Melting Curve of Black Phosphorus: Evidence for a Solid–Liquid–Liquid Triple Point
Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)–temperature (T) phase diagram, and in particular, of its melting curve is fundamental for...
Saved in:
Published in | The journal of physical chemistry letters Vol. 15; no. 33; pp. 8402 - 8409 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)–temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa–1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P. |
---|---|
AbstractList | Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)-temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa-1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P.Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)-temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa-1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P. Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure ( )-temperature ( ) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended , region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine and . We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa . These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P. Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)–temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa–1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P. Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)−temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa−1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P. |
Author | Muhammad, Hermann Henry, Laura Datchi, Frédéric Poręba, Tomasz Gerin, Max Serrano-Ruiz, Manuel Garbarino, Gaston Peruzzini, Maurizio Mezouar, Mohamed Ceppatelli, Matteo |
AuthorAffiliation | Ecole Polytechnique Fédérale Lausanne Sorbonne Université, CNRS UMR 7590, MNHN National Research Council of Italy Via Madonna del Piano 10 LENS, European Laboratory for Non-linear Spectroscopy ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds Laboratory for Quantum Magnetism Institut de Minéralogie, de Physique des Milieux Condensés et de Cosmochimie (IMPMC) |
AuthorAffiliation_xml | – name: National Research Council of Italy Via Madonna del Piano 10 – name: Laboratory for Quantum Magnetism – name: LENS, European Laboratory for Non-linear Spectroscopy – name: Institut de Minéralogie, de Physique des Milieux Condensés et de Cosmochimie (IMPMC) – name: Ecole Polytechnique Fédérale Lausanne – name: ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds – name: Sorbonne Université, CNRS UMR 7590, MNHN |
Author_xml | – sequence: 1 givenname: Hermann surname: Muhammad fullname: Muhammad, Hermann – sequence: 2 givenname: Mohamed orcidid: 0000-0001-5336-544X surname: Mezouar fullname: Mezouar, Mohamed email: mezouar@esrf.fr – sequence: 3 givenname: Gaston surname: Garbarino fullname: Garbarino, Gaston – sequence: 4 givenname: Laura surname: Henry fullname: Henry, Laura – sequence: 5 givenname: Tomasz orcidid: 0000-0002-0383-4639 surname: Poręba fullname: Poręba, Tomasz organization: Ecole Polytechnique Fédérale Lausanne – sequence: 6 givenname: Max orcidid: 0009-0000-1338-2667 surname: Gerin fullname: Gerin, Max – sequence: 7 givenname: Matteo orcidid: 0000-0002-0688-5167 surname: Ceppatelli fullname: Ceppatelli, Matteo organization: National Research Council of Italy Via Madonna del Piano 10 – sequence: 8 givenname: Manuel orcidid: 0000-0002-6372-3586 surname: Serrano-Ruiz fullname: Serrano-Ruiz, Manuel organization: National Research Council of Italy Via Madonna del Piano 10 – sequence: 9 givenname: Maurizio orcidid: 0000-0002-2708-3964 surname: Peruzzini fullname: Peruzzini, Maurizio organization: National Research Council of Italy Via Madonna del Piano 10 – sequence: 10 givenname: Frédéric orcidid: 0000-0003-1252-1770 surname: Datchi fullname: Datchi, Frédéric email: frederic.datchi@sorbonne-universite.fr organization: Sorbonne Université, CNRS UMR 7590, MNHN |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39115822$$D View this record in MEDLINE/PubMed https://hal.science/hal-04670530$$DView record in HAL |
BookMark | eNp9kctOwzAQRS1URMvjC5CQl7BIseM8bHZQ8ZKKQKJia9mOQ13cONhJJXb8A3_Il5DSUnXFakYz546u5u6DXuUqDcAxRkOMYnwuVBjOamV10wwThXDOkh0wwCyhUY5p2tvq-2A_hBlCGUM03wN9wjBOaRwPwMuDto2pXuGo9QsNXQmvrFBv8GnqQj11vg0X8HphCl0pDUvnoYDPzpri-_NrbN7brQZOvKmthk_OVM0h2C2FDfpoXQ_A5OZ6MrqLxo-396PLcSRInjRRwjKNVUYljaWWZS5iQmXJJBFZ57CUhUIoz1NZZkXMFCOSEMIKSgqWUkQROQBnq7NTYXntzVz4D-6E4XeXY76coSTLUUrQAnfs6YqtvXtvdWj43ASlrRWVdm3gBDGUda7IEj1Zo62c62Jz-e9tHUBWgPIuBK_LDYIRX4bDu3D4Ohy-DqdTna9Uv0vX-qp7zb-KH9P0lUM |
Cites_doi | 10.1107/S1600576715004306 10.1002/anie.201708368 10.1063/1.1855419 10.1201/b12961 10.1002/anie.201912761 10.1063/1.1505104 10.1103/PhysRevLett.90.255701 10.1103/PhysRevB.24.4771 10.1029/JZ066i005p01491 10.1039/D3NR01113E 10.1038/35003143 10.1063/1.1749671 10.1103/PhysRevB.76.144106 10.1103/PhysRevB.99.134107 10.1103/PhysRevLett.104.255701 10.1038/s41467-020-19168-z 10.1002/andp.18501550306 10.1088/0953-8984/14/14/304 10.1002/anie.201404147 10.1107/S0021889801002242 10.1103/PhysRevB.74.134112 10.1016/j.ssc.2011.12.003 10.1080/03086648708080631 10.1002/admi.201500441 10.1039/C8CC03013H 10.1038/s41598-021-94349-4 10.1103/PhysRevE.67.020201 10.1080/08957959.2015.1059835 10.1039/D4NR00093E 10.2307/20025490 10.1103/PhysRevLett.84.2881 10.1524/zkri.220.2.259.59137 10.1002/anie.200503017 10.1051/jphyscol:1985852 10.1088/1361-6528/aa76ae 10.1080/08957959208206312 10.1002/anie.202216658 10.1007/s003390101197 10.1080/08957950601183553 10.2183/pjab1945.49.623 10.1038/s41586-020-2593-1 10.1126/science.139.3561.1291 10.1016/0921-4526(93)90108-I 10.1143/JJAP.21.L482 10.1016/0375-9601(87)90790-0 10.1002/adma.202107515 10.1154/1.1545115 10.1088/1361-648X/aca50b 10.1364/OE.23.013443 10.1039/C9NR09218H 10.1021/ja02184a002 10.1126/science.1233514 10.1038/nmat2290 10.1107/S0365110X65004140 10.1007/BF00540689 10.1021/acs.jpcc.3c00687 10.1126/science.1102735 10.1038/170629a0 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 American Chemical Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES |
DOI | 10.1021/acs.jpclett.4c01794 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1948-7185 |
EndPage | 8409 |
ExternalDocumentID | oai_HAL_hal_04670530v1 39115822 10_1021_acs_jpclett_4c01794 a952257865 |
Genre | Journal Article |
GroupedDBID | 53G 55A 5VS 7~N AABXI ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ DU5 EBS ED~ GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAYXX ABBLG ABLBI CITATION NPM 7X8 1XC VOOES |
ID | FETCH-LOGICAL-a374t-496e1c68b82bebf7a238bf9b3a6911fbdc00775bf6d29c93b3339d83d9580803 |
IEDL.DBID | ACS |
ISSN | 1948-7185 |
IngestDate | Thu Jun 26 06:30:40 EDT 2025 Fri Jul 11 09:57:55 EDT 2025 Wed Feb 19 02:14:50 EST 2025 Tue Jul 01 03:41:27 EDT 2025 Fri Aug 23 06:34:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | Melting Transition Black phosphorus liquid polyamorphism |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a374t-496e1c68b82bebf7a238bf9b3a6911fbdc00775bf6d29c93b3339d83d9580803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5336-544X 0009-0000-1338-2667 0000-0002-0383-4639 0000-0003-1252-1770 0000-0002-0688-5167 0000-0002-6372-3586 0000-0002-2708-3964 |
OpenAccessLink | https://hal.science/hal-04670530 |
PMID | 39115822 |
PQID | 3090637431 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_04670530v1 proquest_miscellaneous_3090637431 pubmed_primary_39115822 crossref_primary_10_1021_acs_jpclett_4c01794 acs_journals_10_1021_acs_jpclett_4c01794 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-22 |
PublicationDateYYYYMMDD | 2024-08-22 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry letters |
PublicationTitleAlternate | J. Phys. Chem. Lett |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref61/cit61 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 Mizutani T. (ref30/cit30) 2000; 1 Clapeyron M. C. (ref49/cit49) 1834 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref47/cit47 ref1/cit1 Marani A. (ref24/cit24) 1968; 50 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref40/cit40 doi: 10.1107/S1600576715004306 – ident: ref14/cit14 doi: 10.1002/anie.201708368 – ident: ref36/cit36 doi: 10.1063/1.1855419 – ident: ref1/cit1 doi: 10.1201/b12961 – volume: 50 start-page: 663 year: 1968 ident: ref24/cit24 publication-title: Chim. Ind. – start-page: 153 issue: 23 year: 1834 ident: ref49/cit49 publication-title: J. École Polytech. – ident: ref19/cit19 doi: 10.1002/anie.201912761 – ident: ref39/cit39 doi: 10.1063/1.1505104 – ident: ref50/cit50 doi: 10.1103/PhysRevLett.90.255701 – ident: ref6/cit6 doi: 10.1103/PhysRevB.24.4771 – volume: 1 start-page: 525 year: 2000 ident: ref30/cit30 publication-title: Science Technol. High Press – ident: ref51/cit51 doi: 10.1029/JZ066i005p01491 – ident: ref57/cit57 doi: 10.1039/D3NR01113E – ident: ref26/cit26 doi: 10.1038/35003143 – ident: ref16/cit16 doi: 10.1063/1.1749671 – ident: ref45/cit45 doi: 10.1103/PhysRevB.76.144106 – ident: ref44/cit44 doi: 10.1103/PhysRevB.99.134107 – ident: ref53/cit53 doi: 10.1103/PhysRevLett.104.255701 – ident: ref58/cit58 doi: 10.1038/s41467-020-19168-z – ident: ref48/cit48 doi: 10.1002/andp.18501550306 – ident: ref27/cit27 doi: 10.1088/0953-8984/14/14/304 – ident: ref20/cit20 doi: 10.1002/anie.201404147 – ident: ref42/cit42 doi: 10.1107/S0021889801002242 – ident: ref59/cit59 doi: 10.1103/PhysRevB.74.134112 – ident: ref10/cit10 doi: 10.1016/j.ssc.2011.12.003 – ident: ref4/cit4 doi: 10.1080/03086648708080631 – ident: ref38/cit38 doi: 10.1002/admi.201500441 – ident: ref2/cit2 doi: 10.1039/C8CC03013H – ident: ref46/cit46 doi: 10.1038/s41598-021-94349-4 – ident: ref61/cit61 doi: 10.1103/PhysRevE.67.020201 – ident: ref41/cit41 doi: 10.1080/08957959.2015.1059835 – ident: ref33/cit33 doi: 10.1039/D4NR00093E – ident: ref31/cit31 doi: 10.2307/20025490 – ident: ref60/cit60 doi: 10.1103/PhysRevLett.84.2881 – ident: ref5/cit5 doi: 10.1524/zkri.220.2.259.59137 – ident: ref56/cit56 doi: 10.1002/anie.200503017 – ident: ref7/cit7 doi: 10.1051/jphyscol:1985852 – ident: ref22/cit22 doi: 10.1088/1361-6528/aa76ae – ident: ref35/cit35 doi: 10.1080/08957959208206312 – ident: ref21/cit21 doi: 10.1002/anie.202216658 – ident: ref8/cit8 doi: 10.1007/s003390101197 – ident: ref37/cit37 doi: 10.1080/08957950601183553 – ident: ref32/cit32 doi: 10.2183/pjab1945.49.623 – ident: ref25/cit25 doi: 10.1038/s41586-020-2593-1 – ident: ref12/cit12 doi: 10.1126/science.139.3561.1291 – ident: ref43/cit43 doi: 10.1016/0921-4526(93)90108-I – ident: ref55/cit55 doi: 10.1143/JJAP.21.L482 – ident: ref29/cit29 doi: 10.1016/0375-9601(87)90790-0 – ident: ref11/cit11 doi: 10.1002/adma.202107515 – ident: ref13/cit13 doi: 10.1154/1.1545115 – ident: ref34/cit34 doi: 10.1088/1361-648X/aca50b – ident: ref54/cit54 doi: 10.1364/OE.23.013443 – ident: ref23/cit23 doi: 10.1039/C9NR09218H – ident: ref15/cit15 doi: 10.1021/ja02184a002 – ident: ref52/cit52 doi: 10.1126/science.1233514 – ident: ref9/cit9 doi: 10.1038/nmat2290 – ident: ref17/cit17 doi: 10.1107/S0365110X65004140 – ident: ref18/cit18 doi: 10.1007/BF00540689 – ident: ref28/cit28 doi: 10.1021/acs.jpcc.3c00687 – ident: ref47/cit47 doi: 10.1126/science.1102735 – ident: ref3/cit3 doi: 10.1038/170629a0 |
SSID | ssj0069087 |
Score | 2.4351523 |
Snippet | Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic... |
SourceID | hal proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 8402 |
SubjectTerms | Physical Insights into Materials and Molecular Properties Physics |
Title | Melting Curve of Black Phosphorus: Evidence for a Solid–Liquid–Liquid Triple Point |
URI | http://dx.doi.org/10.1021/acs.jpclett.4c01794 https://www.ncbi.nlm.nih.gov/pubmed/39115822 https://www.proquest.com/docview/3090637431 https://hal.science/hal-04670530 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB4VeigXoLTAUkCm4sChWRI7cRJuaAVaVYCQ2CJukf-iXVglyybhwIl34A37JIyTDaLQVtwiy7KcmfHMN57xDMAuDY3WylNO6EbG8RWNHBF72klpKrmKg4hL6yienvH-L__nVXD14rH6qwg-9faFKrrXE6RhWXZ9VQvQHHykHI-xRUK9i1bxop9X98NDtzxyUOUGbZGhvy9izZEq_jBHc0ObDPkvpFlbnOMlOGvf7TSJJjfdqpRddf-2jOP7fmYZFmfYkxw2wvIZPphsBT712pZvX-Dy1IxtGjTpVdM7Q_KU1Pd75HyYF5NhPq2KA9K2ISWIdokgF_l4pH8_PJ6MbqsXH2QwtTf45DwfZeVXGBwfDXp9Z9Z4wREs9EvHj7nxFI9kRKWRaSjQrss0lkxw1I2p1KqunCdTrmmsYiYZY7GOmEbeIgJlqzCf5ZlZBxIi4tGpqwXiRN_4IlLcMM8XQWA4M0p2YA9JkszOTZHUIXHqJfVgQ6dkRqcO_Gg5lUyaShz_n_4dufk801bR7h-eJHbMReOAuse98zqw0zI7QVLbWInITF4VCXNjBG8WXnVgrZGC57UYEiFAYLXx_s1_gwWKaMheRlO6CfPltDJbiGZKuV3L8BPdQPFg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xy2G5LG8oT4M4cCAlsRMn4VZVrAq0q5W2i_Zm-RW17CopTbIHTvwH_iG_hLGblIcAwS0aWZYzM5757BnPADyjqTVGRzpIw8wGsaZZIPPIBAUtFNd5knHlDoqzQz45id-eJqfdozD3FgYXUeNMtQ_if68uEL10tA8rZGXTDGPt9WgHLiMcoU6vR-Pj3v7icc-3xcPTeRag5U36WkO_n8R5JV3_5JV2Fi4n8k-A0zueg6twsl2yzzc5G7aNGupPv1Rz_N9_ugb7HRIlo43qXIdLtrwBe-O-AdxNeD-z5y4pmozb9YUlVUH8bR85WlT1alGt2_oV6ZuSEsS-RJLj6nxpvn7-Ml1-bH_4IPO1u88nR9WybG7B_OD1fDwJujYMgWRp3ARxzm2keaYyqqwqUoleXhW5YpKjpSyU0b6Oniq4obnOmWKM5SZjBiWNeJTdht2yKu1dICniH1OERiJqjG0sM80ti2KZJJYzq9UAniNLRLeLauED5DQSnrjhk-j4NIAXvcDEalOX4-_Dn6JQtyNdTe3JaCocLURXgZYovIgG8KSXuUBWu8iJLG3V1oKFOUI5B7YGcGejDNu5GDIhQZh1798X_xj2JvPZVEzfHL67D1co4iR3TU3pA9ht1q19iDinUY-8Wn8DGRT5wQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RQIulDdpeSyIAwccbK8fa25RIAqQVpEaUHtaeV9K2spOY7sHTvwH_iG_hNmNHQEChLhZo9VqPDM78-3O7gzA8zDVSslAeqnPtBfJkHl5FijPhEYkMotZIuxG8eAwGX-M3h_Hx1vAurcwyESFM1UuiW9X9VKZtsJA8MrST5cozrruR9LZ0jZcsYk7a9uD4VHng3HL51rj4Q6deeh9467e0O8nsZFJVj9Fpu25vRf5J9Dpgs9oF042bLs7J2f9phZ9-fmXio7_81834UaLSMlgbUK3YEsXt-HasGsEdwc-HehzezmaDJvVpSalIe7Uj0znZbWcl6umek265qQEMTDJyVF5vlDfvnydLC6aHz7IbGXP9cm0XBT1XZiN3s6GY69tx-DlNI1qL8oSHciECRYKLUyaY7QXJhM0T9BjGqGkq6cnTKLCTGZUUEozxahCjSMupfdgpygL_QBIijhIGV_liB4jHeVMJpoGUR7HOqFaih68QJHwdjVV3CXKw4A74lpOvJVTD152SuPLdX2Ovw9_hordjLS1tceDCbc0H0MGeiT_MujB007vHEVtMyh5ocum4tTPENJZ0NWD-2uD2MxFUQgxwq29f2f-CVydvhnxybvDD_twPUS4ZE-rw_Ah7NSrRj9CuFOLx86yvwMnsfxE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melting+Curve+of+Black+Phosphorus%3A+Evidence+for+a+Solid%E2%80%93Liquid%E2%80%93Liquid+Triple+Point&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Muhammad%2C+Hermann&rft.au=Mezouar%2C+Mohamed&rft.au=Garbarino%2C+Gaston&rft.au=Henry%2C+Laura&rft.date=2024-08-22&rft.pub=American+Chemical+Society&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=15&rft.spage=8402&rft.epage=8409&rft_id=info:doi/10.1021%2Facs.jpclett.4c01794&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04670530v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |