Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules
Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses...
Saved in:
Published in | ACS nano Vol. 12; no. 3; pp. 2355 - 2364 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications. |
---|---|
AbstractList | Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications. |
Author | Avins, Christopher Chakrabarti, Dwaipayan Morphew, Daniel Shaw, James |
AuthorAffiliation | University of Birmingham School of Chemistry |
AuthorAffiliation_xml | – name: University of Birmingham – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Daniel surname: Morphew fullname: Morphew, Daniel – sequence: 2 givenname: James surname: Shaw fullname: Shaw, James – sequence: 3 givenname: Christopher surname: Avins fullname: Avins, Christopher – sequence: 4 givenname: Dwaipayan orcidid: 0000-0002-2939-2808 surname: Chakrabarti fullname: Chakrabarti, Dwaipayan email: d.chakrabarti@bham.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29457457$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kN1LwzAUxYNM3Ic--yZ9FKRbPtqkfRxDnTBxoIJvJUnTLSNtZtIK_e-NbA5fhAv3cu_vHLhnDAaNbRQA1whOEcRoxqVveGOnTEBGCTkDI5QTGsOMfgxOc4qGYOz9DsKUZYxegCHOk5SFGoHd2tmN43Wtm0201MpxJ7dachO9KlPFc-9VLUwf2Spa81Zu-9Bcq6VRPtJNa6OFNcbqMggWrvctNz760vzP-tkaJbvAX4LzKpzV1bFPwPvD_dtiGa9eHp8W81XMCUvaWCZSCpqVGSESlxhmiJFK0FRCLIVAmGIkqchwQpOclTnJhWB5ltIU0pSpKiMTcHvw3Tv72SnfFrX2UhnDG2U7X2AIk4QwmucBnR1Q6az3TlXF3umau75AsPgJuDgGXBwDDoqbo3knalWe-N9EA3B3AIKy2NnONeHXf-2-ASI6iSo |
CitedBy_id | crossref_primary_10_1002_anie_202218399 crossref_primary_10_1103_RevModPhys_93_025008 crossref_primary_10_1002_ange_201908216 crossref_primary_10_1002_ange_202014045 crossref_primary_10_1038_s41570_024_00603_4 crossref_primary_10_1002_apxr_202400007 crossref_primary_10_1021_acsnano_9b07849 crossref_primary_10_1039_C9SM02401H crossref_primary_10_1103_PhysRevMaterials_7_045603 crossref_primary_10_1039_D0SM00044B crossref_primary_10_1039_D0SM00234H crossref_primary_10_1080_23746149_2024_2341759 crossref_primary_10_1063_5_0109377 crossref_primary_10_1557_s43580_024_00852_x crossref_primary_10_1021_jacs_8b12165 crossref_primary_10_1021_acs_jpclett_1c01969 crossref_primary_10_1038_s41598_024_53850_2 crossref_primary_10_1039_D0CS00541J crossref_primary_10_1021_acsnano_0c07824 crossref_primary_10_1021_acs_langmuir_0c01668 crossref_primary_10_1039_D3NR01771K crossref_primary_10_1103_PhysRevLett_125_118003 crossref_primary_10_1146_annurev_chembioeng_122120_023514 crossref_primary_10_1557_mrs_2020_229 crossref_primary_10_1002_anie_202014045 crossref_primary_10_1021_acs_jpcb_0c08723 crossref_primary_10_1063_5_0005332 crossref_primary_10_1016_j_jcis_2021_07_047 crossref_primary_10_1039_C9SM01878F crossref_primary_10_1038_s41557_019_0303_0 crossref_primary_10_1039_D0SM01692F crossref_primary_10_1103_PhysRevE_100_012608 crossref_primary_10_1021_jacs_3c03181 crossref_primary_10_1021_acsnano_2c07910 crossref_primary_10_1039_D1TA01110C crossref_primary_10_1016_j_jiec_2021_01_037 crossref_primary_10_1021_acs_jctc_0c00259 crossref_primary_10_1038_s41598_021_97542_7 crossref_primary_10_1002_smll_202308560 crossref_primary_10_1021_acs_jpclett_2c03540 crossref_primary_10_1021_acs_jctc_1c01116 crossref_primary_10_1039_C9SM01500K crossref_primary_10_1021_acs_jpcb_4c02456 crossref_primary_10_3389_fphy_2022_936385 crossref_primary_10_1039_D2NR03533B crossref_primary_10_1039_C8NR10217A crossref_primary_10_1039_D0CS00706D crossref_primary_10_1039_C9TC06130D crossref_primary_10_1021_acs_langmuir_1c02089 crossref_primary_10_3389_fphy_2021_767623 crossref_primary_10_1039_C7NR09258J crossref_primary_10_1039_D1SM01770E crossref_primary_10_1002_ange_202218399 crossref_primary_10_1021_acs_langmuir_1c00102 crossref_primary_10_1039_D3CC02205F crossref_primary_10_1038_s41567_022_01698_6 crossref_primary_10_1073_pnas_2106808118 crossref_primary_10_1039_C9ME00006B crossref_primary_10_1088_1361_648X_ac55d6 crossref_primary_10_1002_anie_201910695 crossref_primary_10_1021_acs_jpcb_9b07754 crossref_primary_10_1021_acs_langmuir_2c02699 crossref_primary_10_1038_s41578_019_0087_2 crossref_primary_10_1039_D1PY00360G crossref_primary_10_1021_acsomega_0c04159 crossref_primary_10_1021_acsanm_9b01788 crossref_primary_10_1021_acs_chemmater_4c00134 crossref_primary_10_1021_acs_langmuir_0c01404 crossref_primary_10_1021_acs_langmuir_4c00584 crossref_primary_10_1039_D2CS00845A crossref_primary_10_1073_pnas_2109776118 crossref_primary_10_1140_epje_i2018_11737_1 crossref_primary_10_1021_jacs_1c05123 crossref_primary_10_1088_1361_648X_ac47dd crossref_primary_10_1088_1361_648X_ac5479 crossref_primary_10_1002_anie_201908216 crossref_primary_10_1038_s41598_022_16806_y crossref_primary_10_1002_asia_201900962 crossref_primary_10_1039_C9SM01779H crossref_primary_10_1038_s41563_020_0744_2 crossref_primary_10_1039_D4SM00177J crossref_primary_10_7566_JPSJ_93_024601 crossref_primary_10_1016_j_jcis_2021_04_079 crossref_primary_10_1016_j_procs_2019_09_364 crossref_primary_10_1021_acs_jpcc_8b11929 crossref_primary_10_1021_acsami_0c07410 crossref_primary_10_1007_s11837_021_04715_w crossref_primary_10_1063_5_0016514 crossref_primary_10_1002_smll_202301761 crossref_primary_10_1039_D0SM00954G crossref_primary_10_1002_adfm_202003317 crossref_primary_10_1002_ange_201910695 crossref_primary_10_1002_smll_202306337 crossref_primary_10_1021_acsnano_2c09677 |
Cites_doi | 10.1021/nn304677t 10.1002/(SICI)1521-3773(19991018)38:20<3078::AID-ANIE3078>3.0.CO;2-3 10.1038/ncomms14173 10.1126/science.1125124 10.1038/nphys2693 10.1103/PhysRevLett.65.3152 10.1073/pnas.1509239112 10.1103/PhysRevE.89.033307 10.1021/la0513611 10.1063/1.2801626 10.1039/c0cp02296a 10.1021/jp970984n 10.1063/1.471721 10.1126/science.1087140 10.1038/nmat1949 10.1038/nature23901 10.1039/C4NR05294C 10.1038/nmat1841 10.1063/1.3578182 10.1063/1.1784434 10.1080/002689798169195 10.1021/acsnano.6b06415 10.1039/b818054g 10.1038/nmat1201 10.1007/BF01589116 10.1126/science.aaa6760 10.1038/35053024 10.1038/natrevmats.2016.8 10.1126/science.aad2080 10.1021/acsnano.5b03272 10.1021/ja303434d 10.1073/pnas.1605289113 10.1063/1.2790421 10.1039/B810031D 10.1038/nmat3121 10.1038/nature11564 10.1126/science.1086189 10.1038/nmat3496 10.1038/nmat4869 10.1073/pnas.84.19.6611 10.1063/1.2977970 10.1021/nn204012y 10.1103/PhysRevB.28.784 10.1039/c3sm27637f 10.1016/j.cocis.2017.05.006 10.1021/nl201386e 10.1021/nn500978p 10.1063/1.3454907 10.1038/nmat4184 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.7b07633 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2364 |
ExternalDocumentID | 10_1021_acsnano_7b07633 29457457 h54634622 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a374t-c4ccb68d833c2d208173fb65c02cbb12621c6b8246497d939bb7985650657ef83 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Fri Aug 16 11:20:20 EDT 2024 Fri Aug 23 00:25:33 EDT 2024 Sat Sep 28 08:32:09 EDT 2024 Thu Aug 27 13:42:00 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | colloidal molecules patchy particles cubic diamond lattice colloidal self-assembly colloidal crystals hierarchical self-assembly |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a374t-c4ccb68d833c2d208173fb65c02cbb12621c6b8246497d939bb7985650657ef83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2939-2808 |
OpenAccessLink | https://doi.org/10.1021/acsnano.7b07633 |
PMID | 29457457 |
PQID | 2004437699 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2004437699 crossref_primary_10_1021_acsnano_7b07633 pubmed_primary_29457457 acs_journals_10_1021_acsnano_7b07633 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2018-03-27 |
PublicationDateYYYYMMDD | 2018-03-27 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref41/cit41 doi: 10.1021/nn304677t – ident: ref18/cit18 doi: 10.1002/(SICI)1521-3773(19991018)38:20<3078::AID-ANIE3078>3.0.CO;2-3 – ident: ref32/cit32 doi: 10.1038/ncomms14173 – ident: ref22/cit22 doi: 10.1126/science.1125124 – ident: ref28/cit28 doi: 10.1038/nphys2693 – ident: ref19/cit19 doi: 10.1103/PhysRevLett.65.3152 – ident: ref15/cit15 doi: 10.1073/pnas.1509239112 – ident: ref46/cit46 doi: 10.1103/PhysRevE.89.033307 – ident: ref21/cit21 doi: 10.1021/la0513611 – ident: ref34/cit34 doi: 10.1063/1.2801626 – ident: ref40/cit40 doi: 10.1039/c0cp02296a – ident: ref30/cit30 doi: 10.1021/jp970984n – ident: ref49/cit49 doi: 10.1063/1.471721 – ident: ref12/cit12 doi: 10.1126/science.1087140 – ident: ref1/cit1 doi: 10.1038/nmat1949 – ident: ref38/cit38 doi: 10.1038/nature23901 – ident: ref8/cit8 doi: 10.1039/C4NR05294C – ident: ref23/cit23 doi: 10.1038/nmat1841 – ident: ref25/cit25 doi: 10.1063/1.3578182 – ident: ref47/cit47 doi: 10.1063/1.1784434 – ident: ref50/cit50 doi: 10.1080/002689798169195 – ident: ref10/cit10 doi: 10.1021/acsnano.6b06415 – ident: ref42/cit42 doi: 10.1039/b818054g – ident: ref20/cit20 doi: 10.1038/nmat1201 – ident: ref43/cit43 doi: 10.1007/BF01589116 – ident: ref39/cit39 doi: 10.1126/science.aaa6760 – ident: ref33/cit33 doi: 10.1038/35053024 – ident: ref3/cit3 doi: 10.1038/natrevmats.2016.8 – ident: ref26/cit26 doi: 10.1126/science.aad2080 – ident: ref9/cit9 doi: 10.1021/acsnano.5b03272 – ident: ref5/cit5 doi: 10.1021/ja303434d – ident: ref16/cit16 doi: 10.1073/pnas.1605289113 – ident: ref44/cit44 doi: 10.1063/1.2790421 – ident: ref45/cit45 doi: 10.1039/B810031D – ident: ref4/cit4 doi: 10.1038/nmat3121 – ident: ref17/cit17 – ident: ref14/cit14 doi: 10.1038/nature11564 – ident: ref13/cit13 doi: 10.1126/science.1086189 – ident: ref31/cit31 doi: 10.1038/nmat3496 – ident: ref27/cit27 doi: 10.1038/nmat4869 – ident: ref29/cit29 doi: 10.1073/pnas.84.19.6611 – ident: ref35/cit35 doi: 10.1063/1.2977970 – ident: ref37/cit37 doi: 10.1021/nn204012y – ident: ref48/cit48 doi: 10.1103/PhysRevB.28.784 – ident: ref6/cit6 doi: 10.1039/c3sm27637f – ident: ref11/cit11 doi: 10.1016/j.cocis.2017.05.006 – ident: ref36/cit36 doi: 10.1021/nl201386e – ident: ref7/cit7 doi: 10.1021/nn500978p – ident: ref24/cit24 doi: 10.1063/1.3454907 – ident: ref2/cit2 doi: 10.1038/nmat4184 |
SSID | ssj0057876 |
Score | 2.5806324 |
Snippet | Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2355 |
Title | Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules |
URI | http://dx.doi.org/10.1021/acsnano.7b07633 https://www.ncbi.nlm.nih.gov/pubmed/29457457 https://search.proquest.com/docview/2004437699 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdt97I-7Ktrl30UDfqwF6eNJFvS4wgLoZASyAJ9MzpZomlTu9ROIf3rd7KdLF0JKxiMjS3EnT5-p7v7HSEnKkFQLa2IrPEQCe_jCLQzkVBgdGwzr1xIcB5dJMOpOL-ML_-SRf_rwWe9U2PL3ORFVwKa3JzvkldM4tQIKKg_WS26YdwljQMZDWREEWsWn2cNhG3Ilk-3oS3Yst5jBm-b6KyypiYMoSU33UUFXfv4nLjx_91_R960SJP-bIbGe7Lj8g9kf4N_8IBcj5vorFt8osNZyEWuS6PM6cTNfRQcwrcwX9LC0zEu2VdLvLWBdHSWVwUNxw7FLMMf-vdLxJnzkj7MzMbrUVN915UfyXTw63d_GLXFFyLDpagiK6yFRGWKc8syhshBcg9JbM-YBeixhPVsAoqJRGiZaa4BpFYIDxHTSOcVPyR7eZG7T4QKpzO0wkEbXRtc2ivJBTgQIe5KxR1yglJK28lTprVfnPXSVnRpK7oO-bFSWXrXUHFs__T7SqUpTpfgAzG5KxZlqLopBC6qWnfIUaPrdWNMi1ji9fll_flCXiN6qhMUmfxK9qr7hfuGCKWC43ps_gHt4OGB |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8gPKgPCip6KromPPjSg9vddncfzUVyIEcgQMJb09nuhtOjNbRncvz1zLa9EyUkmjRpumkn2_2Y-c3OF8C2TghUKysjm3mMpPdxhMZlkdSYmdjmXrsQ4Dw-Skbn8uAivliB3UUsDHWiIkpVY8T_nV1gsENtRVaUfYWkeQvxCNZiReIygKHh6YL3huWXtHZk0pMJTCyT-dwjEKSRrf6URg9AzEbU7D2Hk2UnGw-TH_1ZjX1781f-xv_5i3V41uFO9qVdKBuw4ooX8PRONsKX8P249dW6oic2moTI5KZQypSduqmPgnn4CqdzVnp2TAz8ck63zq2OTYq6ZOEQopzk9MHwek6oc1qxX5PsTvO4rcXrqldwvvf1bDiKulIMUSaUrCMrrcVE51oIy3NOOEIJj0lsd7lFHPCED2yCmstEGpUbYRCV0QQWCeEo57XYhNWiLNwbYNKZnHRyNJlp1C_jtRISHcrghaXjHmzTKKXdVqrSxkrOB2k3dGk3dD34vJi59GebmOPhVz8tZjalzRMsIlnhylkVanBKSSzWmB68bqd8SYwbGSu63v5bfz7C49HZ-DA93D_69g6eEK5qQhe5eg-r9fXMbRF2qfFDs1xvAZZL6eY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEB_0BNEPvh_rM8J98EtXm6RN8vFYXdbHHQvnwn0rnTTB1b32uHaF9a93knaXUzlQKJSGNkxn8vhN5gWwr3MC1crKxJYeE-l9lqBxZSI1liazldcuBDgfHuWzhfx4kp0MQWEhFoaIaKmnNhrxw6w-q_yQYSB9Q-11WTdjhaR9C3EVrmUqjcbZg8nxdv0NQzDvbcmkKxOg2CX0-auDsCPZ9vcd6RKYGbeb6W1Y7AiNXibfx-sOx_bnHzkc__dP7sCtAX-yg37A3IUrrr4HNy9kJbwP3-a9z9YpPbHZMkQox4IpK3bsVj4JZuJTXG1Y49mcFvKvG7oN7nVsWXcNC4cRzbKiDybnG0Kfq5b9WJYXmg_7mryufQCL6fsvk1kylGRISqFkl1hpLea60kJYXnHCE0p4zDP7llvElOc8tTlqLnNpVGWEQVRGE2gkpKOc1-Ih7NVN7R4Dk85UpJujKU1Uw4zXSkh0KIM3ls5GsE9cKoYp1RbRWs7TYmBdMbBuBK-30ivO-gQdl7_6aivdgiZRsIyUtWvWbajFKSUttcaM4FEv9l1n3MhM0fXk3-h5Cdfn76bF5w9Hn57CDYJXMYKRq2ew152v3XOCMB2-iCP2FyXD7GA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Programming+Hierarchical+Self-Assembly+of+Patchy+Particles+into+Colloidal+Crystals+via+Colloidal+Molecules&rft.jtitle=ACS+nano&rft.au=Morphew%2C+Daniel&rft.au=Shaw%2C+James&rft.au=Avins%2C+Christopher&rft.au=Chakrabarti%2C+Dwaipayan&rft.date=2018-03-27&rft.eissn=1936-086X&rft.volume=12&rft.issue=3&rft.spage=2355&rft_id=info:doi/10.1021%2Facsnano.7b07633&rft_id=info%3Apmid%2F29457457&rft.externalDocID=29457457 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |