Lunar simulant behaviour variability and implications on terrestrial based lunar testing

The detrimental effects and challenges of Lunar dust for Lunar exploitation were first identified during the Apollo missions. During the extra vehicle activities (EVAs) undertaken by astronauts, the dust clogged mechanisms, disrupted sensors, and caused several health issues for the astronauts. Desp...

Full description

Saved in:
Bibliographic Details
Published inIcarus (New York, N.Y. 1962) Vol. 422; p. 116257
Main Authors Zanon, Philipp, Dunn, Michelle, Brooks, Geoffrey
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detrimental effects and challenges of Lunar dust for Lunar exploitation were first identified during the Apollo missions. During the extra vehicle activities (EVAs) undertaken by astronauts, the dust clogged mechanisms, disrupted sensors, and caused several health issues for the astronauts. Despite numerous studies, there is no definite understanding as to why different Apollo missions experienced varying levels of dust disruptions. The variations in dust behaviour could be attributed to the amount of radiation the Lunar soil is exposed to, as well as mineralogy and particle sizes. To enhance our understanding of Lunar dust behaviour this study investigated Space Recourse Technologies, formally known as Exolith, simulant at different mineral compositions, and their surface detachment characteristics were measured. Experiments measuring the individual minerals and their mixed simulant-like counterparts were conducted using electrostatic fields. Inclusive to this, non-dried and dried samples were compared by measuring adhesion to target plates when subject to electrostatic forces. The results found that Highlands simulant exhibited a higher buildup on a target plate than its Mare counterpart by an average of 33% under the same conditions, likely due to particle size differences. In addition to these findings, evidence of particle reactivity decay was observed under repeated tests with up to 60% less Mare simulant and 36% Highlands deposition being measured compared to the first set of experiments. A possible explanation may be particle reactivity. Microscope images identified that particles are transported in groups as opposed to individual grains. These results will help researchers in tailoring dust mitigation solutions based on different regions on the Lunar surface and influence mission planning from the perspective of dust mitigation and contamination. •A novel method for quantitative measurements of simulant and particle buildup on surfaces using thresholding.•Highlands simulants exhibit more lofting potential than its Mare counterpart correlated towards their particle size distribution.•Moisture reduction within simulants increases lofting potential.•Lunar simulants lose their natural electrostatic working capacity over repeated use.•Particles were found to transport in clusters as opposed to individual grains when subject to an electrostatic field.
AbstractList The detrimental effects and challenges of Lunar dust for Lunar exploitation were first identified during the Apollo missions. During the extra vehicle activities (EVAs) undertaken by astronauts, the dust clogged mechanisms, disrupted sensors, and caused several health issues for the astronauts. Despite numerous studies, there is no definite understanding as to why different Apollo missions experienced varying levels of dust disruptions. The variations in dust behaviour could be attributed to the amount of radiation the Lunar soil is exposed to, as well as mineralogy and particle sizes. To enhance our understanding of Lunar dust behaviour this study investigated Space Recourse Technologies, formally known as Exolith, simulant at different mineral compositions, and their surface detachment characteristics were measured. Experiments measuring the individual minerals and their mixed simulant-like counterparts were conducted using electrostatic fields. Inclusive to this, non-dried and dried samples were compared by measuring adhesion to target plates when subject to electrostatic forces. The results found that Highlands simulant exhibited a higher buildup on a target plate than its Mare counterpart by an average of 33% under the same conditions, likely due to particle size differences. In addition to these findings, evidence of particle reactivity decay was observed under repeated tests with up to 60% less Mare simulant and 36% Highlands deposition being measured compared to the first set of experiments. A possible explanation may be particle reactivity. Microscope images identified that particles are transported in groups as opposed to individual grains. These results will help researchers in tailoring dust mitigation solutions based on different regions on the Lunar surface and influence mission planning from the perspective of dust mitigation and contamination. •A novel method for quantitative measurements of simulant and particle buildup on surfaces using thresholding.•Highlands simulants exhibit more lofting potential than its Mare counterpart correlated towards their particle size distribution.•Moisture reduction within simulants increases lofting potential.•Lunar simulants lose their natural electrostatic working capacity over repeated use.•Particles were found to transport in clusters as opposed to individual grains when subject to an electrostatic field.
ArticleNumber 116257
Author Brooks, Geoffrey
Zanon, Philipp
Dunn, Michelle
Author_xml – sequence: 1
  givenname: Philipp
  orcidid: 0009-0005-2785-9215
  surname: Zanon
  fullname: Zanon, Philipp
  email: Pzanon@swin.edu.au
– sequence: 2
  givenname: Michelle
  surname: Dunn
  fullname: Dunn, Michelle
– sequence: 3
  givenname: Geoffrey
  surname: Brooks
  fullname: Brooks, Geoffrey
BookMark eNqFkE1LAzEQQHOoYFv9Bx7yB7Zmkt1t14MgxS8oeFHwFibZrE7ZZkuSLfTfu3Y9edBTYMh7zLwZm_jOO8auQCxAQHm9XZDF0MeFFDJfAJSyWE7YVAioMhCqOGezGLdCiGJVqSl73_QeA4-061v0iRv3iQfq-sAPGAgNtZSOHH3NabdvB3WizkfeeZ5cCC6m4VPLDUZX8_akSsOQ_McFO2uwje7y552zt4f71_VTtnl5fF7fbTJUyyJlCnJlljmosnHO5RbkCktTQlnkdQ3SyKYSFhQaUeVYgJRlXVTGmEahsqIGNWc3o9eGLsbgGm0pnbZMAanVIPR3F73VYxf93UWPXQY4_wXvA-0wHP_DbkfMDYcdyAUdLTlvXU3B2aTrjv4WfAF56IUw
CitedBy_id crossref_primary_10_1016_j_elstat_2025_104045
Cites_doi 10.1029/2011GL050321
10.1029/2008GL034785
10.1016/j.elstat.2006.07.010
10.1016/j.icarus.2016.08.027
10.1007/s10509-020-3740-8
10.1063/1.4937368
10.1016/j.asr.2014.12.027
10.1016/0019-1035(62)90011-8
10.1016/j.pss.2011.04.017
10.1002/app.1975.070190112
10.1038/s41570-019-0115-1
10.1016/j.asr.2005.04.048
10.1145/361237.361242
10.1016/j.epsl.2010.04.042
10.1002/2016GL069491
10.1134/S0038094620060076
10.1111/j.1945-5100.2009.tb00781.x
10.1016/j.epsl.2006.12.004
10.1007/BF00562976
10.1016/j.asr.2015.10.005
10.1016/j.asr.2018.05.027
10.1016/j.pss.2013.08.020
10.1063/5.0009741
10.1016/j.powtec.2023.119029
10.1029/2009JE003464
10.1029/97JA03523
10.1016/j.pss.2018.02.010
10.1016/j.pss.2013.07.008
10.1021/acsomega.2c05629
10.1016/j.pss.2011.04.016
10.1134/S0038094614050050
10.1038/nature14159
10.1016/j.actaastro.2023.09.031
10.1016/j.powtec.2020.07.078
10.1029/2001GL014428
10.1103/PhysRevLett.102.028001
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.icarus.2024.116257
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
ExternalDocumentID 10_1016_j_icarus_2024_116257
S0019103524003178
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ACDAQ
ACFVG
ACGFS
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SSE
SSQ
SSZ
T5K
TAE
ZMT
ZU3
~02
~G-
29I
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
HMA
HME
HVGLF
HZ~
LG5
LY3
LZ4
M41
MVM
OHT
PVJ
R2-
SEP
SSH
UQL
VOH
WUQ
XJT
ZY4
ID FETCH-LOGICAL-a375t-3143b74136feee4c128a6b61654dd12b2f90c13ab094a51226d59bbbf3a3c0d13
IEDL.DBID .~1
ISSN 0019-1035
IngestDate Tue Jul 01 04:19:00 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Sat Sep 07 15:50:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lunar dust
Lunar dust mitigation testing
Dust mineralogy characterisation
Electrostatic lofting
Chemical reactivity
Regolith dynamics
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-3143b74136feee4c128a6b61654dd12b2f90c13ab094a51226d59bbbf3a3c0d13
ORCID 0009-0005-2785-9215
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0019103524003178
ParticipantIDs crossref_citationtrail_10_1016_j_icarus_2024_116257
crossref_primary_10_1016_j_icarus_2024_116257
elsevier_sciencedirect_doi_10_1016_j_icarus_2024_116257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Icarus (New York, N.Y. 1962)
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kureshi, Tripathi, Mishra (b21) 2020; 365
Office of the cheif Engineer (b32) 2021
Fujii, Yoshihara, Saito (b9) 2009
Freeman, Ibrahim (b8) 1975; 14
Space Resource Technologies (b43) 2023
Wallace, Phillips, Jeevarajan, Chen, Taylor (b47) 2010; 295
Duda, Hart (b3) 1972; 15
Popel, Zelenyi, Golub, Dubinskii (b35) 2018; 156
Wallace, Taylor, Liu, Cooper, McKay, Chen, Jeevarajan (b48) 2009; 44
Schulz, Hilchenbach, Langevin, Kissel, Silen, Briois, Engrand, Hornung, Baklouti, Bardyn, Cottin, Fischer, Fray, Godard, Lehto, Le Roy, Merouane, Orthous-Daunay, Paquette, Rynö, Siljeström, Stenzel, Thirkell, Varmuza, Zaprudin (b39) 2015; 518
O’Brien (b31) 2011; 59
Lacks, Levandovsky (b23) 2007; 65
Jackson, Farrell, Zimmerman (b19) 2015; 55
Cheever (b1) 1975; 19
Liu, Kolehmainen, Nwogbaga, Ozel, Sundaresan (b26) 2020; 375
Poppe, Halekas, Delory, Farrell, Angelopoulos, McFadden, Bonnell, Ergun (b36) 2012; 39
Stubbs, Vondrak, Farrell (b45) 2006; 37
Hartzell, Scheeres (b15) 2011; 59
Slyuta (b41) 2014; 48
Nitter, Havnes, Melandsø (b30) 1998; 103
Lab (b22) 2023
Zhang, Ozel, Hartzell (b53) 2024; 431
Feuerbacher, B. and Anderegg, M. and Fitton, B. and Laude, L. and Willis, R. and Grard (b6) 1971; 3
Farrell, Stubbs, Delory, Vondrak, Collier, Halekas, Lin (b4) 2008; 35
Gan, Li, Wei, Wang (b11) 2015; 56
Lee, James, Waitukaitis, Jaeger (b25) 2018; 2
Chi, Russell, Wei, Farrell (b2) 2013; 89
Purrington (b37) 2022
Zanon, Dunn, Brooks (b51) 2023; 213
Halekas, Mitchell, Lin, Hood, Acuña, Binder (b13) 2002; 29
Sotthewes, Gardeniers, Desmet, Jimidar (b42) 2022; 7
Mishra (b29) 2020; 27
Zakharov, Zelenyi, Popel (b50) 2020; 54
Stubbs, Farrell, Halekas, Burchill, Collier, Zimmerman, Vondrak, Delory, Pfaff (b44) 2014; 90
Huynh (b18) 2020
Gaier (b10) 2007
(b28) 1973
Reasoner, Burke (b38) 1973
The MathWorks Inc. (b46) 2023
Hongbo (b16) 2017
Harris, Lim, Jaeger (b14) 2019; 3
Forward, Lacks, Sankaran (b7) 2009; 102
Mack (b27) 2007
Hurowitz, Tosca, McLennan, Schoonen (b17) 2007; 255
Grün, Horányi (b12) 2013; 89
Wang, Schwan, Hsu, Grun, Horanyi (b49) 2016; 43
Zhan, Jiang, Chen, Zhang, Song (b52) 2014; 14
Orger, Cordova Alarcon, Toyoda, Cho (b33) 2018; 62
Singer, Walker (b40) 1962; 1
Farrell, Stubbs, Halekas, Killen, Delory, Collier, Vondrak (b5) 2010; 115
Jordan, Stubbs, Wilson, Schwadron, Spence (b20) 2017; 283
Lacks, Shinbrot (b24) 2019; 3
Popel, Zelenyi, Atamaniuk (b34) 2015; 22
Huynh (10.1016/j.icarus.2024.116257_b18) 2020
(10.1016/j.icarus.2024.116257_b28) 1973
Stubbs (10.1016/j.icarus.2024.116257_b44) 2014; 90
Zanon (10.1016/j.icarus.2024.116257_b51) 2023; 213
Wallace (10.1016/j.icarus.2024.116257_b48) 2009; 44
The MathWorks Inc. (10.1016/j.icarus.2024.116257_b46) 2023
Zakharov (10.1016/j.icarus.2024.116257_b50) 2020; 54
Hartzell (10.1016/j.icarus.2024.116257_b15) 2011; 59
Mishra (10.1016/j.icarus.2024.116257_b29) 2020; 27
Halekas (10.1016/j.icarus.2024.116257_b13) 2002; 29
Zhang (10.1016/j.icarus.2024.116257_b53) 2024; 431
Mack (10.1016/j.icarus.2024.116257_b27) 2007
Harris (10.1016/j.icarus.2024.116257_b14) 2019; 3
Singer (10.1016/j.icarus.2024.116257_b40) 1962; 1
Poppe (10.1016/j.icarus.2024.116257_b36) 2012; 39
Gaier (10.1016/j.icarus.2024.116257_b10) 2007
Orger (10.1016/j.icarus.2024.116257_b33) 2018; 62
Slyuta (10.1016/j.icarus.2024.116257_b41) 2014; 48
Nitter (10.1016/j.icarus.2024.116257_b30) 1998; 103
Duda (10.1016/j.icarus.2024.116257_b3) 1972; 15
Liu (10.1016/j.icarus.2024.116257_b26) 2020; 375
Sotthewes (10.1016/j.icarus.2024.116257_b42) 2022; 7
Cheever (10.1016/j.icarus.2024.116257_b1) 1975; 19
Fujii (10.1016/j.icarus.2024.116257_b9) 2009
Chi (10.1016/j.icarus.2024.116257_b2) 2013; 89
Lacks (10.1016/j.icarus.2024.116257_b23) 2007; 65
Hongbo (10.1016/j.icarus.2024.116257_b16) 2017
Lee (10.1016/j.icarus.2024.116257_b25) 2018; 2
Space Resource Technologies (10.1016/j.icarus.2024.116257_b43) 2023
Purrington (10.1016/j.icarus.2024.116257_b37) 2022
Lab (10.1016/j.icarus.2024.116257_b22) 2023
Lacks (10.1016/j.icarus.2024.116257_b24) 2019; 3
Reasoner (10.1016/j.icarus.2024.116257_b38) 1973
Popel (10.1016/j.icarus.2024.116257_b35) 2018; 156
Farrell (10.1016/j.icarus.2024.116257_b5) 2010; 115
Wallace (10.1016/j.icarus.2024.116257_b47) 2010; 295
O’Brien (10.1016/j.icarus.2024.116257_b31) 2011; 59
Wang (10.1016/j.icarus.2024.116257_b49) 2016; 43
Stubbs (10.1016/j.icarus.2024.116257_b45) 2006; 37
Gan (10.1016/j.icarus.2024.116257_b11) 2015; 56
Schulz (10.1016/j.icarus.2024.116257_b39) 2015; 518
Office of the cheif Engineer (10.1016/j.icarus.2024.116257_b32) 2021
Feuerbacher, B. and Anderegg, M. and Fitton, B. and Laude, L. and Willis, R. and Grard (10.1016/j.icarus.2024.116257_b6) 1971; 3
Grün (10.1016/j.icarus.2024.116257_b12) 2013; 89
Hurowitz (10.1016/j.icarus.2024.116257_b17) 2007; 255
Kureshi (10.1016/j.icarus.2024.116257_b21) 2020; 365
Popel (10.1016/j.icarus.2024.116257_b34) 2015; 22
Zhan (10.1016/j.icarus.2024.116257_b52) 2014; 14
Farrell (10.1016/j.icarus.2024.116257_b4) 2008; 35
Freeman (10.1016/j.icarus.2024.116257_b8) 1975; 14
Forward (10.1016/j.icarus.2024.116257_b7) 2009; 102
Jackson (10.1016/j.icarus.2024.116257_b19) 2015; 55
Jordan (10.1016/j.icarus.2024.116257_b20) 2017; 283
References_xml – volume: 27
  year: 2020
  ident: b29
  article-title: Role of photoelectric charge fluctuation in dust detachment from the lunar surface
  publication-title: Phys. Plasmas
– volume: 39
  start-page: 1
  year: 2012
  end-page: 6
  ident: b36
  article-title: A comparison of ARTEMIS observations and particle-in-cell modeling of the lunar photoelectron sheath in the terrestrial magnetotail
  publication-title: Geophys. Res. Lett.
– volume: 255
  start-page: 41
  year: 2007
  end-page: 52
  ident: b17
  article-title: Production of hydrogen peroxide in Martian and lunar soils
  publication-title: Earth Planet. Sci. Lett.
– volume: 37
  start-page: 59
  year: 2006
  end-page: 66
  ident: b45
  article-title: A dynamic fountain model for lunar dust
  publication-title: Adv. Space Res.
– volume: 15
  start-page: 11
  year: 1972
  end-page: 15
  ident: b3
  article-title: Use of the hough transformation to detect lines and curves in pictures
  publication-title: Commun. ACM
– year: 2023
  ident: b43
  article-title: Lunar simulants
– volume: 48
  start-page: 330
  year: 2014
  end-page: 353
  ident: b41
  article-title: Physical and mechanical properties of the lunar soil (a review)
  publication-title: Sol. Syst. Res.
– volume: 115
  start-page: E03004
  year: 2010
  ident: b5
  article-title: Anticipated electrical environment within permanently shadowed lunar craters
  publication-title: J. Geophys. Res.
– year: 2017
  ident: b16
  article-title: Dielectrics under electric field
  publication-title: Electric Field
– start-page: 99
  year: 2021
  ident: b32
  article-title: Classifications and Requirements for Testing Systems and Hardware to Be Exposed to Dust in Planetary Environments
– volume: 56
  start-page: 2432
  year: 2015
  end-page: 2438
  ident: b11
  article-title: Work function measurements of olivine: Implication to photoemission charging properties in planetary environments
  publication-title: Adv. Space Res.
– volume: 62
  start-page: 896
  year: 2018
  end-page: 911
  ident: b33
  article-title: Lunar dust lofting due to surface electric field and charging within Micro-cavities between dust grains above the terminator region
  publication-title: Adv. Space Res.
– volume: 213
  start-page: 627
  year: 2023
  end-page: 644
  ident: b51
  article-title: Current lunar dust mitigation techniques and future directions
  publication-title: Acta Astronaut.
– volume: 44
  start-page: 961
  year: 2009
  end-page: 970
  ident: b48
  article-title: Lunar dust and lunar simulant activation and monitoring
  publication-title: Meteorit. Planet. Sci.
– year: 2023
  ident: b22
  article-title: Exolith Simulants Constituent Report
– start-page: 347
  year: 1973
  end-page: 361
  ident: b28
  article-title: Plasma and potential at the lunar surface
  publication-title: Photon and Particle Interactions with Surfaces in Space
– volume: 55
  start-page: 1710
  year: 2015
  end-page: 1720
  ident: b19
  article-title: Rover wheel charging on the lunar surface
  publication-title: Adv. Space Res.
– volume: 35
  start-page: L19104
  year: 2008
  ident: b4
  article-title: Concerning the dissipation of electrically charged objects in the shadowed lunar polar regions
  publication-title: Geophys. Res. Lett.
– volume: 7
  start-page: 41828
  year: 2022
  end-page: 41839
  ident: b42
  article-title: Triboelectric charging of particles, an ongoing matter: From the early onset of planet formation to assembling crystals
  publication-title: ACS Omega
– volume: 89
  start-page: 2
  year: 2013
  end-page: 14
  ident: b12
  article-title: A new look at Apollo 17 LEAM data: Nighttime dust activity in 1976
  publication-title: Planetary and Space Science
– volume: 283
  start-page: 352
  year: 2017
  end-page: 358
  ident: b20
  article-title: The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions
  publication-title: Icarus
– volume: 90
  start-page: 10
  year: 2014
  end-page: 27
  ident: b44
  article-title: Dependence of lunar surface charging on solar wind plasma conditions and solar irradiation
  publication-title: Planet. Space Sci.
– volume: 156
  start-page: 71
  year: 2018
  end-page: 84
  ident: b35
  article-title: Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems
  publication-title: Planet. Space Sci.
– year: 2022
  ident: b37
  article-title: Prospecting for Lunar Volatiles Using Thermal Methods
– volume: 22
  start-page: 1
  year: 2015
  end-page: 9
  ident: b34
  article-title: Dusty plasma sheath-like structure in the region of lunar terminator
  publication-title: Phys. Plasmas
– start-page: 369
  year: 1973
  end-page: 387
  ident: b38
  article-title: Measurement of the Lunar Photoelectron Layer in the Geomagnetic Tail
  publication-title: Photon and Particle Interactions with Surfaces in Space
– volume: 59
  start-page: 1708
  year: 2011
  end-page: 1726
  ident: b31
  article-title: Review of measurements of dust movements on the moon during apollo
  publication-title: Planet. Space Sci.
– volume: 375
  start-page: 199
  year: 2020
  end-page: 209
  ident: b26
  article-title: Effect of particle size on tribocharging
  publication-title: Powder Technol.
– year: 2023
  ident: b46
  article-title: MATLAB
– start-page: 1
  year: 2007
  end-page: 16
  ident: b10
  article-title: The effects of lunar dust on EVA systems during the apollo missions
  publication-title: Nasa/Tm-2005-213610/Rev1
– volume: 29
  year: 2002
  ident: b13
  article-title: Evidence for negative charging of the lunar surface in shadow
  publication-title: Geophys. Res. Lett.
– volume: 59
  start-page: 1758
  year: 2011
  end-page: 1768
  ident: b15
  article-title: The role of cohesive forces in particle launching on the Moon and asteroids
  publication-title: Planet. Space Sci.
– volume: 2
  year: 2018
  ident: b25
  article-title: Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer
  publication-title: Phys. Rev. Mater.
– volume: 54
  start-page: 455
  year: 2020
  end-page: 476
  ident: b50
  article-title: Lunar Dust: Properties and Potential Hazards
  publication-title: Sol. Syst. Res.
– volume: 431
  year: 2024
  ident: b53
  article-title: A macroscopic donor–acceptor-based discrete element model for contact electrification of insulating granular materials
  publication-title: Powder Technol.
– volume: 65
  start-page: 107
  year: 2007
  end-page: 112
  ident: b23
  article-title: Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems
  publication-title: J. Electrost.
– volume: 89
  start-page: 21
  year: 2013
  end-page: 28
  ident: b2
  article-title: Observations of narrowband ion cyclotron waves on the surface of the Moon in the terrestrial magnetotail
  publication-title: Planet. Space Sci.
– volume: 3
  year: 1971
  ident: b6
  article-title: Photoemission from lunar surface fines and the lunar photoelectron sheath
  publication-title: Geochim. Cosmochim. Acta
– volume: 102
  year: 2009
  ident: b7
  article-title: Charge segregation depends on particle size in triboelectrically charged granular materials
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 433
  year: 2014
  end-page: 455
  ident: b52
  article-title: Lunar surface potential and electric field
  publication-title: Res. Astron. Astrophys.
– volume: 43
  start-page: 6103
  year: 2016
  end-page: 6110
  ident: b49
  article-title: Dust charging and transport on airless planetary bodies
  publication-title: Geophys. Res. Lett.
– volume: 295
  start-page: 571
  year: 2010
  end-page: 577
  ident: b47
  article-title: Nanophase iron-enhanced chemical reactivity of ground lunar soil
  publication-title: Earth Planet. Sci. Lett.
– volume: 518
  start-page: 216
  year: 2015
  end-page: 218
  ident: b39
  article-title: Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years
  publication-title: Nature
– volume: 365
  start-page: 1
  year: 2020
  end-page: 13
  ident: b21
  article-title: Electrostatic charging of the sunlit hemisphere of the Moon under different plasma conditions
  publication-title: Astrophys. Space Sci.
– start-page: 515
  year: 2007
  ident: b27
  article-title: Fundamental Principles of Optical Lithography: The Science of Microfabrication
– volume: 1
  start-page: 112
  year: 1962
  end-page: 120
  ident: b40
  article-title: Electrostatic dust transport on the lunar surface
  publication-title: Icarus
– volume: 19
  start-page: 147
  year: 1975
  end-page: 163
  ident: b1
  article-title: Electrostatic charge acceptance and decay of powder coating particles
  publication-title: J. Appl. Polym. Sci.
– start-page: 22
  year: 2020
  ident: b18
  article-title: Analyzing Reflectance Data for Various Black Paints and Coatings
– volume: 103
  start-page: 6605
  year: 1998
  end-page: 6620
  ident: b30
  article-title: Levitation and dynamics of charged dust in the photoelectron sheath above surfaces in space
  publication-title: J. Geophys. Res. Space Phys.
– volume: 3
  year: 2019
  ident: b14
  article-title: Temperature dependence of nylon and PTFE triboelectrification
  publication-title: Phys. Rev. Mater.
– volume: 14
  start-page: 103
  year: 1975
  end-page: 114
  ident: b8
  article-title: Lunar electric fields, surface Potential and Associated Plasma Sheaths
  publication-title: The Moon
– start-page: 2008
  year: 2009
  end-page: 2009
  ident: b9
  article-title: Indication of mineral work function in lunar dust electrostatic migration
  publication-title: Lunar and Planetary Science Conference
– volume: 3
  start-page: 465
  year: 2019
  end-page: 476
  ident: b24
  article-title: Long-standing and unresolved issues in triboelectric charging
  publication-title: Nat. Rev. Chem.
– volume: 39
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.icarus.2024.116257_b36
  article-title: A comparison of ARTEMIS observations and particle-in-cell modeling of the lunar photoelectron sheath in the terrestrial magnetotail
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL050321
– volume: 35
  start-page: L19104
  issue: 19
  year: 2008
  ident: 10.1016/j.icarus.2024.116257_b4
  article-title: Concerning the dissipation of electrically charged objects in the shadowed lunar polar regions
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL034785
– volume: 65
  start-page: 107
  issue: 2
  year: 2007
  ident: 10.1016/j.icarus.2024.116257_b23
  article-title: Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2006.07.010
– start-page: 2008
  year: 2009
  ident: 10.1016/j.icarus.2024.116257_b9
  article-title: Indication of mineral work function in lunar dust electrostatic migration
– volume: 2
  issue: 3
  year: 2018
  ident: 10.1016/j.icarus.2024.116257_b25
  article-title: Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer
  publication-title: Phys. Rev. Mater.
– volume: 283
  start-page: 352
  year: 2017
  ident: 10.1016/j.icarus.2024.116257_b20
  article-title: The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions
  publication-title: Icarus
  doi: 10.1016/j.icarus.2016.08.027
– volume: 365
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.icarus.2024.116257_b21
  article-title: Electrostatic charging of the sunlit hemisphere of the Moon under different plasma conditions
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/s10509-020-3740-8
– volume: 22
  start-page: 1
  issue: 12
  year: 2015
  ident: 10.1016/j.icarus.2024.116257_b34
  article-title: Dusty plasma sheath-like structure in the region of lunar terminator
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4937368
– volume: 55
  start-page: 1710
  issue: 6
  year: 2015
  ident: 10.1016/j.icarus.2024.116257_b19
  article-title: Rover wheel charging on the lunar surface
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2014.12.027
– year: 2023
  ident: 10.1016/j.icarus.2024.116257_b43
– volume: 1
  start-page: 112
  issue: 1–6
  year: 1962
  ident: 10.1016/j.icarus.2024.116257_b40
  article-title: Electrostatic dust transport on the lunar surface
  publication-title: Icarus
  doi: 10.1016/0019-1035(62)90011-8
– volume: 59
  start-page: 1758
  issue: 14
  year: 2011
  ident: 10.1016/j.icarus.2024.116257_b15
  article-title: The role of cohesive forces in particle launching on the Moon and asteroids
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2011.04.017
– volume: 19
  start-page: 147
  issue: 1
  year: 1975
  ident: 10.1016/j.icarus.2024.116257_b1
  article-title: Electrostatic charge acceptance and decay of powder coating particles
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1975.070190112
– volume: 3
  start-page: 465
  issue: 8
  year: 2019
  ident: 10.1016/j.icarus.2024.116257_b24
  article-title: Long-standing and unresolved issues in triboelectric charging
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0115-1
– volume: 37
  start-page: 59
  issue: 1
  year: 2006
  ident: 10.1016/j.icarus.2024.116257_b45
  article-title: A dynamic fountain model for lunar dust
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2005.04.048
– volume: 15
  start-page: 11
  issue: 1
  year: 1972
  ident: 10.1016/j.icarus.2024.116257_b3
  article-title: Use of the hough transformation to detect lines and curves in pictures
  publication-title: Commun. ACM
  doi: 10.1145/361237.361242
– year: 2017
  ident: 10.1016/j.icarus.2024.116257_b16
  article-title: Dielectrics under electric field
– year: 2022
  ident: 10.1016/j.icarus.2024.116257_b37
– volume: 295
  start-page: 571
  year: 2010
  ident: 10.1016/j.icarus.2024.116257_b47
  article-title: Nanophase iron-enhanced chemical reactivity of ground lunar soil
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2010.04.042
– volume: 89
  start-page: 2
  year: 2013
  ident: 10.1016/j.icarus.2024.116257_b12
  article-title: A new look at Apollo 17 LEAM data: Nighttime dust activity in 1976
– volume: 3
  issue: 8
  year: 2019
  ident: 10.1016/j.icarus.2024.116257_b14
  article-title: Temperature dependence of nylon and PTFE triboelectrification
  publication-title: Phys. Rev. Mater.
– volume: 43
  start-page: 6103
  issue: 12
  year: 2016
  ident: 10.1016/j.icarus.2024.116257_b49
  article-title: Dust charging and transport on airless planetary bodies
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL069491
– volume: 54
  start-page: 455
  issue: 6
  year: 2020
  ident: 10.1016/j.icarus.2024.116257_b50
  article-title: Lunar Dust: Properties and Potential Hazards
  publication-title: Sol. Syst. Res.
  doi: 10.1134/S0038094620060076
– volume: 44
  start-page: 961
  issue: 7
  year: 2009
  ident: 10.1016/j.icarus.2024.116257_b48
  article-title: Lunar dust and lunar simulant activation and monitoring
  publication-title: Meteorit. Planet. Sci.
  doi: 10.1111/j.1945-5100.2009.tb00781.x
– volume: 255
  start-page: 41
  issue: 1
  year: 2007
  ident: 10.1016/j.icarus.2024.116257_b17
  article-title: Production of hydrogen peroxide in Martian and lunar soils
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2006.12.004
– volume: 14
  start-page: 103
  issue: 1
  year: 1975
  ident: 10.1016/j.icarus.2024.116257_b8
  article-title: Lunar electric fields, surface Potential and Associated Plasma Sheaths
  publication-title: The Moon
  doi: 10.1007/BF00562976
– start-page: 22
  year: 2020
  ident: 10.1016/j.icarus.2024.116257_b18
– volume: 56
  start-page: 2432
  issue: 11
  year: 2015
  ident: 10.1016/j.icarus.2024.116257_b11
  article-title: Work function measurements of olivine: Implication to photoemission charging properties in planetary environments
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2015.10.005
– volume: 62
  start-page: 896
  issue: 4
  year: 2018
  ident: 10.1016/j.icarus.2024.116257_b33
  article-title: Lunar dust lofting due to surface electric field and charging within Micro-cavities between dust grains above the terminator region
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2018.05.027
– volume: 89
  start-page: 21
  year: 2013
  ident: 10.1016/j.icarus.2024.116257_b2
  article-title: Observations of narrowband ion cyclotron waves on the surface of the Moon in the terrestrial magnetotail
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2013.08.020
– start-page: 1
  year: 2007
  ident: 10.1016/j.icarus.2024.116257_b10
  article-title: The effects of lunar dust on EVA systems during the apollo missions
– volume: 27
  issue: 5
  year: 2020
  ident: 10.1016/j.icarus.2024.116257_b29
  article-title: Role of photoelectric charge fluctuation in dust detachment from the lunar surface
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0009741
– volume: 431
  year: 2024
  ident: 10.1016/j.icarus.2024.116257_b53
  article-title: A macroscopic donor–acceptor-based discrete element model for contact electrification of insulating granular materials
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2023.119029
– volume: 3
  year: 1971
  ident: 10.1016/j.icarus.2024.116257_b6
  article-title: Photoemission from lunar surface fines and the lunar photoelectron sheath
  publication-title: Geochim. Cosmochim. Acta
– start-page: 347
  year: 1973
  ident: 10.1016/j.icarus.2024.116257_b28
  article-title: Plasma and potential at the lunar surface
– start-page: 515
  year: 2007
  ident: 10.1016/j.icarus.2024.116257_b27
– volume: 115
  start-page: E03004
  issue: E3
  year: 2010
  ident: 10.1016/j.icarus.2024.116257_b5
  article-title: Anticipated electrical environment within permanently shadowed lunar craters
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JE003464
– volume: 103
  start-page: 6605
  issue: A4
  year: 1998
  ident: 10.1016/j.icarus.2024.116257_b30
  article-title: Levitation and dynamics of charged dust in the photoelectron sheath above surfaces in space
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1029/97JA03523
– volume: 156
  start-page: 71
  issue: June 2017
  year: 2018
  ident: 10.1016/j.icarus.2024.116257_b35
  article-title: Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2018.02.010
– year: 2023
  ident: 10.1016/j.icarus.2024.116257_b22
– volume: 90
  start-page: 10
  year: 2014
  ident: 10.1016/j.icarus.2024.116257_b44
  article-title: Dependence of lunar surface charging on solar wind plasma conditions and solar irradiation
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2013.07.008
– year: 2023
  ident: 10.1016/j.icarus.2024.116257_b46
– volume: 7
  start-page: 41828
  issue: 46
  year: 2022
  ident: 10.1016/j.icarus.2024.116257_b42
  article-title: Triboelectric charging of particles, an ongoing matter: From the early onset of planet formation to assembling crystals
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05629
– start-page: 369
  year: 1973
  ident: 10.1016/j.icarus.2024.116257_b38
  article-title: Measurement of the Lunar Photoelectron Layer in the Geomagnetic Tail
– volume: 59
  start-page: 1708
  issue: 14
  year: 2011
  ident: 10.1016/j.icarus.2024.116257_b31
  article-title: Review of measurements of dust movements on the moon during apollo
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2011.04.016
– volume: 48
  start-page: 330
  issue: 5
  year: 2014
  ident: 10.1016/j.icarus.2024.116257_b41
  article-title: Physical and mechanical properties of the lunar soil (a review)
  publication-title: Sol. Syst. Res.
  doi: 10.1134/S0038094614050050
– volume: 518
  start-page: 216
  issue: 7538
  year: 2015
  ident: 10.1016/j.icarus.2024.116257_b39
  article-title: Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years
  publication-title: Nature
  doi: 10.1038/nature14159
– start-page: 99
  year: 2021
  ident: 10.1016/j.icarus.2024.116257_b32
– volume: 213
  start-page: 627
  year: 2023
  ident: 10.1016/j.icarus.2024.116257_b51
  article-title: Current lunar dust mitigation techniques and future directions
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2023.09.031
– volume: 375
  start-page: 199
  year: 2020
  ident: 10.1016/j.icarus.2024.116257_b26
  article-title: Effect of particle size on tribocharging
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.07.078
– volume: 14
  start-page: 433
  issue: 1
  year: 2014
  ident: 10.1016/j.icarus.2024.116257_b52
  article-title: Lunar surface potential and electric field
  publication-title: Res. Astron. Astrophys.
– volume: 29
  issue: 10
  year: 2002
  ident: 10.1016/j.icarus.2024.116257_b13
  article-title: Evidence for negative charging of the lunar surface in shadow
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2001GL014428
– volume: 102
  year: 2009
  ident: 10.1016/j.icarus.2024.116257_b7
  article-title: Charge segregation depends on particle size in triboelectrically charged granular materials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.028001
SSID ssj0005893
Score 2.4481766
Snippet The detrimental effects and challenges of Lunar dust for Lunar exploitation were first identified during the Apollo missions. During the extra vehicle...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116257
SubjectTerms Chemical reactivity
Dust mineralogy characterisation
Electrostatic lofting
Lunar dust
Lunar dust mitigation testing
Regolith dynamics
Title Lunar simulant behaviour variability and implications on terrestrial based lunar testing
URI https://dx.doi.org/10.1016/j.icarus.2024.116257
Volume 422
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB6KXryIK61LmYN4i20yS5JjKZa60JOF3sJskUqbljQRevG3Oy-ZSAVR8JaEeSF8ebxleN83CN1wpaGKYB6RWniUqMgTLKWeUUQbwiMlTDVtMeHjKX2csVkLDRsuDIxVuthfx_QqWrsnPYdmbz2fA8fX9hog50nBM0Mg_FIagpfffeyMeUROeNePPVjd0OeqGS-LQ16CaHdAbeywrUD4c3raSTmjI3ToakU8qD_nGLVMdoLagw3sXq-WW3yLq-t6c2JzimbPZSZyvJkvy4UFDDsKfpnjd9sR14LcWywyjec7c-R4lWELLpzRAc6IIa9pvKheVYAGR_Z6hqaj-5fh2HMnJ3iChKywgZUSaWsFwlNjDFU2CQkuOTCXtPYDGaRxX_lESNvcCZvyA65ZLKVMiSCqr31yjvayVWbaCPNAhTpgaRozSUNlE7yMQBLeRIZT2WcdRBrAEuVkxeF0i0XSzI-9JTXMCcCc1DB3kPdlta5lNf5YHzb_IvnmHomN_L9aXvzb8hIdwF1NPLxCe0VemmtbgRSyW7lYF-0PHp7Gk0-fW9z6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7U9qAXccXdOYi3YJtZkh5LUaqtPbXQW5gtUqlpaRvBf--8ZOICouAtJHkhfPN4y_C-bwCuhDZYRfCAKiMDRnUcSJ6ywGpqLBWxlraYthiK3pg9TPikBt2KC4NjlT72lzG9iNb-zo1H82YxnSLH1_UaKOfJ0DOjeAMaqE7F69Do3Pd7w89Jj9hr77baARpUDLpizMtBscxRtztkLny4biD6OUN9yTp3O7Dty0XSKf9oF2o224Ojzgo3sOcvb-SaFNfl_sRqHyaDPJNLspq-5DOHGfEs_HxJXl1TXGpyvxGZGTL9MkpO5hlx-OIxHeiPBFObIbPiU2uU4cieDmB8dzvq9gJ_eEIgacTXLrYyqly5QEVqrWXa5SEplEDykjGtUIVpu6lbVCrX30mX9UNheFsplVJJddO06CHUs3lmj4CIUEcm5Gna5opF2uV4FaMqvI2tYKrJj4FWgCXaK4vjARezpBohe05KmBOEOSlhPobgw2pRKmv88X5UrUXyzUMSF_x_tTz5t-UlbPZGj4NkcD_sn8IWPil5iGdQXy9ze-4KkrW68A73DjmJ36s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lunar+simulant+behaviour+variability+and+implications+on+terrestrial+based+lunar+testing&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=Zanon%2C+Philipp&rft.au=Dunn%2C+Michelle&rft.au=Brooks%2C+Geoffrey&rft.date=2024-11-01&rft.issn=0019-1035&rft.volume=422&rft.spage=116257&rft_id=info:doi/10.1016%2Fj.icarus.2024.116257&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icarus_2024_116257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon