Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules

Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 12; no. 3; pp. 2355 - 2364
Main Authors Morphew, Daniel, Shaw, James, Avins, Christopher, Chakrabarti, Dwaipayan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.
AbstractList Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.
Author Avins, Christopher
Chakrabarti, Dwaipayan
Morphew, Daniel
Shaw, James
AuthorAffiliation University of Birmingham
School of Chemistry
AuthorAffiliation_xml – name: University of Birmingham
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Daniel
  surname: Morphew
  fullname: Morphew, Daniel
– sequence: 2
  givenname: James
  surname: Shaw
  fullname: Shaw, James
– sequence: 3
  givenname: Christopher
  surname: Avins
  fullname: Avins, Christopher
– sequence: 4
  givenname: Dwaipayan
  orcidid: 0000-0002-2939-2808
  surname: Chakrabarti
  fullname: Chakrabarti, Dwaipayan
  email: d.chakrabarti@bham.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29457457$$D View this record in MEDLINE/PubMed
BookMark eNp1kN1LwzAUxYNM3Ic--yZ9FKRbPtqkfRxDnTBxoIJvJUnTLSNtZtIK_e-NbA5fhAv3cu_vHLhnDAaNbRQA1whOEcRoxqVveGOnTEBGCTkDI5QTGsOMfgxOc4qGYOz9DsKUZYxegCHOk5SFGoHd2tmN43Wtm0201MpxJ7dachO9KlPFc-9VLUwf2Spa81Zu-9Bcq6VRPtJNa6OFNcbqMggWrvctNz760vzP-tkaJbvAX4LzKpzV1bFPwPvD_dtiGa9eHp8W81XMCUvaWCZSCpqVGSESlxhmiJFK0FRCLIVAmGIkqchwQpOclTnJhWB5ltIU0pSpKiMTcHvw3Tv72SnfFrX2UhnDG2U7X2AIk4QwmucBnR1Q6az3TlXF3umau75AsPgJuDgGXBwDDoqbo3knalWe-N9EA3B3AIKy2NnONeHXf-2-ASI6iSo
CitedBy_id crossref_primary_10_1002_anie_202218399
crossref_primary_10_1103_RevModPhys_93_025008
crossref_primary_10_1002_ange_201908216
crossref_primary_10_1002_ange_202014045
crossref_primary_10_1038_s41570_024_00603_4
crossref_primary_10_1002_apxr_202400007
crossref_primary_10_1021_acsnano_9b07849
crossref_primary_10_1039_C9SM02401H
crossref_primary_10_1103_PhysRevMaterials_7_045603
crossref_primary_10_1039_D0SM00044B
crossref_primary_10_1039_D0SM00234H
crossref_primary_10_1080_23746149_2024_2341759
crossref_primary_10_1063_5_0109377
crossref_primary_10_1557_s43580_024_00852_x
crossref_primary_10_1021_jacs_8b12165
crossref_primary_10_1021_acs_jpclett_1c01969
crossref_primary_10_1038_s41598_024_53850_2
crossref_primary_10_1039_D0CS00541J
crossref_primary_10_1021_acsnano_0c07824
crossref_primary_10_1021_acs_langmuir_0c01668
crossref_primary_10_1039_D3NR01771K
crossref_primary_10_1103_PhysRevLett_125_118003
crossref_primary_10_1146_annurev_chembioeng_122120_023514
crossref_primary_10_1557_mrs_2020_229
crossref_primary_10_1002_anie_202014045
crossref_primary_10_1021_acs_jpcb_0c08723
crossref_primary_10_1063_5_0005332
crossref_primary_10_1016_j_jcis_2021_07_047
crossref_primary_10_1039_C9SM01878F
crossref_primary_10_1038_s41557_019_0303_0
crossref_primary_10_1039_D0SM01692F
crossref_primary_10_1103_PhysRevE_100_012608
crossref_primary_10_1021_jacs_3c03181
crossref_primary_10_1021_acsnano_2c07910
crossref_primary_10_1039_D1TA01110C
crossref_primary_10_1016_j_jiec_2021_01_037
crossref_primary_10_1021_acs_jctc_0c00259
crossref_primary_10_1038_s41598_021_97542_7
crossref_primary_10_1002_smll_202308560
crossref_primary_10_1021_acs_jpclett_2c03540
crossref_primary_10_1021_acs_jctc_1c01116
crossref_primary_10_1039_C9SM01500K
crossref_primary_10_1021_acs_jpcb_4c02456
crossref_primary_10_3389_fphy_2022_936385
crossref_primary_10_1039_D2NR03533B
crossref_primary_10_1039_C8NR10217A
crossref_primary_10_1039_D0CS00706D
crossref_primary_10_1039_C9TC06130D
crossref_primary_10_1021_acs_langmuir_1c02089
crossref_primary_10_3389_fphy_2021_767623
crossref_primary_10_1039_C7NR09258J
crossref_primary_10_1039_D1SM01770E
crossref_primary_10_1002_ange_202218399
crossref_primary_10_1021_acs_langmuir_1c00102
crossref_primary_10_1039_D3CC02205F
crossref_primary_10_1038_s41567_022_01698_6
crossref_primary_10_1073_pnas_2106808118
crossref_primary_10_1039_C9ME00006B
crossref_primary_10_1088_1361_648X_ac55d6
crossref_primary_10_1002_anie_201910695
crossref_primary_10_1021_acs_jpcb_9b07754
crossref_primary_10_1021_acs_langmuir_2c02699
crossref_primary_10_1038_s41578_019_0087_2
crossref_primary_10_1039_D1PY00360G
crossref_primary_10_1021_acsomega_0c04159
crossref_primary_10_1021_acsanm_9b01788
crossref_primary_10_1021_acs_chemmater_4c00134
crossref_primary_10_1021_acs_langmuir_0c01404
crossref_primary_10_1021_acs_langmuir_4c00584
crossref_primary_10_1039_D2CS00845A
crossref_primary_10_1073_pnas_2109776118
crossref_primary_10_1140_epje_i2018_11737_1
crossref_primary_10_1021_jacs_1c05123
crossref_primary_10_1088_1361_648X_ac47dd
crossref_primary_10_1088_1361_648X_ac5479
crossref_primary_10_1002_anie_201908216
crossref_primary_10_1038_s41598_022_16806_y
crossref_primary_10_1002_asia_201900962
crossref_primary_10_1039_C9SM01779H
crossref_primary_10_1038_s41563_020_0744_2
crossref_primary_10_1039_D4SM00177J
crossref_primary_10_7566_JPSJ_93_024601
crossref_primary_10_1016_j_jcis_2021_04_079
crossref_primary_10_1016_j_procs_2019_09_364
crossref_primary_10_1021_acs_jpcc_8b11929
crossref_primary_10_1021_acsami_0c07410
crossref_primary_10_1007_s11837_021_04715_w
crossref_primary_10_1063_5_0016514
crossref_primary_10_1002_smll_202301761
crossref_primary_10_1039_D0SM00954G
crossref_primary_10_1002_adfm_202003317
crossref_primary_10_1002_ange_201910695
crossref_primary_10_1002_smll_202306337
crossref_primary_10_1021_acsnano_2c09677
Cites_doi 10.1021/nn304677t
10.1002/(SICI)1521-3773(19991018)38:20<3078::AID-ANIE3078>3.0.CO;2-3
10.1038/ncomms14173
10.1126/science.1125124
10.1038/nphys2693
10.1103/PhysRevLett.65.3152
10.1073/pnas.1509239112
10.1103/PhysRevE.89.033307
10.1021/la0513611
10.1063/1.2801626
10.1039/c0cp02296a
10.1021/jp970984n
10.1063/1.471721
10.1126/science.1087140
10.1038/nmat1949
10.1038/nature23901
10.1039/C4NR05294C
10.1038/nmat1841
10.1063/1.3578182
10.1063/1.1784434
10.1080/002689798169195
10.1021/acsnano.6b06415
10.1039/b818054g
10.1038/nmat1201
10.1007/BF01589116
10.1126/science.aaa6760
10.1038/35053024
10.1038/natrevmats.2016.8
10.1126/science.aad2080
10.1021/acsnano.5b03272
10.1021/ja303434d
10.1073/pnas.1605289113
10.1063/1.2790421
10.1039/B810031D
10.1038/nmat3121
10.1038/nature11564
10.1126/science.1086189
10.1038/nmat3496
10.1038/nmat4869
10.1073/pnas.84.19.6611
10.1063/1.2977970
10.1021/nn204012y
10.1103/PhysRevB.28.784
10.1039/c3sm27637f
10.1016/j.cocis.2017.05.006
10.1021/nl201386e
10.1021/nn500978p
10.1063/1.3454907
10.1038/nmat4184
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsnano.7b07633
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2364
ExternalDocumentID 10_1021_acsnano_7b07633
29457457
h54634622
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a374t-c4ccb68d833c2d208173fb65c02cbb12621c6b8246497d939bb7985650657ef83
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Fri Aug 16 11:20:20 EDT 2024
Fri Aug 23 00:25:33 EDT 2024
Sat Sep 28 08:32:09 EDT 2024
Thu Aug 27 13:42:00 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords colloidal molecules
patchy particles
cubic diamond lattice
colloidal self-assembly
colloidal crystals
hierarchical self-assembly
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a374t-c4ccb68d833c2d208173fb65c02cbb12621c6b8246497d939bb7985650657ef83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2939-2808
OpenAccessLink https://doi.org/10.1021/acsnano.7b07633
PMID 29457457
PQID 2004437699
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2004437699
crossref_primary_10_1021_acsnano_7b07633
pubmed_primary_29457457
acs_journals_10_1021_acsnano_7b07633
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-03-27
PublicationDateYYYYMMDD 2018-03-27
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref41/cit41
  doi: 10.1021/nn304677t
– ident: ref18/cit18
  doi: 10.1002/(SICI)1521-3773(19991018)38:20<3078::AID-ANIE3078>3.0.CO;2-3
– ident: ref32/cit32
  doi: 10.1038/ncomms14173
– ident: ref22/cit22
  doi: 10.1126/science.1125124
– ident: ref28/cit28
  doi: 10.1038/nphys2693
– ident: ref19/cit19
  doi: 10.1103/PhysRevLett.65.3152
– ident: ref15/cit15
  doi: 10.1073/pnas.1509239112
– ident: ref46/cit46
  doi: 10.1103/PhysRevE.89.033307
– ident: ref21/cit21
  doi: 10.1021/la0513611
– ident: ref34/cit34
  doi: 10.1063/1.2801626
– ident: ref40/cit40
  doi: 10.1039/c0cp02296a
– ident: ref30/cit30
  doi: 10.1021/jp970984n
– ident: ref49/cit49
  doi: 10.1063/1.471721
– ident: ref12/cit12
  doi: 10.1126/science.1087140
– ident: ref1/cit1
  doi: 10.1038/nmat1949
– ident: ref38/cit38
  doi: 10.1038/nature23901
– ident: ref8/cit8
  doi: 10.1039/C4NR05294C
– ident: ref23/cit23
  doi: 10.1038/nmat1841
– ident: ref25/cit25
  doi: 10.1063/1.3578182
– ident: ref47/cit47
  doi: 10.1063/1.1784434
– ident: ref50/cit50
  doi: 10.1080/002689798169195
– ident: ref10/cit10
  doi: 10.1021/acsnano.6b06415
– ident: ref42/cit42
  doi: 10.1039/b818054g
– ident: ref20/cit20
  doi: 10.1038/nmat1201
– ident: ref43/cit43
  doi: 10.1007/BF01589116
– ident: ref39/cit39
  doi: 10.1126/science.aaa6760
– ident: ref33/cit33
  doi: 10.1038/35053024
– ident: ref3/cit3
  doi: 10.1038/natrevmats.2016.8
– ident: ref26/cit26
  doi: 10.1126/science.aad2080
– ident: ref9/cit9
  doi: 10.1021/acsnano.5b03272
– ident: ref5/cit5
  doi: 10.1021/ja303434d
– ident: ref16/cit16
  doi: 10.1073/pnas.1605289113
– ident: ref44/cit44
  doi: 10.1063/1.2790421
– ident: ref45/cit45
  doi: 10.1039/B810031D
– ident: ref4/cit4
  doi: 10.1038/nmat3121
– ident: ref17/cit17
– ident: ref14/cit14
  doi: 10.1038/nature11564
– ident: ref13/cit13
  doi: 10.1126/science.1086189
– ident: ref31/cit31
  doi: 10.1038/nmat3496
– ident: ref27/cit27
  doi: 10.1038/nmat4869
– ident: ref29/cit29
  doi: 10.1073/pnas.84.19.6611
– ident: ref35/cit35
  doi: 10.1063/1.2977970
– ident: ref37/cit37
  doi: 10.1021/nn204012y
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.28.784
– ident: ref6/cit6
  doi: 10.1039/c3sm27637f
– ident: ref11/cit11
  doi: 10.1016/j.cocis.2017.05.006
– ident: ref36/cit36
  doi: 10.1021/nl201386e
– ident: ref7/cit7
  doi: 10.1021/nn500978p
– ident: ref24/cit24
  doi: 10.1063/1.3454907
– ident: ref2/cit2
  doi: 10.1038/nmat4184
SSID ssj0057876
Score 2.5806324
Snippet Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2355
Title Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules
URI http://dx.doi.org/10.1021/acsnano.7b07633
https://www.ncbi.nlm.nih.gov/pubmed/29457457
https://search.proquest.com/docview/2004437699
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdt97I-7Ktrl30UDfqwF6eNJFvS4wgLoZASyAJ9MzpZomlTu9ROIf3rd7KdLF0JKxiMjS3EnT5-p7v7HSEnKkFQLa2IrPEQCe_jCLQzkVBgdGwzr1xIcB5dJMOpOL-ML_-SRf_rwWe9U2PL3ORFVwKa3JzvkldM4tQIKKg_WS26YdwljQMZDWREEWsWn2cNhG3Ilk-3oS3Yst5jBm-b6KyypiYMoSU33UUFXfv4nLjx_91_R960SJP-bIbGe7Lj8g9kf4N_8IBcj5vorFt8osNZyEWuS6PM6cTNfRQcwrcwX9LC0zEu2VdLvLWBdHSWVwUNxw7FLMMf-vdLxJnzkj7MzMbrUVN915UfyXTw63d_GLXFFyLDpagiK6yFRGWKc8syhshBcg9JbM-YBeixhPVsAoqJRGiZaa4BpFYIDxHTSOcVPyR7eZG7T4QKpzO0wkEbXRtc2ivJBTgQIe5KxR1yglJK28lTprVfnPXSVnRpK7oO-bFSWXrXUHFs__T7SqUpTpfgAzG5KxZlqLopBC6qWnfIUaPrdWNMi1ji9fll_flCXiN6qhMUmfxK9qr7hfuGCKWC43ps_gHt4OGB
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8gPKgPCip6KromPPjSg9vddncfzUVyIEcgQMJb09nuhtOjNbRncvz1zLa9EyUkmjRpumkn2_2Y-c3OF8C2TghUKysjm3mMpPdxhMZlkdSYmdjmXrsQ4Dw-Skbn8uAivliB3UUsDHWiIkpVY8T_nV1gsENtRVaUfYWkeQvxCNZiReIygKHh6YL3huWXtHZk0pMJTCyT-dwjEKSRrf6URg9AzEbU7D2Hk2UnGw-TH_1ZjX1781f-xv_5i3V41uFO9qVdKBuw4ooX8PRONsKX8P249dW6oic2moTI5KZQypSduqmPgnn4CqdzVnp2TAz8ck63zq2OTYq6ZOEQopzk9MHwek6oc1qxX5PsTvO4rcXrqldwvvf1bDiKulIMUSaUrCMrrcVE51oIy3NOOEIJj0lsd7lFHPCED2yCmstEGpUbYRCV0QQWCeEo57XYhNWiLNwbYNKZnHRyNJlp1C_jtRISHcrghaXjHmzTKKXdVqrSxkrOB2k3dGk3dD34vJi59GebmOPhVz8tZjalzRMsIlnhylkVanBKSSzWmB68bqd8SYwbGSu63v5bfz7C49HZ-DA93D_69g6eEK5qQhe5eg-r9fXMbRF2qfFDs1xvAZZL6eY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEB_0BNEPvh_rM8J98EtXm6RN8vFYXdbHHQvnwn0rnTTB1b32uHaF9a93knaXUzlQKJSGNkxn8vhN5gWwr3MC1crKxJYeE-l9lqBxZSI1liazldcuBDgfHuWzhfx4kp0MQWEhFoaIaKmnNhrxw6w-q_yQYSB9Q-11WTdjhaR9C3EVrmUqjcbZg8nxdv0NQzDvbcmkKxOg2CX0-auDsCPZ9vcd6RKYGbeb6W1Y7AiNXibfx-sOx_bnHzkc__dP7sCtAX-yg37A3IUrrr4HNy9kJbwP3-a9z9YpPbHZMkQox4IpK3bsVj4JZuJTXG1Y49mcFvKvG7oN7nVsWXcNC4cRzbKiDybnG0Kfq5b9WJYXmg_7mryufQCL6fsvk1kylGRISqFkl1hpLea60kJYXnHCE0p4zDP7llvElOc8tTlqLnNpVGWEQVRGE2gkpKOc1-Ih7NVN7R4Dk85UpJujKU1Uw4zXSkh0KIM3ls5GsE9cKoYp1RbRWs7TYmBdMbBuBK-30ivO-gQdl7_6aivdgiZRsIyUtWvWbajFKSUttcaM4FEv9l1n3MhM0fXk3-h5Cdfn76bF5w9Hn57CDYJXMYKRq2ew152v3XOCMB2-iCP2FyXD7GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Programming+Hierarchical+Self-Assembly+of+Patchy+Particles+into+Colloidal+Crystals+via+Colloidal+Molecules&rft.jtitle=ACS+nano&rft.au=Morphew%2C+Daniel&rft.au=Shaw%2C+James&rft.au=Avins%2C+Christopher&rft.au=Chakrabarti%2C+Dwaipayan&rft.date=2018-03-27&rft.eissn=1936-086X&rft.volume=12&rft.issue=3&rft.spage=2355&rft_id=info:doi/10.1021%2Facsnano.7b07633&rft_id=info%3Apmid%2F29457457&rft.externalDocID=29457457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon