Recycled carbonates in the mantle sources of natural kamafugites; a zinc isotope perspective
Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO2. Nevertheless, there is not yet direct evidence for a CO2-rich mantle source and the possible presence of recyc...
Saved in:
Published in | The American mineralogist Vol. 108; no. 5; pp. 987 - 998 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Mineralogical Society of America
01.05.2023
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO2. Nevertheless, there is not yet direct evidence for a CO2-rich mantle source and the possible presence of recycled carbonates in the source of natural kamafugites. Marine carbonates have a heavier zinc isotopic composition (δ66Zn) than that of the mantle by up to 1.0 per mille, making zinc isotopes a sensitive tracer for recycled carbonates in the sources of mantle-derived magmas. Here we take Cenozoic kamafugites from the West Qinling orogen in China as an example to address the origin of this rare volcanic rock. The West Qinling kamafugites are strongly silica-undersaturated (SiO2 = 37.0 to 43.0 wt%) and have significantly higher δ66Zn (0.30 per mille to 0.47 per mille) than that of the normal mantle (0.18±0.05 per mille). No correlation δ66Zn and MgO or SiO2 contents is observed, indicating that δ66Zn was not a result of magmatic differentiation. Modeling of melting indicates that even at extremely low degree (∼0.5%), partial melting of a normal peridotitic source is still unlikely to produce silicate δ66Zn values exceeding 0.30 per mille. Thus, the elevated δ66Zn of the West Qinling kamafugites demonstrates the presence of recycled carbonates in their mantle sources. Binary-mixing modeling suggests that the source contains ∼5 to 15% recycled carbonates, which is supported by the positive correlation between 2D66Zn and CaO/Al2O3. Overall, the West Qinling kamafugites represent the products of low-degree partial melting of a recycled carbonate-bearing peridotite source, which provides evidence for an important role of recycled carbonates in the origin of natural kamafugite suites. |
---|---|
AbstractList | Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO
. Nevertheless, there is not yet direct evidence for a CO
-rich mantle source and the possible presence of recycled carbonates in the source of natural kamafugites. Marine carbonates have a heavier zinc isotopic composition (δ
Zn) than that of the mantle by up to 1.0‰, making zinc isotopes a sensitive tracer for recycled carbonates in the sources of mantle-derived magmas. Here we take Cenozoic kamafugites from the West Qinling orogen in China as an example to address the origin of this rare volcanic rock. The West Qinling kamafugites are strongly silica-undersaturated (SiO
= 37.0 to 43.0 wt%) and have significantly higher δ
Zn (0.30‰ to 0.47‰) than that of the normal mantle (0.18 ± 0.05‰). No correlation between δ
Zn and MgO or SiO
contents is observed, indicating that the high δ
Zn was not a result of magmatic differentiation. Modeling of melting indicates that even at extremely low degree (~0.5%), partial melting of a normal peridotitic source is still unlikely to produce silicate melts with δ
Zn values exceeding 0.30‰. Thus, the elevated δ
Zn of the West Qinling kamafugites demonstrates the presence of recycled carbonates in their mantle sources. Binary-mixing modeling suggests that the source contains ~5 to 15% recycled carbonates, which is supported by the positive correlation between δ
Zn and CaO/Al
. Overall, the West Qinling kamafugites represent the products of low-degree partial melting of a recycled carbonate-bearing peridotite source, which provides evidence for an important role of recycled carbonates in the origin of natural kamafugite suites. Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO2. Nevertheless, there is not yet direct evidence for a CO2-rich mantle source and the possible presence of recycled carbonates in the source of natural kamafugites. Marine carbonates have a heavier zinc isotopic composition (δ66Zn) than that of the mantle by up to 1.0 per mille, making zinc isotopes a sensitive tracer for recycled carbonates in the sources of mantle-derived magmas. Here we take Cenozoic kamafugites from the West Qinling orogen in China as an example to address the origin of this rare volcanic rock. The West Qinling kamafugites are strongly silica-undersaturated (SiO2 = 37.0 to 43.0 wt%) and have significantly higher δ66Zn (0.30 per mille to 0.47 per mille) than that of the normal mantle (0.18±0.05 per mille). No correlation δ66Zn and MgO or SiO2 contents is observed, indicating that δ66Zn was not a result of magmatic differentiation. Modeling of melting indicates that even at extremely low degree (∼0.5%), partial melting of a normal peridotitic source is still unlikely to produce silicate δ66Zn values exceeding 0.30 per mille. Thus, the elevated δ66Zn of the West Qinling kamafugites demonstrates the presence of recycled carbonates in their mantle sources. Binary-mixing modeling suggests that the source contains ∼5 to 15% recycled carbonates, which is supported by the positive correlation between 2D66Zn and CaO/Al2O3. Overall, the West Qinling kamafugites represent the products of low-degree partial melting of a recycled carbonate-bearing peridotite source, which provides evidence for an important role of recycled carbonates in the origin of natural kamafugite suites. Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO2. Nevertheless, there is not yet direct evidence for a CO2-rich mantle source and the possible presence of recycled carbonates in the source of natural kamafugites. Marine carbonates have a heavier zinc isotopic composition (δ66Zn) than that of the mantle by up to 1.0‰, making zinc isotopes a sensitive tracer for recycled carbonates in the sources of mantle-derived magmas. Here we take Cenozoic kamafugites from the West Qinling orogen in China as an example to address the origin of this rare volcanic rock. The West Qinling kamafugites are strongly silica-undersaturated (SiO2 = 37.0 to 43.0 wt%) and have significantly higher δ66Zn (0.30‰ to 0.47‰) than that of the normal mantle (0.18 ± 0.05‰). No correlation between δ66Zn and MgO or SiO2 contents is observed, indicating that the high δ66Zn was not a result of magmatic differentiation. Modeling of melting indicates that even at extremely low degree (~0.5%), partial melting of a normal peridotitic source is still unlikely to produce silicate melts with δ66Zn values exceeding 0.30‰. Thus, the elevated δ66Zn of the West Qinling kamafugites demonstrates the presence of recycled carbonates in their mantle sources. Binary-mixing modeling suggests that the source contains ~5 to 15% recycled carbonates, which is supported by the positive correlation between δ66Zn and CaO/Al2O3. Overall, the West Qinling kamafugites represent the products of low-degree partial melting of a recycled carbonate-bearing peridotite source, which provides evidence for an important role of recycled carbonates in the origin of natural kamafugite suites. Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO2. Nevertheless, there is not yet direct evidence for a CO2-rich mantle source and the possible presence of recycled carbonates in the source of natural kamafugites. Marine carbonates have a heavier zinc isotopic composition (δ66Zn) than that of the mantle by up to 1.0‰, making zinc isotopes a sensitive tracer for recycled carbonates in the sources of mantle-derived magmas. Here we take Cenozoic kamafugites from the West Qinling orogen in China as an example to address the origin of this rare volcanic rock. The West Qinling kamafugites are strongly silica-undersaturated (SiO2 = 37.0 to 43.0 wt%) and have significantly higher δ66Zn (0.30‰ to 0.47‰) than that of the normal mantle (0.18 ± 0.05‰). No correlation between δ66Zn and MgO or SiO2 contents is observed, indicating that the high δ66Zn was not a result of magmatic differentiation. Modeling of melting indicates that even at extremely low degree (~0.5%), partial melting of a normal peridotitic source is still unlikely to produce silicate melts with δ 66Zn values exceeding 0.30‰. Thus, the elevated δ66Zn of the West Qinling kamafugites demonstrates the presence of recycled carbonates in their mantle sources. Binary-mixing modeling suggests that the source contains ~5 to 15% recycled carbonates, which is supported by the positive correlation between δ66Zn and CaO/Al2O3. Overall, the West Qinling kamafugites represent the products of low-degree partial melting of a recycled carbonate-bearing peridotite source, which provides evidence for an important role of recycled carbonates in the origin of natural kamafugite suites. |
Author | Ma Lei, Ma Lei Liu Shengao, Liu Shengao Zhao Zhidan, Zhao Zhidan Yu Xuehui, Yu Xuehui |
Author_xml | – sequence: 1 fullname: Ma Lei, Ma Lei – sequence: 2 fullname: Liu Shengao, Liu Shengao – sequence: 3 fullname: Zhao Zhidan, Zhao Zhidan – sequence: 4 fullname: Yu Xuehui, Yu Xuehui |
BookMark | eNp1kF1rFTEQhoNU8LT1zh8Q8FJXJx-7m6VXUuoHFISi4IUQ5mRnj6m7mzXJWk5_vTkcQRF7lSHzPJnJe8pO5jATY88EvJJCmdc4VRKkrIwy8hHbiE7XlQLZnrANAKgKQH95wk5TuoWCqbrbsK835PZupJ47jNswY6bE_czzN-ITznkknsIaXbkNAy_tNeLIv-OEw7rzBb7gyO_97LhPIYeF-EIxLeSy_0nn7PGAY6Knv88z9vnt1afL99X1x3cfLt9cV6hanSujoXFN31IvndbbQcEWGtkoQW7ojOmgr91QmoRDL3VHTtUotgZLaeqm79QZe358d4nhx0op29uy81xGWmmEEKqVShTq5ZFyMaQUabBL9BPGvRVgD_lZnOwhP3vIr-DyH9z5jNmHOUf040PSxVG6wzFT7GkX130p_iz0P02AqTvTFvvF0d5RSM7T7OguxLH_6zsglYVGC9DqF-TEmKo |
CitedBy_id | crossref_primary_10_1016_j_chemgeo_2023_121835 |
Cites_doi | 10.1016/j.gca.2012.11.009 10.1016/j.lithos.2014.05.009 10.1016/j.jseaes.2011.03.002 10.1007/s00410-012-0837-2 10.1016/j.gca.2018.07.012 10.1016/j.lithos.2010.01.004 10.1093/petrology/egy057 10.1016/j.epsl.2004.08.004 10.1016/j.chemgeo.2007.04.009 10.1093/petrology/egi029 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2 10.1007/s00410-003-0452-3 10.1093/petroj/39.1.29 10.1016/j.chemgeo.2012.05.019 10.1016/j.gca.2022.03.009 10.1144/GSL.SP.1989.042.01.19 10.1002/2016JB013095 10.1016/j.lithos.2017.12.013 10.1016/S0012-8252(02)00064-8 10.1093/petrology/egl007 10.1029/2018JB017125 10.1016/S0012-821X(03)00106-7 10.1093/petrology/egm053 10.1016/j.chemgeo.2016.09.016 10.1007/s004100100308 10.1016/j.gca.2010.02.004 10.1016/j.chemgeo.2016.01.016 10.1093/petrology/27.3.745 10.1016/j.chemgeo.2009.02.015 10.2138/am.2014.4507 10.1029/97GL02956 10.1007/s004100050230 10.3749/canmin.46.1.19 10.1180/002646100549652 10.1016/j.gca.2016.11.014 10.1007/s004100100238 10.1016/S0009-2541(98)00191-0 10.1130/G38644.1 10.1016/j.jseaes.2008.05.009 10.1016/j.gr.2015.06.009 10.1002/jgrb.50292 10.1111/j.1751-908X.2014.00298.x 10.1016/j.earscirev.2020.103174 10.1016/j.gr.2012.09.007 10.1016/j.earscirev.2022.104010 10.1130/G45145.1 10.1038/300171a0 10.2138/rmg.2017.82.13 10.1093/petrology/egx038 10.1016/j.lithos.2013.07.012 10.1029/2019JB017405 10.1016/j.gca.2019.04.026 10.1016/j.jseaes.2013.09.012 10.1029/2020JB020684 10.1016/j.lithos.2005.03.019 10.1080/00206814.2016.1157709 10.1016/0012-821X(75)90218-6 10.1016/0012-8252(87)90001-8 10.1180/0026461026640049 10.1016/j.epsl.2012.01.023 10.1016/j.epsl.2013.02.037 10.1093/petrology/egq049 10.1007/s11430-007-2015-3 10.1093/nsr/nww070 10.1016/j.chemgeo.2017.12.006 10.1016/j.chemgeo.2012.06.016 10.1016/j.lithos.2010.04.002 10.1016/j.epsl.2016.03.051 10.1086/667956 10.1093/petrology/egt023 10.1093/petrology/44.7.1163 10.1016/j.lithos.2020.105627 10.1016/j.gca.2018.07.021 10.1093/petrology/egab025 |
ContentType | Journal Article |
Copyright | GeoRef, Copyright 2023, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America 2023 by Mineralogical Society of America |
Copyright_xml | – notice: GeoRef, Copyright 2023, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America – notice: 2023 by Mineralogical Society of America |
DBID | AAYXX CITATION 7TN F1W H96 L.G |
DOI | 10.2138/am-2022-8382 |
DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1945-3027 |
EndPage | 998 |
ExternalDocumentID | 10_2138_am_2022_8382 10_2138_am_2022_83821085987 2023_064104 |
GroupedDBID | -DZ -~X .DC 0R~ 186 23M 2WC 3V. 4.4 5GY 6J9 7XC 88I 8FE 8FH 8G5 8WZ 9M8 A6W AAAEU AAFPC AAGVJ AAKRG AALGR AAONY AAPJK AAQCX AASQH AASQN AAWFE AAXCG AAXMT ABABW ABAQN ABEFU ABFKT ABJNI ABPLS ABPPZ ABRQL ABTAH ABUWG ABVMU ABWLS ACEFL ACGFS ACGOD ACMKP ACNCT ACPMA ACSFO ACXLN ACZBO ADEQT ADFRT ADGQD ADGYE ADOZN AEGVQ AEICA AEKEB AENEX AEQDQ AERZL AEUFC AFBAA AFCXV AFGNR AFKRA AFRAH AFYRI AGBEV AGCDD AGWTP AHVWV AHXUK AI. AIKXB AKXKS ALMA_UNASSIGNED_HOLDINGS AMAVY ASYPN ATCPS AZMOX AZQEC BAKPI BBCWN BBDJO BCIFA BDLBQ BENPR BHPHI BKSAR BPHCQ C1A CCPQU CS3 DBYYV DWQXO EBS EJD FA8 FRP FSTRU GNUQQ GOHGZ GUQSH H13 HCIFZ HF~ HH5 HZ~ IY9 KDIRW LK5 LPU M2O M2P M7R MV1 MVM O9- OHT OK1 PADUT PATMY PCBAR PQQKQ PROAC PYCSY QD8 R05 RGW RMN RNS S10 SLJYH TAE TN5 UK5 VH1 WH7 WHG WTRAM XJT XOL ZCA ZCG ZKB ZY4 ~02 ACDEB ACUND AECWL AFBDD AIWOI AAYXX CITATION 7TN ADNPR F1W H96 L.G |
ID | FETCH-LOGICAL-a374t-8406c6d7ed2c44bf30b062631ecf98890d5cfed2eafd249ec35a1b8a49e856d93 |
ISSN | 0003-004X |
IngestDate | Sat Aug 16 19:51:28 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Tue Jul 01 03:21:05 EDT 2025 Thu Jul 10 10:33:42 EDT 2025 Tue Oct 29 04:55:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a374t-8406c6d7ed2c44bf30b062631ecf98890d5cfed2eafd249ec35a1b8a49e856d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2811137231 |
PQPubID | 4640 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2811137231 crossref_primary_10_2138_am_2022_8382 crossref_citationtrail_10_2138_am_2022_8382 walterdegruyter_journals_10_2138_am_2022_83821085987 geoscienceworld_journals_2023_064104 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | The American mineralogist |
PublicationYear | 2023 |
Publisher | Mineralogical Society of America Walter de Gruyter GmbH |
Publisher_xml | – name: Mineralogical Society of America – name: Walter de Gruyter GmbH |
References | Dong (2023050102292595500_B17) 2016; 29 Le Bas (2023050102292595500_B44) 1986; 27 Kushiro (2023050102292595500_B42) 1975; 28 Dai (2023050102292595500_B10) 2018; 302-303 Deines (2023050102292595500_B16) 2002; 58 Guo (2023050102292595500_B30) 2014; 79 Wu (2023050102292595500_B83) 2013; 23 Liu (2023050102292595500_B51) 2016; 444 Kushiro (2023050102292595500_B43) 1996 Grassi (2023050102292595500_B26) 2012; 327–328 Yu (2023050102292595500_B90) 2009; 16 Hirose (2023050102292595500_B31) 1997; 24 Liu (2023050102292595500_B54) 2019; 257 Javoy (2023050102292595500_B39) 1982; 300 Liu (2023050102292595500_B57) 2022; 228 Bizimis (2023050102292595500_B4) 2003; 145 Liu (2023050102292595500_B53) 2018; 46 Feng (2023050102292595500_B21) 2002 Kiseeva (2023050102292595500_B41) 2013; 54 Yu (2023050102292595500_B86) 2001; 31 Martin (2023050102292595500_B61) 2012; 320–321 Castorina (2023050102292595500_B7) 2000; 64 Jin (2023050102292595500_B40) 2020; 370–371 Liu (2023050102292595500_B55) 2020; 125 Su (2023050102292595500_B71) 2009; 34 Walter (2023050102292595500_B77) 1998; 39 Beier (2023050102292595500_B2) 2013; 165 Carlson (2023050102292595500_B6) 2007; 242 Moynier (2023050102292595500_B65) 2017; 82 Yu (2023050102292595500_B87) 2003; 19 Dasgupta (2023050102292595500_B12) 2007; 48 Davis (2023050102292595500_B13) 2013; 104 Luth (2023050102292595500_B58) 2001; 141 Su (2023050102292595500_B73) 2012; 120 Debret (2023050102292595500_B15) 2018; 59 Dai (2023050102292595500_B9) 2017; 58 Wiedenmann (2023050102292595500_B82) 2010; 118 Wang (2023050102292595500_B80) 2018; 46 Foley (2023050102292595500_B22) 1987; 24 Gerbode (2023050102292595500_B24) 2010; 51 Bailey (2023050102292595500_B1) 2005; 85 Ducher (2023050102292595500_B20) 2016; 443 Sossi (2023050102292595500_B68) 2015; 39 Wasylenki (2023050102292595500_B81) 2003; 44 Dong (2023050102292595500_B18) 2008; 24 Le Roux (2023050102292595500_B45) 2010; 74 Mattsson (2023050102292595500_B62) 2013; 179 Rudnick (2023050102292595500_B67) 2003; 3 Yu (2023050102292595500_B89) 2005; 50 Li (2023050102292595500_B46) 2013; 118 Maréchal (2023050102292595500_B60) 1999; 156 Gittins (2023050102292595500_B25) 2003; 72 Huang (2023050102292595500_B36) 2016; 121 Li (2023050102292595500_B49) 2017; 4 Day (2023050102292595500_B14) 2014; 202–203 Sossi (2023050102292595500_B69) 2018; 477 Stoppa (2023050102292595500_B70) 2002; 66 McCoy-West (2023050102292595500_B63) 2018; 238 Wang (2023050102292595500_B79) 2017; 198 Yu (2023050102292595500_B85) 1998; 5 Carlson (2023050102292595500_B5) 1996; 125 Guo (2023050102292595500_B29) 2006; 47 Beunon (2023050102292595500_B3) 2020; 205 Yang (2023050102292595500_B84) 2019; 124 Li (2023050102292595500_B48) 2014; 99 Pichat (2023050102292595500_B66) 2003; 210 Wang (2023050102292595500_B78) 2021; 62 Huang (2023050102292595500_B35) 2016; 58 Gudfinnsson (2023050102292595500_B28) 2005; 46 Dasgupta (2023050102292595500_B11) 2004; 227 Guarino (2023050102292595500_B27) 2013; 353 Sun (2023050102292595500_B74) 1989; 42 Li (2023050102292595500_B47) 2013 Lv (2023050102292595500_B59) 2016; 445 Huang (2023050102292595500_B37) 2018; 238 Huang (2023050102292595500_B38) 2019; 124 Liu (2023050102292595500_B52) 2017; 45 Hoernle (2023050102292595500_B33) 2002; 142 Liu (2023050102292595500_B50) 2019; 5 Dong (2023050102292595500_B19) 2011; 41 Turekian (2023050102292595500_B76) 1961; 72 Chen (2023050102292595500_B8) 2013; 369–370 Zhang (2023050102292595500_B91) 2007; 50 Hirschmann (2023050102292595500_B32) 2003; 31 Hofmann (2023050102292595500_B34) 2003; 2 Yu (2023050102292595500_B88) 2004; 20 Melluso (2023050102292595500_B64) 2008; 46 Su (2023050102292595500_B72) 2010; 116 Tappe (2023050102292595500_B75) 2003; 72 Frezzotti (2023050102292595500_B23) 2009; 262 Liu (2023050102292595500_B56) 2022; 324 |
References_xml | – volume: 46 start-page: 1027 year: 2018 ident: 2023050102292595500_B53 article-title: Perovskite U-Pb and Sr-Nd isotopic perspectives on melilitite magmatism and outward growth of the Tibetan plateau publication-title: Geology – volume: 104 start-page: 232 year: 2013 ident: 2023050102292595500_B13 article-title: Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2012.11.009 – volume: 202–203 start-page: 76 year: 2014 ident: 2023050102292595500_B14 article-title: Oxygen isotope systematics of south African olivine melilitites and implications for HIMU mantle reservoirs publication-title: Lithos doi: 10.1016/j.lithos.2014.05.009 – volume: 41 start-page: 213 year: 2011 ident: 2023050102292595500_B19 article-title: Tectonic evolution of the Qinling Orogen, China: Review and synthesis publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2011.03.002 – volume: 165 start-page: 823 year: 2013 ident: 2023050102292595500_B2 article-title: Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-012-0837-2 – volume: 238 start-page: 85 year: 2018 ident: 2023050102292595500_B37 article-title: Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2018.07.012 – volume: 116 start-page: 111 year: 2010 ident: 2023050102292595500_B72 article-title: Compositionally stratified lithosphere and carbonatite metasomatism recorded in mantle xenoliths from the Western Qinling (Central China) publication-title: Lithos doi: 10.1016/j.lithos.2010.01.004 – volume: 24 start-page: 238 year: 2008 ident: 2023050102292595500_B18 article-title: Geochemistry of the Cenozoic Kamafugites from West Qinling and constraint for the nature of magma source region publication-title: Yanshi Xuebao – volume: 59 start-page: 1145 year: 2018 ident: 2023050102292595500_B15 article-title: Carbonate transfer during the onset of slab devolatilization: New insights from Fe and Zn stable isotopes publication-title: Journal of Petrology doi: 10.1093/petrology/egy057 – volume: 227 start-page: 73 year: 2004 ident: 2023050102292595500_B11 article-title: Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2004.08.004 – volume: 242 start-page: 415 year: 2007 ident: 2023050102292595500_B6 article-title: Chemical and isotopic relationships between peridotite xenoliths and maficultrapotassic rocks from Southern Brazil publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2007.04.009 – volume: 46 start-page: 1645 year: 2005 ident: 2023050102292595500_B28 article-title: Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa publication-title: Journal of Petrology doi: 10.1093/petrology/egi029 – volume: 31 start-page: 481 year: 2003 ident: 2023050102292595500_B32 article-title: Alkalic magmas generated by partial melting of garnet pyroxenite publication-title: Geology doi: 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2 – volume: 72 start-page: 175 year: 1961 ident: 2023050102292595500_B76 article-title: Distribution of the elements in some major units of the Earth’s crust publication-title: Geological Society of America Bulletin doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2 – volume: 145 start-page: 281 year: 2003 ident: 2023050102292595500_B4 article-title: The brevity of carbonatite sources in the mantle: Evidence from Hf isotopes publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-003-0452-3 – volume: 39 start-page: 29 year: 1998 ident: 2023050102292595500_B77 article-title: Melting of garnet peridotite and the origin of komatiite and depleted lithosphere publication-title: Journal of Petrology doi: 10.1093/petroj/39.1.29 – volume: 320–321 start-page: 96 year: 2012 ident: 2023050102292595500_B61 article-title: Element partitioning between immiscible carbonatitekamafugite melts with application to the Italian ultrapotassic suite publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2012.05.019 – start-page: 109 volume-title: Earth Processes: Reading the Isotopic Code year: 1996 ident: 2023050102292595500_B43 article-title: Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond – volume: 324 start-page: 156 year: 2022 ident: 2023050102292595500_B56 article-title: Contrasting fates of subducting carbon related to different oceanic slabs in East Asia publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2022.03.009 – volume: 16 start-page: 79 year: 2009 ident: 2023050102292595500_B90 article-title: Two types of Cenozoic potassic volcanic rocks in West Qinling, Gansu Province: Their petrology, geochemistry and petrogenesis publication-title: Earth Science Frontiers – volume: 42 start-page: 313 year: 1989 ident: 2023050102292595500_B74 article-title: Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes publication-title: Special Publication—Geological Society of London doi: 10.1144/GSL.SP.1989.042.01.19 – volume: 121 start-page: 7086 year: 2016 ident: 2023050102292595500_B36 article-title: Copper and zinc isotope systematics of altered oceanic crust at IODP site 1256 in the eastern equatorial pacific publication-title: Journal of Geophysical Research. Solid Earth doi: 10.1002/2016JB013095 – volume: 20 start-page: 483 year: 2004 ident: 2023050102292595500_B88 article-title: Trace element, REE and Sr, Nd, Pb isotopic geochemistry of Cenozoic kamafugites and carbonatites from west Qinling, Gansu Province: Implication of plume-lithosphere interaction publication-title: Yanshi Xuebao – volume: 302-303 start-page: 86 year: 2018 ident: 2023050102292595500_B10 article-title: Geochemical insights into the lithology of mantle sources for cenozoic alkali basalts in West Qinling, China publication-title: Lithos doi: 10.1016/j.lithos.2017.12.013 – volume: 58 start-page: 247 year: 2002 ident: 2023050102292595500_B16 article-title: The carbon isotope geochemistry of mantle xenoliths publication-title: Earth-Science Reviews doi: 10.1016/S0012-8252(02)00064-8 – volume: 47 start-page: 1177 year: 2006 ident: 2023050102292595500_B29 article-title: Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms publication-title: Journal of Petrology doi: 10.1093/petrology/egl007 – volume: 2 start-page: 568 year: 2003 ident: 2023050102292595500_B34 article-title: Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements publication-title: Treatise on Geochemistry – volume: 124 start-page: 3588 year: 2019 ident: 2023050102292595500_B38 article-title: Mantle Zn isotopic heterogeneity caused by melt-rock reaction: Evidence from Fe-rich peridotites and pyroxenites from the Bohemian Massif, Central Europe publication-title: Journal of Geophysical Research. Solid Earth doi: 10.1029/2018JB017125 – volume: 210 start-page: 167 year: 2003 ident: 2023050102292595500_B66 article-title: Zinc isotope variations in deep sea carbonates from the eastern equatorial Pacific over the last 175 ka publication-title: Earth and Planetary Science Letters doi: 10.1016/S0012-821X(03)00106-7 – volume: 48 start-page: 2093 year: 2007 ident: 2023050102292595500_B12 article-title: Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts publication-title: Journal of Petrology doi: 10.1093/petrology/egm053 – volume: 443 start-page: 87 year: 2016 ident: 2023050102292595500_B20 article-title: Equilibrium zinc isotope fractionation in Zn-bearing minerals from first-principles calculations publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2016.09.016 – volume: 142 start-page: 520 year: 2002 ident: 2023050102292595500_B33 article-title: Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s004100100308 – volume: 74 start-page: 2779 year: 2010 ident: 2023050102292595500_B45 article-title: Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2010.02.004 – volume: 19 start-page: 105 year: 2003 ident: 2023050102292595500_B87 article-title: Discovery and significance of Cenozoic volcanic carbonatite in Lixian, Gansu Province publication-title: Yanshi Xuebao – volume: 72 start-page: 51 year: 2003 ident: 2023050102292595500_B75 article-title: The kamafugites of Uganda: A mineralogical and geochemical comparison with their Italian and Brazilian analogues publication-title: Periodico di Mineralogia – volume: 445 start-page: 24 year: 2016 ident: 2023050102292595500_B59 article-title: Copper and zinc isotope fractionation during deposition and weathering of highly metalliferous black shales in central China publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2016.01.016 – volume: 27 start-page: 745 year: 1986 ident: 2023050102292595500_B44 article-title: A chemical classification of volcanic rocks based on the total alkali-silica diagram publication-title: Journal of Petrology doi: 10.1093/petrology/27.3.745 – volume: 262 start-page: 108 year: 2009 ident: 2023050102292595500_B23 article-title: Carbonate metasomatism and CO2 lithosphere-asthenosphere degassing beneath the western Mediterranean: An integrated model arising from petrological and geophysical data publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2009.02.015 – volume: 99 start-page: 206 year: 2014 ident: 2023050102292595500_B48 article-title: Compositional zoning in dolomite from lawsonite-bearing eclogite (SW Tianshan, China): Evidence for prograde metamorphism during subduction of oceanic crust publication-title: American Mineralogist doi: 10.2138/am.2014.4507 – volume: 24 start-page: 2837 year: 1997 ident: 2023050102292595500_B31 article-title: Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation publication-title: Geophysical Research Letters doi: 10.1029/97GL02956 – volume: 5 start-page: 319 year: 1998 ident: 2023050102292595500_B85 article-title: Sr, Nd, isotope and trace elements geochemical features of the Cenozoic volcanic rocks front West Qinling, Gansu Province publication-title: Earth Science Frontiers – volume: 125 start-page: 393 year: 1996 ident: 2023050102292595500_B5 article-title: Chemical and Os isotopic study of Cretaceous potassic rocks from southern Brazil publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s004100050230 – volume: 46 start-page: 1399 year: 2008 ident: 2023050102292595500_B64 article-title: Major and trace element composition of olivine, perovskite, clinopyroxene, Cr-Fe-Ti oxides, phlogopite and host kamafugites and kimberlites, Alto Paranaiba, Brazil publication-title: Canadian Mineralogist doi: 10.3749/canmin.46.1.19 – volume: 64 start-page: 625 year: 2000 ident: 2023050102292595500_B7 article-title: An enriched mantle source for Italy’s melilitite-carbonatite association as inferred by its Nd-Sr isotope signature publication-title: Mineralogical Magazine doi: 10.1180/002646100549652 – volume: 198 start-page: 151 year: 2017 ident: 2023050102292595500_B79 article-title: Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2016.11.014 – volume: 141 start-page: 222 year: 2001 ident: 2023050102292595500_B58 article-title: Experimental determination of the reaction aragonite + magnesite = dolomite at 5 to 9 GPa publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s004100100238 – volume: 156 start-page: 251 year: 1999 ident: 2023050102292595500_B60 article-title: Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry publication-title: Chemical Geology doi: 10.1016/S0009-2541(98)00191-0 – volume: 45 start-page: 343 year: 2017 ident: 2023050102292595500_B52 article-title: Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction publication-title: Geology doi: 10.1130/G38644.1 – volume: 34 start-page: 258 year: 2009 ident: 2023050102292595500_B71 article-title: Nature and processes of the lithospheric mantle beneath the western Qinling: Evidence from deformed peridotitic xenoliths in Cenozoic kamafugite from Haoti, Gansu Province, China publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2008.05.009 – volume: 29 start-page: 1 year: 2016 ident: 2023050102292595500_B17 article-title: Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China publication-title: Gondwana Research doi: 10.1016/j.gr.2015.06.009 – volume: 118 start-page: 4170 year: 2013 ident: 2023050102292595500_B46 article-title: Shear wave structure in the northeastern Tibetan plateau from Rayleigh wave tomography publication-title: Journal of Geophysical Research. Solid Earth doi: 10.1002/jgrb.50292 – volume: 39 start-page: 129 year: 2015 ident: 2023050102292595500_B68 article-title: Combined separation of cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination publication-title: Geostandards and Geoanalytical Research doi: 10.1111/j.1751-908X.2014.00298.x – volume: 205 start-page: 103174 year: 2020 ident: 2023050102292595500_B3 article-title: Mantle Heterogeneity through Zn systematics in Oceanic Basalts: Evidence for a Deep Carbon Cycling publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2020.103174 – volume: 72 start-page: 19 year: 2003 ident: 2023050102292595500_B25 article-title: Myth and reality in the carbonatite-silicate rock “association.” publication-title: Periodico di Mineralogia – volume: 23 start-page: 1402 year: 2013 ident: 2023050102292595500_B83 article-title: Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China publication-title: Gondwana Research doi: 10.1016/j.gr.2012.09.007 – volume: 228 start-page: 104010 year: 2022 ident: 2023050102292595500_B57 article-title: The fate of subducting carbon tracked by Mg and Zn isotopes: A review and new perspectives publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2022.104010 – volume: 46 start-page: 771 year: 2018 ident: 2023050102292595500_B80 article-title: Compositional transition in natural alkaline lavas through silica-undersaturated melt–litho-sphere interaction publication-title: Geology doi: 10.1130/G45145.1 – volume: 300 start-page: 171 year: 1982 ident: 2023050102292595500_B39 article-title: Carbon geodynamic cycle publication-title: Nature doi: 10.1038/300171a0 – volume: 82 start-page: 543 year: 2017 ident: 2023050102292595500_B65 article-title: The isotope geochemistry of zinc and copper publication-title: Reviews in Mineralogy and Geochemistry doi: 10.2138/rmg.2017.82.13 – start-page: 172 year: 2013 ident: 2023050102292595500_B47 article-title: Petrology and geochemistry of the early Mesozoic pyroxene andesites in the Maixiu Area, West Qinling, China: Products of subduction or syn-collision? publication-title: Lithos – volume: 58 start-page: 863 year: 2017 ident: 2023050102292595500_B9 article-title: Geochemical distinction between carbonate and silicate metasomatism in generating the mantle sources of alkali basalts publication-title: Journal of Petrology doi: 10.1093/petrology/egx038 – volume: 179 start-page: 175 year: 2013 ident: 2023050102292595500_B62 article-title: Petrogenesis of the melilititic and nephelinitic rock suites in the Lake Natron-Engaruka monogenetic volcanic field, northern Tanzania publication-title: Lithos doi: 10.1016/j.lithos.2013.07.012 – volume: 124 start-page: 12537 year: 2019 ident: 2023050102292595500_B84 article-title: Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan large igneous province publication-title: Journal of Geophysical Research. Solid Earth doi: 10.1029/2019JB017405 – volume: 257 start-page: 191 year: 2019 ident: 2023050102292595500_B54 article-title: Cu and Zn isotope fractionation during oceanic alteration: Implications for oceanic Cu and Zn cycles publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2019.04.026 – volume: 79 start-page: 86 year: 2014 ident: 2023050102292595500_B30 article-title: A synthesis and new perspective on the petrogenesis of kamafugites from West Qinling, China, in a global context publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2013.09.012 – volume: 125 start-page: 1 year: 2020 ident: 2023050102292595500_B55 article-title: Mg and Zn isotope evidence for two types of mantle metasomatism and deep recycling of magnesium carbonates publication-title: Journal of Geophysical Research. Solid Earth doi: 10.1029/2020JB020684 – volume: 85 start-page: 15 year: 2005 ident: 2023050102292595500_B1 article-title: Melilitite at Fort Portal, Uganda: Another dimension to the carbonate volcanism publication-title: Lithos doi: 10.1016/j.lithos.2005.03.019 – year: 2002 ident: 2023050102292595500_B21 article-title: Structure, Orogenic Processes and Geodynamic of the Western Qinling Orogen – volume: 58 start-page: 1350 year: 2016 ident: 2023050102292595500_B35 article-title: Mg-Sr isotopes of low-δ26Mg basalts tracing recycled carbonate species: Implication for the initial melting depth of the carbonated mantle in Eastern China publication-title: International Geology Review doi: 10.1080/00206814.2016.1157709 – volume: 28 start-page: 116 year: 1975 ident: 2023050102292595500_B42 article-title: Carbonate-silicate reactions at high pressures and possible presence of dolomite and magnesite in the upper mantle publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(75)90218-6 – volume: 24 start-page: 81 issue: 2 year: 1987 ident: 2023050102292595500_B22 article-title: The ultrapotassic rocks: Characteristics, classification and constraints for petrogenetic models publication-title: Earth-Science Reviews doi: 10.1016/0012-8252(87)90001-8 – volume: 5 start-page: 448 year: 2019 ident: 2023050102292595500_B50 article-title: Tracing the deep carbon cycle using metal stable isotopes: Opportunities and challenges publication-title: Engineering (Beijing) – volume: 66 start-page: 555 year: 2002 ident: 2023050102292595500_B70 article-title: Extension of the melilitecarbonatite province in the Apennines of Italy: The kamafugite of Grotta del Cervo, Abruzzo publication-title: Mineralogical Magazine doi: 10.1180/0026461026640049 – volume: 327–328 start-page: 84 year: 2012 ident: 2023050102292595500_B26 article-title: Element partitioning during carbonated pelite melting at 8, 13, and 22 GPa and the sediment signature in the EM mantle components publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2012.01.023 – volume: 31 start-page: 128 year: 2001 ident: 2023050102292595500_B86 article-title: A study of galherzolite and gawebsterite xenoliths in west Qinling, Gansu Province publication-title: Science in China. Series D, Earth Sciences – volume: 369–370 start-page: 34 year: 2013 ident: 2023050102292595500_B8 article-title: Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2013.02.037 – volume: 51 start-page: 2067 year: 2010 ident: 2023050102292595500_B24 article-title: Carbonate-fluxed melting of MORB-like pyroxenite at 2.9 GPa and genesis 681 of HIMU ocean island basalts publication-title: Journal of Petrology doi: 10.1093/petrology/egq049 – volume: 50 start-page: 184 year: 2007 ident: 2023050102292595500_B91 article-title: Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity publication-title: Science in China. Series D, Earth Sciences doi: 10.1007/s11430-007-2015-3 – volume: 4 start-page: 111 year: 2017 ident: 2023050102292595500_B49 article-title: Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China publication-title: National Science Review doi: 10.1093/nsr/nww070 – volume: 477 start-page: 73 year: 2018 ident: 2023050102292595500_B69 article-title: Zinc isotope composition of the Earth and its behaviour during planetary accretion publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2017.12.006 – volume: 353 start-page: 65 year: 2013 ident: 2023050102292595500_B27 article-title: U-Pb ages, Sr-Nd isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopitepicrites of the Alto Paranaíba Igneous Province, Brazil publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2012.06.016 – volume: 118 start-page: 112 year: 2010 ident: 2023050102292595500_B82 article-title: Melilite-group minerals at Oldoinyo Lengai, Tanzania publication-title: Lithos doi: 10.1016/j.lithos.2010.04.002 – volume: 444 start-page: 169 year: 2016 ident: 2023050102292595500_B51 article-title: Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2016.03.051 – volume: 3 start-page: 1 year: 2003 ident: 2023050102292595500_B67 article-title: Composition of the continental crust publication-title: Treatise on Geochemistry – volume: 120 start-page: 671 year: 2012 ident: 2023050102292595500_B73 article-title: Metasomatized lithospheric mantle beneath Western Qinling, central China: Insight into activity of carbonatite melts publication-title: The Journal of Geology doi: 10.1086/667956 – volume: 54 start-page: 1555 year: 2013 ident: 2023050102292595500_B41 article-title: Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle publication-title: Journal of Petrology doi: 10.1093/petrology/egt023 – volume: 44 start-page: 1163 year: 2003 ident: 2023050102292595500_B81 article-title: Near-solidus melting of the shallow upper mantle: Partial melting experiments on depleted peridotite publication-title: Journal of Petrology doi: 10.1093/petrology/44.7.1163 – volume: 50 start-page: 2638 year: 2005 ident: 2023050102292595500_B89 article-title: 40Ar/39Ar dating for Cenozoic kamafugites from western Qinling in Gansu Province publication-title: Chinese Science Bulletin – volume: 370–371 start-page: 105627 year: 2020 ident: 2023050102292595500_B40 article-title: Magnesium and zinc isotope evidence for recycled sediments and oceanic crust in the mantle sources of continental basalts from eastern China publication-title: Lithos doi: 10.1016/j.lithos.2020.105627 – volume: 238 start-page: 542 year: 2018 ident: 2023050102292595500_B63 article-title: The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2018.07.021 – volume: 62 start-page: egab025 year: 2021 ident: 2023050102292595500_B78 article-title: Evolution of intraplate alkaline to tholeiitic basalts via interaction between carbonated melt and lithospheric mantle publication-title: Journal of Petrology doi: 10.1093/petrology/egab025 |
SSID | ssj0022359 |
Score | 2.3980715 |
Snippet | Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced... |
SourceID | proquest crossref walterdegruyter geoscienceworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 987 |
SubjectTerms | Aluminum oxide Asia Carbon dioxide Carbonates Cenozoic chain silicates China clinopyroxene Correlation diopside Far East framework silicates geochemical cycle Geochemistry igneous and metamorphic rocks igneous rocks Isotopes kamafugite Kamafugites leucite magmas magmatic differentiation mantle Melting Melts metals Modelling nepheline nepheline group Orogeny oxides Peridotite perovskite Petrology plate tectonics pyroxene group Qinling Mountains recycled carbonates rich source Silica Silicates Silicon dioxide stable isotopes subduction Tracers Volcanic rocks West Qinling Zinc Zinc isotopes Zn isotopes Zn-66 |
Title | Recycled carbonates in the mantle sources of natural kamafugites; a zinc isotope perspective |
URI | https://pubs.geoscienceworld.org/ammin/article/108/5/987/622882/Recycled-carbonates-in-the-mantle-sources-of https://www.degruyter.com/doi/10.2138/am-2022-8382 https://www.proquest.com/docview/2811137231 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReKq6iMJAfxlOVkTpOm-ytoLEKCZ46VBBSZDt2F21NpjXR1P0mfiTHdi5uNRDsJYoSu0lzvvh85-RcEDociwkHzc48UDaBRxWnHqdceJIRMiFKjYnpGfnl63h2Rj8vwkWv98uJWqpKfiRu78wruY9U4RjIVWfJ_odk2x-FA7AP8oUtSBi2_yRj4HwbOJTq-tJcu8FNdJXhkit4YpdyaH3zNlyD2RIbF2zFVLUEqrm2aem3WS6G2booiyupyxi7yZcNb513CSj5cJWZUtVt7pD1aBsLX2ZthE9WGc_qucyX3rRwHNTGOfvjPEs7YH43YxeV9GZV5joiiBP2Z4OR2mtrcDUxp5pO27vbWoVhsm8jM4-kXXhjGnr6G-rWyuxHDgRDZ52Nay1tVXZsG1nvagMyMrXf2QpAAyZ3FNg2R9tFt3eUYRuiCMaRnp-wVaJnJ3q2ztSAKz9A-wSMElhV96enH06-tQY-CcK47dAI_88mWuifee_exBYF6i9lXbVUmhq5W5ZO_8bETKRyeV1tyuYbvaE-88eoX9sseGoB-AT1ZP4UPTw1PaE3z9DPBoa4gyHOcgwwxBaGuIYhLhSuYYgdGB7jKdYgxDUIsQPC5-js08n848yrm3Z4LJjQ0ouAIYpxOpEpEZRyFfjc1xWPRlKoOIpiPw2FgpOSqRRMfymCkI14xGA3CsdpHLxAe3mRy5cI-yKlCuwVBXqFhkSAADQ7ZZwGVBA-GqBh8xwTUVe0141VLpO7hDdA79rRV7aSyx_GHe6IJKlf-bUeFCRA4kc-HaCDRk7O-QioQwDQgHujO7LrRv0FWq_uN-01etS9kQdor7yu5BsgyyV_W2P0N9lHv_c |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLemTgguHZ9a2QAfthPKmtpO4iJxKLCtYx-nDfWAFGzHLtWapGoSTd1fxb_Cf8RzPrqtwAVpB26R_JI4fs9-vxc__x5CO74KJHh24YCzoQ4zkjmSSeVoQUhAjPFJWTPy9MwfXrDPI2-0hn40Z2FsWmWkx_NikVcMqd0oVYX9UdZwDZAe5V0Rg3ohjOKUk-73PJ7WaZXHenEFQVv2_ugTaHiXkIP9849Dp64r4AgasNyBmMZXfhToiCjGpKGudC0pS08r0-e870aeMtCohYkgOtGKeqInuYBL7vmRpV-CRX-dW96XFlofHH7Y_7IM8gj1-ssqfS4bVcn2v3X6jhtsj3XNXKlLntQ7aLd9Ve6bLwfllvs72EA_m4Grsl4u94pc7qnrFU7J_2lkH6N2jcXxoJo8T9CaTp6iB4dlrePFM_QVIPUCGiKsxFzaXQad4UmCATLjGAxyqnG19ZHh1OCSIRWediliYYoxIPnsHR7g60mi8CRL83Sm8ezmZOtzdHEvn_YCtZI00ZsIuypiBnC4gfWSeURxYkEvFZJRpojsddDbxjZCVTO124Ih0xAiNqukUMShVVJoldRBu0vpWcVQ8he5nRUzC-vlKrNCNARwCrF5B203tnernYNLpAHEAh3EVuzxRupPb7WHW_o8ePlvt71BD4fnpyfhydHZ8RZ6ZLtZJZtuo1Y-L_QrAIS5fF3PQYy-3bdx_gIkQW2F |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VqUBcUn5FaIE9tCfkxt5d2xskDoE2bSlUHCjKAcnd3yhqY0exrSp9KV6FR2I2ttM2wAWpB26Wdmyvd2Z3vvHOfoPQdqRiCZ5deOBsqMesZJ5kUnlGEBITayOyqBn5-SQ6PGUfh-FwDf1ozsK4tEptRrNyXlQMqV2dqdL9KGu4BkhAeVdMQL0QRnHKSXeqbZ1VeWzmlxCz5e-O9kDBO4QM9r9-OPTqsgKeoDErPAhpIhXp2GiiGJOW-tJ3nCyBUbbHec_XobLQaITVEJwYRUMRSC7gkoeRduxLsOavcxb4vIXW-wfv978tYzxCw96ySJ_PhlWu_W99vuUF2yNTE1eaBU3qLbDbvlxsmy_H5Ib3G2ygn824VUkv57tlIXfV1Qql5H80sA9Ru0biuF9NnUdozaSP0b2DRaXj-RP0HQD1HBo0VmIm3R6DyfE4xQCY8QTM8cLgauMjx5nFC35UeNq5mAhbjgDH529xH1-NU4XHeVZkU4On1-dan6LTO_m0Z6iVZql5jrCvNLOAwi2sliwkihMHeamQjDJFZNBBbxrTSFTN0-7KhVwkEK85HSVikjgdJU5HHbSzlJ5W_CR_kdtesbKkXqxyJ0QTgKYQmXfQVmN6N9o5OEQaQyTQQWzFHK-l_vRWd7Slx-MX_3bba3T_y94g-XR0cryJHrheVpmmW6hVzErzEtBgIV_VMxCjs7u2zV9Rhmws |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recycled+carbonates+in+the+mantle+sources+of+natural+kamafugites%3A+A+zinc+isotope+perspective&rft.jtitle=The+American+mineralogist&rft.au=Ma%2C+Lei&rft.au=Liu%2C+Sheng-Ao&rft.au=Zhao%2C+Zhidan&rft.au=Yu%2C+Xue-Hui&rft.date=2023-05-01&rft.pub=Mineralogical+Society+of+America&rft.issn=0003-004X&rft.eissn=1945-3027&rft.volume=108&rft.issue=5&rft.spage=987&rft.epage=998&rft_id=info:doi/10.2138%2Fam-2022-8382&rft.externalDBID=n%2Fa&rft.externalDocID=10_2138_am_2022_83821085987 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-004X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-004X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-004X&client=summon |