A comparative analysis of statistical, MCDM and machine learning based modification strategies to reduce subjective errors of DRASTIC models

Groundwater, the main source of drinking and irrigation water in developing countries, plays an important role in maintaining public health and crop production. However, groundwater quality is often compromised and geological aquifers that contain this valuable resource are at risk of contamination...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental earth sciences Vol. 83; no. 7; p. 211
Main Authors Dasgupta, Rijurekha, Banerjee, Gourab, Hidayetullah, Sekh Mohammad, Saha, Nilanjan, Das, Subhasish, Mazumdar, Asis
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Groundwater, the main source of drinking and irrigation water in developing countries, plays an important role in maintaining public health and crop production. However, groundwater quality is often compromised and geological aquifers that contain this valuable resource are at risk of contamination such as arsenic and emerging pollutants in the North 24-Parganas district of India. Monitoring of aquifer vulnerability is generally done by modeling which subjects to errors that must be taken into account. For an emerging vulnerability model DRASTIC, prone to subjectivity errors, three modification methods: statistical modification, DRASTIC-AHP, and DRASTIC-CNN, are used to identify the most effective strategy for reducing such subjectivity errors in this study. The model results are validated against the composite groundwater pollution index. The DRASTIC-CNN method outperforms other modifications, with the correlation coefficient increasing from 0.226 to 0.9 compared to the conventional DRASTIC model. The coefficient of determination for DRASTIC-CNN improves from 0.05 to 0.81, while the kappa statistic underscores its superiority in identifying vulnerable regions. Although statistical modification and DRASTIC-AHP demonstrate respectable performances, they are lower than the accuracy achieved by DRASTIC-CNN. DRASTIC-CNN emerges as the most efficient approach to reduce subjective errors in modeling aquifer vulnerability. This study accurately identifies groundwater vulnerability, helping policymakers to formulate sustainable management plans and mitigation measures for water purification. It importantly addresses environmental problems such as arsenic contamination and emerging pollutants. Integrating the DRASTIC model with other factors allows us to assess vulnerability and pave the way for sustainable treatment technologies.
AbstractList Groundwater, the main source of drinking and irrigation water in developing countries, plays an important role in maintaining public health and crop production. However, groundwater quality is often compromised and geological aquifers that contain this valuable resource are at risk of contamination such as arsenic and emerging pollutants in the North 24-Parganas district of India. Monitoring of aquifer vulnerability is generally done by modeling which subjects to errors that must be taken into account. For an emerging vulnerability model DRASTIC, prone to subjectivity errors, three modification methods: statistical modification, DRASTIC-AHP, and DRASTIC-CNN, are used to identify the most effective strategy for reducing such subjectivity errors in this study. The model results are validated against the composite groundwater pollution index. The DRASTIC-CNN method outperforms other modifications, with the correlation coefficient increasing from 0.226 to 0.9 compared to the conventional DRASTIC model. The coefficient of determination for DRASTIC-CNN improves from 0.05 to 0.81, while the kappa statistic underscores its superiority in identifying vulnerable regions. Although statistical modification and DRASTIC-AHP demonstrate respectable performances, they are lower than the accuracy achieved by DRASTIC-CNN. DRASTIC-CNN emerges as the most efficient approach to reduce subjective errors in modeling aquifer vulnerability. This study accurately identifies groundwater vulnerability, helping policymakers to formulate sustainable management plans and mitigation measures for water purification. It importantly addresses environmental problems such as arsenic contamination and emerging pollutants. Integrating the DRASTIC model with other factors allows us to assess vulnerability and pave the way for sustainable treatment technologies.
ArticleNumber 211
Author Das, Subhasish
Dasgupta, Rijurekha
Saha, Nilanjan
Banerjee, Gourab
Mazumdar, Asis
Hidayetullah, Sekh Mohammad
Author_xml – sequence: 1
  givenname: Rijurekha
  orcidid: 0009-0006-6282-7080
  surname: Dasgupta
  fullname: Dasgupta, Rijurekha
  organization: School of Water Resources Engineering, Jadavpur University
– sequence: 2
  givenname: Gourab
  orcidid: 0000-0002-5678-7100
  surname: Banerjee
  fullname: Banerjee, Gourab
  email: gourabb.swre@jadavpuruniversity.in
  organization: School of Water Resources Engineering, Jadavpur University
– sequence: 3
  givenname: Sekh Mohammad
  orcidid: 0009-0009-9492-8101
  surname: Hidayetullah
  fullname: Hidayetullah, Sekh Mohammad
  organization: School of Water Resources Engineering, Jadavpur University
– sequence: 4
  givenname: Nilanjan
  orcidid: 0000-0002-6197-5579
  surname: Saha
  fullname: Saha, Nilanjan
  organization: School of Water Resources Engineering, Jadavpur University
– sequence: 5
  givenname: Subhasish
  orcidid: 0000-0002-6512-7454
  surname: Das
  fullname: Das, Subhasish
  organization: School of Water Resources Engineering, Jadavpur University
– sequence: 6
  givenname: Asis
  orcidid: 0000-0002-4959-2989
  surname: Mazumdar
  fullname: Mazumdar, Asis
  organization: School of Water Resources Engineering, Jadavpur University
BookMark eNp9kc9u1DAQhy1UJErpC3CyxIUDAf-J7eS42kJbqRUSlLPl2JPFq6y9eJJKfQceGncXgdRDfbFlf9-MNb_X5CTlBIS85ewjZ8x8Qi60Vg0TbcO54qqRL8gp77RutOj7k3_njr0i54hbVpfksmf6lPxeUZ93e1fcHO-BuuSmB4xI80hxrnc4R--mD_R2fXFbXwPdOf8zJqATuJJi2tDBIdTrHOJY0TnmVM1aDjYRkM6ZFgiLB4rLsAV_6AKl5HLocfFt9f3uev2ow4RvyMvRTQjnf_cz8uPL57v1VXPz9fJ6vbppnDRqbkRvWNcH543moRdBBsedE6I1wXNlQJlB-VFzaaSBQcE4KNcH0XagpTfdIM_I-2Pdfcm_FsDZ7iJ6mCaXIC9oJVdSS8lbUdF3T9BtXkqdElrRd6qtEOOV6o6ULxmxwGh9nA-zqJOIk-XMPiZlj0nZmpQ9JGVlVcUTdV_izpWH5yV5lLDCaQPl_6-esf4A_nKovA
CitedBy_id crossref_primary_10_1007_s10668_025_06041_6
crossref_primary_10_1007_s11356_024_33809_6
Cites_doi 10.1016/j.chemosphere.2022.135831
10.1007/s10661-015-4915-6
10.1016/j.jhydrol.2006.08.014
10.1016/j.scitotenv.2004.11.005
10.1016/S1364-8152(03)00051-3
10.1007/s11356-021-17902-8
10.1111/gwat.12919
10.1007/s10661-023-11165-1
10.1007/s11356-020-11406-7
10.1007/s11356-021-14912-4
10.1111/j.1745-6584.2012.01019.x
10.1016/j.rse.2015.02.013
10.1080/10106049.2021.1923833
10.1016/j.jhydrol.2020.125114
10.1016/j.envc.2021.100380
10.1007/s12665-010-0790-1
10.1007/s00244-020-00805-z
10.1007/s10661-022-10601-y
10.1007/s12665-019-8640-2
10.1111/j.1745-6584.2001.tb02350.x
10.1007/s10040-001-0185-1
10.1201/9780429287862
10.1016/j.gsd.2022.100894
10.1016/j.jafrearsci.2016.11.025
10.1016/j.watres.2020.115962
10.1007/s10661-019-7978-y
10.1016/j.patcog.2017.10.013
10.1016/j.gsd.2022.100810
10.1016/j.gsd.2019.03.005
10.1007/s10661-022-10894-z
10.1081/ESE-120016658
10.1007/s12665-013-2940-8
10.1007/s11356-021-15966-0
10.1007/s11356-023-28542-5
10.1007/s10040-005-0008-x
10.1007/s10661-023-10992-6
10.1016/j.jhydrol.2017.03.060
10.1016/j.envadv.2021.100093
10.1016/j.gsd.2018.06.006
10.1007/s11069-014-1503-y
10.1016/j.envpol.2022.119208
10.1016/j.uclim.2021.100799
10.1016/j.asej.2015.11.013
10.1109/79.974727
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7ST
7TG
7UA
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s12665-024-11515-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database (Proquest)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Statistics
Public Health
EISSN 1866-6299
EndPage 211
ExternalDocumentID 10_1007_s12665_024_11515_3
GeographicLocations India
GeographicLocations_xml – name: India
GrantInformation_xml – fundername: Science and Engineering Research Board
  grantid: SRG/2021/002021
GroupedDBID -5A
-5G
-BR
-DZ
-EM
-Y2
-~C
.4S
.DC
06D
0R~
0VY
199
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40D
40E
4P2
5VS
67M
67Z
6NX
7XC
88I
8FE
8FH
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IKXTQ
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
ML.
MQGED
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PATMY
PCBAR
PF-
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7V
Z7W
Z7Y
Z7Z
Z81
Z83
Z85
ZCG
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7TG
7UA
7XB
8FK
ABRTQ
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-a375t-297089dac761d92d3da1aa2247dc157e57b5cf613737eb5efb5a9d248e63c78b3
IEDL.DBID BENPR
ISSN 1866-6280
IngestDate Fri Jul 11 10:03:09 EDT 2025
Fri Jul 25 21:09:11 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
Tue Jul 01 00:53:44 EDT 2025
Fri Feb 21 02:40:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Aquifer vulnerability
Multi criteria decision making (MCDM)
Convolutional neural network (CNN)
Modified DRASTIC model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-297089dac761d92d3da1aa2247dc157e57b5cf613737eb5efb5a9d248e63c78b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6197-5579
0000-0002-4959-2989
0000-0002-5678-7100
0009-0006-6282-7080
0009-0009-9492-8101
0000-0002-6512-7454
PQID 2985431401
PQPubID 54063
PageCount 1
ParticipantIDs proquest_miscellaneous_3153633142
proquest_journals_2985431401
crossref_citationtrail_10_1007_s12665_024_11515_3
crossref_primary_10_1007_s12665_024_11515_3
springer_journals_10_1007_s12665_024_11515_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental earth sciences
PublicationTitleAbbrev Environ Earth Sci
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Li, Karunanidhi, Subramani, Srinivasamoorthy (CR26) 2021; 80
Luo, Ma, Qiu, Zhang, Wang (CR27) 2023; 195
Dutta, Rahman, Paul, Kundu (CR12) 2021; 37
Nadiri, Moazamnia, Sadeghfam, Gnanachandrasamy, Venkatramanan (CR31) 2022; 304
Saravanan, Saranya, Abijith, Jacinth, Singh (CR42) 2021; 5
Verma, Sinha (CR52) 2023; 30
Asghari Moghaddam, Nouri Sangarab, KadkhodaieIlkhchi (CR4) 2023; 195
Thirumalaivasan, Karmegam, Venugopal (CR49) 2003; 18
Javadi, Hashemy, Mohammadi, Howard, Neshat (CR17) 2017; 549
Antonakos, Lambrakis (CR3) 2007; 333
CR2
Paul, Das (CR35) 2021; 5
Rahman, Mandal, Chowdhury, Sengupta, Chowdhury, Lodh, Chakraborti (CR36) 2003; 38
Singh, Shukla, Srivastava, Kamble, Patra, Venugopalan (CR45) 2023; 1
Torkashvand, Neshat, Javadi, Yousefi (CR50) 2021; 28
Panagopoulos, Antonakos, Lambrakis (CR34) 2006; 14
Babiker, Mohamed, Hiyama, Kato (CR5) 2005; 345
Akhavan, Mousavi, Abedi-Koupai, Abbaspour (CR1) 2011; 63
Smail, Dişli (CR47) 2023; 195
Mfonka, Ngoupayou, Ndjigui, Kpoumie, Zammouri, Ngouh, Rasolomanana (CR29) 2018; 7
Singh, Singh, Mukherjee, McDonald, Reddy (CR44) 2014; 72
Salih, Al-Manmi (CR41) 2021; 28
Saravanan, Pitchaikani, Thambiraja, Sathiyamurthi, Sivakumar, Velusamy, Shanmugamoorthy (CR43) 2023; 195
Jesiya, Gopinath (CR18) 2019; 8
Singha, Pasupuleti, Singha, Singh, Venkatesh (CR46) 2019; 78
Langrudi, Siuki, Javadi, Hashemi (CR25) 2016; 7
Bose, Mazumdar, Basu (CR10) 2023
Torres-Martínez, Mora, Knappett, Ornelas-Soto, Mahlknecht (CR51) 2020; 182
Kihumba, Vanclooster, Longo (CR22) 2017; 126
Sadat-Noori, Ebrahimi (CR40) 2016; 188
Rufino, Busico, Cuoco, Darrah, Tedesco (CR37) 2019; 191
CR15
CR14
Daly, Dassargues, Drew, Dunne, Goldscheider, Neale, Zwahlen (CR11) 2002; 10
Khan, Liaqat, Mohamed (CR21) 2022; 37
Meyer, Okin (CR28) 2015; 161
Barber, Bates, Barron, Allison (CR6) 1993; 14
Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Chen (CR13) 2018; 77
John, Das, Das (CR19) 2020; 97
Bera, Mukhopadhyay, Das (CR8) 2022; 307
Saaty (CR39) 1996
Kumar, Thakur, Debnath (CR23) 2019
Rupert (CR38) 2001; 39
Verma, Singh, Mishra, Singh, Singh, Singh (CR53) 2020; 589
Barzegar, Asghari Moghaddam, Norallahi, Inam, Adamowski, Alizadeh, Bou Nassar (CR7) 2020; 58
Neshat, Pradhan (CR33) 2015; 76
Keshava, Mustard (CR20) 2002; 19
Javadi, Kavehkar, Mousavizadeh, Mohammadi (CR16) 2011; 13
(CR9) 2012
Nair, Prasad, Srinivas (CR32) 2022; 19
Szilagyi, Jozsa (CR48) 2013; 51
Lakshminarayanan, Ramasamy, Anuthaman, Karuppanan (CR24) 2022; 29
RQS Smail (11515_CR47) 2023; 195
D Daly (11515_CR11) 2002; 10
S Javadi (11515_CR16) 2011; 13
IS Babiker (11515_CR5) 2005; 345
BIS (11515_CR9) 2012
S Paul (11515_CR35) 2021; 5
C Barber (11515_CR6) 1993; 14
R Barzegar (11515_CR7) 2020; 58
N Keshava (11515_CR20) 2002; 19
A Asghari Moghaddam (11515_CR4) 2023; 195
MAO Langrudi (11515_CR25) 2016; 7
AK Antonakos (11515_CR3) 2007; 333
T Meyer (11515_CR28) 2015; 161
B Lakshminarayanan (11515_CR24) 2022; 29
S Verma (11515_CR53) 2020; 589
S Saravanan (11515_CR42) 2021; 5
S Akhavan (11515_CR1) 2011; 63
AA Nadiri (11515_CR31) 2022; 304
P Li (11515_CR26) 2021; 80
AO Salih (11515_CR41) 2021; 28
Z Mfonka (11515_CR29) 2018; 7
Q Khan (11515_CR21) 2022; 37
S Verma (11515_CR52) 2023; 30
MM Rahman (11515_CR36) 2003; 38
S Javadi (11515_CR17) 2017; 549
S Singh (11515_CR45) 2023; 1
J Szilagyi (11515_CR48) 2013; 51
AM Nair (11515_CR32) 2022; 19
M Torkashvand (11515_CR50) 2021; 28
A Bera (11515_CR8) 2022; 307
11515_CR2
N Singh (11515_CR44) 2014; 72
M Sadat-Noori (11515_CR40) 2016; 188
P Kumar (11515_CR23) 2019
MG Rupert (11515_CR38) 2001; 39
TL Saaty (11515_CR39) 1996
B John (11515_CR19) 2020; 97
AM Kihumba (11515_CR22) 2017; 126
S Bose (11515_CR10) 2023
SS Singha (11515_CR46) 2019; 78
S Saravanan (11515_CR43) 2023; 195
D Dutta (11515_CR12) 2021; 37
GP Panagopoulos (11515_CR34) 2006; 14
JA Torres-Martínez (11515_CR51) 2020; 182
D Thirumalaivasan (11515_CR49) 2003; 18
F Rufino (11515_CR37) 2019; 191
NP Jesiya (11515_CR18) 2019; 8
A Neshat (11515_CR33) 2015; 76
D Luo (11515_CR27) 2023; 195
11515_CR14
11515_CR15
J Gu (11515_CR13) 2018; 77
References_xml – volume: 307
  start-page: 135831
  year: 2022
  ident: CR8
  article-title: Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135831
– volume: 188
  start-page: 1
  year: 2016
  end-page: 18
  ident: CR40
  article-title: Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-015-4915-6
– volume: 13
  start-page: 239
  issue: 2
  year: 2011
  end-page: 249
  ident: CR16
  article-title: Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas
  publication-title: J Agric Sci Technol
– volume: 333
  start-page: 288
  issue: 2–4
  year: 2007
  end-page: 304
  ident: CR3
  article-title: Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.08.014
– volume: 345
  start-page: 127
  issue: 1–3
  year: 2005
  end-page: 140
  ident: CR5
  article-title: A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2004.11.005
– volume: 18
  start-page: 645
  issue: 7
  year: 2003
  end-page: 656
  ident: CR49
  article-title: AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(03)00051-3
– volume: 30
  start-page: 25205
  year: 2023
  end-page: 25225
  ident: CR52
  article-title: Appraisal of groundwater arsenic on opposite banks of River Ganges, West Bengal, India, and quantification of cancer risk using Monte Carlo simulations
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-17902-8
– volume: 58
  start-page: 441
  issue: 3
  year: 2020
  end-page: 452
  ident: CR7
  article-title: Modification of the DRASTIC framework for mapping groundwater vulnerability zones
  publication-title: Groundwater
  doi: 10.1111/gwat.12919
– volume: 195
  start-page: 567
  issue: 5
  year: 2023
  ident: CR47
  article-title: Assessment and validation of groundwater vulnerability to nitrate and TDS using based on a modified DRASTIC model: a case study in the Erbil Central Sub-Basin, Iraq
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-023-11165-1
– volume: 28
  start-page: 46704
  year: 2021
  end-page: 46724
  ident: CR50
  article-title: DRASTIC framework improvement using stepwise weight assessment ratio analysis (SWARA) and combination of genetic algorithm and entropy
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-11406-7
– volume: 28
  start-page: 59731
  issue: 42
  year: 2021
  end-page: 59744
  ident: CR41
  article-title: DRASTIC model adjusted with lineament density to map groundwater vulnerability: a case study in Rania basin, Kurdistan, Iraq
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-14912-4
– volume: 51
  start-page: 735
  issue: 5
  year: 2013
  end-page: 744
  ident: CR48
  article-title: MODIS-aided statewide net groundwater-recharge estimation in Nebraska
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2012.01019.x
– volume: 161
  start-page: 122
  year: 2015
  end-page: 130
  ident: CR28
  article-title: Evaluation of spectral unmixing techniques using MODIS in a structurally complex savanna environment for retrieval of green vegetation, nonphotosynthetic vegetation, and soil fractional cover
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2015.02.013
– volume: 37
  start-page: 5832
  issue: 20
  year: 2022
  end-page: 5850
  ident: CR21
  article-title: A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2021.1923833
– volume: 589
  start-page: 125114
  year: 2020
  ident: CR53
  article-title: Activation soil moisture accounting (ASMA) for runoff estimation using soil conservation service curve number (SCS-CN) method
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125114
– volume: 5
  start-page: 100380
  year: 2021
  ident: CR42
  article-title: Delineation of groundwater potential zones for Arkavathi sub-watershed, Karnataka, India using remote sensing and GIS
  publication-title: Environ Chall
  doi: 10.1016/j.envc.2021.100380
– ident: CR15
– volume: 63
  start-page: 1155
  year: 2011
  end-page: 1167
  ident: CR1
  article-title: Conditioning DRASTIC model to simulate nitrate pollution case study: Hamadan-Bahar plain
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-010-0790-1
– volume: 14
  start-page: 147
  issue: 2/3
  year: 1993
  end-page: 154
  ident: CR6
  article-title: Assessment of the relative vulnerability of groundwater to pollution: a review and background paper for the conference workshop on vulnerability assessment
  publication-title: J Aust Geol Geophys
– year: 1996
  ident: CR39
  publication-title: Multicriteria decision making: the analytic hierarchy process
– volume: 80
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR26
  article-title: Sources and consequences of groundwater contamination
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-020-00805-z
– volume: 195
  start-page: 57
  issue: 1
  year: 2023
  ident: CR43
  article-title: Comparative assessment of groundwater vulnerability using GIS-based DRASTIC and DRASTIC-AHP for Thoothukudi District, Tamil Nadu India
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-022-10601-y
– volume: 78
  start-page: 1
  year: 2019
  end-page: 19
  ident: CR46
  article-title: A GIS-based modified DRASTIC approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Korba district, Central India
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-019-8640-2
– volume: 39
  start-page: 625
  issue: 4
  year: 2001
  end-page: 630
  ident: CR38
  article-title: Calibration of the DRASTIC ground water vulnerability mapping method
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2001.tb02350.x
– volume: 10
  start-page: 340
  year: 2002
  end-page: 345
  ident: CR11
  article-title: Main concepts of the” European approach” to karst-groundwater-vulnerability assessment and mapping
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-001-0185-1
– year: 2019
  ident: CR23
  publication-title: Groundwater vulnerability assessment and mapping using DRASTIC model
  doi: 10.1201/9780429287862
– year: 2023
  ident: CR10
  article-title: Evolution of groundwater quality assessment on urban area-a bibliometric analysis
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2022.100894
– volume: 126
  start-page: 13
  year: 2017
  end-page: 22
  ident: CR22
  article-title: Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model
  publication-title: J Afr Earth Sci
  doi: 10.1016/j.jafrearsci.2016.11.025
– volume: 182
  start-page: 115962
  year: 2020
  ident: CR51
  article-title: Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115962
– volume: 191
  start-page: 1
  year: 2019
  end-page: 17
  ident: CR37
  article-title: Evaluating the suitability of urban groundwater resources for drinking water and irrigation purposes: an integrated approach in the Agro-Aversano area of Southern Italy
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-019-7978-y
– volume: 77
  start-page: 354
  year: 2018
  end-page: 437
  ident: CR13
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.013
– ident: CR14
– ident: CR2
– volume: 19
  start-page: 100810
  year: 2022
  ident: CR32
  article-title: Groundwater vulnerability assessment of an urban coastal phreatic aquifer in India using GIS-based DRASTIC model
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2022.100810
– volume: 8
  start-page: 654
  year: 2019
  end-page: 666
  ident: CR18
  article-title: A Customized FuzzyAHP-GIS based DRASTIC-L model for intrinsic groundwater vulnerability assessment of urban and peri urban phreatic aquifer clusters
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2019.03.005
– volume: 195
  start-page: 268
  issue: 2
  year: 2023
  ident: CR27
  article-title: Groundwater vulnerability assessment using AHP-DRASTIC-GALDIT comprehensive model: a case study of Binhai New Area, Tianjin, China
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-022-10894-z
– volume: 38
  start-page: 25
  issue: 1
  year: 2003
  end-page: 59
  ident: CR36
  article-title: Arsenic groundwater contamination and sufferings of people in North 24-Parganas, one of the nine arsenic affected districts of West Bengal, India
  publication-title: J Environ Sci Health Part A
  doi: 10.1081/ESE-120016658
– volume: 72
  start-page: 111
  year: 2014
  end-page: 118
  ident: CR44
  article-title: Hydrogeological processes controlling the release of arsenic in parts of 24 Parganas district, West Bengal
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-013-2940-8
– volume: 29
  start-page: 4474
  issue: 3
  year: 2022
  end-page: 4496
  ident: CR24
  article-title: New DRASTIC framework for groundwater vulnerability assessment: bivariate and multi-criteria decision-making approach coupled with metaheuristic algorithm
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-15966-0
– volume: 1
  start-page: 11
  year: 2023
  ident: CR45
  article-title: An evaluation of arsenic contamination status and its potential health risk assessment in villages of Nadia and North 24 Parganas, West Bengal, India
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-023-28542-5
– volume: 97
  start-page: 555
  issue: 4
  year: 2020
  end-page: 562
  ident: CR19
  article-title: Effect of changing land use scenario in Kolkata Metropolitan on the variation in volume of runoff using multi-temporal satellite images
  publication-title: J Indian Chem Soc
– volume: 14
  start-page: 894
  year: 2006
  end-page: 911
  ident: CR34
  article-title: Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-005-0008-x
– volume: 195
  start-page: 497
  issue: 4
  year: 2023
  ident: CR4
  article-title: Assessing groundwater vulnerability potential using modified DRASTIC in Ajabshir Plain, NW of Iran
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-023-10992-6
– volume: 549
  start-page: 27
  year: 2017
  end-page: 37
  ident: CR17
  article-title: Classification of aquifer vulnerability using K-means cluster analysis
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.03.060
– volume: 5
  start-page: 100093
  year: 2021
  ident: CR35
  article-title: An investigation of groundwater vulnerability in the North 24 parganas district using DRASTIC and hybrid-DRASTIC models: a case study
  publication-title: Environ Adv
  doi: 10.1016/j.envadv.2021.100093
– year: 2012
  ident: CR9
  publication-title: Indian standard drinking water—specification (second revision)
– volume: 7
  start-page: 250
  year: 2018
  end-page: 264
  ident: CR29
  article-title: A GIS-based DRASTIC and GOD models for assessing alterites aquifer of three experimental watersheds in Foumban (Western-Cameroon)
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2018.06.006
– volume: 76
  start-page: 543
  year: 2015
  end-page: 563
  ident: CR33
  article-title: An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment
  publication-title: Nat Hazards
  doi: 10.1007/s11069-014-1503-y
– volume: 304
  start-page: 119208
  year: 2022
  ident: CR31
  article-title: Formulating Convolutional Neural Network for mapping total aquifer vulnerability to pollution
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2022.119208
– volume: 37
  start-page: 100799
  year: 2021
  ident: CR12
  article-title: Impervious surface growth and its inter-relationship with vegetation cover and land surface temperature in peri-urban areas of Delhi
  publication-title: Urban Clim
  doi: 10.1016/j.uclim.2021.100799
– volume: 7
  start-page: 11
  issue: 1
  year: 2016
  end-page: 20
  ident: CR25
  article-title: Evaluation of vulnerability of aquifers by improved fuzzy drastic method: case study: Aastane Kochesfahan plain in Iran
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2015.11.013
– volume: 19
  start-page: 44
  issue: 1
  year: 2002
  end-page: 57
  ident: CR20
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/79.974727
– volume-title: Groundwater vulnerability assessment and mapping using DRASTIC model
  year: 2019
  ident: 11515_CR23
  doi: 10.1201/9780429287862
– volume: 7
  start-page: 250
  year: 2018
  ident: 11515_CR29
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2018.06.006
– volume: 30
  start-page: 25205
  year: 2023
  ident: 11515_CR52
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-17902-8
– volume-title: Multicriteria decision making: the analytic hierarchy process
  year: 1996
  ident: 11515_CR39
– volume: 191
  start-page: 1
  year: 2019
  ident: 11515_CR37
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-019-7978-y
– volume: 188
  start-page: 1
  year: 2016
  ident: 11515_CR40
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-015-4915-6
– volume: 14
  start-page: 147
  issue: 2/3
  year: 1993
  ident: 11515_CR6
  publication-title: J Aust Geol Geophys
– volume: 5
  start-page: 100380
  year: 2021
  ident: 11515_CR42
  publication-title: Environ Chall
  doi: 10.1016/j.envc.2021.100380
– volume: 72
  start-page: 111
  year: 2014
  ident: 11515_CR44
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-013-2940-8
– volume: 10
  start-page: 340
  year: 2002
  ident: 11515_CR11
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-001-0185-1
– volume: 28
  start-page: 46704
  year: 2021
  ident: 11515_CR50
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-11406-7
– volume: 195
  start-page: 497
  issue: 4
  year: 2023
  ident: 11515_CR4
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-023-10992-6
– ident: 11515_CR14
– volume: 195
  start-page: 268
  issue: 2
  year: 2023
  ident: 11515_CR27
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-022-10894-z
– volume: 28
  start-page: 59731
  issue: 42
  year: 2021
  ident: 11515_CR41
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-14912-4
– volume: 182
  start-page: 115962
  year: 2020
  ident: 11515_CR51
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115962
– year: 2023
  ident: 11515_CR10
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2022.100894
– volume: 304
  start-page: 119208
  year: 2022
  ident: 11515_CR31
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2022.119208
– volume: 76
  start-page: 543
  year: 2015
  ident: 11515_CR33
  publication-title: Nat Hazards
  doi: 10.1007/s11069-014-1503-y
– volume: 345
  start-page: 127
  issue: 1–3
  year: 2005
  ident: 11515_CR5
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2004.11.005
– volume: 8
  start-page: 654
  year: 2019
  ident: 11515_CR18
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2019.03.005
– volume: 19
  start-page: 44
  issue: 1
  year: 2002
  ident: 11515_CR20
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/79.974727
– volume: 37
  start-page: 100799
  year: 2021
  ident: 11515_CR12
  publication-title: Urban Clim
  doi: 10.1016/j.uclim.2021.100799
– volume: 80
  start-page: 1
  year: 2021
  ident: 11515_CR26
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-020-00805-z
– volume: 126
  start-page: 13
  year: 2017
  ident: 11515_CR22
  publication-title: J Afr Earth Sci
  doi: 10.1016/j.jafrearsci.2016.11.025
– volume-title: Indian standard drinking water—specification (second revision)
  year: 2012
  ident: 11515_CR9
– volume: 77
  start-page: 354
  year: 2018
  ident: 11515_CR13
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.013
– volume: 29
  start-page: 4474
  issue: 3
  year: 2022
  ident: 11515_CR24
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-15966-0
– volume: 39
  start-page: 625
  issue: 4
  year: 2001
  ident: 11515_CR38
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2001.tb02350.x
– volume: 18
  start-page: 645
  issue: 7
  year: 2003
  ident: 11515_CR49
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(03)00051-3
– volume: 13
  start-page: 239
  issue: 2
  year: 2011
  ident: 11515_CR16
  publication-title: J Agric Sci Technol
– volume: 5
  start-page: 100093
  year: 2021
  ident: 11515_CR35
  publication-title: Environ Adv
  doi: 10.1016/j.envadv.2021.100093
– volume: 1
  start-page: 11
  year: 2023
  ident: 11515_CR45
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-023-28542-5
– volume: 7
  start-page: 11
  issue: 1
  year: 2016
  ident: 11515_CR25
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2015.11.013
– volume: 14
  start-page: 894
  year: 2006
  ident: 11515_CR34
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-005-0008-x
– volume: 37
  start-page: 5832
  issue: 20
  year: 2022
  ident: 11515_CR21
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2021.1923833
– volume: 58
  start-page: 441
  issue: 3
  year: 2020
  ident: 11515_CR7
  publication-title: Groundwater
  doi: 10.1111/gwat.12919
– volume: 78
  start-page: 1
  year: 2019
  ident: 11515_CR46
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-019-8640-2
– volume: 195
  start-page: 567
  issue: 5
  year: 2023
  ident: 11515_CR47
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-023-11165-1
– volume: 63
  start-page: 1155
  year: 2011
  ident: 11515_CR1
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-010-0790-1
– volume: 333
  start-page: 288
  issue: 2–4
  year: 2007
  ident: 11515_CR3
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.08.014
– volume: 549
  start-page: 27
  year: 2017
  ident: 11515_CR17
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.03.060
– volume: 97
  start-page: 555
  issue: 4
  year: 2020
  ident: 11515_CR19
  publication-title: J Indian Chem Soc
– volume: 195
  start-page: 57
  issue: 1
  year: 2023
  ident: 11515_CR43
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-022-10601-y
– volume: 19
  start-page: 100810
  year: 2022
  ident: 11515_CR32
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2022.100810
– ident: 11515_CR2
– volume: 51
  start-page: 735
  issue: 5
  year: 2013
  ident: 11515_CR48
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2012.01019.x
– volume: 38
  start-page: 25
  issue: 1
  year: 2003
  ident: 11515_CR36
  publication-title: J Environ Sci Health Part A
  doi: 10.1081/ESE-120016658
– volume: 307
  start-page: 135831
  year: 2022
  ident: 11515_CR8
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135831
– volume: 161
  start-page: 122
  year: 2015
  ident: 11515_CR28
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2015.02.013
– ident: 11515_CR15
– volume: 589
  start-page: 125114
  year: 2020
  ident: 11515_CR53
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125114
SSID ssj0000313906
Score 2.4160392
Snippet Groundwater, the main source of drinking and irrigation water in developing countries, plays an important role in maintaining public health and crop...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 211
SubjectTerms Aquifers
Arsenic
Biogeosciences
Comparative analysis
Contamination
Correlation coefficient
Correlation coefficients
Crop production
Developing countries
Drinking water
Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Errors
Geochemistry
Geology
Groundwater
groundwater contamination
Groundwater pollution
Groundwater quality
Hydrology/Water Resources
India
Irrigation water
LDCs
Machine learning
Mitigation
Modelling
Original Article
Pollutants
Pollution index
Public health
risk
Statistical analysis
Statistical methods
Statistics
Subjectivity
Sustainability
Sustainability management
Terrestrial Pollution
Vulnerability
Water pollution monitoring
Water purification
Water quality
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELX4UCUuVQtUbIHKSNzA0saO7fi4WkoBaTkAK3GL7Hi2EqKbKske-A_8aMbeZCMqQOo1dmwpY88bx_PeEHKsEeUk4hiT1gFLMcJmDmYZOkOTgpGZMpG3NrlWF9P06l7et6Swust2764ko6fuyW6IJYFNnLIkoDAT62RThrM7ruIpH63-rAQ1QhOLagYxN6Z4NmzZMm8P8xqR-jDzn5vRCDjnX8jnNlKko6Vpv5I1mG-TT79iJd6nHfI8okWv3E1tKy5CyxkNJKGov2wfT-lkfDbBVk__xLRJoG2diN80ABg-Ln3IFooGonXTKUfQpqRVkHUFWi_cw9ItUqiqsopznN2Mbu8uxzRW0ql3yfT85934grWlFZgVWjaMGz3MjLeFVok33AtvE2sRzrUvEqlBaieLGUK9FhqchJmT1nieZqBEoTMnvpGNeTmHPUJ5Yj1u4lQXKaSFUhaGTnGeOekAz912QJLu8-ZFqzseyl885r1icjBJjibJo0lyMSAnq3f-LlU3Pux90Fktb3dgnXOTBZo_Hh8H5GjVjHsnXIjYOZSLOhfo7pXATnxATjtr90O8P-P3_-u-T7Z4WHAx4eeAbDTVAg4xlmncj7h0XwBwuej6
  priority: 102
  providerName: Springer Nature
Title A comparative analysis of statistical, MCDM and machine learning based modification strategies to reduce subjective errors of DRASTIC models
URI https://link.springer.com/article/10.1007/s12665-024-11515-3
https://www.proquest.com/docview/2985431401
https://www.proquest.com/docview/3153633142
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6xVUiTEIICWmFURuKNWTROHCdPKHTdBqgTGqs0niL_KhIazUjSB_4H_mjOjtMIJPYaO7GUO993Pt99B_BaIMpxxDHKpbI0QQ-bKrvO0Bjmic15lua-bm15kZ6vko_X_DoE3JqQVtnbRG-oTaVdjPwtyzNXto3HgXe3P6nrGuVuV0MLjT0YoQnO8PA1er-4-Hy5i7I4ZsLcN9h0xG40ZdksVM509XMIT65AOaGRA3Ya_41Og8v5zy2pB5_TR_AweI2k6MT8GO7ZzRjun_muvL_G8KALvpGupmgMB86F7BiYn8DvguiB4pvIwEJCqjVp-mny5pgs5ydLHDXkh8-vtCQ0lPhGHNLh48q4tCIvSdK0PcUEaStSO_5XS5qt-t7ZT2Lruqr9GieXxZerD3PiW-40T2F1urian9PQg4HKWPCWslzMstxILdLI5MzERkZSIu4LoyMuLBeK6zX6BCIWVnG7VlzmhiWZTWMtMhU_g_1NtbGHQFgkDe72ROjEJjpNpZ2plLFMcWXxgC4nEPX_vtSBoNz1ybgpB2plJ68S5VV6eZXxBN7s3rnt6DnunH3Ui7QMW7UpB8WawKvdMG4yd3MiN7baNmWMuJDGOIlN4LhXheET_1_x-d0rvoAD5rTPZwIdwX5bb-1LdHJaNYVRcfb102IaNHoKeytW_AG8xPkr
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTohJCEEBURhgJHhiFo1jx8kDQqXdaNlaodFJewt27E6aRjOSVGj_gd_Cb-TsJK1AYm97jZ1Yyp3vu7PvvgN4LRHlBOIYFUpbytHDptouYjSGCbeJiKPE161NZ9H4hH8-Fadb8LuthXFpla1N9Iba5Jk7I3_HktiVbWM48OHyB3Vdo9ztattCo1aLQ3v1E0O28v1khPJ9w9jB_nw4pk1XAapCKSrKEtmPE6MyDOBNwkxoVKAUIpk0WSCkFVKLbIEoJ0NptbALLVRiGI9tFGYy1iF-9xZs8xBDmQ5sf9yffTlen-o4JsTEN_R0RHI0YnG_qdSp6_UQDl1BNKeBcyRo-Dcablzcf25lPdgd3Id7jZdKBrVaPYAtu-zC7U--C_BVF-7Wh32krmHqwo5zWWvG54fwa0CyDaU4UQ3rCckXpGynqYs9Mh2OpjhqyHefz2lJ08DijDhkxce5cWlMXnNIWbWUFqTKSeH4Zi0pV_q8ttfEFkVe-DVGx4Ov88mQ-BY_5SM4uRHpPIbOMl_aJ0BYoAxaFy4zbnkWRcr2dcRYrIW2kjPVg6D992nWEKK7vhwX6YbK2ckrRXmlXl5p2IO363cuazqQa2fvtiJNG9NQphtF7sGr9TBuandTo5Y2X5VpiDgUhTiJ9WCvVYXNJ_6_4tPrV3wJd8bz6VF6NJkdPoMd5jTRZyHtQqcqVvY5OliVftFoNYFvN72R_gCFVjPc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTqBJCEEB0THASPDErDVOHCcPCJV2ZWW0msYm7S2zYwcJbc1IUqH9B34Rv46zkzQCib3tNXZiKXe-786--w7gjUCU44hjlEtlaIAeNlUmi9AYxoGJeRTGrm5tvggPToPPZ_xsA363tTA2rbK1ic5Q6zy1Z-R7LI5s2TaGA3tZkxZxNJl-uPpBbQcpe9PattOoVeTQXP_E8K18P5ugrN8yNt0_GR_QpsMAlb7gFWWxGEaxlikG8zpm2tfSkxJRTejU48JwoXiaIeIJXxjFTaa4jDULIhP6qYiUj9-9A5sCo6JhDzY_7i-OjtcnPJYVMXbNPS2pHA1ZNGyqduraPYRGWxwdUM86FdT_Gxk7d_efG1oHfNOH8KDxWMmoVrFHsGGWfbj7yXUEvu7D_frgj9T1TH3Ysu5rzf78GH6NSNrRixPZMKCQPCNlO01e7JL5eDLHUU0uXW6nIU0zi2_Eoiw-zrVNaXJaRMqqpbcgVU4Kyz1rSLlS32vbTUxR5IVbY3I8-noyGxPX7qd8Aqe3Ip2n0FvmS_MMCPOkRksTiDQwQRqG0gxVyFikuDIiYHIAXvvvk7QhR7c9Oi6SjtbZyitBeSVOXok_gHfrd65qapAbZ--0Ik0aM1EmnVIP4PV6GDe4vbWRS5OvysRHTAp9nMQGsNuqQveJ_6-4ffOKr-AebqDky2xx-By2mFVEl5C0A72qWJkX6GtV6mWj1ATOb3sf_QH26TgR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+analysis+of+statistical%2C+MCDM+and+machine+learning+based+modification+strategies+to+reduce+subjective+errors+of+DRASTIC+models&rft.jtitle=Environmental+earth+sciences&rft.au=Dasgupta%2C+Rijurekha&rft.au=Banerjee%2C+Gourab&rft.au=Hidayetullah%2C+Sekh+Mohammad&rft.au=Saha%2C+Nilanjan&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-6280&rft.eissn=1866-6299&rft.volume=83&rft.issue=7&rft.spage=211&rft_id=info:doi/10.1007%2Fs12665-024-11515-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon