Recycled carbonates in the mantle sources of natural kamafugites; a zinc isotope perspective

Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO2. Nevertheless, there is not yet direct evidence for a CO2-rich mantle source and the possible presence of recyc...

Full description

Saved in:
Bibliographic Details
Published inThe American mineralogist Vol. 108; no. 5; pp. 987 - 998
Main Authors Ma Lei, Ma Lei, Liu Shengao, Liu Shengao, Zhao Zhidan, Zhao Zhidan, Yu Xuehui, Yu Xuehui
Format Journal Article
LanguageEnglish
Published Washington Mineralogical Society of America 01.05.2023
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO2. Nevertheless, there is not yet direct evidence for a CO2-rich mantle source and the possible presence of recycled carbonates in the source of natural kamafugites. Marine carbonates have a heavier zinc isotopic composition (δ66Zn) than that of the mantle by up to 1.0 per mille, making zinc isotopes a sensitive tracer for recycled carbonates in the sources of mantle-derived magmas. Here we take Cenozoic kamafugites from the West Qinling orogen in China as an example to address the origin of this rare volcanic rock. The West Qinling kamafugites are strongly silica-undersaturated (SiO2 = 37.0 to 43.0 wt%) and have significantly higher δ66Zn (0.30 per mille to 0.47 per mille) than that of the normal mantle (0.18±0.05 per mille). No correlation δ66Zn and MgO or SiO2 contents is observed, indicating that δ66Zn was not a result of magmatic differentiation. Modeling of melting indicates that even at extremely low degree (∼0.5%), partial melting of a normal peridotitic source is still unlikely to produce silicate δ66Zn values exceeding 0.30 per mille. Thus, the elevated δ66Zn of the West Qinling kamafugites demonstrates the presence of recycled carbonates in their mantle sources. Binary-mixing modeling suggests that the source contains ∼5 to 15% recycled carbonates, which is supported by the positive correlation between 2D66Zn and CaO/Al2O3. Overall, the West Qinling kamafugites represent the products of low-degree partial melting of a recycled carbonate-bearing peridotite source, which provides evidence for an important role of recycled carbonates in the origin of natural kamafugite suites.
AbstractList Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO . Nevertheless, there is not yet direct evidence for a CO -rich mantle source and the possible presence of recycled carbonates in the source of natural kamafugites. Marine carbonates have a heavier zinc isotopic composition (δ Zn) than that of the mantle by up to 1.0‰, making zinc isotopes a sensitive tracer for recycled carbonates in the sources of mantle-derived magmas. Here we take Cenozoic kamafugites from the West Qinling orogen in China as an example to address the origin of this rare volcanic rock. The West Qinling kamafugites are strongly silica-undersaturated (SiO = 37.0 to 43.0 wt%) and have significantly higher δ Zn (0.30‰ to 0.47‰) than that of the normal mantle (0.18 ± 0.05‰). No correlation between δ Zn and MgO or SiO contents is observed, indicating that the high δ Zn was not a result of magmatic differentiation. Modeling of melting indicates that even at extremely low degree (~0.5%), partial melting of a normal peridotitic source is still unlikely to produce silicate melts with δ Zn values exceeding 0.30‰. Thus, the elevated δ Zn of the West Qinling kamafugites demonstrates the presence of recycled carbonates in their mantle sources. Binary-mixing modeling suggests that the source contains ~5 to 15% recycled carbonates, which is supported by the positive correlation between δ Zn and CaO/Al . Overall, the West Qinling kamafugites represent the products of low-degree partial melting of a recycled carbonate-bearing peridotite source, which provides evidence for an important role of recycled carbonates in the origin of natural kamafugite suites.
Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO2. Nevertheless, there is not yet direct evidence for a CO2-rich mantle source and the possible presence of recycled carbonates in the source of natural kamafugites. Marine carbonates have a heavier zinc isotopic composition (δ66Zn) than that of the mantle by up to 1.0 per mille, making zinc isotopes a sensitive tracer for recycled carbonates in the sources of mantle-derived magmas. Here we take Cenozoic kamafugites from the West Qinling orogen in China as an example to address the origin of this rare volcanic rock. The West Qinling kamafugites are strongly silica-undersaturated (SiO2 = 37.0 to 43.0 wt%) and have significantly higher δ66Zn (0.30 per mille to 0.47 per mille) than that of the normal mantle (0.18±0.05 per mille). No correlation δ66Zn and MgO or SiO2 contents is observed, indicating that δ66Zn was not a result of magmatic differentiation. Modeling of melting indicates that even at extremely low degree (∼0.5%), partial melting of a normal peridotitic source is still unlikely to produce silicate δ66Zn values exceeding 0.30 per mille. Thus, the elevated δ66Zn of the West Qinling kamafugites demonstrates the presence of recycled carbonates in their mantle sources. Binary-mixing modeling suggests that the source contains ∼5 to 15% recycled carbonates, which is supported by the positive correlation between 2D66Zn and CaO/Al2O3. Overall, the West Qinling kamafugites represent the products of low-degree partial melting of a recycled carbonate-bearing peridotite source, which provides evidence for an important role of recycled carbonates in the origin of natural kamafugite suites.
Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO2. Nevertheless, there is not yet direct evidence for a CO2-rich mantle source and the possible presence of recycled carbonates in the source of natural kamafugites. Marine carbonates have a heavier zinc isotopic composition (δ66Zn) than that of the mantle by up to 1.0‰, making zinc isotopes a sensitive tracer for recycled carbonates in the sources of mantle-derived magmas. Here we take Cenozoic kamafugites from the West Qinling orogen in China as an example to address the origin of this rare volcanic rock. The West Qinling kamafugites are strongly silica-undersaturated (SiO2 = 37.0 to 43.0 wt%) and have significantly higher δ66Zn (0.30‰ to 0.47‰) than that of the normal mantle (0.18 ± 0.05‰). No correlation between δ66Zn and MgO or SiO2 contents is observed, indicating that the high δ66Zn was not a result of magmatic differentiation. Modeling of melting indicates that even at extremely low degree (~0.5%), partial melting of a normal peridotitic source is still unlikely to produce silicate melts with δ66Zn values exceeding 0.30‰. Thus, the elevated δ66Zn of the West Qinling kamafugites demonstrates the presence of recycled carbonates in their mantle sources. Binary-mixing modeling suggests that the source contains ~5 to 15% recycled carbonates, which is supported by the positive correlation between δ66Zn and CaO/Al2O3. Overall, the West Qinling kamafugites represent the products of low-degree partial melting of a recycled carbonate-bearing peridotite source, which provides evidence for an important role of recycled carbonates in the origin of natural kamafugite suites.
Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced experimentally in the presence of CO2. Nevertheless, there is not yet direct evidence for a CO2-rich mantle source and the possible presence of recycled carbonates in the source of natural kamafugites. Marine carbonates have a heavier zinc isotopic composition (δ66Zn) than that of the mantle by up to 1.0‰, making zinc isotopes a sensitive tracer for recycled carbonates in the sources of mantle-derived magmas. Here we take Cenozoic kamafugites from the West Qinling orogen in China as an example to address the origin of this rare volcanic rock. The West Qinling kamafugites are strongly silica-undersaturated (SiO2 = 37.0 to 43.0 wt%) and have significantly higher δ66Zn (0.30‰ to 0.47‰) than that of the normal mantle (0.18 ± 0.05‰). No correlation between δ66Zn and MgO or SiO2 contents is observed, indicating that the high δ66Zn was not a result of magmatic differentiation. Modeling of melting indicates that even at extremely low degree (~0.5%), partial melting of a normal peridotitic source is still unlikely to produce silicate melts with δ 66Zn values exceeding 0.30‰. Thus, the elevated δ66Zn of the West Qinling kamafugites demonstrates the presence of recycled carbonates in their mantle sources. Binary-mixing modeling suggests that the source contains ~5 to 15% recycled carbonates, which is supported by the positive correlation between δ66Zn and CaO/Al2O3. Overall, the West Qinling kamafugites represent the products of low-degree partial melting of a recycled carbonate-bearing peridotite source, which provides evidence for an important role of recycled carbonates in the origin of natural kamafugite suites.
Author Ma Lei, Ma Lei
Liu Shengao, Liu Shengao
Zhao Zhidan, Zhao Zhidan
Yu Xuehui, Yu Xuehui
Author_xml – sequence: 1
  fullname: Ma Lei, Ma Lei
– sequence: 2
  fullname: Liu Shengao, Liu Shengao
– sequence: 3
  fullname: Zhao Zhidan, Zhao Zhidan
– sequence: 4
  fullname: Yu Xuehui, Yu Xuehui
BookMark eNp1kF1rFTEQhoNU8LT1zh8Q8FJXJx-7m6VXUuoHFISi4IUQ5mRnj6m7mzXJWk5_vTkcQRF7lSHzPJnJe8pO5jATY88EvJJCmdc4VRKkrIwy8hHbiE7XlQLZnrANAKgKQH95wk5TuoWCqbrbsK835PZupJ47jNswY6bE_czzN-ITznkknsIaXbkNAy_tNeLIv-OEw7rzBb7gyO_97LhPIYeF-EIxLeSy_0nn7PGAY6Knv88z9vnt1afL99X1x3cfLt9cV6hanSujoXFN31IvndbbQcEWGtkoQW7ojOmgr91QmoRDL3VHTtUotgZLaeqm79QZe358d4nhx0op29uy81xGWmmEEKqVShTq5ZFyMaQUabBL9BPGvRVgD_lZnOwhP3vIr-DyH9z5jNmHOUf040PSxVG6wzFT7GkX130p_iz0P02AqTvTFvvF0d5RSM7T7OguxLH_6zsglYVGC9DqF-TEmKo
CitedBy_id crossref_primary_10_1016_j_chemgeo_2023_121835
Cites_doi 10.1016/j.gca.2012.11.009
10.1016/j.lithos.2014.05.009
10.1016/j.jseaes.2011.03.002
10.1007/s00410-012-0837-2
10.1016/j.gca.2018.07.012
10.1016/j.lithos.2010.01.004
10.1093/petrology/egy057
10.1016/j.epsl.2004.08.004
10.1016/j.chemgeo.2007.04.009
10.1093/petrology/egi029
10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2
10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
10.1007/s00410-003-0452-3
10.1093/petroj/39.1.29
10.1016/j.chemgeo.2012.05.019
10.1016/j.gca.2022.03.009
10.1144/GSL.SP.1989.042.01.19
10.1002/2016JB013095
10.1016/j.lithos.2017.12.013
10.1016/S0012-8252(02)00064-8
10.1093/petrology/egl007
10.1029/2018JB017125
10.1016/S0012-821X(03)00106-7
10.1093/petrology/egm053
10.1016/j.chemgeo.2016.09.016
10.1007/s004100100308
10.1016/j.gca.2010.02.004
10.1016/j.chemgeo.2016.01.016
10.1093/petrology/27.3.745
10.1016/j.chemgeo.2009.02.015
10.2138/am.2014.4507
10.1029/97GL02956
10.1007/s004100050230
10.3749/canmin.46.1.19
10.1180/002646100549652
10.1016/j.gca.2016.11.014
10.1007/s004100100238
10.1016/S0009-2541(98)00191-0
10.1130/G38644.1
10.1016/j.jseaes.2008.05.009
10.1016/j.gr.2015.06.009
10.1002/jgrb.50292
10.1111/j.1751-908X.2014.00298.x
10.1016/j.earscirev.2020.103174
10.1016/j.gr.2012.09.007
10.1016/j.earscirev.2022.104010
10.1130/G45145.1
10.1038/300171a0
10.2138/rmg.2017.82.13
10.1093/petrology/egx038
10.1016/j.lithos.2013.07.012
10.1029/2019JB017405
10.1016/j.gca.2019.04.026
10.1016/j.jseaes.2013.09.012
10.1029/2020JB020684
10.1016/j.lithos.2005.03.019
10.1080/00206814.2016.1157709
10.1016/0012-821X(75)90218-6
10.1016/0012-8252(87)90001-8
10.1180/0026461026640049
10.1016/j.epsl.2012.01.023
10.1016/j.epsl.2013.02.037
10.1093/petrology/egq049
10.1007/s11430-007-2015-3
10.1093/nsr/nww070
10.1016/j.chemgeo.2017.12.006
10.1016/j.chemgeo.2012.06.016
10.1016/j.lithos.2010.04.002
10.1016/j.epsl.2016.03.051
10.1086/667956
10.1093/petrology/egt023
10.1093/petrology/44.7.1163
10.1016/j.lithos.2020.105627
10.1016/j.gca.2018.07.021
10.1093/petrology/egab025
ContentType Journal Article
Copyright GeoRef, Copyright 2023, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America
2023 by Mineralogical Society of America
Copyright_xml – notice: GeoRef, Copyright 2023, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America
– notice: 2023 by Mineralogical Society of America
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
DOI 10.2138/am-2022-8382
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1945-3027
EndPage 998
ExternalDocumentID 10_2138_am_2022_8382
10_2138_am_2022_83821085987
2023_064104
GroupedDBID -DZ
-~X
.DC
0R~
186
23M
2WC
3V.
4.4
5GY
6J9
7XC
88I
8FE
8FH
8G5
8WZ
9M8
A6W
AAAEU
AAFPC
AAGVJ
AAKRG
AALGR
AAONY
AAPJK
AAQCX
AASQH
AASQN
AAWFE
AAXCG
AAXMT
ABABW
ABAQN
ABEFU
ABFKT
ABJNI
ABPLS
ABPPZ
ABRQL
ABTAH
ABUWG
ABVMU
ABWLS
ACEFL
ACGFS
ACGOD
ACMKP
ACNCT
ACPMA
ACSFO
ACXLN
ACZBO
ADEQT
ADFRT
ADGQD
ADGYE
ADOZN
AEGVQ
AEICA
AEKEB
AENEX
AEQDQ
AERZL
AEUFC
AFBAA
AFCXV
AFGNR
AFKRA
AFRAH
AFYRI
AGBEV
AGCDD
AGWTP
AHVWV
AHXUK
AI.
AIKXB
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMAVY
ASYPN
ATCPS
AZMOX
AZQEC
BAKPI
BBCWN
BBDJO
BCIFA
BDLBQ
BENPR
BHPHI
BKSAR
BPHCQ
C1A
CCPQU
CS3
DBYYV
DWQXO
EBS
EJD
FA8
FRP
FSTRU
GNUQQ
GOHGZ
GUQSH
H13
HCIFZ
HF~
HH5
HZ~
IY9
KDIRW
LK5
LPU
M2O
M2P
M7R
MV1
MVM
O9-
OHT
OK1
PADUT
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
QD8
R05
RGW
RMN
RNS
S10
SLJYH
TAE
TN5
UK5
VH1
WH7
WHG
WTRAM
XJT
XOL
ZCA
ZCG
ZKB
ZY4
~02
ACDEB
ACUND
AECWL
AFBDD
AIWOI
AAYXX
CITATION
7TN
ADNPR
F1W
H96
L.G
ID FETCH-LOGICAL-a374t-8406c6d7ed2c44bf30b062631ecf98890d5cfed2eafd249ec35a1b8a49e856d93
ISSN 0003-004X
IngestDate Sat Aug 16 19:51:28 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Tue Jul 01 03:21:05 EDT 2025
Thu Jul 10 10:33:42 EDT 2025
Tue Oct 29 04:55:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a374t-8406c6d7ed2c44bf30b062631ecf98890d5cfed2eafd249ec35a1b8a49e856d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2811137231
PQPubID 4640
PageCount 12
ParticipantIDs proquest_journals_2811137231
crossref_primary_10_2138_am_2022_8382
crossref_citationtrail_10_2138_am_2022_8382
walterdegruyter_journals_10_2138_am_2022_83821085987
geoscienceworld_journals_2023_064104
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle The American mineralogist
PublicationYear 2023
Publisher Mineralogical Society of America
Walter de Gruyter GmbH
Publisher_xml – name: Mineralogical Society of America
– name: Walter de Gruyter GmbH
References Dong (2023050102292595500_B17) 2016; 29
Le Bas (2023050102292595500_B44) 1986; 27
Kushiro (2023050102292595500_B42) 1975; 28
Dai (2023050102292595500_B10) 2018; 302-303
Deines (2023050102292595500_B16) 2002; 58
Guo (2023050102292595500_B30) 2014; 79
Wu (2023050102292595500_B83) 2013; 23
Liu (2023050102292595500_B51) 2016; 444
Kushiro (2023050102292595500_B43) 1996
Grassi (2023050102292595500_B26) 2012; 327–328
Yu (2023050102292595500_B90) 2009; 16
Hirose (2023050102292595500_B31) 1997; 24
Liu (2023050102292595500_B54) 2019; 257
Javoy (2023050102292595500_B39) 1982; 300
Liu (2023050102292595500_B57) 2022; 228
Bizimis (2023050102292595500_B4) 2003; 145
Liu (2023050102292595500_B53) 2018; 46
Feng (2023050102292595500_B21) 2002
Kiseeva (2023050102292595500_B41) 2013; 54
Yu (2023050102292595500_B86) 2001; 31
Martin (2023050102292595500_B61) 2012; 320–321
Castorina (2023050102292595500_B7) 2000; 64
Jin (2023050102292595500_B40) 2020; 370–371
Liu (2023050102292595500_B55) 2020; 125
Su (2023050102292595500_B71) 2009; 34
Walter (2023050102292595500_B77) 1998; 39
Beier (2023050102292595500_B2) 2013; 165
Carlson (2023050102292595500_B6) 2007; 242
Moynier (2023050102292595500_B65) 2017; 82
Yu (2023050102292595500_B87) 2003; 19
Dasgupta (2023050102292595500_B12) 2007; 48
Davis (2023050102292595500_B13) 2013; 104
Luth (2023050102292595500_B58) 2001; 141
Su (2023050102292595500_B73) 2012; 120
Debret (2023050102292595500_B15) 2018; 59
Dai (2023050102292595500_B9) 2017; 58
Wiedenmann (2023050102292595500_B82) 2010; 118
Wang (2023050102292595500_B80) 2018; 46
Foley (2023050102292595500_B22) 1987; 24
Gerbode (2023050102292595500_B24) 2010; 51
Bailey (2023050102292595500_B1) 2005; 85
Ducher (2023050102292595500_B20) 2016; 443
Sossi (2023050102292595500_B68) 2015; 39
Wasylenki (2023050102292595500_B81) 2003; 44
Dong (2023050102292595500_B18) 2008; 24
Le Roux (2023050102292595500_B45) 2010; 74
Mattsson (2023050102292595500_B62) 2013; 179
Rudnick (2023050102292595500_B67) 2003; 3
Yu (2023050102292595500_B89) 2005; 50
Li (2023050102292595500_B46) 2013; 118
Maréchal (2023050102292595500_B60) 1999; 156
Gittins (2023050102292595500_B25) 2003; 72
Huang (2023050102292595500_B36) 2016; 121
Li (2023050102292595500_B49) 2017; 4
Day (2023050102292595500_B14) 2014; 202–203
Sossi (2023050102292595500_B69) 2018; 477
Stoppa (2023050102292595500_B70) 2002; 66
McCoy-West (2023050102292595500_B63) 2018; 238
Wang (2023050102292595500_B79) 2017; 198
Yu (2023050102292595500_B85) 1998; 5
Carlson (2023050102292595500_B5) 1996; 125
Guo (2023050102292595500_B29) 2006; 47
Beunon (2023050102292595500_B3) 2020; 205
Yang (2023050102292595500_B84) 2019; 124
Li (2023050102292595500_B48) 2014; 99
Pichat (2023050102292595500_B66) 2003; 210
Wang (2023050102292595500_B78) 2021; 62
Huang (2023050102292595500_B35) 2016; 58
Gudfinnsson (2023050102292595500_B28) 2005; 46
Dasgupta (2023050102292595500_B11) 2004; 227
Guarino (2023050102292595500_B27) 2013; 353
Sun (2023050102292595500_B74) 1989; 42
Li (2023050102292595500_B47) 2013
Lv (2023050102292595500_B59) 2016; 445
Huang (2023050102292595500_B37) 2018; 238
Huang (2023050102292595500_B38) 2019; 124
Liu (2023050102292595500_B52) 2017; 45
Hoernle (2023050102292595500_B33) 2002; 142
Liu (2023050102292595500_B50) 2019; 5
Dong (2023050102292595500_B19) 2011; 41
Turekian (2023050102292595500_B76) 1961; 72
Chen (2023050102292595500_B8) 2013; 369–370
Zhang (2023050102292595500_B91) 2007; 50
Hirschmann (2023050102292595500_B32) 2003; 31
Hofmann (2023050102292595500_B34) 2003; 2
Yu (2023050102292595500_B88) 2004; 20
Melluso (2023050102292595500_B64) 2008; 46
Su (2023050102292595500_B72) 2010; 116
Tappe (2023050102292595500_B75) 2003; 72
Frezzotti (2023050102292595500_B23) 2009; 262
Liu (2023050102292595500_B56) 2022; 324
References_xml – volume: 46
  start-page: 1027
  year: 2018
  ident: 2023050102292595500_B53
  article-title: Perovskite U-Pb and Sr-Nd isotopic perspectives on melilitite magmatism and outward growth of the Tibetan plateau
  publication-title: Geology
– volume: 104
  start-page: 232
  year: 2013
  ident: 2023050102292595500_B13
  article-title: Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2012.11.009
– volume: 202–203
  start-page: 76
  year: 2014
  ident: 2023050102292595500_B14
  article-title: Oxygen isotope systematics of south African olivine melilitites and implications for HIMU mantle reservoirs
  publication-title: Lithos
  doi: 10.1016/j.lithos.2014.05.009
– volume: 41
  start-page: 213
  year: 2011
  ident: 2023050102292595500_B19
  article-title: Tectonic evolution of the Qinling Orogen, China: Review and synthesis
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2011.03.002
– volume: 165
  start-page: 823
  year: 2013
  ident: 2023050102292595500_B2
  article-title: Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-012-0837-2
– volume: 238
  start-page: 85
  year: 2018
  ident: 2023050102292595500_B37
  article-title: Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2018.07.012
– volume: 116
  start-page: 111
  year: 2010
  ident: 2023050102292595500_B72
  article-title: Compositionally stratified lithosphere and carbonatite metasomatism recorded in mantle xenoliths from the Western Qinling (Central China)
  publication-title: Lithos
  doi: 10.1016/j.lithos.2010.01.004
– volume: 24
  start-page: 238
  year: 2008
  ident: 2023050102292595500_B18
  article-title: Geochemistry of the Cenozoic Kamafugites from West Qinling and constraint for the nature of magma source region
  publication-title: Yanshi Xuebao
– volume: 59
  start-page: 1145
  year: 2018
  ident: 2023050102292595500_B15
  article-title: Carbonate transfer during the onset of slab devolatilization: New insights from Fe and Zn stable isotopes
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egy057
– volume: 227
  start-page: 73
  year: 2004
  ident: 2023050102292595500_B11
  article-title: Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2004.08.004
– volume: 242
  start-page: 415
  year: 2007
  ident: 2023050102292595500_B6
  article-title: Chemical and isotopic relationships between peridotite xenoliths and maficultrapotassic rocks from Southern Brazil
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2007.04.009
– volume: 46
  start-page: 1645
  year: 2005
  ident: 2023050102292595500_B28
  article-title: Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egi029
– volume: 31
  start-page: 481
  year: 2003
  ident: 2023050102292595500_B32
  article-title: Alkalic magmas generated by partial melting of garnet pyroxenite
  publication-title: Geology
  doi: 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2
– volume: 72
  start-page: 175
  year: 1961
  ident: 2023050102292595500_B76
  article-title: Distribution of the elements in some major units of the Earth’s crust
  publication-title: Geological Society of America Bulletin
  doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
– volume: 145
  start-page: 281
  year: 2003
  ident: 2023050102292595500_B4
  article-title: The brevity of carbonatite sources in the mantle: Evidence from Hf isotopes
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-003-0452-3
– volume: 39
  start-page: 29
  year: 1998
  ident: 2023050102292595500_B77
  article-title: Melting of garnet peridotite and the origin of komatiite and depleted lithosphere
  publication-title: Journal of Petrology
  doi: 10.1093/petroj/39.1.29
– volume: 320–321
  start-page: 96
  year: 2012
  ident: 2023050102292595500_B61
  article-title: Element partitioning between immiscible carbonatitekamafugite melts with application to the Italian ultrapotassic suite
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2012.05.019
– start-page: 109
  volume-title: Earth Processes: Reading the Isotopic Code
  year: 1996
  ident: 2023050102292595500_B43
  article-title: Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond
– volume: 324
  start-page: 156
  year: 2022
  ident: 2023050102292595500_B56
  article-title: Contrasting fates of subducting carbon related to different oceanic slabs in East Asia
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2022.03.009
– volume: 16
  start-page: 79
  year: 2009
  ident: 2023050102292595500_B90
  article-title: Two types of Cenozoic potassic volcanic rocks in West Qinling, Gansu Province: Their petrology, geochemistry and petrogenesis
  publication-title: Earth Science Frontiers
– volume: 42
  start-page: 313
  year: 1989
  ident: 2023050102292595500_B74
  article-title: Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes
  publication-title: Special Publication—Geological Society of London
  doi: 10.1144/GSL.SP.1989.042.01.19
– volume: 121
  start-page: 7086
  year: 2016
  ident: 2023050102292595500_B36
  article-title: Copper and zinc isotope systematics of altered oceanic crust at IODP site 1256 in the eastern equatorial pacific
  publication-title: Journal of Geophysical Research. Solid Earth
  doi: 10.1002/2016JB013095
– volume: 20
  start-page: 483
  year: 2004
  ident: 2023050102292595500_B88
  article-title: Trace element, REE and Sr, Nd, Pb isotopic geochemistry of Cenozoic kamafugites and carbonatites from west Qinling, Gansu Province: Implication of plume-lithosphere interaction
  publication-title: Yanshi Xuebao
– volume: 302-303
  start-page: 86
  year: 2018
  ident: 2023050102292595500_B10
  article-title: Geochemical insights into the lithology of mantle sources for cenozoic alkali basalts in West Qinling, China
  publication-title: Lithos
  doi: 10.1016/j.lithos.2017.12.013
– volume: 58
  start-page: 247
  year: 2002
  ident: 2023050102292595500_B16
  article-title: The carbon isotope geochemistry of mantle xenoliths
  publication-title: Earth-Science Reviews
  doi: 10.1016/S0012-8252(02)00064-8
– volume: 47
  start-page: 1177
  year: 2006
  ident: 2023050102292595500_B29
  article-title: Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egl007
– volume: 2
  start-page: 568
  year: 2003
  ident: 2023050102292595500_B34
  article-title: Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements
  publication-title: Treatise on Geochemistry
– volume: 124
  start-page: 3588
  year: 2019
  ident: 2023050102292595500_B38
  article-title: Mantle Zn isotopic heterogeneity caused by melt-rock reaction: Evidence from Fe-rich peridotites and pyroxenites from the Bohemian Massif, Central Europe
  publication-title: Journal of Geophysical Research. Solid Earth
  doi: 10.1029/2018JB017125
– volume: 210
  start-page: 167
  year: 2003
  ident: 2023050102292595500_B66
  article-title: Zinc isotope variations in deep sea carbonates from the eastern equatorial Pacific over the last 175 ka
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/S0012-821X(03)00106-7
– volume: 48
  start-page: 2093
  year: 2007
  ident: 2023050102292595500_B12
  article-title: Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egm053
– volume: 443
  start-page: 87
  year: 2016
  ident: 2023050102292595500_B20
  article-title: Equilibrium zinc isotope fractionation in Zn-bearing minerals from first-principles calculations
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2016.09.016
– volume: 142
  start-page: 520
  year: 2002
  ident: 2023050102292595500_B33
  article-title: Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s004100100308
– volume: 74
  start-page: 2779
  year: 2010
  ident: 2023050102292595500_B45
  article-title: Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2010.02.004
– volume: 19
  start-page: 105
  year: 2003
  ident: 2023050102292595500_B87
  article-title: Discovery and significance of Cenozoic volcanic carbonatite in Lixian, Gansu Province
  publication-title: Yanshi Xuebao
– volume: 72
  start-page: 51
  year: 2003
  ident: 2023050102292595500_B75
  article-title: The kamafugites of Uganda: A mineralogical and geochemical comparison with their Italian and Brazilian analogues
  publication-title: Periodico di Mineralogia
– volume: 445
  start-page: 24
  year: 2016
  ident: 2023050102292595500_B59
  article-title: Copper and zinc isotope fractionation during deposition and weathering of highly metalliferous black shales in central China
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2016.01.016
– volume: 27
  start-page: 745
  year: 1986
  ident: 2023050102292595500_B44
  article-title: A chemical classification of volcanic rocks based on the total alkali-silica diagram
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/27.3.745
– volume: 262
  start-page: 108
  year: 2009
  ident: 2023050102292595500_B23
  article-title: Carbonate metasomatism and CO2 lithosphere-asthenosphere degassing beneath the western Mediterranean: An integrated model arising from petrological and geophysical data
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2009.02.015
– volume: 99
  start-page: 206
  year: 2014
  ident: 2023050102292595500_B48
  article-title: Compositional zoning in dolomite from lawsonite-bearing eclogite (SW Tianshan, China): Evidence for prograde metamorphism during subduction of oceanic crust
  publication-title: American Mineralogist
  doi: 10.2138/am.2014.4507
– volume: 24
  start-page: 2837
  year: 1997
  ident: 2023050102292595500_B31
  article-title: Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation
  publication-title: Geophysical Research Letters
  doi: 10.1029/97GL02956
– volume: 5
  start-page: 319
  year: 1998
  ident: 2023050102292595500_B85
  article-title: Sr, Nd, isotope and trace elements geochemical features of the Cenozoic volcanic rocks front West Qinling, Gansu Province
  publication-title: Earth Science Frontiers
– volume: 125
  start-page: 393
  year: 1996
  ident: 2023050102292595500_B5
  article-title: Chemical and Os isotopic study of Cretaceous potassic rocks from southern Brazil
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s004100050230
– volume: 46
  start-page: 1399
  year: 2008
  ident: 2023050102292595500_B64
  article-title: Major and trace element composition of olivine, perovskite, clinopyroxene, Cr-Fe-Ti oxides, phlogopite and host kamafugites and kimberlites, Alto Paranaiba, Brazil
  publication-title: Canadian Mineralogist
  doi: 10.3749/canmin.46.1.19
– volume: 64
  start-page: 625
  year: 2000
  ident: 2023050102292595500_B7
  article-title: An enriched mantle source for Italy’s melilitite-carbonatite association as inferred by its Nd-Sr isotope signature
  publication-title: Mineralogical Magazine
  doi: 10.1180/002646100549652
– volume: 198
  start-page: 151
  year: 2017
  ident: 2023050102292595500_B79
  article-title: Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2016.11.014
– volume: 141
  start-page: 222
  year: 2001
  ident: 2023050102292595500_B58
  article-title: Experimental determination of the reaction aragonite + magnesite = dolomite at 5 to 9 GPa
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s004100100238
– volume: 156
  start-page: 251
  year: 1999
  ident: 2023050102292595500_B60
  article-title: Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry
  publication-title: Chemical Geology
  doi: 10.1016/S0009-2541(98)00191-0
– volume: 45
  start-page: 343
  year: 2017
  ident: 2023050102292595500_B52
  article-title: Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction
  publication-title: Geology
  doi: 10.1130/G38644.1
– volume: 34
  start-page: 258
  year: 2009
  ident: 2023050102292595500_B71
  article-title: Nature and processes of the lithospheric mantle beneath the western Qinling: Evidence from deformed peridotitic xenoliths in Cenozoic kamafugite from Haoti, Gansu Province, China
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2008.05.009
– volume: 29
  start-page: 1
  year: 2016
  ident: 2023050102292595500_B17
  article-title: Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China
  publication-title: Gondwana Research
  doi: 10.1016/j.gr.2015.06.009
– volume: 118
  start-page: 4170
  year: 2013
  ident: 2023050102292595500_B46
  article-title: Shear wave structure in the northeastern Tibetan plateau from Rayleigh wave tomography
  publication-title: Journal of Geophysical Research. Solid Earth
  doi: 10.1002/jgrb.50292
– volume: 39
  start-page: 129
  year: 2015
  ident: 2023050102292595500_B68
  article-title: Combined separation of cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination
  publication-title: Geostandards and Geoanalytical Research
  doi: 10.1111/j.1751-908X.2014.00298.x
– volume: 205
  start-page: 103174
  year: 2020
  ident: 2023050102292595500_B3
  article-title: Mantle Heterogeneity through Zn systematics in Oceanic Basalts: Evidence for a Deep Carbon Cycling
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2020.103174
– volume: 72
  start-page: 19
  year: 2003
  ident: 2023050102292595500_B25
  article-title: Myth and reality in the carbonatite-silicate rock “association.”
  publication-title: Periodico di Mineralogia
– volume: 23
  start-page: 1402
  year: 2013
  ident: 2023050102292595500_B83
  article-title: Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China
  publication-title: Gondwana Research
  doi: 10.1016/j.gr.2012.09.007
– volume: 228
  start-page: 104010
  year: 2022
  ident: 2023050102292595500_B57
  article-title: The fate of subducting carbon tracked by Mg and Zn isotopes: A review and new perspectives
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2022.104010
– volume: 46
  start-page: 771
  year: 2018
  ident: 2023050102292595500_B80
  article-title: Compositional transition in natural alkaline lavas through silica-undersaturated melt–litho-sphere interaction
  publication-title: Geology
  doi: 10.1130/G45145.1
– volume: 300
  start-page: 171
  year: 1982
  ident: 2023050102292595500_B39
  article-title: Carbon geodynamic cycle
  publication-title: Nature
  doi: 10.1038/300171a0
– volume: 82
  start-page: 543
  year: 2017
  ident: 2023050102292595500_B65
  article-title: The isotope geochemistry of zinc and copper
  publication-title: Reviews in Mineralogy and Geochemistry
  doi: 10.2138/rmg.2017.82.13
– start-page: 172
  year: 2013
  ident: 2023050102292595500_B47
  article-title: Petrology and geochemistry of the early Mesozoic pyroxene andesites in the Maixiu Area, West Qinling, China: Products of subduction or syn-collision?
  publication-title: Lithos
– volume: 58
  start-page: 863
  year: 2017
  ident: 2023050102292595500_B9
  article-title: Geochemical distinction between carbonate and silicate metasomatism in generating the mantle sources of alkali basalts
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egx038
– volume: 179
  start-page: 175
  year: 2013
  ident: 2023050102292595500_B62
  article-title: Petrogenesis of the melilititic and nephelinitic rock suites in the Lake Natron-Engaruka monogenetic volcanic field, northern Tanzania
  publication-title: Lithos
  doi: 10.1016/j.lithos.2013.07.012
– volume: 124
  start-page: 12537
  year: 2019
  ident: 2023050102292595500_B84
  article-title: Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan large igneous province
  publication-title: Journal of Geophysical Research. Solid Earth
  doi: 10.1029/2019JB017405
– volume: 257
  start-page: 191
  year: 2019
  ident: 2023050102292595500_B54
  article-title: Cu and Zn isotope fractionation during oceanic alteration: Implications for oceanic Cu and Zn cycles
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2019.04.026
– volume: 79
  start-page: 86
  year: 2014
  ident: 2023050102292595500_B30
  article-title: A synthesis and new perspective on the petrogenesis of kamafugites from West Qinling, China, in a global context
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2013.09.012
– volume: 125
  start-page: 1
  year: 2020
  ident: 2023050102292595500_B55
  article-title: Mg and Zn isotope evidence for two types of mantle metasomatism and deep recycling of magnesium carbonates
  publication-title: Journal of Geophysical Research. Solid Earth
  doi: 10.1029/2020JB020684
– volume: 85
  start-page: 15
  year: 2005
  ident: 2023050102292595500_B1
  article-title: Melilitite at Fort Portal, Uganda: Another dimension to the carbonate volcanism
  publication-title: Lithos
  doi: 10.1016/j.lithos.2005.03.019
– year: 2002
  ident: 2023050102292595500_B21
  article-title: Structure, Orogenic Processes and Geodynamic of the Western Qinling Orogen
– volume: 58
  start-page: 1350
  year: 2016
  ident: 2023050102292595500_B35
  article-title: Mg-Sr isotopes of low-δ26Mg basalts tracing recycled carbonate species: Implication for the initial melting depth of the carbonated mantle in Eastern China
  publication-title: International Geology Review
  doi: 10.1080/00206814.2016.1157709
– volume: 28
  start-page: 116
  year: 1975
  ident: 2023050102292595500_B42
  article-title: Carbonate-silicate reactions at high pressures and possible presence of dolomite and magnesite in the upper mantle
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(75)90218-6
– volume: 24
  start-page: 81
  issue: 2
  year: 1987
  ident: 2023050102292595500_B22
  article-title: The ultrapotassic rocks: Characteristics, classification and constraints for petrogenetic models
  publication-title: Earth-Science Reviews
  doi: 10.1016/0012-8252(87)90001-8
– volume: 5
  start-page: 448
  year: 2019
  ident: 2023050102292595500_B50
  article-title: Tracing the deep carbon cycle using metal stable isotopes: Opportunities and challenges
  publication-title: Engineering (Beijing)
– volume: 66
  start-page: 555
  year: 2002
  ident: 2023050102292595500_B70
  article-title: Extension of the melilitecarbonatite province in the Apennines of Italy: The kamafugite of Grotta del Cervo, Abruzzo
  publication-title: Mineralogical Magazine
  doi: 10.1180/0026461026640049
– volume: 327–328
  start-page: 84
  year: 2012
  ident: 2023050102292595500_B26
  article-title: Element partitioning during carbonated pelite melting at 8, 13, and 22 GPa and the sediment signature in the EM mantle components
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2012.01.023
– volume: 31
  start-page: 128
  year: 2001
  ident: 2023050102292595500_B86
  article-title: A study of galherzolite and gawebsterite xenoliths in west Qinling, Gansu Province
  publication-title: Science in China. Series D, Earth Sciences
– volume: 369–370
  start-page: 34
  year: 2013
  ident: 2023050102292595500_B8
  article-title: Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2013.02.037
– volume: 51
  start-page: 2067
  year: 2010
  ident: 2023050102292595500_B24
  article-title: Carbonate-fluxed melting of MORB-like pyroxenite at 2.9 GPa and genesis 681 of HIMU ocean island basalts
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egq049
– volume: 50
  start-page: 184
  year: 2007
  ident: 2023050102292595500_B91
  article-title: Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity
  publication-title: Science in China. Series D, Earth Sciences
  doi: 10.1007/s11430-007-2015-3
– volume: 4
  start-page: 111
  year: 2017
  ident: 2023050102292595500_B49
  article-title: Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China
  publication-title: National Science Review
  doi: 10.1093/nsr/nww070
– volume: 477
  start-page: 73
  year: 2018
  ident: 2023050102292595500_B69
  article-title: Zinc isotope composition of the Earth and its behaviour during planetary accretion
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2017.12.006
– volume: 353
  start-page: 65
  year: 2013
  ident: 2023050102292595500_B27
  article-title: U-Pb ages, Sr-Nd isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopitepicrites of the Alto Paranaíba Igneous Province, Brazil
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2012.06.016
– volume: 118
  start-page: 112
  year: 2010
  ident: 2023050102292595500_B82
  article-title: Melilite-group minerals at Oldoinyo Lengai, Tanzania
  publication-title: Lithos
  doi: 10.1016/j.lithos.2010.04.002
– volume: 444
  start-page: 169
  year: 2016
  ident: 2023050102292595500_B51
  article-title: Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2016.03.051
– volume: 3
  start-page: 1
  year: 2003
  ident: 2023050102292595500_B67
  article-title: Composition of the continental crust
  publication-title: Treatise on Geochemistry
– volume: 120
  start-page: 671
  year: 2012
  ident: 2023050102292595500_B73
  article-title: Metasomatized lithospheric mantle beneath Western Qinling, central China: Insight into activity of carbonatite melts
  publication-title: The Journal of Geology
  doi: 10.1086/667956
– volume: 54
  start-page: 1555
  year: 2013
  ident: 2023050102292595500_B41
  article-title: Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egt023
– volume: 44
  start-page: 1163
  year: 2003
  ident: 2023050102292595500_B81
  article-title: Near-solidus melting of the shallow upper mantle: Partial melting experiments on depleted peridotite
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/44.7.1163
– volume: 50
  start-page: 2638
  year: 2005
  ident: 2023050102292595500_B89
  article-title: 40Ar/39Ar dating for Cenozoic kamafugites from western Qinling in Gansu Province
  publication-title: Chinese Science Bulletin
– volume: 370–371
  start-page: 105627
  year: 2020
  ident: 2023050102292595500_B40
  article-title: Magnesium and zinc isotope evidence for recycled sediments and oceanic crust in the mantle sources of continental basalts from eastern China
  publication-title: Lithos
  doi: 10.1016/j.lithos.2020.105627
– volume: 238
  start-page: 542
  year: 2018
  ident: 2023050102292595500_B63
  article-title: The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2018.07.021
– volume: 62
  start-page: egab025
  year: 2021
  ident: 2023050102292595500_B78
  article-title: Evolution of intraplate alkaline to tholeiitic basalts via interaction between carbonated melt and lithospheric mantle
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egab025
SSID ssj0022359
Score 2.3980715
Snippet Kamafugites are strongly silica-undersaturated melts that are difficult to produce by partial melting of volatile-free peridotites but can be produced...
SourceID proquest
crossref
walterdegruyter
geoscienceworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 987
SubjectTerms Aluminum oxide
Asia
Carbon dioxide
Carbonates
Cenozoic
chain silicates
China
clinopyroxene
Correlation
diopside
Far East
framework silicates
geochemical cycle
Geochemistry
igneous and metamorphic rocks
igneous rocks
Isotopes
kamafugite
Kamafugites
leucite
magmas
magmatic differentiation
mantle
Melting
Melts
metals
Modelling
nepheline
nepheline group
Orogeny
oxides
Peridotite
perovskite
Petrology
plate tectonics
pyroxene group
Qinling Mountains
recycled carbonates
rich source
Silica
Silicates
Silicon dioxide
stable isotopes
subduction
Tracers
Volcanic rocks
West Qinling
Zinc
Zinc isotopes
Zn isotopes
Zn-66
Title Recycled carbonates in the mantle sources of natural kamafugites; a zinc isotope perspective
URI https://pubs.geoscienceworld.org/ammin/article/108/5/987/622882/Recycled-carbonates-in-the-mantle-sources-of
https://www.degruyter.com/doi/10.2138/am-2022-8382
https://www.proquest.com/docview/2811137231
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReKq6iMJAfxlOVkTpOm-ytoLEKCZ46VBBSZDt2F21NpjXR1P0mfiTHdi5uNRDsJYoSu0lzvvh85-RcEDociwkHzc48UDaBRxWnHqdceJIRMiFKjYnpGfnl63h2Rj8vwkWv98uJWqpKfiRu78wruY9U4RjIVWfJ_odk2x-FA7AP8oUtSBi2_yRj4HwbOJTq-tJcu8FNdJXhkit4YpdyaH3zNlyD2RIbF2zFVLUEqrm2aem3WS6G2booiyupyxi7yZcNb513CSj5cJWZUtVt7pD1aBsLX2ZthE9WGc_qucyX3rRwHNTGOfvjPEs7YH43YxeV9GZV5joiiBP2Z4OR2mtrcDUxp5pO27vbWoVhsm8jM4-kXXhjGnr6G-rWyuxHDgRDZ52Nay1tVXZsG1nvagMyMrXf2QpAAyZ3FNg2R9tFt3eUYRuiCMaRnp-wVaJnJ3q2ztSAKz9A-wSMElhV96enH06-tQY-CcK47dAI_88mWuifee_exBYF6i9lXbVUmhq5W5ZO_8bETKRyeV1tyuYbvaE-88eoX9sseGoB-AT1ZP4UPTw1PaE3z9DPBoa4gyHOcgwwxBaGuIYhLhSuYYgdGB7jKdYgxDUIsQPC5-js08n848yrm3Z4LJjQ0ouAIYpxOpEpEZRyFfjc1xWPRlKoOIpiPw2FgpOSqRRMfymCkI14xGA3CsdpHLxAe3mRy5cI-yKlCuwVBXqFhkSAADQ7ZZwGVBA-GqBh8xwTUVe0141VLpO7hDdA79rRV7aSyx_GHe6IJKlf-bUeFCRA4kc-HaCDRk7O-QioQwDQgHujO7LrRv0FWq_uN-01etS9kQdor7yu5BsgyyV_W2P0N9lHv_c
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLemTgguHZ9a2QAfthPKmtpO4iJxKLCtYx-nDfWAFGzHLtWapGoSTd1fxb_Cf8RzPrqtwAVpB26R_JI4fs9-vxc__x5CO74KJHh24YCzoQ4zkjmSSeVoQUhAjPFJWTPy9MwfXrDPI2-0hn40Z2FsWmWkx_NikVcMqd0oVYX9UdZwDZAe5V0Rg3ohjOKUk-73PJ7WaZXHenEFQVv2_ugTaHiXkIP9849Dp64r4AgasNyBmMZXfhToiCjGpKGudC0pS08r0-e870aeMtCohYkgOtGKeqInuYBL7vmRpV-CRX-dW96XFlofHH7Y_7IM8gj1-ssqfS4bVcn2v3X6jhtsj3XNXKlLntQ7aLd9Ve6bLwfllvs72EA_m4Grsl4u94pc7qnrFU7J_2lkH6N2jcXxoJo8T9CaTp6iB4dlrePFM_QVIPUCGiKsxFzaXQad4UmCATLjGAxyqnG19ZHh1OCSIRWediliYYoxIPnsHR7g60mi8CRL83Sm8ezmZOtzdHEvn_YCtZI00ZsIuypiBnC4gfWSeURxYkEvFZJRpojsddDbxjZCVTO124Ih0xAiNqukUMShVVJoldRBu0vpWcVQ8he5nRUzC-vlKrNCNARwCrF5B203tnernYNLpAHEAh3EVuzxRupPb7WHW_o8ePlvt71BD4fnpyfhydHZ8RZ6ZLtZJZtuo1Y-L_QrAIS5fF3PQYy-3bdx_gIkQW2F
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VqUBcUn5FaIE9tCfkxt5d2xskDoE2bSlUHCjKAcnd3yhqY0exrSp9KV6FR2I2ttM2wAWpB26Wdmyvd2Z3vvHOfoPQdqRiCZ5deOBsqMesZJ5kUnlGEBITayOyqBn5-SQ6PGUfh-FwDf1ozsK4tEptRrNyXlQMqV2dqdL9KGu4BkhAeVdMQL0QRnHKSXeqbZ1VeWzmlxCz5e-O9kDBO4QM9r9-OPTqsgKeoDErPAhpIhXp2GiiGJOW-tJ3nCyBUbbHec_XobLQaITVEJwYRUMRSC7gkoeRduxLsOavcxb4vIXW-wfv978tYzxCw96ySJ_PhlWu_W99vuUF2yNTE1eaBU3qLbDbvlxsmy_H5Ib3G2ygn824VUkv57tlIXfV1Qql5H80sA9Ru0biuF9NnUdozaSP0b2DRaXj-RP0HQD1HBo0VmIm3R6DyfE4xQCY8QTM8cLgauMjx5nFC35UeNq5mAhbjgDH529xH1-NU4XHeVZkU4On1-dan6LTO_m0Z6iVZql5jrCvNLOAwi2sliwkihMHeamQjDJFZNBBbxrTSFTN0-7KhVwkEK85HSVikjgdJU5HHbSzlJ5W_CR_kdtesbKkXqxyJ0QTgKYQmXfQVmN6N9o5OEQaQyTQQWzFHK-l_vRWd7Slx-MX_3bba3T_y94g-XR0cryJHrheVpmmW6hVzErzEtBgIV_VMxCjs7u2zV9Rhmws
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recycled+carbonates+in+the+mantle+sources+of+natural+kamafugites%3A+A+zinc+isotope+perspective&rft.jtitle=The+American+mineralogist&rft.au=Ma%2C+Lei&rft.au=Liu%2C+Sheng-Ao&rft.au=Zhao%2C+Zhidan&rft.au=Yu%2C+Xue-Hui&rft.date=2023-05-01&rft.pub=Mineralogical+Society+of+America&rft.issn=0003-004X&rft.eissn=1945-3027&rft.volume=108&rft.issue=5&rft.spage=987&rft.epage=998&rft_id=info:doi/10.2138%2Fam-2022-8382&rft.externalDBID=n%2Fa&rft.externalDocID=10_2138_am_2022_83821085987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-004X&client=summon