Melting Curve of Black Phosphorus: Evidence for a Solid–Liquid–Liquid Triple Point

Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)–temperature (T) phase diagram, and in particular, of its melting curve is fundamental for...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 15; no. 33; pp. 8402 - 8409
Main Authors Muhammad, Hermann, Mezouar, Mohamed, Garbarino, Gaston, Henry, Laura, Poręba, Tomasz, Gerin, Max, Ceppatelli, Matteo, Serrano-Ruiz, Manuel, Peruzzini, Maurizio, Datchi, Frédéric
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)–temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa–1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P.
AbstractList Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)-temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa-1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P.Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)-temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa-1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P.
Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure ( )-temperature ( ) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended , region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine and . We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa . These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P.
Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)–temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa–1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P.
Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)−temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa−1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P.
Author Muhammad, Hermann
Henry, Laura
Datchi, Frédéric
Poręba, Tomasz
Gerin, Max
Serrano-Ruiz, Manuel
Garbarino, Gaston
Peruzzini, Maurizio
Mezouar, Mohamed
Ceppatelli, Matteo
AuthorAffiliation Ecole Polytechnique Fédérale Lausanne
Sorbonne Université, CNRS UMR 7590, MNHN
National Research Council of Italy Via Madonna del Piano 10
LENS, European Laboratory for Non-linear Spectroscopy
ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds
Laboratory for Quantum Magnetism
Institut de Minéralogie, de Physique des Milieux Condensés et de Cosmochimie (IMPMC)
AuthorAffiliation_xml – name: National Research Council of Italy Via Madonna del Piano 10
– name: Laboratory for Quantum Magnetism
– name: LENS, European Laboratory for Non-linear Spectroscopy
– name: Institut de Minéralogie, de Physique des Milieux Condensés et de Cosmochimie (IMPMC)
– name: Ecole Polytechnique Fédérale Lausanne
– name: ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds
– name: Sorbonne Université, CNRS UMR 7590, MNHN
Author_xml – sequence: 1
  givenname: Hermann
  surname: Muhammad
  fullname: Muhammad, Hermann
– sequence: 2
  givenname: Mohamed
  orcidid: 0000-0001-5336-544X
  surname: Mezouar
  fullname: Mezouar, Mohamed
  email: mezouar@esrf.fr
– sequence: 3
  givenname: Gaston
  surname: Garbarino
  fullname: Garbarino, Gaston
– sequence: 4
  givenname: Laura
  surname: Henry
  fullname: Henry, Laura
– sequence: 5
  givenname: Tomasz
  orcidid: 0000-0002-0383-4639
  surname: Poręba
  fullname: Poręba, Tomasz
  organization: Ecole Polytechnique Fédérale Lausanne
– sequence: 6
  givenname: Max
  orcidid: 0009-0000-1338-2667
  surname: Gerin
  fullname: Gerin, Max
– sequence: 7
  givenname: Matteo
  orcidid: 0000-0002-0688-5167
  surname: Ceppatelli
  fullname: Ceppatelli, Matteo
  organization: National Research Council of Italy Via Madonna del Piano 10
– sequence: 8
  givenname: Manuel
  orcidid: 0000-0002-6372-3586
  surname: Serrano-Ruiz
  fullname: Serrano-Ruiz, Manuel
  organization: National Research Council of Italy Via Madonna del Piano 10
– sequence: 9
  givenname: Maurizio
  orcidid: 0000-0002-2708-3964
  surname: Peruzzini
  fullname: Peruzzini, Maurizio
  organization: National Research Council of Italy Via Madonna del Piano 10
– sequence: 10
  givenname: Frédéric
  orcidid: 0000-0003-1252-1770
  surname: Datchi
  fullname: Datchi, Frédéric
  email: frederic.datchi@sorbonne-universite.fr
  organization: Sorbonne Université, CNRS UMR 7590, MNHN
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39115822$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04670530$$DView record in HAL
BookMark eNp9kctOwzAQRS1URMvjC5CQl7BIseM8bHZQ8ZKKQKJia9mOQ13cONhJJXb8A3_Il5DSUnXFakYz546u5u6DXuUqDcAxRkOMYnwuVBjOamV10wwThXDOkh0wwCyhUY5p2tvq-2A_hBlCGUM03wN9wjBOaRwPwMuDto2pXuGo9QsNXQmvrFBv8GnqQj11vg0X8HphCl0pDUvnoYDPzpri-_NrbN7brQZOvKmthk_OVM0h2C2FDfpoXQ_A5OZ6MrqLxo-396PLcSRInjRRwjKNVUYljaWWZS5iQmXJJBFZ57CUhUIoz1NZZkXMFCOSEMIKSgqWUkQROQBnq7NTYXntzVz4D-6E4XeXY76coSTLUUrQAnfs6YqtvXtvdWj43ASlrRWVdm3gBDGUda7IEj1Zo62c62Jz-e9tHUBWgPIuBK_LDYIRX4bDu3D4Ohy-DqdTna9Uv0vX-qp7zb-KH9P0lUM
Cites_doi 10.1107/S1600576715004306
10.1002/anie.201708368
10.1063/1.1855419
10.1201/b12961
10.1002/anie.201912761
10.1063/1.1505104
10.1103/PhysRevLett.90.255701
10.1103/PhysRevB.24.4771
10.1029/JZ066i005p01491
10.1039/D3NR01113E
10.1038/35003143
10.1063/1.1749671
10.1103/PhysRevB.76.144106
10.1103/PhysRevB.99.134107
10.1103/PhysRevLett.104.255701
10.1038/s41467-020-19168-z
10.1002/andp.18501550306
10.1088/0953-8984/14/14/304
10.1002/anie.201404147
10.1107/S0021889801002242
10.1103/PhysRevB.74.134112
10.1016/j.ssc.2011.12.003
10.1080/03086648708080631
10.1002/admi.201500441
10.1039/C8CC03013H
10.1038/s41598-021-94349-4
10.1103/PhysRevE.67.020201
10.1080/08957959.2015.1059835
10.1039/D4NR00093E
10.2307/20025490
10.1103/PhysRevLett.84.2881
10.1524/zkri.220.2.259.59137
10.1002/anie.200503017
10.1051/jphyscol:1985852
10.1088/1361-6528/aa76ae
10.1080/08957959208206312
10.1002/anie.202216658
10.1007/s003390101197
10.1080/08957950601183553
10.2183/pjab1945.49.623
10.1038/s41586-020-2593-1
10.1126/science.139.3561.1291
10.1016/0921-4526(93)90108-I
10.1143/JJAP.21.L482
10.1016/0375-9601(87)90790-0
10.1002/adma.202107515
10.1154/1.1545115
10.1088/1361-648X/aca50b
10.1364/OE.23.013443
10.1039/C9NR09218H
10.1021/ja02184a002
10.1126/science.1233514
10.1038/nmat2290
10.1107/S0365110X65004140
10.1007/BF00540689
10.1021/acs.jpcc.3c00687
10.1126/science.1102735
10.1038/170629a0
ContentType Journal Article
Copyright 2024 American Chemical Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 American Chemical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOI 10.1021/acs.jpclett.4c01794
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1948-7185
EndPage 8409
ExternalDocumentID oai_HAL_hal_04670530v1
39115822
10_1021_acs_jpclett_4c01794
a952257865
Genre Journal Article
GroupedDBID 53G
55A
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
DU5
EBS
ED~
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
1XC
VOOES
ID FETCH-LOGICAL-a374t-496e1c68b82bebf7a238bf9b3a6911fbdc00775bf6d29c93b3339d83d9580803
IEDL.DBID ACS
ISSN 1948-7185
IngestDate Thu Jun 26 06:30:40 EDT 2025
Fri Jul 11 09:57:55 EDT 2025
Wed Feb 19 02:14:50 EST 2025
Tue Jul 01 03:41:27 EDT 2025
Fri Aug 23 06:34:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Melting Transition
Black phosphorus
liquid polyamorphism
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a374t-496e1c68b82bebf7a238bf9b3a6911fbdc00775bf6d29c93b3339d83d9580803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5336-544X
0009-0000-1338-2667
0000-0002-0383-4639
0000-0003-1252-1770
0000-0002-0688-5167
0000-0002-6372-3586
0000-0002-2708-3964
OpenAccessLink https://hal.science/hal-04670530
PMID 39115822
PQID 3090637431
PQPubID 23479
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_04670530v1
proquest_miscellaneous_3090637431
pubmed_primary_39115822
crossref_primary_10_1021_acs_jpclett_4c01794
acs_journals_10_1021_acs_jpclett_4c01794
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-22
PublicationDateYYYYMMDD 2024-08-22
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref61/cit61
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
Mizutani T. (ref30/cit30) 2000; 1
Clapeyron M. C. (ref49/cit49) 1834
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref47/cit47
ref1/cit1
Marani A. (ref24/cit24) 1968; 50
ref44/cit44
ref7/cit7
References_xml – ident: ref40/cit40
  doi: 10.1107/S1600576715004306
– ident: ref14/cit14
  doi: 10.1002/anie.201708368
– ident: ref36/cit36
  doi: 10.1063/1.1855419
– ident: ref1/cit1
  doi: 10.1201/b12961
– volume: 50
  start-page: 663
  year: 1968
  ident: ref24/cit24
  publication-title: Chim. Ind.
– start-page: 153
  issue: 23
  year: 1834
  ident: ref49/cit49
  publication-title: J. École Polytech.
– ident: ref19/cit19
  doi: 10.1002/anie.201912761
– ident: ref39/cit39
  doi: 10.1063/1.1505104
– ident: ref50/cit50
  doi: 10.1103/PhysRevLett.90.255701
– ident: ref6/cit6
  doi: 10.1103/PhysRevB.24.4771
– volume: 1
  start-page: 525
  year: 2000
  ident: ref30/cit30
  publication-title: Science Technol. High Press
– ident: ref51/cit51
  doi: 10.1029/JZ066i005p01491
– ident: ref57/cit57
  doi: 10.1039/D3NR01113E
– ident: ref26/cit26
  doi: 10.1038/35003143
– ident: ref16/cit16
  doi: 10.1063/1.1749671
– ident: ref45/cit45
  doi: 10.1103/PhysRevB.76.144106
– ident: ref44/cit44
  doi: 10.1103/PhysRevB.99.134107
– ident: ref53/cit53
  doi: 10.1103/PhysRevLett.104.255701
– ident: ref58/cit58
  doi: 10.1038/s41467-020-19168-z
– ident: ref48/cit48
  doi: 10.1002/andp.18501550306
– ident: ref27/cit27
  doi: 10.1088/0953-8984/14/14/304
– ident: ref20/cit20
  doi: 10.1002/anie.201404147
– ident: ref42/cit42
  doi: 10.1107/S0021889801002242
– ident: ref59/cit59
  doi: 10.1103/PhysRevB.74.134112
– ident: ref10/cit10
  doi: 10.1016/j.ssc.2011.12.003
– ident: ref4/cit4
  doi: 10.1080/03086648708080631
– ident: ref38/cit38
  doi: 10.1002/admi.201500441
– ident: ref2/cit2
  doi: 10.1039/C8CC03013H
– ident: ref46/cit46
  doi: 10.1038/s41598-021-94349-4
– ident: ref61/cit61
  doi: 10.1103/PhysRevE.67.020201
– ident: ref41/cit41
  doi: 10.1080/08957959.2015.1059835
– ident: ref33/cit33
  doi: 10.1039/D4NR00093E
– ident: ref31/cit31
  doi: 10.2307/20025490
– ident: ref60/cit60
  doi: 10.1103/PhysRevLett.84.2881
– ident: ref5/cit5
  doi: 10.1524/zkri.220.2.259.59137
– ident: ref56/cit56
  doi: 10.1002/anie.200503017
– ident: ref7/cit7
  doi: 10.1051/jphyscol:1985852
– ident: ref22/cit22
  doi: 10.1088/1361-6528/aa76ae
– ident: ref35/cit35
  doi: 10.1080/08957959208206312
– ident: ref21/cit21
  doi: 10.1002/anie.202216658
– ident: ref8/cit8
  doi: 10.1007/s003390101197
– ident: ref37/cit37
  doi: 10.1080/08957950601183553
– ident: ref32/cit32
  doi: 10.2183/pjab1945.49.623
– ident: ref25/cit25
  doi: 10.1038/s41586-020-2593-1
– ident: ref12/cit12
  doi: 10.1126/science.139.3561.1291
– ident: ref43/cit43
  doi: 10.1016/0921-4526(93)90108-I
– ident: ref55/cit55
  doi: 10.1143/JJAP.21.L482
– ident: ref29/cit29
  doi: 10.1016/0375-9601(87)90790-0
– ident: ref11/cit11
  doi: 10.1002/adma.202107515
– ident: ref13/cit13
  doi: 10.1154/1.1545115
– ident: ref34/cit34
  doi: 10.1088/1361-648X/aca50b
– ident: ref54/cit54
  doi: 10.1364/OE.23.013443
– ident: ref23/cit23
  doi: 10.1039/C9NR09218H
– ident: ref15/cit15
  doi: 10.1021/ja02184a002
– ident: ref52/cit52
  doi: 10.1126/science.1233514
– ident: ref9/cit9
  doi: 10.1038/nmat2290
– ident: ref17/cit17
  doi: 10.1107/S0365110X65004140
– ident: ref18/cit18
  doi: 10.1007/BF00540689
– ident: ref28/cit28
  doi: 10.1021/acs.jpcc.3c00687
– ident: ref47/cit47
  doi: 10.1126/science.1102735
– ident: ref3/cit3
  doi: 10.1038/170629a0
SSID ssj0069087
Score 2.4351523
Snippet Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic...
SourceID hal
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 8402
SubjectTerms Physical Insights into Materials and Molecular Properties
Physics
Title Melting Curve of Black Phosphorus: Evidence for a Solid–Liquid–Liquid Triple Point
URI http://dx.doi.org/10.1021/acs.jpclett.4c01794
https://www.ncbi.nlm.nih.gov/pubmed/39115822
https://www.proquest.com/docview/3090637431
https://hal.science/hal-04670530
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB4VeigXoLTAUkCm4sChWRI7cRJuaAVaVYCQ2CJukf-iXVglyybhwIl34A37JIyTDaLQVtwiy7KcmfHMN57xDMAuDY3WylNO6EbG8RWNHBF72klpKrmKg4hL6yienvH-L__nVXD14rH6qwg-9faFKrrXE6RhWXZ9VQvQHHykHI-xRUK9i1bxop9X98NDtzxyUOUGbZGhvy9izZEq_jBHc0ObDPkvpFlbnOMlOGvf7TSJJjfdqpRddf-2jOP7fmYZFmfYkxw2wvIZPphsBT712pZvX-Dy1IxtGjTpVdM7Q_KU1Pd75HyYF5NhPq2KA9K2ISWIdokgF_l4pH8_PJ6MbqsXH2QwtTf45DwfZeVXGBwfDXp9Z9Z4wREs9EvHj7nxFI9kRKWRaSjQrss0lkxw1I2p1KqunCdTrmmsYiYZY7GOmEbeIgJlqzCf5ZlZBxIi4tGpqwXiRN_4IlLcMM8XQWA4M0p2YA9JkszOTZHUIXHqJfVgQ6dkRqcO_Gg5lUyaShz_n_4dufk801bR7h-eJHbMReOAuse98zqw0zI7QVLbWInITF4VCXNjBG8WXnVgrZGC57UYEiFAYLXx_s1_gwWKaMheRlO6CfPltDJbiGZKuV3L8BPdQPFg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xy2G5LG8oT4M4cCAlsRMn4VZVrAq0q5W2i_Zm-RW17CopTbIHTvwH_iG_hLGblIcAwS0aWZYzM5757BnPADyjqTVGRzpIw8wGsaZZIPPIBAUtFNd5knHlDoqzQz45id-eJqfdozD3FgYXUeNMtQ_if68uEL10tA8rZGXTDGPt9WgHLiMcoU6vR-Pj3v7icc-3xcPTeRag5U36WkO_n8R5JV3_5JV2Fi4n8k-A0zueg6twsl2yzzc5G7aNGupPv1Rz_N9_ugb7HRIlo43qXIdLtrwBe-O-AdxNeD-z5y4pmozb9YUlVUH8bR85WlT1alGt2_oV6ZuSEsS-RJLj6nxpvn7-Ml1-bH_4IPO1u88nR9WybG7B_OD1fDwJujYMgWRp3ARxzm2keaYyqqwqUoleXhW5YpKjpSyU0b6Oniq4obnOmWKM5SZjBiWNeJTdht2yKu1dICniH1OERiJqjG0sM80ti2KZJJYzq9UAniNLRLeLauED5DQSnrjhk-j4NIAXvcDEalOX4-_Dn6JQtyNdTe3JaCocLURXgZYovIgG8KSXuUBWu8iJLG3V1oKFOUI5B7YGcGejDNu5GDIhQZh1798X_xj2JvPZVEzfHL67D1co4iR3TU3pA9ht1q19iDinUY-8Wn8DGRT5wQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RQIulDdpeSyIAwccbK8fa25RIAqQVpEaUHtaeV9K2spOY7sHTvwH_iG_hNmNHQEChLhZo9VqPDM78-3O7gzA8zDVSslAeqnPtBfJkHl5FijPhEYkMotZIuxG8eAwGX-M3h_Hx1vAurcwyESFM1UuiW9X9VKZtsJA8MrST5cozrruR9LZ0jZcsYk7a9uD4VHng3HL51rj4Q6deeh9467e0O8nsZFJVj9Fpu25vRf5J9Dpgs9oF042bLs7J2f9phZ9-fmXio7_81834UaLSMlgbUK3YEsXt-HasGsEdwc-HehzezmaDJvVpSalIe7Uj0znZbWcl6umek265qQEMTDJyVF5vlDfvnydLC6aHz7IbGXP9cm0XBT1XZiN3s6GY69tx-DlNI1qL8oSHciECRYKLUyaY7QXJhM0T9BjGqGkq6cnTKLCTGZUUEozxahCjSMupfdgpygL_QBIijhIGV_liB4jHeVMJpoGUR7HOqFaih68QJHwdjVV3CXKw4A74lpOvJVTD152SuPLdX2Ovw9_hordjLS1tceDCbc0H0MGeiT_MujB007vHEVtMyh5ocum4tTPENJZ0NWD-2uD2MxFUQgxwq29f2f-CVydvhnxybvDD_twPUS4ZE-rw_Ah7NSrRj9CuFOLx86yvwMnsfxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melting+Curve+of+Black+Phosphorus%3A+Evidence+for+a+Solid%E2%80%93Liquid%E2%80%93Liquid+Triple+Point&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Muhammad%2C+Hermann&rft.au=Mezouar%2C+Mohamed&rft.au=Garbarino%2C+Gaston&rft.au=Henry%2C+Laura&rft.date=2024-08-22&rft.pub=American+Chemical+Society&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=15&rft.spage=8402&rft.epage=8409&rft_id=info:doi/10.1021%2Facs.jpclett.4c01794&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04670530v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon