Introduction of π‑Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane

In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag­(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-compone...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 136; no. 24; pp. 8654 - 8660
Main Authors Li, Baiyan, Zhang, Yiming, Krishna, Rajamani, Yao, Kexin, Han, Yu, Wu, Zili, Ma, Dingxuan, Shi, Zhan, Pham, Tony, Space, Brian, Liu, Jian, Thallapally, Praveen K, Liu, Jun, Chrzanowski, Matthew, Ma, Shengqian
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag­(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (S ads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag­(I) ions in PAF-1-SO3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane.
AbstractList In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane.
In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane.In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane.
In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag­(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (S ads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag­(I) ions in PAF-1-SO3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane.
In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO₃Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO₃Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sₐdₛ: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO₃Ag has been evidenced by the high isosteric heats of adsorption of C₂H₄ and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO₃Ag for producing 99.95%+ pure C₂H₄ in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane.
Author Space, Brian
Chrzanowski, Matthew
Pham, Tony
Zhang, Yiming
Ma, Dingxuan
Han, Yu
Ma, Shengqian
Li, Baiyan
Krishna, Rajamani
Shi, Zhan
Liu, Jian
Thallapally, Praveen K
Wu, Zili
Liu, Jun
Yao, Kexin
AuthorAffiliation Department of Chemistry
University of Amsterdam
Jilin University
Center for Nanophase Material Sciences and Chemical Sciences Division, Oak Ridge National Laboratory
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
Van’t Hoff Institute for Molecular Sciences
University of South Florida
King Abdullah University of Science and Technology
Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division
Pacific Northwest National Laboratory
AuthorAffiliation_xml – name: University of Amsterdam
– name: Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division
– name: Department of Chemistry
– name: Van’t Hoff Institute for Molecular Sciences
– name: Jilin University
– name: Pacific Northwest National Laboratory
– name: King Abdullah University of Science and Technology
– name: Center for Nanophase Material Sciences and Chemical Sciences Division, Oak Ridge National Laboratory
– name: University of South Florida
– name: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
Author_xml – sequence: 1
  givenname: Baiyan
  surname: Li
  fullname: Li, Baiyan
  organization: University of South Florida
– sequence: 2
  givenname: Yiming
  surname: Zhang
  fullname: Zhang, Yiming
  organization: University of South Florida
– sequence: 3
  givenname: Rajamani
  surname: Krishna
  fullname: Krishna, Rajamani
  organization: University of Amsterdam
– sequence: 4
  givenname: Kexin
  surname: Yao
  fullname: Yao, Kexin
  organization: King Abdullah University of Science and Technology
– sequence: 5
  givenname: Yu
  surname: Han
  fullname: Han, Yu
  organization: King Abdullah University of Science and Technology
– sequence: 6
  givenname: Zili
  surname: Wu
  fullname: Wu, Zili
  organization: Center for Nanophase Material Sciences and Chemical Sciences Division, Oak Ridge National Laboratory
– sequence: 7
  givenname: Dingxuan
  surname: Ma
  fullname: Ma, Dingxuan
  organization: Jilin University
– sequence: 8
  givenname: Zhan
  surname: Shi
  fullname: Shi, Zhan
  organization: Jilin University
– sequence: 9
  givenname: Tony
  surname: Pham
  fullname: Pham, Tony
  organization: University of South Florida
– sequence: 10
  givenname: Brian
  surname: Space
  fullname: Space, Brian
  organization: University of South Florida
– sequence: 11
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  organization: Pacific Northwest National Laboratory
– sequence: 12
  givenname: Praveen K
  surname: Thallapally
  fullname: Thallapally, Praveen K
  organization: Pacific Northwest National Laboratory
– sequence: 13
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  organization: Pacific Northwest National Laboratory
– sequence: 14
  givenname: Matthew
  surname: Chrzanowski
  fullname: Chrzanowski, Matthew
  organization: University of South Florida
– sequence: 15
  givenname: Shengqian
  surname: Ma
  fullname: Ma, Shengqian
  email: sqma@usf.edu
  organization: University of South Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24901372$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1OwzAQhS1UBG1hwQWQN0iwCLWdn8bLqqKAhAQSsI4cZwwpSVzsBFpWXIGTcQdOgvu7QJVYjWb0zdO8Nx3UqnQFCB1Rck4Jo72xCF2h_GMHtWnIiBdSFrVQmxDCvH4c-fuoY-3YtQGL6R7aZwEn1O-zNppeV7XRWSPrXFdYK_z9-fP5NdTlpICpWAzzqtb4ThvdWDwwunRTiUdGlPCuzQtW2uCr_Om5mOF7KMAJvQEeZFabyVrzon6eFVAB1m9g5p2o4ADtKlFYOFzVLnocXTwMr7yb28vr4eDGE34_rD2fiIzFWT8SnCouQwhlJLOApSziKeVBLJVybjmVQQoRB6AilikEQSqYAKX8Ljpd6k6Mfm3A1kmZWwlF4W5wjhLG4yhysfD4X5SG7iTO4tB36PEKbdISsmRi8lKYWbIO1gFnS0Aaba0BtUEoSeZPSzZPc2zvDyvzepF9bURebN04WW4IaZOxbkzlItzC_QLHeqhE
CitedBy_id crossref_primary_10_1002_anie_201607676
crossref_primary_10_1002_sstr_202100125
crossref_primary_10_1021_acsapm_0c00896
crossref_primary_10_1016_j_cej_2021_133284
crossref_primary_10_1002_advs_201801116
crossref_primary_10_1039_D3QM00430A
crossref_primary_10_1039_C9TA12671F
crossref_primary_10_1016_j_jssc_2018_12_061
crossref_primary_10_1039_D2TA04835C
crossref_primary_10_1002_anie_202302564
crossref_primary_10_1039_C4TA03656E
crossref_primary_10_1039_C9TA06329C
crossref_primary_10_1021_acsami_0c07800
crossref_primary_10_1016_j_inoche_2025_114222
crossref_primary_10_1021_acs_chemmater_5b03792
crossref_primary_10_1002_chem_201805713
crossref_primary_10_1016_j_cej_2022_134784
crossref_primary_10_1016_j_electacta_2017_10_144
crossref_primary_10_1038_s41467_024_45004_9
crossref_primary_10_1002_ange_201503418
crossref_primary_10_1021_acs_energyfuels_4c04024
crossref_primary_10_1039_C8SC03727B
crossref_primary_10_1021_acsapm_9b00297
crossref_primary_10_1016_j_fmre_2025_03_005
crossref_primary_10_1021_jacs_6b02515
crossref_primary_10_1021_acsami_1c01810
crossref_primary_10_1016_j_apsusc_2022_156002
crossref_primary_10_1038_nchem_2114
crossref_primary_10_1016_j_cej_2022_135657
crossref_primary_10_1039_C4CC07255C
crossref_primary_10_1002_anie_202100841
crossref_primary_10_1039_D1CC03438C
crossref_primary_10_1016_j_cej_2020_124172
crossref_primary_10_1007_s10450_016_9810_0
crossref_primary_10_1016_j_colsurfa_2021_126242
crossref_primary_10_1039_C8GC01867G
crossref_primary_10_1016_j_seppur_2022_120580
crossref_primary_10_1039_C7CP02767B
crossref_primary_10_1039_D0RA10587B
crossref_primary_10_1016_j_enchem_2020_100037
crossref_primary_10_1016_j_cej_2024_157054
crossref_primary_10_1021_acs_iecr_4c00160
crossref_primary_10_1016_j_progpolymsci_2017_11_005
crossref_primary_10_1021_jacs_8b07563
crossref_primary_10_1016_j_micromeso_2019_06_016
crossref_primary_10_1038_s41563_018_0206_2
crossref_primary_10_1002_ange_202309108
crossref_primary_10_1021_acsami_7b01889
crossref_primary_10_1021_acs_inorgchem_2c03368
crossref_primary_10_1039_D4SC08389J
crossref_primary_10_1126_science_aat0586
crossref_primary_10_1016_j_jcis_2020_08_104
crossref_primary_10_1039_D3MA00218G
crossref_primary_10_1039_C8CP07527A
crossref_primary_10_1039_C6TA11168H
crossref_primary_10_1007_s41061_019_0257_0
crossref_primary_10_1016_j_jssc_2025_125180
crossref_primary_10_1016_j_ces_2020_115636
crossref_primary_10_1016_j_jssc_2018_03_038
crossref_primary_10_1016_j_seppur_2021_120287
crossref_primary_10_1039_C9TA02822F
crossref_primary_10_2139_ssrn_3972704
crossref_primary_10_1016_j_seppur_2022_121330
crossref_primary_10_1002_anie_202317648
crossref_primary_10_1039_C8SC00510A
crossref_primary_10_1039_C7CP00586E
crossref_primary_10_1021_jacs_9b12428
crossref_primary_10_1016_j_polymer_2017_06_048
crossref_primary_10_1007_s10934_016_0308_7
crossref_primary_10_1039_C4CC05506C
crossref_primary_10_1016_j_gee_2022_12_010
crossref_primary_10_1016_j_seppur_2022_120472
crossref_primary_10_1039_D4TA04528A
crossref_primary_10_1016_j_inoche_2020_107949
crossref_primary_10_1021_acs_inorgchem_9b01584
crossref_primary_10_1038_srep20311
crossref_primary_10_1016_j_isci_2021_103042
crossref_primary_10_1016_j_jcis_2020_09_037
crossref_primary_10_1039_C7TA08288F
crossref_primary_10_1007_s11356_023_30714_2
crossref_primary_10_1016_j_mtsust_2023_100483
crossref_primary_10_1039_C5TA07267K
crossref_primary_10_1007_s41061_019_0276_x
crossref_primary_10_1002_aoc_5215
crossref_primary_10_1016_j_memsci_2016_12_020
crossref_primary_10_1039_D0QI00641F
crossref_primary_10_1016_j_ccr_2021_213998
crossref_primary_10_1039_D2SC01180H
crossref_primary_10_1016_j_jhazmat_2023_131835
crossref_primary_10_1016_j_micromeso_2021_111488
crossref_primary_10_1021_jacs_1c12873
crossref_primary_10_1039_C5CE00510H
crossref_primary_10_1039_C7PY01834G
crossref_primary_10_1126_sciadv_aaz4322
crossref_primary_10_3390_polym15010229
crossref_primary_10_1016_j_micromeso_2019_109784
crossref_primary_10_1039_C6EE01886F
crossref_primary_10_1039_D1TA04096K
crossref_primary_10_1039_C4CC09999K
crossref_primary_10_1016_j_apsusc_2015_05_186
crossref_primary_10_1016_j_jcis_2018_01_114
crossref_primary_10_1002_adma_201902009
crossref_primary_10_1021_acs_iecr_7b00128
crossref_primary_10_1021_jacs_5b05644
crossref_primary_10_1039_C9CS00756C
crossref_primary_10_1021_acs_iecr_9b00997
crossref_primary_10_1021_acscatal_7b02844
crossref_primary_10_1038_s41467_022_29816_1
crossref_primary_10_1021_acsami_1c03158
crossref_primary_10_1021_acsami_7b14073
crossref_primary_10_1039_C8TA06923A
crossref_primary_10_1039_C5CS00198F
crossref_primary_10_1016_j_micromeso_2020_110099
crossref_primary_10_59717_j_xinn_mater_2024_100117
crossref_primary_10_1021_acsmaterialslett_1c00013
crossref_primary_10_1007_s10934_021_01187_w
crossref_primary_10_1021_acsapm_2c00529
crossref_primary_10_1002_adma_201704210
crossref_primary_10_1021_acs_cgd_7b01322
crossref_primary_10_1039_C6TA04939G
crossref_primary_10_1002_pola_28028
crossref_primary_10_2166_wst_2021_103
crossref_primary_10_1007_s40843_018_9319_0
crossref_primary_10_1002_chem_201703745
crossref_primary_10_1016_j_jechem_2022_05_023
crossref_primary_10_1021_acsami_7b19414
crossref_primary_10_1002_advs_201901918
crossref_primary_10_1039_C9QM00316A
crossref_primary_10_1002_aic_16182
crossref_primary_10_1021_acsmaterialslett_2c01107
crossref_primary_10_1016_j_matlet_2018_07_008
crossref_primary_10_1021_jacs_0c09466
crossref_primary_10_3390_nano12050869
crossref_primary_10_1016_j_tifs_2019_06_010
crossref_primary_10_1039_C4CC09679G
crossref_primary_10_1021_acs_jpcc_2c05159
crossref_primary_10_1039_D3QI01595E
crossref_primary_10_1016_j_micromeso_2023_112532
crossref_primary_10_1002_chem_201802123
crossref_primary_10_1002_aoc_4214
crossref_primary_10_1002_ange_201607676
crossref_primary_10_1002_anie_201904312
crossref_primary_10_1016_j_cherd_2020_03_013
crossref_primary_10_1016_j_seppur_2023_124276
crossref_primary_10_1002_anie_201806399
crossref_primary_10_1002_ange_202104318
crossref_primary_10_1002_ange_202302564
crossref_primary_10_1016_j_enchem_2019_100006
crossref_primary_10_1021_acssuschemeng_2c01363
crossref_primary_10_1002_adts_201900113
crossref_primary_10_1039_C4CC09774B
crossref_primary_10_1016_j_seppur_2023_125252
crossref_primary_10_1002_adma_202416851
crossref_primary_10_1039_C8ME00004B
crossref_primary_10_1002_anie_202102810
crossref_primary_10_1002_adfm_202101861
crossref_primary_10_1016_j_jssc_2022_122994
crossref_primary_10_1002_ange_201500251
crossref_primary_10_1016_j_seppur_2025_132141
crossref_primary_10_1039_D4NJ00605D
crossref_primary_10_1039_C5RA07830J
crossref_primary_10_1016_j_jhazmat_2016_11_070
crossref_primary_10_1039_C7TA01179B
crossref_primary_10_1039_D4QI00236A
crossref_primary_10_1021_acsami_0c04228
crossref_primary_10_1002_anie_202109338
crossref_primary_10_1016_j_cej_2022_137913
crossref_primary_10_1002_ange_202218027
crossref_primary_10_1002_cplu_201500308
crossref_primary_10_1016_j_trac_2015_07_011
crossref_primary_10_1016_j_micromeso_2019_04_036
crossref_primary_10_1039_D3SC02147E
crossref_primary_10_1039_D4CC04439H
crossref_primary_10_1038_s41557_021_00740_z
crossref_primary_10_1016_j_fuel_2024_131673
crossref_primary_10_1039_C8TA03991G
crossref_primary_10_1016_j_mencom_2023_04_040
crossref_primary_10_1038_s41563_019_0597_8
crossref_primary_10_1016_j_trechm_2023_02_011
crossref_primary_10_1021_acsami_5b04148
crossref_primary_10_1016_j_fuel_2021_121077
crossref_primary_10_1016_j_memsci_2024_122521
crossref_primary_10_1021_acs_cgd_7b00060
crossref_primary_10_1021_jacs_9b12924
crossref_primary_10_1016_j_cclet_2024_109729
crossref_primary_10_1039_C5EE01531F
crossref_primary_10_1002_ange_201808716
crossref_primary_10_1021_acs_iecr_7b00517
crossref_primary_10_1016_j_seppur_2023_123657
crossref_primary_10_1016_j_ccr_2018_10_006
crossref_primary_10_1021_jacs_1c10973
crossref_primary_10_1016_j_ccr_2015_12_010
crossref_primary_10_1007_s12274_022_4108_x
crossref_primary_10_1021_acs_jpcc_8b10259
crossref_primary_10_1016_j_cjsc_2022_100004
crossref_primary_10_1039_C5RA00569H
crossref_primary_10_1126_science_aaa8075
crossref_primary_10_1016_j_enchem_2022_100079
crossref_primary_10_1039_C5CC10598F
crossref_primary_10_1002_ejic_201600182
crossref_primary_10_1002_aic_15156
crossref_primary_10_1016_j_ces_2017_07_020
crossref_primary_10_1016_j_dyepig_2019_107929
crossref_primary_10_2139_ssrn_3962781
crossref_primary_10_1021_acsami_7b04584
crossref_primary_10_1016_j_jenvrad_2021_106710
crossref_primary_10_1002_cplu_202000093
crossref_primary_10_1007_s40843_015_0023_8
crossref_primary_10_1021_acs_chemrev_6b00439
crossref_primary_10_1002_er_3492
crossref_primary_10_1021_acscatal_5b00757
crossref_primary_10_1002_ange_202100342
crossref_primary_10_1016_j_cej_2021_132654
crossref_primary_10_1002_aic_16231
crossref_primary_10_1038_s41467_023_41692_x
crossref_primary_10_1039_C4CC07648F
crossref_primary_10_1039_D0RA02142C
crossref_primary_10_1002_adma_201601133
crossref_primary_10_1007_s11270_022_06002_z
crossref_primary_10_1021_acs_inorgchem_6b00136
crossref_primary_10_1021_acsanm_8b01808
crossref_primary_10_1021_jacs_9b06582
crossref_primary_10_1002_cctc_201501222
crossref_primary_10_1016_j_carbon_2017_06_073
crossref_primary_10_1021_acs_cgd_7b00198
crossref_primary_10_1039_C6CC08008A
crossref_primary_10_1016_j_cej_2018_02_071
crossref_primary_10_1039_C7TA00964J
crossref_primary_10_1021_acs_inorgchem_2c01634
crossref_primary_10_1016_j_cej_2018_10_109
crossref_primary_10_1016_j_materresbull_2023_112335
crossref_primary_10_1021_ic5020829
crossref_primary_10_1002_aic_18759
crossref_primary_10_1002_advs_202004940
crossref_primary_10_1016_j_seppur_2024_127258
crossref_primary_10_1016_j_jssc_2017_04_018
crossref_primary_10_1021_acs_energyfuels_2c01427
crossref_primary_10_1021_acscatal_2c01559
crossref_primary_10_1039_C8MH01656A
crossref_primary_10_1021_acscentsci_0c00311
crossref_primary_10_1021_acs_chemrev_9b00687
crossref_primary_10_1002_ange_202317648
crossref_primary_10_1002_pen_25606
crossref_primary_10_1016_j_ces_2016_04_016
crossref_primary_10_1021_acs_cgd_9b00582
crossref_primary_10_1016_j_jece_2022_108383
crossref_primary_10_1039_C5AN01372K
crossref_primary_10_1007_s40843_018_9333_6
crossref_primary_10_1002_anie_202100342
crossref_primary_10_1002_ange_202100114
crossref_primary_10_1016_j_cej_2020_125873
crossref_primary_10_1016_j_cej_2025_160282
crossref_primary_10_1002_anie_202309108
crossref_primary_10_1021_acsnano_2c00007
crossref_primary_10_1021_jacs_9b10923
crossref_primary_10_1016_j_cej_2022_138272
crossref_primary_10_1021_acsami_3c03971
crossref_primary_10_1007_s10853_020_05043_1
crossref_primary_10_1039_D1DT01091C
crossref_primary_10_1016_j_cej_2021_133786
crossref_primary_10_1021_acs_chemmater_6b00443
crossref_primary_10_1016_j_pecs_2019_100805
crossref_primary_10_1039_C5TA09029F
crossref_primary_10_1002_anie_202100114
crossref_primary_10_1002_adfm_201905229
crossref_primary_10_1016_j_seppur_2020_117146
crossref_primary_10_1002_adma_201705189
crossref_primary_10_1021_jacs_1c07223
crossref_primary_10_1039_D0CC04645K
crossref_primary_10_1021_acscentsci_9b00047
crossref_primary_10_1002_adma_201806254
crossref_primary_10_1007_s12274_024_6883_z
crossref_primary_10_1021_acs_est_3c07320
crossref_primary_10_1021_acs_chemmater_6b01667
crossref_primary_10_1039_D0DT03013A
crossref_primary_10_1039_D0DT03279D
crossref_primary_10_1021_acsami_3c14505
crossref_primary_10_1016_j_micromeso_2021_111572
crossref_primary_10_1039_C4RA13058H
crossref_primary_10_1021_acs_chemmater_6b03376
crossref_primary_10_1002_bkcs_12179
crossref_primary_10_1039_D1TA00366F
crossref_primary_10_1021_acs_iecr_9b05542
crossref_primary_10_1021_jacs_8b08174
crossref_primary_10_1038_s41467_020_16960_9
crossref_primary_10_1002_cctc_202301171
crossref_primary_10_1039_C7CC09767K
crossref_primary_10_1002_ange_202100841
crossref_primary_10_1039_C9EN00708C
crossref_primary_10_3390_molecules27249045
crossref_primary_10_1016_j_isci_2018_04_004
crossref_primary_10_1016_j_ces_2017_01_003
crossref_primary_10_1002_chem_202101779
crossref_primary_10_1016_j_memsci_2021_119372
crossref_primary_10_1016_j_memsci_2018_04_015
crossref_primary_10_1002_anie_201500251
crossref_primary_10_1039_C5SC04507J
crossref_primary_10_1016_j_micromeso_2021_110940
crossref_primary_10_1016_j_cej_2015_01_126
crossref_primary_10_1002_anie_201808716
crossref_primary_10_1002_marc_201700468
crossref_primary_10_1039_C7CC04160H
crossref_primary_10_1021_acs_chemmater_5b02053
crossref_primary_10_1021_acs_iecr_7b05260
crossref_primary_10_1039_C7RA05544G
crossref_primary_10_1515_ract_2023_0218
crossref_primary_10_1016_j_cej_2019_01_133
crossref_primary_10_1039_C5DT04319K
crossref_primary_10_1021_acs_inorgchem_1c01245
crossref_primary_10_1016_j_seppur_2015_06_012
crossref_primary_10_1021_acsami_8b00123
crossref_primary_10_1021_acsanm_1c03373
crossref_primary_10_1039_D0NJ02912B
crossref_primary_10_1016_j_cej_2021_131726
crossref_primary_10_1039_D0QM00276C
crossref_primary_10_1002_ange_201806399
crossref_primary_10_1002_anie_201503418
crossref_primary_10_1038_ncomms9697
crossref_primary_10_1002_smll_201900058
crossref_primary_10_1016_j_apcatb_2020_119791
crossref_primary_10_1016_j_jcis_2017_12_041
crossref_primary_10_1021_acsnano_4c16314
crossref_primary_10_1021_jacs_6b10316
crossref_primary_10_1016_j_molliq_2021_118082
crossref_primary_10_1557_mre_2020_35
crossref_primary_10_1039_D1CS00871D
crossref_primary_10_1039_D4DT02592J
crossref_primary_10_1016_j_mtnano_2018_09_003
crossref_primary_10_1002_ange_202109338
crossref_primary_10_1002_aic_16616
crossref_primary_10_1039_C6CS00603E
crossref_primary_10_1039_C8CC04242J
crossref_primary_10_1021_am505697f
crossref_primary_10_1039_C8TA12334A
crossref_primary_10_1002_anie_202218027
crossref_primary_10_1016_j_carbpol_2018_11_057
crossref_primary_10_1007_s11426_017_9084_7
crossref_primary_10_1016_j_cej_2017_07_044
crossref_primary_10_1002_advs_202000067
crossref_primary_10_1021_acs_iecr_1c02220
crossref_primary_10_1016_j_micromeso_2020_110473
crossref_primary_10_1021_acs_chemmater_1c01892
crossref_primary_10_1039_C8CE00779A
crossref_primary_10_3390_molecules27165161
crossref_primary_10_1002_cctc_202301018
crossref_primary_10_1039_C9TA07510K
crossref_primary_10_1002_chem_201904455
crossref_primary_10_1021_jacs_7b06397
crossref_primary_10_1016_j_ultsonch_2018_08_027
crossref_primary_10_1016_j_polymer_2018_07_069
crossref_primary_10_1002_adfm_202416384
crossref_primary_10_1016_j_cej_2023_141810
crossref_primary_10_1021_acssuschemeng_9b04901
crossref_primary_10_1016_j_jssc_2018_09_001
crossref_primary_10_1039_C9TA08614E
crossref_primary_10_1002_cjoc_202400386
crossref_primary_10_1002_ange_202102810
crossref_primary_10_1021_acscatal_7b04189
crossref_primary_10_1016_j_seppur_2023_124953
crossref_primary_10_1007_s10934_020_00941_w
crossref_primary_10_1016_j_ccr_2023_215566
crossref_primary_10_1016_j_trechm_2019_02_012
crossref_primary_10_1039_D0CS00552E
crossref_primary_10_1002_adfm_201802021
crossref_primary_10_1021_acs_inorgchem_2c03758
crossref_primary_10_1021_jacs_7b08102
crossref_primary_10_1002_ange_201904312
crossref_primary_10_1039_D0NR06849G
crossref_primary_10_1021_acsami_0c20000
crossref_primary_10_1146_annurev_chembioeng_112019_084830
crossref_primary_10_1016_j_talanta_2023_125484
crossref_primary_10_1002_anie_202104318
crossref_primary_10_1021_jacs_3c06514
crossref_primary_10_1039_C8NJ06240D
crossref_primary_10_1021_acs_iecr_2c02438
crossref_primary_10_1016_j_inoche_2022_109526
crossref_primary_10_1039_C8EN01167B
crossref_primary_10_1016_j_apsusc_2017_03_136
crossref_primary_10_1021_acsami_0c18062
crossref_primary_10_1039_D1NJ05333G
crossref_primary_10_1039_D3RA02802J
crossref_primary_10_1021_acs_langmuir_2c01098
crossref_primary_10_1039_C6TA09234A
crossref_primary_10_1016_j_cej_2023_145151
crossref_primary_10_1016_j_cplett_2021_139198
crossref_primary_10_1021_acsami_1c10208
crossref_primary_10_3390_molecules30020331
crossref_primary_10_1016_j_mtchem_2022_100856
crossref_primary_10_1021_acs_inorgchem_4c02987
crossref_primary_10_1039_D0QM00186D
Cites_doi 10.1021/cr200179u
10.1002/anie.201001230
10.1021/cm1021068
10.1039/c0cc00235f
10.1039/c1ee01971f
10.1039/C1CS15221A
10.1021/cr2003272
10.1002/anie.200300610
10.1021/cr200274s
10.1021/jp401600v
10.1021/cr300014x
10.1016/j.micromeso.2013.10.026
10.1002/anie.201202176
10.1021/ja305663k
10.1002/chem.201100958
10.1002/anie.201107534
10.1002/aic.690410309
10.1038/srep02611
10.1021/ja4105478
10.1126/science.1217544
10.1021/la2030473
10.1021/cr2003147
10.1021/la201774x
10.1021/ja305754f
10.1038/nchem.695
10.1021/cr3002824
10.1002/anie.200904637
10.1021/ja200122f
10.1021/cr200190s
10.1021/ja200553m
10.1002/aic.690110125
10.1021/ie00022a002
10.1021/ja1012992
10.1021/cr9003924
10.1039/c3sc00032j
10.1016/j.ces.2008.05.038
10.1016/S0039-6028(01)01051-2
10.1021/ja1089765
10.1002/adma.200801971
10.1039/c3ta11205e
10.1016/0254-0584(91)90014-L
10.1021/cg400164m
10.1039/c1cp20502a
10.1021/cm300407h
10.1007/s10450-012-9423-1
10.1021/ja9088378
10.1039/c3cc00039g
10.1021/ja302380x
10.1016/j.ces.2009.04.010
10.1021/ja1028556
10.1016/j.cej.2010.07.041
10.1021/ja801453c
10.1002/adma.201100974
10.1021/ja410868r
10.1126/science.1246423
10.1038/nature11893
10.1021/ja2087773
10.1002/047144409X
10.1021/cm2034646
10.1021/ja302340b
10.1039/c2cc38067f
10.1016/j.progpolymsci.2011.09.002
10.1021/cm402897c
10.1039/c2ee22858k
10.1021/je00028a029
10.1021/cs4005997
10.1021/la8008656
10.1002/chem.201102734
10.1021/ja9039983
10.1002/anie.201309778
10.1039/C2CE25409C
10.1039/c3cc45252b
10.1039/c0sc00339e
10.1002/anie.201000167
10.1002/9780470606858
10.1039/ft9959102935
10.1021/ja902116f
10.1002/adma.201101759
10.1021/cm400019f
10.1038/ncomms1206
10.1038/nature00785
10.1021/cm202976e
10.1021/ja2038003
10.1021/la401471g
10.1002/adma.200702397
10.1039/b807080f
10.1039/C3TA12999C
10.1039/c3cs60160a
10.1021/cr200216x
10.1021/ie202325p
10.1002/aic.690440405
10.1039/B916295J
10.1021/jp021377p
10.1039/c3ta12086d
10.1016/0021-9517(80)90393-0
10.1021/ie970897h
10.1002/anie.201205603
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/ja502119z
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 8660
ExternalDocumentID 24901372
10_1021_ja502119z
a086192381
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a375t-30ad28d76a91f9c5e5c6cd42b269b1948cff51291c4be69ee1a8cbe44ba2aeff3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 14:47:57 EDT 2025
Fri Jul 11 01:57:00 EDT 2025
Mon Jul 21 06:01:21 EDT 2025
Tue Jul 01 04:33:00 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-30ad28d76a91f9c5e5c6cd42b269b1948cff51291c4be69ee1a8cbe44ba2aeff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24901372
PQID 1537592853
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2986642898
proquest_miscellaneous_1537592853
pubmed_primary_24901372
crossref_primary_10_1021_ja502119z
crossref_citationtrail_10_1021_ja502119z
acs_journals_10_1021_ja502119z
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-18
PublicationDateYYYYMMDD 2014-06-18
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Myers A. L. (ref27/cit27) 1965; 11
Stacchiola D. (ref33/cit33) 2001; 486
Bloch E. D. (ref19/cit19b) 2012; 335
Mofarahi M. (ref25/cit25) 2013; 19
Aguado S. (ref31/cit31b) 2012; 134
Ma H. (ref18/cit18u) 2013; 3
Weston M. H. (ref12/cit12b) 2012; 24
Lu W. (ref23/cit23b) 2012; 51
Thomas A. (ref8/cit8a) 2010; 49
Yoon M. (ref16/cit16b) 2012; 112
Ben T. (ref22/cit22) 2009; 48
Leclerc H. (ref18/cit18o) 2011; 13
He Y. (ref19/cit19a) 2012; 5
Eldridge R. B. (ref2/cit2) 1993; 32
van den Bergh J. (ref18/cit18l) 2011; 17
Corma A. (ref16/cit16d) 2010; 110
Das M. C. (ref18/cit18w) 2012; 134
Davis M. E. (ref17/cit17) 2002; 417
Lamia N. (ref18/cit18i) 2009; 64
Matar S. (ref1/cit1) 2000
Chen L. (ref16/cit16f) 2010; 132
Hyun S. H. (ref29/cit29) 1982; 27
Bao Z. (ref19/cit19g) 2011; 27
Van Humbeck J. F. (ref24/cit24b) 2014; 136
Ma S. (ref13/cit13a) 2010; 46
Schwab M. G. (ref10/cit10b) 2009; 131
Uchida S. (ref18/cit18p) 2012; 24
Xiang S.-C. (ref18/cit18b) 2011; 2
Hartmann M. (ref18/cit18r) 2008; 24
Lykourinou V. (ref16/cit16h) 2011; 133
Li B. (ref16/cit16j) 2014; 136
Cooper A. I. (ref10/cit10a) 2009; 21
Zou X. (ref9/cit9b) 2013; 49
Lee C. Y. (ref18/cit18d) 2011; 133
Li K. (ref18/cit18f) 2009; 131
Zhu X. (ref4/cit4) 2012; 134
Rege S. U. (ref3/cit3) 1998; 44
Dawson R. (ref15/cit15d) 2011; 4
Ferreira A. F. P. (ref18/cit18j) 2011; 167
Chen L. (ref16/cit16g) 2011; 23
Meng L. (ref16/cit16i) 2012; 51
Lee J. (ref16/cit16c) 2009; 38
Bae Y.-S. (ref18/cit18e) 2012; 51
Lu W. (ref23/cit23a) 2011; 133
Huang Y. (ref35/cit35) 1980; 61
Dawson R. (ref8/cit8b) 2012; 37
Uzunova E. L. (ref36/cit36) 2013; 3
Liu J. (ref30/cit30a) 2011; 27
Anson A. (ref28/cit28) 2008; 63
Safarik D. J. (ref5/cit5) 1998; 37
MacGillivray L. R. (ref7/cit7a) 2010
Xu H. (ref18/cit18n) 2013; 1
Wu H. (ref18/cit18a) 2012; 112
Wood C. D. (ref13/cit13d) 2008; 20
Zhu C. (ref16/cit16l) 2012; 134
Wang X.-S. (ref18/cit18v) 2013; 49
Weston M. H. (ref20/cit20) 2014; 2
Itoh K. (ref34/cit34) 2002; 106
Liu J. (ref15/cit15a) 2012; 41
Nugent P. (ref15/cit15b) 2013; 495
Busca G. (ref32/cit32) 1991; 29
Yang R. T. (ref6/cit6) 2003
Ben T. (ref9/cit9a) 2013; 15
Yuan S. (ref12/cit12a) 2010; 46
Rabbani M. G. (ref13/cit13c) 2012; 24
Gao W.-Y. (ref16/cit16k) 2014; 53
Rubeš M. (ref18/cit18q) 2013; 117
Huang L. (ref19/cit19h) 2013; 1
Spitler E. L. (ref10/cit10c) 2010; 2
Xu Y. (ref8/cit8c) 2013; 42
Uchida S. (ref21/cit21) 2008; 130
Lu W. (ref11/cit11a) 2010; 22
Zhu Y. (ref14/cit14b) 2013; 25
Choudhary V. R. (ref26/cit26) 1995; 91
Nijem N. (ref18/cit18g) 2012; 134
Geier S. J. (ref19/cit19c) 2013; 4
Cook T. R. (ref7/cit7e) 2013; 113
Maes M. (ref18/cit18h) 2010; 132
Yoon J. W. (ref18/cit18k) 2010; 49
Shultz A. M. (ref16/cit16e) 2011; 2
He Y. (ref18/cit18s) 2012; 18
Gücüyener C. (ref19/cit19e) 2010; 132
Zhou H.-C. (ref7/cit7b) 2012; 112
Schoenecker P. M. (ref30/cit30b) 2012; 51
Yang R. T. (ref31/cit31a) 1995; 41
Sato H. (ref14/cit14c) 2014; 343
Böhme U. (ref19/cit19f) 2013; 29
An J. (ref15/cit15e) 2010; 132
Suh M. P. (ref13/cit13b) 2012; 112
Sumida K. (ref15/cit15c) 2012; 112
Krishna R. (ref18/cit18c) 2014; 185
Cohen S. M. (ref7/cit7c) 2012; 112
Kitagawa S. (ref7/cit7d) 2004; 43
Gu X. (ref16/cit16a) 2011; 133
Herm Z. R. (ref18/cit18t) 2013; 26
Li J.-R. (ref14/cit14a) 2012; 112
Yuan D. (ref11/cit11b) 2011; 23
Zhang Y. (ref24/cit24a) 2013; 49
Cai J. (ref18/cit18m) 2013; 13
References_xml – volume: 112
  start-page: 970
  year: 2012
  ident: ref7/cit7c
  publication-title: Chem. Rev.
  doi: 10.1021/cr200179u
– volume: 49
  start-page: 5949
  year: 2010
  ident: ref18/cit18k
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001230
– volume: 22
  start-page: 5964
  year: 2010
  ident: ref11/cit11a
  publication-title: Chem. Mater.
  doi: 10.1021/cm1021068
– volume: 46
  start-page: 4547
  year: 2010
  ident: ref12/cit12a
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00235f
– volume: 4
  start-page: 4239
  year: 2011
  ident: ref15/cit15d
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01971f
– volume-title: Chemistry of Petrochemical Processes
  year: 2000
  ident: ref1/cit1
– volume: 41
  start-page: 2308
  year: 2012
  ident: ref15/cit15a
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15221A
– volume: 112
  start-page: 724
  year: 2012
  ident: ref15/cit15c
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003272
– volume: 43
  start-page: 2334
  year: 2004
  ident: ref7/cit7d
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200300610
– volume: 112
  start-page: 782
  year: 2012
  ident: ref13/cit13b
  publication-title: Chem. Rev.
  doi: 10.1021/cr200274s
– volume: 117
  start-page: 11159
  year: 2013
  ident: ref18/cit18q
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp401600v
– volume: 112
  start-page: 673
  year: 2012
  ident: ref7/cit7b
  publication-title: Chem. Rev.
  doi: 10.1021/cr300014x
– volume: 185
  start-page: 30
  year: 2014
  ident: ref18/cit18c
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2013.10.026
– volume: 51
  start-page: 7480
  year: 2012
  ident: ref23/cit23b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201202176
– volume: 134
  start-page: 14635
  year: 2012
  ident: ref31/cit31b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305663k
– volume: 17
  start-page: 8832
  year: 2011
  ident: ref18/cit18l
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201100958
– volume: 51
  start-page: 1857
  year: 2012
  ident: ref18/cit18e
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107534
– volume: 41
  start-page: 509
  year: 1995
  ident: ref31/cit31a
  publication-title: AIChE J.
  doi: 10.1002/aic.690410309
– volume: 3
  start-page: 2611
  year: 2013
  ident: ref18/cit18u
  publication-title: Sci. Rep.
  doi: 10.1038/srep02611
– volume: 136
  start-page: 2432
  year: 2014
  ident: ref24/cit24b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4105478
– volume: 335
  start-page: 1606
  year: 2012
  ident: ref19/cit19b
  publication-title: Science
  doi: 10.1126/science.1217544
– volume: 27
  start-page: 13554
  year: 2011
  ident: ref19/cit19g
  publication-title: Langmuir
  doi: 10.1021/la2030473
– volume: 112
  start-page: 1196
  year: 2012
  ident: ref16/cit16b
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003147
– volume: 27
  start-page: 11451
  year: 2011
  ident: ref30/cit30a
  publication-title: Langmuir
  doi: 10.1021/la201774x
– volume: 134
  start-page: 15201
  year: 2012
  ident: ref18/cit18g
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305754f
– volume: 2
  start-page: 672
  year: 2010
  ident: ref10/cit10c
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.695
– volume: 113
  start-page: 734
  year: 2013
  ident: ref7/cit7e
  publication-title: Chem. Rev.
  doi: 10.1021/cr3002824
– volume: 48
  start-page: 9457
  year: 2009
  ident: ref22/cit22
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200904637
– volume: 133
  start-page: 11822
  year: 2011
  ident: ref16/cit16a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200122f
– volume: 112
  start-page: 869
  year: 2012
  ident: ref14/cit14a
  publication-title: Chem. Rev.
  doi: 10.1021/cr200190s
– volume: 133
  start-page: 5228
  year: 2011
  ident: ref18/cit18d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200553m
– volume: 11
  start-page: 121
  year: 1965
  ident: ref27/cit27
  publication-title: AIChE J.
  doi: 10.1002/aic.690110125
– volume: 32
  start-page: 2208
  year: 1993
  ident: ref2/cit2
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00022a002
– volume: 132
  start-page: 5578
  year: 2010
  ident: ref15/cit15e
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1012992
– volume: 110
  start-page: 4606
  year: 2010
  ident: ref16/cit16d
  publication-title: Chem. Rev.
  doi: 10.1021/cr9003924
– volume: 4
  start-page: 2054
  year: 2013
  ident: ref19/cit19c
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc00032j
– volume: 63
  start-page: 4171
  year: 2008
  ident: ref28/cit28
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.05.038
– volume: 486
  start-page: 9
  year: 2001
  ident: ref33/cit33
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01051-2
– volume: 132
  start-page: 17704
  year: 2010
  ident: ref19/cit19e
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1089765
– volume: 21
  start-page: 1291
  year: 2009
  ident: ref10/cit10a
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801971
– volume: 1
  start-page: 9433
  year: 2013
  ident: ref19/cit19h
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11205e
– volume: 29
  start-page: 175
  year: 1991
  ident: ref32/cit32
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/0254-0584(91)90014-L
– volume: 13
  start-page: 2094
  year: 2013
  ident: ref18/cit18m
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg400164m
– volume: 13
  start-page: 11748
  year: 2011
  ident: ref18/cit18o
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20502a
– volume: 24
  start-page: 1511
  year: 2012
  ident: ref13/cit13c
  publication-title: Chem. Mater.
  doi: 10.1021/cm300407h
– volume: 19
  start-page: 101
  year: 2013
  ident: ref25/cit25
  publication-title: Adsorption
  doi: 10.1007/s10450-012-9423-1
– volume: 132
  start-page: 2284
  year: 2010
  ident: ref18/cit18h
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9088378
– volume: 49
  start-page: 3925
  year: 2013
  ident: ref9/cit9b
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc00039g
– volume: 134
  start-page: 8703
  year: 2012
  ident: ref18/cit18w
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302380x
– volume: 64
  start-page: 3246
  year: 2009
  ident: ref18/cit18i
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.04.010
– volume: 132
  start-page: 9138
  year: 2010
  ident: ref16/cit16f
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1028556
– volume: 167
  start-page: 1
  year: 2011
  ident: ref18/cit18j
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.07.041
– volume: 130
  start-page: 12370
  year: 2008
  ident: ref21/cit21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801453c
– volume: 23
  start-page: 3149
  year: 2011
  ident: ref16/cit16g
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100974
– volume: 136
  start-page: 1202
  year: 2014
  ident: ref16/cit16j
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410868r
– volume: 343
  start-page: 167
  year: 2014
  ident: ref14/cit14c
  publication-title: Science
  doi: 10.1126/science.1246423
– volume: 495
  start-page: 80
  year: 2013
  ident: ref15/cit15b
  publication-title: Nature
  doi: 10.1038/nature11893
– volume: 133
  start-page: 18126
  year: 2011
  ident: ref23/cit23a
  publication-title: J. Am. Chem. S oc.
  doi: 10.1021/ja2087773
– volume-title: Adsorbents: Fundamentals and Applications
  year: 2003
  ident: ref6/cit6
  doi: 10.1002/047144409X
– volume: 24
  start-page: 1292
  year: 2012
  ident: ref12/cit12b
  publication-title: Chem. Mater.
  doi: 10.1021/cm2034646
– volume: 134
  start-page: 8058
  year: 2012
  ident: ref16/cit16l
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302340b
– volume: 49
  start-page: 1533
  year: 2013
  ident: ref18/cit18v
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc38067f
– volume: 37
  start-page: 530
  year: 2012
  ident: ref8/cit8b
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.09.002
– volume: 26
  start-page: 323
  year: 2013
  ident: ref18/cit18t
  publication-title: Chem. Mater.
  doi: 10.1021/cm402897c
– volume: 5
  start-page: 9107
  year: 2012
  ident: ref19/cit19a
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22858k
– volume: 27
  start-page: 196
  year: 1982
  ident: ref29/cit29
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je00028a029
– volume: 3
  start-page: 2759
  year: 2013
  ident: ref36/cit36
  publication-title: ACS Catal.
  doi: 10.1021/cs4005997
– volume: 24
  start-page: 8634
  year: 2008
  ident: ref18/cit18r
  publication-title: Langmuir
  doi: 10.1021/la8008656
– volume: 18
  start-page: 613
  year: 2012
  ident: ref18/cit18s
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201102734
– volume: 134
  start-page: 104784
  year: 2012
  ident: ref4/cit4
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 10368
  year: 2009
  ident: ref18/cit18f
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9039983
– volume: 53
  start-page: 2615
  year: 2014
  ident: ref16/cit16k
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201309778
– volume: 15
  start-page: 17
  year: 2013
  ident: ref9/cit9a
  publication-title: CrystEngComm
  doi: 10.1039/C2CE25409C
– volume: 49
  start-page: 10269
  year: 2013
  ident: ref24/cit24a
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45252b
– volume: 2
  start-page: 686
  year: 2011
  ident: ref16/cit16e
  publication-title: Chem. Sci.
  doi: 10.1039/c0sc00339e
– volume: 49
  start-page: 8328
  year: 2010
  ident: ref8/cit8a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000167
– volume-title: Metal-Organic Frameworks: Design and Application
  year: 2010
  ident: ref7/cit7a
  doi: 10.1002/9780470606858
– volume: 91
  start-page: 2935
  year: 1995
  ident: ref26/cit26
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/ft9959102935
– volume: 131
  start-page: 7216
  year: 2009
  ident: ref10/cit10b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902116f
– volume: 23
  start-page: 3723
  year: 2011
  ident: ref11/cit11b
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101759
– volume: 25
  start-page: 1630
  year: 2013
  ident: ref14/cit14b
  publication-title: Chem. Mater.
  doi: 10.1021/cm400019f
– volume: 2
  start-page: 204
  year: 2011
  ident: ref18/cit18b
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1206
– volume: 417
  start-page: 813
  year: 2002
  ident: ref17/cit17
  publication-title: Nature
  doi: 10.1038/nature00785
– volume: 24
  start-page: 325
  year: 2012
  ident: ref18/cit18p
  publication-title: Chem. Mater.
  doi: 10.1021/cm202976e
– volume: 133
  start-page: 10382
  year: 2011
  ident: ref16/cit16h
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2038003
– volume: 29
  start-page: 8592
  year: 2013
  ident: ref19/cit19f
  publication-title: Langmuir
  doi: 10.1021/la401471g
– volume: 20
  start-page: 1916
  year: 2008
  ident: ref13/cit13d
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702397
– volume: 38
  start-page: 1450
  year: 2009
  ident: ref16/cit16c
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807080f
– volume: 2
  start-page: 299
  year: 2014
  ident: ref20/cit20
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA12999C
– volume: 42
  start-page: 8012
  year: 2013
  ident: ref8/cit8c
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60160a
– volume: 112
  start-page: 836
  year: 2012
  ident: ref18/cit18a
  publication-title: Chem. Rev.
  doi: 10.1021/cr200216x
– volume: 51
  start-page: 6513
  year: 2012
  ident: ref30/cit30b
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie202325p
– volume: 44
  start-page: 799
  year: 1998
  ident: ref3/cit3
  publication-title: AIChE J.
  doi: 10.1002/aic.690440405
– volume: 46
  start-page: 44
  year: 2010
  ident: ref13/cit13a
  publication-title: Chem. Commun.
  doi: 10.1039/B916295J
– volume: 106
  start-page: 10714
  year: 2002
  ident: ref34/cit34
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp021377p
– volume: 1
  start-page: 9916
  year: 2013
  ident: ref18/cit18n
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12086d
– volume: 61
  start-page: 461
  year: 1980
  ident: ref35/cit35
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(80)90393-0
– volume: 37
  start-page: 2571
  year: 1998
  ident: ref5/cit5
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie970897h
– volume: 51
  start-page: 10082
  year: 2012
  ident: ref16/cit16i
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201205603
SSID ssj0004281
Score 2.6004696
Snippet In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8654
SubjectTerms adsorption
ethane
ethylene
infrared spectroscopy
ions
silver
zeolites
Title Introduction of π‑Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane
URI http://dx.doi.org/10.1021/ja502119z
https://www.ncbi.nlm.nih.gov/pubmed/24901372
https://www.proquest.com/docview/1537592853
https://www.proquest.com/docview/2986642898
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB6VcoALpeVvC1Tm58AlVeM4_jmulq4KEgipVOotsh1bQlRJtZuVoKe-Ak_Wd-iTMJOsWxDdckw0ceIZx_ONZvwNwFsbrEW3hmGqKnwmdCwz6yXPrPGC13VRSksZ3U-f5cGR-HhcHq_BmxUZfE78QOUe0ZCd3YG7XGpFEdZ4cnh9-JHrPGFcpWWR6IP-fJRcj5__7XpW4Mner0w34H06nTOUk3zfXXRu15_9S9Z42yc_hAdLXMnGw0LYhLXQbMG9SWrn9gh-fKCa9Hogi2VtZBfnl-e_aDugIy79zW9N17Iv7axdzHGgtidzZdNUvcUQ3jIqCzn5yQ777jm4UbJxPW9np2nMfTQ7urHAqDCUrmwTHsPRdP_r5CBbtl3IbKHKLiv2bM11raQ1eTS-DKWXvhbccWlcboT2MRJMyL1wQZoQcqu9C0I4y22IsXgC603bhGfAVOEiYrgoPMIuFY0LmhsXHXciV9aqEeygXarlbzOv-ow4x4gkKXAE75LJKr8kLafeGSc3ib6-Ej0dmDpuEnqV7F6h_ik5gopAtVa486vScEQvq2W40ZLiNaNH8HRYNFevwjCW2Bv59v-m9BzuI-gSVG6W6xew3s0W4SUCm87t9Av7Nyo69cI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcigXKH9loRSDQOKSqnEc_xw4rJaudumPkNpKvQXbsSVElVSbrKA99RW49lX6ELwDT8I4m2wBteJUiWMia2KPJ55vNONvAF5rpzW6NQxTRWIjJn0aactppJVlNM-TlOuQ0d3Z5aMD9uEwPVyA8-4uDE6iQklVk8S_ZBcINEHpRmAjO20LKLfcyVcMz6p34_e4l28oHW7uD0ZR20Eg0olI6yjZ0DmVueBaxV7Z1KWW25xRQ7kyGL5L633weLFlxnHlXKylNY4xo6l23ico9xbcRtBDQ2DXH-xd3rmkMu6gtZA86ViLfp9q8Hi2-tPjXQNjG3c2vAcXc0U0VSxf1qe1Wbenf3FE_p-aWoa7LYom_ZnZ34cFVzyApUHXvO4hfBuHCvx8Ro1LSk9-nP08-x4Ov3Chp3n5uahL8rGclNMKBZUNdS0ZdrVqBME8CUUwRydkr-kVhG6B9POqnBx3MjfRyNFpOxLKYMOTLtwjOLiRhT-GxaIs3BMgIjEeEatnFkGm8Mo4SZXxhhoWC61FD9Zwv7L2kKiyJv9PMf7qNqwHbztLyWxL0R46hRxdNfTVfOjxjJfkqkEvO3PLUP8hFYSKQLVm6OdEqihitevHUCV5iE6V7MHKzFbnn8KgPXBV0qf_WtILWBrt72xn2-PdrWdwB-EmC4V2sVyFxXoydc8R0tVmrfm3CHy6aRP9BcVJW4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIgGXlr_SpVAMAolLqsZxEvvAYbXtqkuhqlQq9RZsx5YQVbLaZAXtqa_AC_AqPELfoU_CTDZZftSKUyWOiayJMx57vtGMvwF4qZ3W6NYwTE0jGwjp40DbhAdaWcHzPIoTTRnd93vJzqF4exQfLcD37i4MTqJCSVWTxKddPc59yzBAVEHxJjGSnbZFlLvu5AuGaNWb0Rau5yvOh9sfBjtB20Ug0FEa10G0qXMu8zTRKvTKxi62ic0FNzxRBkN4ab0nrxdaYVyinAu1tMYJYTTXzvsI5d6Am5QepOCuPzj4de-Sy7CD16lMoo656Pepktez1Z9e7woo27i04TL8mCujqWT5vDGtzYY9_Ysn8v_V1l1YatE068_M_x4suOI-3B50TewewNcRVeLnM4pcVnp2fnZx9o0OQbrY07z8VNQl2y8n5bRCQWVDYcuGXc0aQ1DPqBjm-IQdND2D0D2wfl6Vk3EncxuNHZ23Y1QOS0-6cA_h8Fp-fAUWi7Jwq8DSyHhErl5YBJupV8ZJrow33Igw1TrtwTquWdYeFlXW1AFwjMO6BevB685aMttStVPHkOPLhr6YDx3P-EkuG_S8M7kM9U8pIVQEqjVDf5fGiiNmu3oMVzKhKFXJHjya2ev8Uxi8E2clf_yvX3oGt_a3htm70d7uGtxB1Cmo3i6UT2CxnkzdU0R2tVlvtheDj9dtoT8BDuxeCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introduction+of+%CF%80-complexation+into+porous+aromatic+framework+for+highly+selective+adsorption+of+ethylene+over+ethane&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Li%2C+Baiyan&rft.au=Zhang%2C+Yiming&rft.au=Krishna%2C+Rajamani&rft.au=Yao%2C+Kexin&rft.date=2014-06-18&rft.eissn=1520-5126&rft.volume=136&rft.issue=24&rft.spage=8654&rft_id=info:doi/10.1021%2Fja502119z&rft_id=info%3Apmid%2F24901372&rft.externalDocID=24901372
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon