4 year: 1998 ident: 10.1016/j.icarus.2024.116257_b30 article-title: Levitation and dynamics of charged dust in the photoelectron sheath above surfaces in space publication-title: J. Geophys. Res. Space Phys. doi: 10.1029/97JA03523 – volume: 156 start-page: 71 issue: June 2017 year: 2018 ident: 10.1016/j.icarus.2024.116257_b35 article-title: Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2018.02.010 – year: 2023 ident: 10.1016/j.icarus.2024.116257_b22 – volume: 90 start-page: 10 year: 2014 ident: 10.1016/j.icarus.2024.116257_b44 article-title: Dependence of lunar surface charging on solar wind plasma conditions and solar irradiation publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2013.07.008 – year: 2023 ident: 10.1016/j.icarus.2024.116257_b46 – volume: 7 start-page: 41828 issue: 46 year: 2022 ident: 10.1016/j.icarus.2024.116257_b42 article-title: Triboelectric charging of particles, an ongoing matter: From the early onset of planet formation to assembling crystals publication-title: ACS Omega doi: 10.1021/acsomega.2c05629 – start-page: 369 year: 1973 ident: 10.1016/j.icarus.2024.116257_b38 article-title: Measurement of the Lunar Photoelectron Layer in the Geomagnetic Tail – volume: 59 start-page: 1708 issue: 14 year: 2011 ident: 10.1016/j.icarus.2024.116257_b31 article-title: Review of measurements of dust movements on the moon during apollo publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2011.04.016 – volume: 48 start-page: 330 issue: 5 year: 2014 ident: 10.1016/j.icarus.2024.116257_b41 article-title: Physical and mechanical properties of the lunar soil (a review) publication-title: Sol. Syst. Res. doi: 10.1134/S0038094614050050 – volume: 518 start-page: 216 issue: 7538 year: 2015 ident: 10.1016/j.icarus.2024.116257_b39 article-title: Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years publication-title: Nature doi: 10.1038/nature14159 – start-page: 99 year: 2021 ident: 10.1016/j.icarus.2024.116257_b32 – volume: 213 start-page: 627 year: 2023 ident: 10.1016/j.icarus.2024.116257_b51 article-title: Current lunar dust mitigation techniques and future directions publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2023.09.031 – volume: 375 start-page: 199 year: 2020 ident: 10.1016/j.icarus.2024.116257_b26 article-title: Effect of particle size on tribocharging publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.07.078 – volume: 14 start-page: 433 issue: 1 year: 2014 ident: 10.1016/j.icarus.2024.116257_b52 article-title: Lunar surface potential and electric field publication-title: Res. Astron. Astrophys. – volume: 29 issue: 10 year: 2002 ident: 10.1016/j.icarus.2024.116257_b13 article-title: Evidence for negative charging of the lunar surface in shadow publication-title: Geophys. Res. Lett. doi: 10.1029/2001GL014428 – volume: 102 year: 2009 ident: 10.1016/j.icarus.2024.116257_b7 article-title: Charge segregation depends on particle size in triboelectrically charged granular materials publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.028001 |
SSID | ssj0005893 |
Score | 2.4481766 |
Snippet | The detrimental effects and challenges of Lunar dust for Lunar exploitation were first identified during the Apollo missions. During the extra vehicle... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 116257 |
SubjectTerms | Chemical reactivity Dust mineralogy characterisation Electrostatic lofting Lunar dust Lunar dust mitigation testing Regolith dynamics |
Title | Lunar simulant behaviour variability and implications on terrestrial based lunar testing |
URI | https://dx.doi.org/10.1016/j.icarus.2024.116257 |
Volume | 422 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB6KXryIK61LmYN4i20yS5JjKZa60JOF3sJskUqbljQRevG3Oy-ZSAVR8JaEeSF8ebxleN83CN1wpaGKYB6RWniUqMgTLKWeUUQbwiMlTDVtMeHjKX2csVkLDRsuDIxVuthfx_QqWrsnPYdmbz2fA8fX9hog50nBM0Mg_FIagpfffeyMeUROeNePPVjd0OeqGS-LQ16CaHdAbeywrUD4c3raSTmjI3ToakU8qD_nGLVMdoLagw3sXq-WW3yLq-t6c2JzimbPZSZyvJkvy4UFDDsKfpnjd9sR14LcWywyjec7c-R4lWELLpzRAc6IIa9pvKheVYAGR_Z6hqaj-5fh2HMnJ3iChKywgZUSaWsFwlNjDFU2CQkuOTCXtPYDGaRxX_lESNvcCZvyA65ZLKVMiSCqr31yjvayVWbaCPNAhTpgaRozSUNlE7yMQBLeRIZT2WcdRBrAEuVkxeF0i0XSzI-9JTXMCcCc1DB3kPdlta5lNf5YHzb_IvnmHomN_L9aXvzb8hIdwF1NPLxCe0VemmtbgRSyW7lYF-0PHp7Gk0-fW9z6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7U9qAXccXdOYi3YJtZkh5LUaqtPbXQW5gtUqlpaRvBf--8ZOICouAtJHkhfPN4y_C-bwCuhDZYRfCAKiMDRnUcSJ6ywGpqLBWxlraYthiK3pg9TPikBt2KC4NjlT72lzG9iNb-zo1H82YxnSLH1_UaKOfJ0DOjeAMaqE7F69Do3Pd7w89Jj9hr77baARpUDLpizMtBscxRtztkLny4biD6OUN9yTp3O7Dty0XSKf9oF2o224Ojzgo3sOcvb-SaFNfl_sRqHyaDPJNLspq-5DOHGfEs_HxJXl1TXGpyvxGZGTL9MkpO5hlx-OIxHeiPBFObIbPiU2uU4cieDmB8dzvq9gJ_eEIgacTXLrYyqly5QEVqrWXa5SEplEDykjGtUIVpu6lbVCrX30mX9UNheFsplVJJddO06CHUs3lmj4CIUEcm5Gna5opF2uV4FaMqvI2tYKrJj4FWgCXaK4vjARezpBohe05KmBOEOSlhPobgw2pRKmv88X5UrUXyzUMSF_x_tTz5t-UlbPZGj4NkcD_sn8IWPil5iGdQXy9ze-4KkrW68A73DjmJ36s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lunar+simulant+behaviour+variability+and+implications+on+terrestrial+based+lunar+testing&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=Zanon%2C+Philipp&rft.au=Dunn%2C+Michelle&rft.au=Brooks%2C+Geoffrey&rft.date=2024-11-01&rft.issn=0019-1035&rft.volume=422&rft.spage=116257&rft_id=info:doi/10.1016%2Fj.icarus.2024.116257&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icarus_2024_116257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon |