A comparative analysis of statistical, MCDM and machine learning based modification strategies to reduce subjective errors of DRASTIC models
Groundwater, the main source of drinking and irrigation water in developing countries, plays an important role in maintaining public health and crop production. However, groundwater quality is often compromised and geological aquifers that contain this valuable resource are at risk of contamination...
Saved in:
Published in | Environmental earth sciences Vol. 83; no. 7; p. 211 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Groundwater, the main source of drinking and irrigation water in developing countries, plays an important role in maintaining public health and crop production. However, groundwater quality is often compromised and geological aquifers that contain this valuable resource are at risk of contamination such as arsenic and emerging pollutants in the North 24-Parganas district of India. Monitoring of aquifer vulnerability is generally done by modeling which subjects to errors that must be taken into account. For an emerging vulnerability model DRASTIC, prone to subjectivity errors, three modification methods: statistical modification, DRASTIC-AHP, and DRASTIC-CNN, are used to identify the most effective strategy for reducing such subjectivity errors in this study. The model results are validated against the composite groundwater pollution index. The DRASTIC-CNN method outperforms other modifications, with the correlation coefficient increasing from 0.226 to 0.9 compared to the conventional DRASTIC model. The coefficient of determination for DRASTIC-CNN improves from 0.05 to 0.81, while the kappa statistic underscores its superiority in identifying vulnerable regions. Although statistical modification and DRASTIC-AHP demonstrate respectable performances, they are lower than the accuracy achieved by DRASTIC-CNN. DRASTIC-CNN emerges as the most efficient approach to reduce subjective errors in modeling aquifer vulnerability. This study accurately identifies groundwater vulnerability, helping policymakers to formulate sustainable management plans and mitigation measures for water purification. It importantly addresses environmental problems such as arsenic contamination and emerging pollutants. Integrating the DRASTIC model with other factors allows us to assess vulnerability and pave the way for sustainable treatment technologies. |
---|---|
AbstractList | Groundwater, the main source of drinking and irrigation water in developing countries, plays an important role in maintaining public health and crop production. However, groundwater quality is often compromised and geological aquifers that contain this valuable resource are at risk of contamination such as arsenic and emerging pollutants in the North 24-Parganas district of India. Monitoring of aquifer vulnerability is generally done by modeling which subjects to errors that must be taken into account. For an emerging vulnerability model DRASTIC, prone to subjectivity errors, three modification methods: statistical modification, DRASTIC-AHP, and DRASTIC-CNN, are used to identify the most effective strategy for reducing such subjectivity errors in this study. The model results are validated against the composite groundwater pollution index. The DRASTIC-CNN method outperforms other modifications, with the correlation coefficient increasing from 0.226 to 0.9 compared to the conventional DRASTIC model. The coefficient of determination for DRASTIC-CNN improves from 0.05 to 0.81, while the kappa statistic underscores its superiority in identifying vulnerable regions. Although statistical modification and DRASTIC-AHP demonstrate respectable performances, they are lower than the accuracy achieved by DRASTIC-CNN. DRASTIC-CNN emerges as the most efficient approach to reduce subjective errors in modeling aquifer vulnerability. This study accurately identifies groundwater vulnerability, helping policymakers to formulate sustainable management plans and mitigation measures for water purification. It importantly addresses environmental problems such as arsenic contamination and emerging pollutants. Integrating the DRASTIC model with other factors allows us to assess vulnerability and pave the way for sustainable treatment technologies. |
ArticleNumber | 211 |
Author | Das, Subhasish Dasgupta, Rijurekha Saha, Nilanjan Banerjee, Gourab Mazumdar, Asis Hidayetullah, Sekh Mohammad |
Author_xml | – sequence: 1 givenname: Rijurekha orcidid: 0009-0006-6282-7080 surname: Dasgupta fullname: Dasgupta, Rijurekha organization: School of Water Resources Engineering, Jadavpur University – sequence: 2 givenname: Gourab orcidid: 0000-0002-5678-7100 surname: Banerjee fullname: Banerjee, Gourab email: gourabb.swre@jadavpuruniversity.in organization: School of Water Resources Engineering, Jadavpur University – sequence: 3 givenname: Sekh Mohammad orcidid: 0009-0009-9492-8101 surname: Hidayetullah fullname: Hidayetullah, Sekh Mohammad organization: School of Water Resources Engineering, Jadavpur University – sequence: 4 givenname: Nilanjan orcidid: 0000-0002-6197-5579 surname: Saha fullname: Saha, Nilanjan organization: School of Water Resources Engineering, Jadavpur University – sequence: 5 givenname: Subhasish orcidid: 0000-0002-6512-7454 surname: Das fullname: Das, Subhasish organization: School of Water Resources Engineering, Jadavpur University – sequence: 6 givenname: Asis orcidid: 0000-0002-4959-2989 surname: Mazumdar fullname: Mazumdar, Asis organization: School of Water Resources Engineering, Jadavpur University |
BookMark | eNp9kc9u1DAQhy1UJErpC3CyxIUDAf-J7eS42kJbqRUSlLPl2JPFq6y9eJJKfQceGncXgdRDfbFlf9-MNb_X5CTlBIS85ewjZ8x8Qi60Vg0TbcO54qqRL8gp77RutOj7k3_njr0i54hbVpfksmf6lPxeUZ93e1fcHO-BuuSmB4xI80hxrnc4R--mD_R2fXFbXwPdOf8zJqATuJJi2tDBIdTrHOJY0TnmVM1aDjYRkM6ZFgiLB4rLsAV_6AKl5HLocfFt9f3uev2ow4RvyMvRTQjnf_cz8uPL57v1VXPz9fJ6vbppnDRqbkRvWNcH543moRdBBsedE6I1wXNlQJlB-VFzaaSBQcE4KNcH0XagpTfdIM_I-2Pdfcm_FsDZ7iJ6mCaXIC9oJVdSS8lbUdF3T9BtXkqdElrRd6qtEOOV6o6ULxmxwGh9nA-zqJOIk-XMPiZlj0nZmpQ9JGVlVcUTdV_izpWH5yV5lLDCaQPl_6-esf4A_nKovA |
CitedBy_id | crossref_primary_10_1007_s10668_025_06041_6 crossref_primary_10_1007_s11356_024_33809_6 |
Cites_doi | 10.1016/j.chemosphere.2022.135831 10.1007/s10661-015-4915-6 10.1016/j.jhydrol.2006.08.014 10.1016/j.scitotenv.2004.11.005 10.1016/S1364-8152(03)00051-3 10.1007/s11356-021-17902-8 10.1111/gwat.12919 10.1007/s10661-023-11165-1 10.1007/s11356-020-11406-7 10.1007/s11356-021-14912-4 10.1111/j.1745-6584.2012.01019.x 10.1016/j.rse.2015.02.013 10.1080/10106049.2021.1923833 10.1016/j.jhydrol.2020.125114 10.1016/j.envc.2021.100380 10.1007/s12665-010-0790-1 10.1007/s00244-020-00805-z 10.1007/s10661-022-10601-y 10.1007/s12665-019-8640-2 10.1111/j.1745-6584.2001.tb02350.x 10.1007/s10040-001-0185-1 10.1201/9780429287862 10.1016/j.gsd.2022.100894 10.1016/j.jafrearsci.2016.11.025 10.1016/j.watres.2020.115962 10.1007/s10661-019-7978-y 10.1016/j.patcog.2017.10.013 10.1016/j.gsd.2022.100810 10.1016/j.gsd.2019.03.005 10.1007/s10661-022-10894-z 10.1081/ESE-120016658 10.1007/s12665-013-2940-8 10.1007/s11356-021-15966-0 10.1007/s11356-023-28542-5 10.1007/s10040-005-0008-x 10.1007/s10661-023-10992-6 10.1016/j.jhydrol.2017.03.060 10.1016/j.envadv.2021.100093 10.1016/j.gsd.2018.06.006 10.1007/s11069-014-1503-y 10.1016/j.envpol.2022.119208 10.1016/j.uclim.2021.100799 10.1016/j.asej.2015.11.013 10.1109/79.974727 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7ST 7TG 7UA 7XB 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s12665-024-11515-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database (Proquest) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Statistics Public Health |
EISSN | 1866-6299 |
EndPage | 211 |
ExternalDocumentID | 10_1007_s12665_024_11515_3 |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GrantInformation_xml | – fundername: Science and Engineering Research Board grantid: SRG/2021/002021 |
GroupedDBID | -5A -5G -BR -DZ -EM -Y2 -~C .4S .DC 06D 0R~ 0VY 199 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40D 40E 4P2 5VS 67M 67Z 6NX 7XC 88I 8FE 8FH 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IKXTQ ITM IWAJR J-C J0Z JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- ML. MQGED N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J PATMY PCBAR PF- PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I ROL RSV S16 S1Z S27 S3B SAP SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7V Z7W Z7Y Z7Z Z81 Z83 Z85 ZCG ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7TG 7UA 7XB 8FK ABRTQ C1K F1W H96 KL. L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-a375t-297089dac761d92d3da1aa2247dc157e57b5cf613737eb5efb5a9d248e63c78b3 |
IEDL.DBID | BENPR |
ISSN | 1866-6280 |
IngestDate | Fri Jul 11 10:03:09 EDT 2025 Fri Jul 25 21:09:11 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 Tue Jul 01 00:53:44 EDT 2025 Fri Feb 21 02:40:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Aquifer vulnerability Multi criteria decision making (MCDM) Convolutional neural network (CNN) Modified DRASTIC model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a375t-297089dac761d92d3da1aa2247dc157e57b5cf613737eb5efb5a9d248e63c78b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6197-5579 0000-0002-4959-2989 0000-0002-5678-7100 0009-0006-6282-7080 0009-0009-9492-8101 0000-0002-6512-7454 |
PQID | 2985431401 |
PQPubID | 54063 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3153633142 proquest_journals_2985431401 crossref_citationtrail_10_1007_s12665_024_11515_3 crossref_primary_10_1007_s12665_024_11515_3 springer_journals_10_1007_s12665_024_11515_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240400 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Environmental earth sciences |
PublicationTitleAbbrev | Environ Earth Sci |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Li, Karunanidhi, Subramani, Srinivasamoorthy (CR26) 2021; 80 Luo, Ma, Qiu, Zhang, Wang (CR27) 2023; 195 Dutta, Rahman, Paul, Kundu (CR12) 2021; 37 Nadiri, Moazamnia, Sadeghfam, Gnanachandrasamy, Venkatramanan (CR31) 2022; 304 Saravanan, Saranya, Abijith, Jacinth, Singh (CR42) 2021; 5 Verma, Sinha (CR52) 2023; 30 Asghari Moghaddam, Nouri Sangarab, KadkhodaieIlkhchi (CR4) 2023; 195 Thirumalaivasan, Karmegam, Venugopal (CR49) 2003; 18 Javadi, Hashemy, Mohammadi, Howard, Neshat (CR17) 2017; 549 Antonakos, Lambrakis (CR3) 2007; 333 CR2 Paul, Das (CR35) 2021; 5 Rahman, Mandal, Chowdhury, Sengupta, Chowdhury, Lodh, Chakraborti (CR36) 2003; 38 Singh, Shukla, Srivastava, Kamble, Patra, Venugopalan (CR45) 2023; 1 Torkashvand, Neshat, Javadi, Yousefi (CR50) 2021; 28 Panagopoulos, Antonakos, Lambrakis (CR34) 2006; 14 Babiker, Mohamed, Hiyama, Kato (CR5) 2005; 345 Akhavan, Mousavi, Abedi-Koupai, Abbaspour (CR1) 2011; 63 Smail, Dişli (CR47) 2023; 195 Mfonka, Ngoupayou, Ndjigui, Kpoumie, Zammouri, Ngouh, Rasolomanana (CR29) 2018; 7 Singh, Singh, Mukherjee, McDonald, Reddy (CR44) 2014; 72 Salih, Al-Manmi (CR41) 2021; 28 Saravanan, Pitchaikani, Thambiraja, Sathiyamurthi, Sivakumar, Velusamy, Shanmugamoorthy (CR43) 2023; 195 Jesiya, Gopinath (CR18) 2019; 8 Singha, Pasupuleti, Singha, Singh, Venkatesh (CR46) 2019; 78 Langrudi, Siuki, Javadi, Hashemi (CR25) 2016; 7 Bose, Mazumdar, Basu (CR10) 2023 Torres-Martínez, Mora, Knappett, Ornelas-Soto, Mahlknecht (CR51) 2020; 182 Kihumba, Vanclooster, Longo (CR22) 2017; 126 Sadat-Noori, Ebrahimi (CR40) 2016; 188 Rufino, Busico, Cuoco, Darrah, Tedesco (CR37) 2019; 191 CR15 CR14 Daly, Dassargues, Drew, Dunne, Goldscheider, Neale, Zwahlen (CR11) 2002; 10 Khan, Liaqat, Mohamed (CR21) 2022; 37 Meyer, Okin (CR28) 2015; 161 Barber, Bates, Barron, Allison (CR6) 1993; 14 Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Chen (CR13) 2018; 77 John, Das, Das (CR19) 2020; 97 Bera, Mukhopadhyay, Das (CR8) 2022; 307 Saaty (CR39) 1996 Kumar, Thakur, Debnath (CR23) 2019 Rupert (CR38) 2001; 39 Verma, Singh, Mishra, Singh, Singh, Singh (CR53) 2020; 589 Barzegar, Asghari Moghaddam, Norallahi, Inam, Adamowski, Alizadeh, Bou Nassar (CR7) 2020; 58 Neshat, Pradhan (CR33) 2015; 76 Keshava, Mustard (CR20) 2002; 19 Javadi, Kavehkar, Mousavizadeh, Mohammadi (CR16) 2011; 13 (CR9) 2012 Nair, Prasad, Srinivas (CR32) 2022; 19 Szilagyi, Jozsa (CR48) 2013; 51 Lakshminarayanan, Ramasamy, Anuthaman, Karuppanan (CR24) 2022; 29 RQS Smail (11515_CR47) 2023; 195 D Daly (11515_CR11) 2002; 10 S Javadi (11515_CR16) 2011; 13 IS Babiker (11515_CR5) 2005; 345 BIS (11515_CR9) 2012 S Paul (11515_CR35) 2021; 5 C Barber (11515_CR6) 1993; 14 R Barzegar (11515_CR7) 2020; 58 N Keshava (11515_CR20) 2002; 19 A Asghari Moghaddam (11515_CR4) 2023; 195 MAO Langrudi (11515_CR25) 2016; 7 AK Antonakos (11515_CR3) 2007; 333 T Meyer (11515_CR28) 2015; 161 B Lakshminarayanan (11515_CR24) 2022; 29 S Verma (11515_CR53) 2020; 589 S Saravanan (11515_CR42) 2021; 5 S Akhavan (11515_CR1) 2011; 63 AA Nadiri (11515_CR31) 2022; 304 P Li (11515_CR26) 2021; 80 AO Salih (11515_CR41) 2021; 28 Z Mfonka (11515_CR29) 2018; 7 Q Khan (11515_CR21) 2022; 37 S Verma (11515_CR52) 2023; 30 MM Rahman (11515_CR36) 2003; 38 S Javadi (11515_CR17) 2017; 549 S Singh (11515_CR45) 2023; 1 J Szilagyi (11515_CR48) 2013; 51 AM Nair (11515_CR32) 2022; 19 M Torkashvand (11515_CR50) 2021; 28 A Bera (11515_CR8) 2022; 307 11515_CR2 N Singh (11515_CR44) 2014; 72 M Sadat-Noori (11515_CR40) 2016; 188 P Kumar (11515_CR23) 2019 MG Rupert (11515_CR38) 2001; 39 TL Saaty (11515_CR39) 1996 B John (11515_CR19) 2020; 97 AM Kihumba (11515_CR22) 2017; 126 S Bose (11515_CR10) 2023 SS Singha (11515_CR46) 2019; 78 S Saravanan (11515_CR43) 2023; 195 D Dutta (11515_CR12) 2021; 37 GP Panagopoulos (11515_CR34) 2006; 14 JA Torres-Martínez (11515_CR51) 2020; 182 D Thirumalaivasan (11515_CR49) 2003; 18 F Rufino (11515_CR37) 2019; 191 NP Jesiya (11515_CR18) 2019; 8 A Neshat (11515_CR33) 2015; 76 D Luo (11515_CR27) 2023; 195 11515_CR14 11515_CR15 J Gu (11515_CR13) 2018; 77 |
References_xml | – volume: 307 start-page: 135831 year: 2022 ident: CR8 article-title: Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135831 – volume: 188 start-page: 1 year: 2016 end-page: 18 ident: CR40 article-title: Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model publication-title: Environ Monit Assess doi: 10.1007/s10661-015-4915-6 – volume: 13 start-page: 239 issue: 2 year: 2011 end-page: 249 ident: CR16 article-title: Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas publication-title: J Agric Sci Technol – volume: 333 start-page: 288 issue: 2–4 year: 2007 end-page: 304 ident: CR3 article-title: Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.08.014 – volume: 345 start-page: 127 issue: 1–3 year: 2005 end-page: 140 ident: CR5 article-title: A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2004.11.005 – volume: 18 start-page: 645 issue: 7 year: 2003 end-page: 656 ident: CR49 article-title: AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS publication-title: Environ Model Softw doi: 10.1016/S1364-8152(03)00051-3 – volume: 30 start-page: 25205 year: 2023 end-page: 25225 ident: CR52 article-title: Appraisal of groundwater arsenic on opposite banks of River Ganges, West Bengal, India, and quantification of cancer risk using Monte Carlo simulations publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-17902-8 – volume: 58 start-page: 441 issue: 3 year: 2020 end-page: 452 ident: CR7 article-title: Modification of the DRASTIC framework for mapping groundwater vulnerability zones publication-title: Groundwater doi: 10.1111/gwat.12919 – volume: 195 start-page: 567 issue: 5 year: 2023 ident: CR47 article-title: Assessment and validation of groundwater vulnerability to nitrate and TDS using based on a modified DRASTIC model: a case study in the Erbil Central Sub-Basin, Iraq publication-title: Environ Monit Assess doi: 10.1007/s10661-023-11165-1 – volume: 28 start-page: 46704 year: 2021 end-page: 46724 ident: CR50 article-title: DRASTIC framework improvement using stepwise weight assessment ratio analysis (SWARA) and combination of genetic algorithm and entropy publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-11406-7 – volume: 28 start-page: 59731 issue: 42 year: 2021 end-page: 59744 ident: CR41 article-title: DRASTIC model adjusted with lineament density to map groundwater vulnerability: a case study in Rania basin, Kurdistan, Iraq publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-14912-4 – volume: 51 start-page: 735 issue: 5 year: 2013 end-page: 744 ident: CR48 article-title: MODIS-aided statewide net groundwater-recharge estimation in Nebraska publication-title: Groundwater doi: 10.1111/j.1745-6584.2012.01019.x – volume: 161 start-page: 122 year: 2015 end-page: 130 ident: CR28 article-title: Evaluation of spectral unmixing techniques using MODIS in a structurally complex savanna environment for retrieval of green vegetation, nonphotosynthetic vegetation, and soil fractional cover publication-title: Remote Sens Environ doi: 10.1016/j.rse.2015.02.013 – volume: 37 start-page: 5832 issue: 20 year: 2022 end-page: 5850 ident: CR21 article-title: A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers publication-title: Geocarto Int doi: 10.1080/10106049.2021.1923833 – volume: 589 start-page: 125114 year: 2020 ident: CR53 article-title: Activation soil moisture accounting (ASMA) for runoff estimation using soil conservation service curve number (SCS-CN) method publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125114 – volume: 5 start-page: 100380 year: 2021 ident: CR42 article-title: Delineation of groundwater potential zones for Arkavathi sub-watershed, Karnataka, India using remote sensing and GIS publication-title: Environ Chall doi: 10.1016/j.envc.2021.100380 – ident: CR15 – volume: 63 start-page: 1155 year: 2011 end-page: 1167 ident: CR1 article-title: Conditioning DRASTIC model to simulate nitrate pollution case study: Hamadan-Bahar plain publication-title: Environ Earth Sci doi: 10.1007/s12665-010-0790-1 – volume: 14 start-page: 147 issue: 2/3 year: 1993 end-page: 154 ident: CR6 article-title: Assessment of the relative vulnerability of groundwater to pollution: a review and background paper for the conference workshop on vulnerability assessment publication-title: J Aust Geol Geophys – year: 1996 ident: CR39 publication-title: Multicriteria decision making: the analytic hierarchy process – volume: 80 start-page: 1 year: 2021 end-page: 10 ident: CR26 article-title: Sources and consequences of groundwater contamination publication-title: Arch Environ Contam Toxicol doi: 10.1007/s00244-020-00805-z – volume: 195 start-page: 57 issue: 1 year: 2023 ident: CR43 article-title: Comparative assessment of groundwater vulnerability using GIS-based DRASTIC and DRASTIC-AHP for Thoothukudi District, Tamil Nadu India publication-title: Environ Monit Assess doi: 10.1007/s10661-022-10601-y – volume: 78 start-page: 1 year: 2019 end-page: 19 ident: CR46 article-title: A GIS-based modified DRASTIC approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Korba district, Central India publication-title: Environ Earth Sci doi: 10.1007/s12665-019-8640-2 – volume: 39 start-page: 625 issue: 4 year: 2001 end-page: 630 ident: CR38 article-title: Calibration of the DRASTIC ground water vulnerability mapping method publication-title: Groundwater doi: 10.1111/j.1745-6584.2001.tb02350.x – volume: 10 start-page: 340 year: 2002 end-page: 345 ident: CR11 article-title: Main concepts of the” European approach” to karst-groundwater-vulnerability assessment and mapping publication-title: Hydrogeol J doi: 10.1007/s10040-001-0185-1 – year: 2019 ident: CR23 publication-title: Groundwater vulnerability assessment and mapping using DRASTIC model doi: 10.1201/9780429287862 – year: 2023 ident: CR10 article-title: Evolution of groundwater quality assessment on urban area-a bibliometric analysis publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2022.100894 – volume: 126 start-page: 13 year: 2017 end-page: 22 ident: CR22 article-title: Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model publication-title: J Afr Earth Sci doi: 10.1016/j.jafrearsci.2016.11.025 – volume: 182 start-page: 115962 year: 2020 ident: CR51 article-title: Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model publication-title: Water Res doi: 10.1016/j.watres.2020.115962 – volume: 191 start-page: 1 year: 2019 end-page: 17 ident: CR37 article-title: Evaluating the suitability of urban groundwater resources for drinking water and irrigation purposes: an integrated approach in the Agro-Aversano area of Southern Italy publication-title: Environ Monit Assess doi: 10.1007/s10661-019-7978-y – volume: 77 start-page: 354 year: 2018 end-page: 437 ident: CR13 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.10.013 – ident: CR14 – ident: CR2 – volume: 19 start-page: 100810 year: 2022 ident: CR32 article-title: Groundwater vulnerability assessment of an urban coastal phreatic aquifer in India using GIS-based DRASTIC model publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2022.100810 – volume: 8 start-page: 654 year: 2019 end-page: 666 ident: CR18 article-title: A Customized FuzzyAHP-GIS based DRASTIC-L model for intrinsic groundwater vulnerability assessment of urban and peri urban phreatic aquifer clusters publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2019.03.005 – volume: 195 start-page: 268 issue: 2 year: 2023 ident: CR27 article-title: Groundwater vulnerability assessment using AHP-DRASTIC-GALDIT comprehensive model: a case study of Binhai New Area, Tianjin, China publication-title: Environ Monit Assess doi: 10.1007/s10661-022-10894-z – volume: 38 start-page: 25 issue: 1 year: 2003 end-page: 59 ident: CR36 article-title: Arsenic groundwater contamination and sufferings of people in North 24-Parganas, one of the nine arsenic affected districts of West Bengal, India publication-title: J Environ Sci Health Part A doi: 10.1081/ESE-120016658 – volume: 72 start-page: 111 year: 2014 end-page: 118 ident: CR44 article-title: Hydrogeological processes controlling the release of arsenic in parts of 24 Parganas district, West Bengal publication-title: Environ Earth Sci doi: 10.1007/s12665-013-2940-8 – volume: 29 start-page: 4474 issue: 3 year: 2022 end-page: 4496 ident: CR24 article-title: New DRASTIC framework for groundwater vulnerability assessment: bivariate and multi-criteria decision-making approach coupled with metaheuristic algorithm publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-15966-0 – volume: 1 start-page: 11 year: 2023 ident: CR45 article-title: An evaluation of arsenic contamination status and its potential health risk assessment in villages of Nadia and North 24 Parganas, West Bengal, India publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-023-28542-5 – volume: 97 start-page: 555 issue: 4 year: 2020 end-page: 562 ident: CR19 article-title: Effect of changing land use scenario in Kolkata Metropolitan on the variation in volume of runoff using multi-temporal satellite images publication-title: J Indian Chem Soc – volume: 14 start-page: 894 year: 2006 end-page: 911 ident: CR34 article-title: Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS publication-title: Hydrogeol J doi: 10.1007/s10040-005-0008-x – volume: 195 start-page: 497 issue: 4 year: 2023 ident: CR4 article-title: Assessing groundwater vulnerability potential using modified DRASTIC in Ajabshir Plain, NW of Iran publication-title: Environ Monit Assess doi: 10.1007/s10661-023-10992-6 – volume: 549 start-page: 27 year: 2017 end-page: 37 ident: CR17 article-title: Classification of aquifer vulnerability using K-means cluster analysis publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.03.060 – volume: 5 start-page: 100093 year: 2021 ident: CR35 article-title: An investigation of groundwater vulnerability in the North 24 parganas district using DRASTIC and hybrid-DRASTIC models: a case study publication-title: Environ Adv doi: 10.1016/j.envadv.2021.100093 – year: 2012 ident: CR9 publication-title: Indian standard drinking water—specification (second revision) – volume: 7 start-page: 250 year: 2018 end-page: 264 ident: CR29 article-title: A GIS-based DRASTIC and GOD models for assessing alterites aquifer of three experimental watersheds in Foumban (Western-Cameroon) publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2018.06.006 – volume: 76 start-page: 543 year: 2015 end-page: 563 ident: CR33 article-title: An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment publication-title: Nat Hazards doi: 10.1007/s11069-014-1503-y – volume: 304 start-page: 119208 year: 2022 ident: CR31 article-title: Formulating Convolutional Neural Network for mapping total aquifer vulnerability to pollution publication-title: Environ Pollut doi: 10.1016/j.envpol.2022.119208 – volume: 37 start-page: 100799 year: 2021 ident: CR12 article-title: Impervious surface growth and its inter-relationship with vegetation cover and land surface temperature in peri-urban areas of Delhi publication-title: Urban Clim doi: 10.1016/j.uclim.2021.100799 – volume: 7 start-page: 11 issue: 1 year: 2016 end-page: 20 ident: CR25 article-title: Evaluation of vulnerability of aquifers by improved fuzzy drastic method: case study: Aastane Kochesfahan plain in Iran publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2015.11.013 – volume: 19 start-page: 44 issue: 1 year: 2002 end-page: 57 ident: CR20 article-title: Spectral unmixing publication-title: IEEE Signal Process Mag doi: 10.1109/79.974727 – volume-title: Groundwater vulnerability assessment and mapping using DRASTIC model year: 2019 ident: 11515_CR23 doi: 10.1201/9780429287862 – volume: 7 start-page: 250 year: 2018 ident: 11515_CR29 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2018.06.006 – volume: 30 start-page: 25205 year: 2023 ident: 11515_CR52 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-17902-8 – volume-title: Multicriteria decision making: the analytic hierarchy process year: 1996 ident: 11515_CR39 – volume: 191 start-page: 1 year: 2019 ident: 11515_CR37 publication-title: Environ Monit Assess doi: 10.1007/s10661-019-7978-y – volume: 188 start-page: 1 year: 2016 ident: 11515_CR40 publication-title: Environ Monit Assess doi: 10.1007/s10661-015-4915-6 – volume: 14 start-page: 147 issue: 2/3 year: 1993 ident: 11515_CR6 publication-title: J Aust Geol Geophys – volume: 5 start-page: 100380 year: 2021 ident: 11515_CR42 publication-title: Environ Chall doi: 10.1016/j.envc.2021.100380 – volume: 72 start-page: 111 year: 2014 ident: 11515_CR44 publication-title: Environ Earth Sci doi: 10.1007/s12665-013-2940-8 – volume: 10 start-page: 340 year: 2002 ident: 11515_CR11 publication-title: Hydrogeol J doi: 10.1007/s10040-001-0185-1 – volume: 28 start-page: 46704 year: 2021 ident: 11515_CR50 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-11406-7 – volume: 195 start-page: 497 issue: 4 year: 2023 ident: 11515_CR4 publication-title: Environ Monit Assess doi: 10.1007/s10661-023-10992-6 – ident: 11515_CR14 – volume: 195 start-page: 268 issue: 2 year: 2023 ident: 11515_CR27 publication-title: Environ Monit Assess doi: 10.1007/s10661-022-10894-z – volume: 28 start-page: 59731 issue: 42 year: 2021 ident: 11515_CR41 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-14912-4 – volume: 182 start-page: 115962 year: 2020 ident: 11515_CR51 publication-title: Water Res doi: 10.1016/j.watres.2020.115962 – year: 2023 ident: 11515_CR10 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2022.100894 – volume: 304 start-page: 119208 year: 2022 ident: 11515_CR31 publication-title: Environ Pollut doi: 10.1016/j.envpol.2022.119208 – volume: 76 start-page: 543 year: 2015 ident: 11515_CR33 publication-title: Nat Hazards doi: 10.1007/s11069-014-1503-y – volume: 345 start-page: 127 issue: 1–3 year: 2005 ident: 11515_CR5 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2004.11.005 – volume: 8 start-page: 654 year: 2019 ident: 11515_CR18 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2019.03.005 – volume: 19 start-page: 44 issue: 1 year: 2002 ident: 11515_CR20 publication-title: IEEE Signal Process Mag doi: 10.1109/79.974727 – volume: 37 start-page: 100799 year: 2021 ident: 11515_CR12 publication-title: Urban Clim doi: 10.1016/j.uclim.2021.100799 – volume: 80 start-page: 1 year: 2021 ident: 11515_CR26 publication-title: Arch Environ Contam Toxicol doi: 10.1007/s00244-020-00805-z – volume: 126 start-page: 13 year: 2017 ident: 11515_CR22 publication-title: J Afr Earth Sci doi: 10.1016/j.jafrearsci.2016.11.025 – volume-title: Indian standard drinking water—specification (second revision) year: 2012 ident: 11515_CR9 – volume: 77 start-page: 354 year: 2018 ident: 11515_CR13 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.10.013 – volume: 29 start-page: 4474 issue: 3 year: 2022 ident: 11515_CR24 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-15966-0 – volume: 39 start-page: 625 issue: 4 year: 2001 ident: 11515_CR38 publication-title: Groundwater doi: 10.1111/j.1745-6584.2001.tb02350.x – volume: 18 start-page: 645 issue: 7 year: 2003 ident: 11515_CR49 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(03)00051-3 – volume: 13 start-page: 239 issue: 2 year: 2011 ident: 11515_CR16 publication-title: J Agric Sci Technol – volume: 5 start-page: 100093 year: 2021 ident: 11515_CR35 publication-title: Environ Adv doi: 10.1016/j.envadv.2021.100093 – volume: 1 start-page: 11 year: 2023 ident: 11515_CR45 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-023-28542-5 – volume: 7 start-page: 11 issue: 1 year: 2016 ident: 11515_CR25 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2015.11.013 – volume: 14 start-page: 894 year: 2006 ident: 11515_CR34 publication-title: Hydrogeol J doi: 10.1007/s10040-005-0008-x – volume: 37 start-page: 5832 issue: 20 year: 2022 ident: 11515_CR21 publication-title: Geocarto Int doi: 10.1080/10106049.2021.1923833 – volume: 58 start-page: 441 issue: 3 year: 2020 ident: 11515_CR7 publication-title: Groundwater doi: 10.1111/gwat.12919 – volume: 78 start-page: 1 year: 2019 ident: 11515_CR46 publication-title: Environ Earth Sci doi: 10.1007/s12665-019-8640-2 – volume: 195 start-page: 567 issue: 5 year: 2023 ident: 11515_CR47 publication-title: Environ Monit Assess doi: 10.1007/s10661-023-11165-1 – volume: 63 start-page: 1155 year: 2011 ident: 11515_CR1 publication-title: Environ Earth Sci doi: 10.1007/s12665-010-0790-1 – volume: 333 start-page: 288 issue: 2–4 year: 2007 ident: 11515_CR3 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.08.014 – volume: 549 start-page: 27 year: 2017 ident: 11515_CR17 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.03.060 – volume: 97 start-page: 555 issue: 4 year: 2020 ident: 11515_CR19 publication-title: J Indian Chem Soc – volume: 195 start-page: 57 issue: 1 year: 2023 ident: 11515_CR43 publication-title: Environ Monit Assess doi: 10.1007/s10661-022-10601-y – volume: 19 start-page: 100810 year: 2022 ident: 11515_CR32 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2022.100810 – ident: 11515_CR2 – volume: 51 start-page: 735 issue: 5 year: 2013 ident: 11515_CR48 publication-title: Groundwater doi: 10.1111/j.1745-6584.2012.01019.x – volume: 38 start-page: 25 issue: 1 year: 2003 ident: 11515_CR36 publication-title: J Environ Sci Health Part A doi: 10.1081/ESE-120016658 – volume: 307 start-page: 135831 year: 2022 ident: 11515_CR8 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135831 – volume: 161 start-page: 122 year: 2015 ident: 11515_CR28 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2015.02.013 – ident: 11515_CR15 – volume: 589 start-page: 125114 year: 2020 ident: 11515_CR53 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125114 |
SSID | ssj0000313906 |
Score | 2.4160392 |
Snippet | Groundwater, the main source of drinking and irrigation water in developing countries, plays an important role in maintaining public health and crop... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 211 |
SubjectTerms | Aquifers Arsenic Biogeosciences Comparative analysis Contamination Correlation coefficient Correlation coefficients Crop production Developing countries Drinking water Earth and Environmental Science Earth Sciences Environmental Science and Engineering Errors Geochemistry Geology Groundwater groundwater contamination Groundwater pollution Groundwater quality Hydrology/Water Resources India Irrigation water LDCs Machine learning Mitigation Modelling Original Article Pollutants Pollution index Public health risk Statistical analysis Statistical methods Statistics Subjectivity Sustainability Sustainability management Terrestrial Pollution Vulnerability Water pollution monitoring Water purification Water quality |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELX4UCUuVQtUbIHKSNzA0saO7fi4WkoBaTkAK3GL7Hi2EqKbKske-A_8aMbeZCMqQOo1dmwpY88bx_PeEHKsEeUk4hiT1gFLMcJmDmYZOkOTgpGZMpG3NrlWF9P06l7et6Swust2764ko6fuyW6IJYFNnLIkoDAT62RThrM7ruIpH63-rAQ1QhOLagYxN6Z4NmzZMm8P8xqR-jDzn5vRCDjnX8jnNlKko6Vpv5I1mG-TT79iJd6nHfI8okWv3E1tKy5CyxkNJKGov2wfT-lkfDbBVk__xLRJoG2diN80ABg-Ln3IFooGonXTKUfQpqRVkHUFWi_cw9ItUqiqsopznN2Mbu8uxzRW0ql3yfT85934grWlFZgVWjaMGz3MjLeFVok33AtvE2sRzrUvEqlBaieLGUK9FhqchJmT1nieZqBEoTMnvpGNeTmHPUJ5Yj1u4lQXKaSFUhaGTnGeOekAz912QJLu8-ZFqzseyl885r1icjBJjibJo0lyMSAnq3f-LlU3Pux90Fktb3dgnXOTBZo_Hh8H5GjVjHsnXIjYOZSLOhfo7pXATnxATjtr90O8P-P3_-u-T7Z4WHAx4eeAbDTVAg4xlmncj7h0XwBwuej6 priority: 102 providerName: Springer Nature |
Title | A comparative analysis of statistical, MCDM and machine learning based modification strategies to reduce subjective errors of DRASTIC models |
URI | https://link.springer.com/article/10.1007/s12665-024-11515-3 https://www.proquest.com/docview/2985431401 https://www.proquest.com/docview/3153633142 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6xVUiTEIICWmFURuKNWTROHCdPKHTdBqgTGqs0niL_KhIazUjSB_4H_mjOjtMIJPYaO7GUO993Pt99B_BaIMpxxDHKpbI0QQ-bKrvO0Bjmic15lua-bm15kZ6vko_X_DoE3JqQVtnbRG-oTaVdjPwtyzNXto3HgXe3P6nrGuVuV0MLjT0YoQnO8PA1er-4-Hy5i7I4ZsLcN9h0xG40ZdksVM509XMIT65AOaGRA3Ya_41Og8v5zy2pB5_TR_AweI2k6MT8GO7ZzRjun_muvL_G8KALvpGupmgMB86F7BiYn8DvguiB4pvIwEJCqjVp-mny5pgs5ydLHDXkh8-vtCQ0lPhGHNLh48q4tCIvSdK0PcUEaStSO_5XS5qt-t7ZT2Lruqr9GieXxZerD3PiW-40T2F1urian9PQg4HKWPCWslzMstxILdLI5MzERkZSIu4LoyMuLBeK6zX6BCIWVnG7VlzmhiWZTWMtMhU_g_1NtbGHQFgkDe72ROjEJjpNpZ2plLFMcWXxgC4nEPX_vtSBoNz1ybgpB2plJ68S5VV6eZXxBN7s3rnt6DnunH3Ui7QMW7UpB8WawKvdMG4yd3MiN7baNmWMuJDGOIlN4LhXheET_1_x-d0rvoAD5rTPZwIdwX5bb-1LdHJaNYVRcfb102IaNHoKeytW_AG8xPkr |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTohJCEEBURhgJHhiFo1jx8kDQqXdaNlaodFJewt27E6aRjOSVGj_gd_Cb-TsJK1AYm97jZ1Yyp3vu7PvvgN4LRHlBOIYFUpbytHDptouYjSGCbeJiKPE161NZ9H4hH8-Fadb8LuthXFpla1N9Iba5Jk7I3_HktiVbWM48OHyB3Vdo9ztattCo1aLQ3v1E0O28v1khPJ9w9jB_nw4pk1XAapCKSrKEtmPE6MyDOBNwkxoVKAUIpk0WSCkFVKLbIEoJ0NptbALLVRiGI9tFGYy1iF-9xZs8xBDmQ5sf9yffTlen-o4JsTEN_R0RHI0YnG_qdSp6_UQDl1BNKeBcyRo-Dcablzcf25lPdgd3Id7jZdKBrVaPYAtu-zC7U--C_BVF-7Wh32krmHqwo5zWWvG54fwa0CyDaU4UQ3rCckXpGynqYs9Mh2OpjhqyHefz2lJ08DijDhkxce5cWlMXnNIWbWUFqTKSeH4Zi0pV_q8ttfEFkVe-DVGx4Ov88mQ-BY_5SM4uRHpPIbOMl_aJ0BYoAxaFy4zbnkWRcr2dcRYrIW2kjPVg6D992nWEKK7vhwX6YbK2ckrRXmlXl5p2IO363cuazqQa2fvtiJNG9NQphtF7sGr9TBuandTo5Y2X5VpiDgUhTiJ9WCvVYXNJ_6_4tPrV3wJd8bz6VF6NJkdPoMd5jTRZyHtQqcqVvY5OliVftFoNYFvN72R_gCFVjPc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTqBJCEEB0THASPDErDVOHCcPCJV2ZWW0msYm7S2zYwcJbc1IUqH9B34Rv46zkzQCib3tNXZiKXe-786--w7gjUCU44hjlEtlaIAeNlUmi9AYxoGJeRTGrm5tvggPToPPZ_xsA363tTA2rbK1ic5Q6zy1Z-R7LI5s2TaGA3tZkxZxNJl-uPpBbQcpe9PattOoVeTQXP_E8K18P5ugrN8yNt0_GR_QpsMAlb7gFWWxGEaxlikG8zpm2tfSkxJRTejU48JwoXiaIeIJXxjFTaa4jDULIhP6qYiUj9-9A5sCo6JhDzY_7i-OjtcnPJYVMXbNPS2pHA1ZNGyqduraPYRGWxwdUM86FdT_Gxk7d_efG1oHfNOH8KDxWMmoVrFHsGGWfbj7yXUEvu7D_frgj9T1TH3Ysu5rzf78GH6NSNrRixPZMKCQPCNlO01e7JL5eDLHUU0uXW6nIU0zi2_Eoiw-zrVNaXJaRMqqpbcgVU4Kyz1rSLlS32vbTUxR5IVbY3I8-noyGxPX7qd8Aqe3Ip2n0FvmS_MMCPOkRksTiDQwQRqG0gxVyFikuDIiYHIAXvvvk7QhR7c9Oi6SjtbZyitBeSVOXok_gHfrd65qapAbZ--0Ik0aM1EmnVIP4PV6GDe4vbWRS5OvysRHTAp9nMQGsNuqQveJ_6-4ffOKr-AebqDky2xx-By2mFVEl5C0A72qWJkX6GtV6mWj1ATOb3sf_QH26TgR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+analysis+of+statistical%2C+MCDM+and+machine+learning+based+modification+strategies+to+reduce+subjective+errors+of+DRASTIC+models&rft.jtitle=Environmental+earth+sciences&rft.au=Dasgupta%2C+Rijurekha&rft.au=Banerjee%2C+Gourab&rft.au=Hidayetullah%2C+Sekh+Mohammad&rft.au=Saha%2C+Nilanjan&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-6280&rft.eissn=1866-6299&rft.volume=83&rft.issue=7&rft.spage=211&rft_id=info:doi/10.1007%2Fs12665-024-11515-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon |