Uptake and Biological Effects of Environmentally Relevant Concentrations of the Nonsteroidal Anti-inflammatory Pharmaceutical Diclofenac in Rainbow Trout (Oncorhynchus mykiss)

Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 44; no. 6; pp. 2176 - 2182
Main Authors Mehinto, Alvine C, Hill, Elizabeth M, Tyler, Charles R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.03.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/L) in rainbow trout. Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 μg/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 μg/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment.
AbstractList Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0,0.5, 1, 5, and 25 mu g/L) in rainbow trout. Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 plus or minus 27 and 657 plus or minus 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 mu g/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 mu g/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment.
Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 ...g/L) in rainbow trout. Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 ...g/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 ...g/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment. (ProQuest: ... denotes formulae/symbols omitted.)
Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/L) in rainbow trout Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 μg/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 μg/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment.Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/L) in rainbow trout Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 μg/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 μg/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment.
Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/L) in rainbow trout. Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 μg/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 μg/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment.
Author Tyler, Charles R
Mehinto, Alvine C
Hill, Elizabeth M
Author_xml – sequence: 1
  givenname: Alvine C
  surname: Mehinto
  fullname: Mehinto, Alvine C
– sequence: 2
  givenname: Elizabeth M
  surname: Hill
  fullname: Hill, Elizabeth M
– sequence: 3
  givenname: Charles R
  surname: Tyler
  fullname: Tyler, Charles R
  email: c.r.tyler@exeter.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20175546$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9uFCEUxompsdvqhS9giInRXowFBgbmsm7XP0ljTdMm3k0YFlxaBrbA1MxT9RWlu60m1cQLcgj5ne8cznf2wI4PXgPwEqP3GBF8qFOLao7I8ATMMCOoYoLhHTBDCNdVWzffd8FeSpcIIVIj8QzsEoQ5Y7SZgduLdZZXGkq_hB9scOGHVdLBhTFa5QSDgQt_Y2Pwg_ZZOjfBM-30jfQZzoNX5THKbIPfoHml4ddyzzoGuywyRz7bynrj5DDIHOIEv61kHKTSY97UObbKBaO9VNB6eCat78NPeB7DmOG7U69CXE1ercYEh-nKpnTwHDw10iX94j7ug4uPi_P55-rk9NOX-dFJJWte50o2ghGK6FIQgcohgraoEZw2wjAuWRmKMYxwwlvJRUt6YjDVukd10yvaq3ofvN3qrmO4HnXK3WCT0s5Jr8OYOtFgLgRt8H9JziijtWB1IV8_Ii_DGH35Rld8wQw3_A56dQ-N_aCX3TraQcape7CsAIdbQMWQUtSmUzZvPChWWNdh1N0tRfd7KUrGwaOMB9F_sW-2rFTpT3t_c78AhHzEew
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_174036
crossref_primary_10_1371_journal_pone_0288542
crossref_primary_10_14321_aehm_024_02_17
crossref_primary_10_1007_s11356_018_2123_y
crossref_primary_10_1016_j_chemosphere_2018_04_080
crossref_primary_10_1002_etc_5634
crossref_primary_10_1007_s11356_022_21815_5
crossref_primary_10_1016_j_envpol_2017_10_080
crossref_primary_10_3390_w15101838
crossref_primary_10_1002_etc_2240
crossref_primary_10_1016_j_scitotenv_2013_05_002
crossref_primary_10_1007_s11270_013_1689_8
crossref_primary_10_2166_wst_2020_121
crossref_primary_10_1016_j_etap_2015_07_016
crossref_primary_10_1021_acs_est_9b07127
crossref_primary_10_1016_j_scitotenv_2020_139715
crossref_primary_10_1016_j_scitotenv_2025_178927
crossref_primary_10_1016_j_jhazmat_2010_05_139
crossref_primary_10_1039_D3AY01333B
crossref_primary_10_1007_s11356_016_6433_7
crossref_primary_10_1016_j_cbpc_2010_11_004
crossref_primary_10_1007_s11033_011_0959_z
crossref_primary_10_1016_j_watres_2017_12_077
crossref_primary_10_1007_s11430_012_4384_5
crossref_primary_10_1007_s00216_013_7371_6
crossref_primary_10_1016_j_ecoenv_2017_02_003
crossref_primary_10_1016_j_etap_2024_104453
crossref_primary_10_1016_j_jece_2021_106743
crossref_primary_10_1016_j_cbpc_2021_109107
crossref_primary_10_1016_j_marpolbul_2017_02_024
crossref_primary_10_1016_j_fsi_2017_03_033
crossref_primary_10_1002_tox_22173
crossref_primary_10_3390_ijerph15112395
crossref_primary_10_1007_s10646_015_1417_9
crossref_primary_10_2166_wst_2017_075
crossref_primary_10_1002_etc_501
crossref_primary_10_1016_j_chemosphere_2016_09_116
crossref_primary_10_1007_s00267_019_01174_7
crossref_primary_10_1016_j_scitotenv_2023_162557
crossref_primary_10_1016_j_chemosphere_2013_09_074
crossref_primary_10_1007_s10646_011_0799_6
crossref_primary_10_1016_j_seppur_2017_10_030
crossref_primary_10_4236_jep_2013_49109
crossref_primary_10_1186_s13568_018_0546_y
crossref_primary_10_1016_j_snb_2017_07_123
crossref_primary_10_1038_s41598_017_12473_6
crossref_primary_10_1021_acs_est_6b04365
crossref_primary_10_1016_j_bios_2017_10_043
crossref_primary_10_1016_j_chemosphere_2017_01_030
crossref_primary_10_1016_j_envint_2023_107798
crossref_primary_10_1039_c1em10015g
crossref_primary_10_3390_molecules25081796
crossref_primary_10_1007_s00244_014_0048_0
crossref_primary_10_1016_j_scitotenv_2016_09_095
crossref_primary_10_1038_s41598_024_59971_y
crossref_primary_10_1002_etc_3240
crossref_primary_10_1016_j_envpol_2017_02_061
crossref_primary_10_1134_S0036024421110224
crossref_primary_10_1016_j_marpolbul_2018_04_053
crossref_primary_10_1016_j_jhazmat_2019_121407
crossref_primary_10_1016_j_watres_2024_122388
crossref_primary_10_1016_j_isci_2023_107688
crossref_primary_10_1080_10408444_2017_1288024
crossref_primary_10_1002_etc_3899
crossref_primary_10_1016_j_chemosphere_2018_07_016
crossref_primary_10_1016_j_ecoenv_2020_111812
crossref_primary_10_1016_j_scitotenv_2013_12_123
crossref_primary_10_1016_j_cej_2015_05_038
crossref_primary_10_1016_j_ecoenv_2022_114138
crossref_primary_10_1002_adfm_202000612
crossref_primary_10_1016_j_watres_2014_09_018
crossref_primary_10_1016_j_snb_2019_02_069
crossref_primary_10_1007_s11356_017_9228_6
crossref_primary_10_1371_journal_pone_0168837
crossref_primary_10_1016_j_envpol_2013_09_013
crossref_primary_10_1016_j_scitotenv_2019_134057
crossref_primary_10_1002_etc_599
crossref_primary_10_1016_j_envpol_2022_120384
crossref_primary_10_1002_etc_2457
crossref_primary_10_1016_j_aquatox_2024_107031
crossref_primary_10_1002_etc_3545
crossref_primary_10_1002_etc_3302
crossref_primary_10_2139_ssrn_4140141
crossref_primary_10_1016_j_scitotenv_2018_04_015
crossref_primary_10_1007_s10646_016_1682_2
crossref_primary_10_5937_zasmat1803367R
crossref_primary_10_1016_j_chemosphere_2018_05_066
crossref_primary_10_1007_s10646_014_1371_y
crossref_primary_10_3390_w8110542
crossref_primary_10_1016_j_envint_2016_09_014
crossref_primary_10_1016_j_aquatox_2017_03_007
crossref_primary_10_3390_su13031125
crossref_primary_10_1016_j_envpol_2014_12_026
crossref_primary_10_1016_j_envpol_2024_123424
crossref_primary_10_1016_j_envpol_2014_01_015
crossref_primary_10_1021_acs_est_6b03504
crossref_primary_10_1016_j_jhazmat_2014_07_031
crossref_primary_10_1039_C8CS00479J
crossref_primary_10_1016_j_ecoenv_2021_112454
crossref_primary_10_3390_su15107922
crossref_primary_10_1007_s10661_018_6683_6
crossref_primary_10_1007_s11270_018_3845_7
crossref_primary_10_1016_j_scitotenv_2022_157921
crossref_primary_10_1016_j_chemosphere_2015_08_038
crossref_primary_10_3390_catal8020045
crossref_primary_10_1016_j_scitotenv_2024_173655
crossref_primary_10_1155_2014_253468
crossref_primary_10_1016_j_scitotenv_2021_148251
crossref_primary_10_1016_j_aquatox_2013_12_010
crossref_primary_10_1007_s11783_014_0640_6
crossref_primary_10_1016_j_chemosphere_2012_02_018
crossref_primary_10_1002_etc_3444
crossref_primary_10_1039_D2VA00207H
crossref_primary_10_1016_j_chroma_2018_01_037
crossref_primary_10_1016_j_cej_2018_06_157
crossref_primary_10_1016_j_cdc_2022_100982
crossref_primary_10_1021_es103122g
crossref_primary_10_1016_j_scitotenv_2019_01_350
crossref_primary_10_1016_j_diamond_2023_110328
crossref_primary_10_1016_j_jhazmat_2012_05_077
crossref_primary_10_1016_j_ecoenv_2023_115024
crossref_primary_10_1016_j_watres_2017_08_018
crossref_primary_10_1080_09593330_2014_994044
crossref_primary_10_1007_s11356_024_32477_w
crossref_primary_10_1016_j_chemosphere_2019_03_034
crossref_primary_10_1016_j_envpol_2022_118898
crossref_primary_10_1016_j_scitotenv_2020_139797
crossref_primary_10_1016_j_scitotenv_2023_166897
crossref_primary_10_1002_etc_2085
crossref_primary_10_1016_j_eti_2020_101160
crossref_primary_10_1038_s41598_020_63481_y
crossref_primary_10_1016_j_scitotenv_2017_10_305
crossref_primary_10_1016_j_ceramint_2017_01_018
crossref_primary_10_1021_acs_est_6b05079
crossref_primary_10_1371_journal_pone_0243462
crossref_primary_10_2478_v10181_011_0081_0
crossref_primary_10_1016_j_watres_2021_117441
crossref_primary_10_1038_s41598_021_82711_5
crossref_primary_10_1016_j_ecoenv_2019_109513
crossref_primary_10_1016_j_envint_2020_106222
crossref_primary_10_1002_etc_3742
crossref_primary_10_1016_j_chroma_2018_04_003
crossref_primary_10_1016_j_chemosphere_2017_04_084
crossref_primary_10_5012_bkcs_2010_31_10_3007
crossref_primary_10_1002_jsfa_13430
crossref_primary_10_1016_j_etap_2018_03_008
crossref_primary_10_1021_es303013j
crossref_primary_10_1016_j_envint_2015_09_023
crossref_primary_10_1016_j_microc_2018_10_017
crossref_primary_10_1021_es2039097
crossref_primary_10_1016_j_ecolind_2021_108172
crossref_primary_10_1016_j_ecoenv_2014_11_020
crossref_primary_10_1016_j_jwpe_2022_103360
crossref_primary_10_2139_ssrn_4147222
crossref_primary_10_1016_j_jenvman_2013_12_017
crossref_primary_10_1016_j_fsi_2014_07_009
crossref_primary_10_3109_00498254_2011_607865
crossref_primary_10_1021_acs_est_1c08068
crossref_primary_10_1016_j_molcata_2016_07_021
crossref_primary_10_1016_j_aquatox_2018_02_007
crossref_primary_10_2166_wpt_2016_036
crossref_primary_10_1016_j_scitotenv_2017_01_063
crossref_primary_10_1016_j_envpol_2019_113762
crossref_primary_10_1007_s00216_016_9541_9
crossref_primary_10_1007_s00216_015_9048_9
crossref_primary_10_1016_j_aquatox_2018_10_006
crossref_primary_10_1016_j_matpr_2021_07_356
crossref_primary_10_1016_j_scitotenv_2013_01_061
crossref_primary_10_3390_molecules27175740
crossref_primary_10_1038_s41545_024_00315_8
crossref_primary_10_1039_C4EM00472H
crossref_primary_10_1039_D0AY02098B
crossref_primary_10_1080_23308249_2024_2433581
crossref_primary_10_1016_j_envpol_2020_115053
crossref_primary_10_1007_s11356_011_0441_4
crossref_primary_10_1007_s11356_017_1081_0
crossref_primary_10_1016_j_aquatox_2017_05_017
crossref_primary_10_1155_2014_645737
crossref_primary_10_1016_j_jiec_2015_05_018
crossref_primary_10_1016_j_scitotenv_2017_07_042
crossref_primary_10_1002_etc_1879
crossref_primary_10_1016_j_scitotenv_2021_150020
crossref_primary_10_1007_s11356_021_16146_w
crossref_primary_10_1177_0192623321989653
crossref_primary_10_18633_biotecnia_v26_2292
crossref_primary_10_1016_j_cej_2014_10_102
crossref_primary_10_1016_j_envpol_2019_01_073
crossref_primary_10_1016_j_scitotenv_2012_01_039
crossref_primary_10_3390_ma13183964
crossref_primary_10_1021_acsomega_2c01204
crossref_primary_10_1016_j_talanta_2018_09_103
crossref_primary_10_1016_j_envpol_2023_121457
crossref_primary_10_1016_j_ecoenv_2021_112874
crossref_primary_10_1016_j_chroma_2012_07_026
crossref_primary_10_1016_j_chroma_2013_03_001
crossref_primary_10_1016_j_chemosphere_2014_11_062
crossref_primary_10_3390_w16131888
crossref_primary_10_1002_etc_3948
crossref_primary_10_1016_j_scitotenv_2014_05_055
crossref_primary_10_3390_catal11111330
crossref_primary_10_1007_s43188_022_00167_9
crossref_primary_10_1016_j_seppur_2024_127768
crossref_primary_10_1016_j_snb_2018_04_106
crossref_primary_10_1016_j_jhazmat_2011_05_038
crossref_primary_10_1007_s11270_021_05167_3
crossref_primary_10_1016_j_cbpc_2024_109845
crossref_primary_10_1016_j_cej_2015_07_032
crossref_primary_10_1016_j_cbpc_2024_109846
crossref_primary_10_1016_j_chemosphere_2016_08_049
crossref_primary_10_1016_j_eti_2022_102504
crossref_primary_10_1016_j_envpol_2020_115239
crossref_primary_10_1021_acs_est_0c07887
crossref_primary_10_1016_j_envint_2019_04_075
crossref_primary_10_1016_j_scitotenv_2019_05_275
crossref_primary_10_1007_s00128_020_03025_2
crossref_primary_10_1016_j_aquatox_2013_10_033
crossref_primary_10_1016_j_cbpc_2016_04_003
crossref_primary_10_1007_s00216_012_6144_y
crossref_primary_10_1016_j_ecoenv_2017_01_053
crossref_primary_10_1016_j_aquatox_2014_11_006
crossref_primary_10_1016_j_envadv_2021_100164
crossref_primary_10_1016_j_chemosphere_2019_02_009
crossref_primary_10_1016_j_envpol_2020_114150
crossref_primary_10_1002_etc_5573
crossref_primary_10_1111_j_1751_7915_2011_00325_x
crossref_primary_10_1016_j_cej_2017_10_099
crossref_primary_10_1016_j_envpol_2017_05_060
crossref_primary_10_1016_j_cbpc_2022_109335
crossref_primary_10_1080_09603123_2018_1548697
crossref_primary_10_1007_s12595_021_00402_5
crossref_primary_10_1016_j_jcis_2017_02_022
crossref_primary_10_1007_s00216_011_4826_5
crossref_primary_10_1007_s41204_020_00099_5
crossref_primary_10_1186_s12302_022_00601_7
crossref_primary_10_18502_espoch_v3i4_17164
crossref_primary_10_1016_j_etap_2022_103821
crossref_primary_10_1007_s11356_013_1957_6
crossref_primary_10_1016_j_chemosphere_2013_06_018
crossref_primary_10_1016_j_chroma_2014_09_001
Cites_doi 10.1016/S0006-2952(99)00167-7
10.1016/j.envint.2007.02.010
10.1016/j.etap.2007.06.005
10.1016/j.jenvman.2009.01.023
10.1016/j.aquatox.2005.07.006
10.1289/ehp.99107s6907
10.1016/j.mito.2006.08.032
10.1016/j.ecoenv.2007.10.020
10.1016/S0016-5085(98)70026-5
10.1016/j.chemosphere.2006.12.090
10.1016/j.aquatox.2004.03.014
10.1289/ehp.10443
10.1186/1471-2199-8-10
10.1016/j.brainresrev.2006.02.002
10.1021/es9710870
10.1038/nature02317
10.1016/j.tox.2003.11.002
10.1016/S1382-6689(02)00126-6
10.1016/j.aquatox.2005.09.008
10.1016/S0045-6535(97)00354-8
10.1016/j.scitotenv.2008.05.036
10.1016/j.ecoenv.2005.04.004
10.1016/j.aquatox.2005.09.009
10.1016/j.trac.2008.09.010
10.1016/S0090-9556(24)14912-4
10.1016/j.chemosphere.2004.04.007
10.1016/S0048-9697(99)00500-8
10.1016/j.aquatox.2004.03.015
10.1016/j.envint.2008.09.002
10.1016/j.pharmthera.2006.05.007
10.1016/j.aquatox.2009.09.002
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright American Chemical Society Mar 15, 2010
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: Copyright American Chemical Society Mar 15, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QH
7TN
7TV
7UA
F1W
H95
H97
L.G
7X8
DOI 10.1021/es903702m
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Aqualine
Oceanic Abstracts
Pollution Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Pollution Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology Research Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2182
ExternalDocumentID 2006943521
20175546
10_1021_es903702m
b22442263
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QH
7TN
7TV
7UA
F1W
H95
H97
L.G
7X8
ID FETCH-LOGICAL-a373t-a6852404d828082828490687468f57a5936ff527279a7892b2f14eeb036bc4bc3
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Fri Jul 11 02:50:22 EDT 2025
Thu Jul 10 18:06:16 EDT 2025
Fri Jul 25 05:50:58 EDT 2025
Thu Apr 03 07:02:00 EDT 2025
Tue Jul 01 05:29:11 EDT 2025
Thu Apr 24 23:07:35 EDT 2025
Thu Aug 27 13:42:05 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a373t-a6852404d828082828490687468f57a5936ff527279a7892b2f14eeb036bc4bc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20175546
PQID 230151673
PQPubID 45412
PageCount 7
ParticipantIDs proquest_miscellaneous_861788461
proquest_miscellaneous_754543853
proquest_journals_230151673
pubmed_primary_20175546
crossref_citationtrail_10_1021_es903702m
crossref_primary_10_1021_es903702m
acs_journals_10_1021_es903702m
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-15
PublicationDateYYYYMMDD 2010-03-15
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ng L. E. (ref26/cit26) 2006; 6
Giltrow E. (ref33/cit33) 2009; 95
van der Oost R. (ref17/cit17) 2003; 13
Triebskorn R. (ref27/cit27) 2004; 68
Hoeger B. (ref30/cit30) 2008; 71
Daughton C. (ref5/cit5) 1999; 107
Tang W. (ref15/cit15) 1999; 27
Stülten D. (ref12/cit12) 2008; 405
Hong H. N. (ref19/cit19) 2007; 67
Farré M. l. (ref2/cit2) 2008; 27
Sarasquete C. (ref16/cit16) 2000; 247
Halling-Sorensen B. (ref1/cit1) 1998; 36
Oaks J. L. (ref11/cit11) 2004; 427
Brown J. N. (ref24/cit24) 2007; 24
Hoeger B. (ref14/cit14) 2005; 75
Gagné F. (ref7/cit7) 2006; 64
Kümmerer K. (ref3/cit3) 2009; 90
Filby A. L. (ref9/cit9) 2007; 115
Fent K. (ref6/cit6) 2006; 76
Letzel M. (ref13/cit13) 2009; 35
Taggart M. A. (ref25/cit25) 2007; 33
Holland J. W. (ref28/cit28) 1999; 122
Jobling S. (ref8/cit8) 1998; 32
Treinen-Moslen M. (ref22/cit22) 2006; 112
Schwaiger J. (ref23/cit23) 2004; 68
Phillis J. W. (ref10/cit10) 2006; 52
Hutchinson T. H. (ref32/cit32) 2006; 76
Hallare A. V. (ref21/cit21) 2004; 56
Filby A. L. (ref20/cit20) 2007; 8
Laville N. (ref18/cit18) 2004; 196
Carlsson G. (ref4/cit4) 2009
Seitz S. (ref31/cit31) 1998; 115
Bort R. (ref29/cit29) 1999; 58
References_xml – volume: 58
  start-page: 787
  year: 1999
  ident: ref29/cit29
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/S0006-2952(99)00167-7
– volume: 33
  start-page: 759
  year: 2007
  ident: ref25/cit25
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2007.02.010
– volume: 24
  start-page: 267
  year: 2007
  ident: ref24/cit24
  publication-title: Environ. Toxicol. Pharmacol.
  doi: 10.1016/j.etap.2007.06.005
– volume: 90
  start-page: 2354
  year: 2009
  ident: ref3/cit3
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2009.01.023
– volume: 75
  start-page: 53
  year: 2005
  ident: ref14/cit14
  publication-title: Aquatic Toxicol.
  doi: 10.1016/j.aquatox.2005.07.006
– volume: 122
  start-page: 297
  issue: 3
  year: 1999
  ident: ref28/cit28
  publication-title: Comp. Biochem. Physiol. Part C: Pharmacol., Toxicol. Endocrinol.
– volume: 107
  start-page: 907
  year: 1999
  ident: ref5/cit5
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.99107s6907
– volume: 6
  start-page: 13
  year: 2006
  ident: ref26/cit26
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2006.08.032
– volume: 71
  start-page: 412
  year: 2008
  ident: ref30/cit30
  publication-title: Ecotoxicol. Environ. Safety
  doi: 10.1016/j.ecoenv.2007.10.020
– volume: 115
  start-page: 1476
  year: 1998
  ident: ref31/cit31
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(98)70026-5
– volume: 67
  start-page: 2115
  year: 2007
  ident: ref19/cit19
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.12.090
– volume: 68
  start-page: 141
  year: 2004
  ident: ref23/cit23
  publication-title: Aquatic Toxicol.
  doi: 10.1016/j.aquatox.2004.03.014
– volume: 115
  start-page: 1704
  year: 2007
  ident: ref9/cit9
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.10443
– volume: 8
  start-page: 8
  year: 2007
  ident: ref20/cit20
  publication-title: BMC Molec. Biol.
  doi: 10.1186/1471-2199-8-10
– volume: 52
  start-page: 201
  year: 2006
  ident: ref10/cit10
  publication-title: Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2006.02.002
– volume: 32
  start-page: 2498
  year: 1998
  ident: ref8/cit8
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9710870
– volume: 427
  start-page: 630
  year: 2004
  ident: ref11/cit11
  publication-title: Nature
  doi: 10.1038/nature02317
– volume: 196
  start-page: 41
  year: 2004
  ident: ref18/cit18
  publication-title: Toxicol.
  doi: 10.1016/j.tox.2003.11.002
– volume: 13
  start-page: 57
  year: 2003
  ident: ref17/cit17
  publication-title: Environ. Toxicol. Pharmacol.
  doi: 10.1016/S1382-6689(02)00126-6
– volume: 76
  start-page: 69
  year: 2006
  ident: ref32/cit32
  publication-title: Aquatic Toxicol.
  doi: 10.1016/j.aquatox.2005.09.008
– volume: 36
  start-page: 357
  year: 1998
  ident: ref1/cit1
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(97)00354-8
– start-page: 1
  year: 2009
  ident: ref4/cit4
  publication-title: Environ. Toxicol. Chem.
– volume: 405
  start-page: 310
  issue: 1
  year: 2008
  ident: ref12/cit12
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.05.036
– volume: 64
  start-page: 329
  year: 2006
  ident: ref7/cit7
  publication-title: Ecotoxicol. Environ. Safety
  doi: 10.1016/j.ecoenv.2005.04.004
– volume: 76
  start-page: 122
  year: 2006
  ident: ref6/cit6
  publication-title: Aquatic Toxicol.
  doi: 10.1016/j.aquatox.2005.09.009
– volume: 27
  start-page: 991
  year: 2008
  ident: ref2/cit2
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2008.09.010
– volume: 27
  start-page: 365
  year: 1999
  ident: ref15/cit15
  publication-title: Drug Metab. Dispos.
  doi: 10.1016/S0090-9556(24)14912-4
– volume: 56
  start-page: 659
  year: 2004
  ident: ref21/cit21
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.04.007
– volume: 247
  start-page: 313
  year: 2000
  ident: ref16/cit16
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(99)00500-8
– volume: 68
  start-page: 151
  year: 2004
  ident: ref27/cit27
  publication-title: Aquatic Toxicol.
  doi: 10.1016/j.aquatox.2004.03.015
– volume: 35
  start-page: 363
  year: 2009
  ident: ref13/cit13
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2008.09.002
– volume: 112
  start-page: 649
  year: 2006
  ident: ref22/cit22
  publication-title: Pharmacol. Therapeut.
  doi: 10.1016/j.pharmthera.2006.05.007
– volume: 95
  start-page: 195
  year: 2009
  ident: ref33/cit33
  publication-title: Aquatic Toxicol.
  doi: 10.1016/j.aquatox.2009.09.002
SSID ssj0002308
Score 2.4559293
Snippet Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2176
SubjectTerms Animals
Anti-Inflammatory Agents, Non-Steroidal - metabolism
Aquatic ecosystems
Biomarkers - metabolism
Cell cycle
Cyclooxygenase 1 - genetics
Cyclooxygenase 1 - metabolism
Cyclooxygenase 2 - genetics
Cyclooxygenase 2 - metabolism
Cytochrome P-450 CYP1A1 - genetics
Cytochrome P-450 CYP1A1 - metabolism
Diclofenac - metabolism
Dose-Response Relationship, Drug
Ecotoxicology and Human Environmental Health
Environmental science
Female
Gene expression
Gene Expression - drug effects
Genes
Intestines - metabolism
Intestines - pathology
Kidney - metabolism
Kidney - pathology
Liver - metabolism
Nonsteroidal anti-inflammatory drugs
Oncorhynchus mykiss
Oncorhynchus mykiss - metabolism
Pharmaceuticals
RNA, Messenger - metabolism
Trout
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Water Pollutants, Chemical - metabolism
Title Uptake and Biological Effects of Environmentally Relevant Concentrations of the Nonsteroidal Anti-inflammatory Pharmaceutical Diclofenac in Rainbow Trout (Oncorhynchus mykiss)
URI http://dx.doi.org/10.1021/es903702m
https://www.ncbi.nlm.nih.gov/pubmed/20175546
https://www.proquest.com/docview/230151673
https://www.proquest.com/docview/754543853
https://www.proquest.com/docview/861788461
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3fb9MwEMdPY7zAAz8Gg24wWcDDeMhIbCd2Hqdu04TEQLBKfYscx1Grrc7UJA_dP8W_yDm_1okVnntRXN2593HP9z2AT5pyaXTGPaGMwANKHHuY543HJDUacUGkmWtO_nYRnU_412k43YKPGyr4NPhiythnwqeLR_CYRlK4E9bx-Nfwc4sMLfsxBTGLpr180PqjLvXo8n7q2cCTTV45ew4nfXdOe53k6qiu0iN9-7dY47-W_AKedVxJjttAeAlbxu7A0zW1wR3YPb1rakPTbleXr-D35KZSV4Yom5F2NqXzHGmFjUtS5OTek9cr8tN1paNPyNh1PdpOercxRaAkFw46zbKYZ25Jtpp7GMcYeoumpE9-zNb_RycnuOIiN1ZpMrekKziRy2VRV-Twu9PZnK2sntUlWawQd8vPr2Fydno5Pve6QQ6eYoJVnopkiOTAMzzeOck8TImxj67kkcxDodxQwTwPKaJUrISMaUrzgBuTYnZNNU8124VtW1jzFkgQRT43LIiUpFz7vkIAxTwfmMzwIGVyBAfo6aTbiGXS1NhpkAwuGcFhHwSJ7mTQ3TSO64dMPwymN632x0NG-30k3b0VYxJJKhJsBGT4FPetK8Yoa4q6TASiK2cIS5tNpGvfRD4MRvCmDdFhGYhtwt0v3Pvf192HJ-19B-YF4TvYrpa1eY8YVaUHzTb6Aw76GS0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VcgAO_BQKoVBWCKRycLHXG6994FClrVLaBgSJlJtZr9dK1MausrZQeBReggfg5Zj1X1LUilMlzpmsx-v5-VY78w3AG0mZr2TMLC4UxwNKEFiY55Xl-lRJhAs8ik1z8unA64_Yx3F3vAY_m14YVELjSrq8xF-yCzjvlQ5sl9t0VhdQHqvFdzye6Q9H-_gt31J6eDDs9a16goAlXO7mlvD8LqYsFuO5wnC1YSwObM_nzPOTLhdmml2SdCnm8EBwP6ARTRymVIRhPZIski6uewtuI-ih5mC31_vaRnmE7n4zHQGXGTesRauqmown9eWMdw2MLdPZ4QP43W5EWcVytlvk0a788RdH5P-5Uw_hfo2iyV5l9o9gTaUbcG-FW3EDNg-WLXwoWscw_Rh-jS5ycaaISGNSTeI0dkoqGmdNsoRc-uf5gnwxPfhogaRnejzTmmi4FEX4TAYGYqt5No2NSmk-tdBr0dFmZQED-TxZvTUg-6hxlqhUSDJNSX29RobzrMjJzifDKjpZpHJSaDJbILjX757A6Ea2chPW0yxVz4A4nmcz5Tqe8CmTti0QbiOqcVSsmBO5fge20QLCOuzosKwooE7YmkAHdhrbC2VN-m5mj5xfJfq6Fb2omE6uEtpqDHj5VHQFxI0edztA2l8xSpmrJ5GqrNAhR6DOXISG14v4plkV0bDTgaeVZ7RqIEjlppry-b9e9xXc6Q9PT8KTo8HxFtytKj1cy-m-gPV8XqiXCCDzaLv0ZALfbtoh_gA-w3dS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIiE48CgUQqGsEEjl4OLHxrs-cKiSRi2FUEEj5eau12slamNHWVso_Bj-Aj-Bv8asX01RK06VOGeyXq_n8a1m5huAN9KlXMmYWkwohheUILAwzivL466SCBdYFJvm5M9D_2BEP4674zX42fTC4CY0rqTLJL6x6nmc1AwDznulA9tjtjuriyiP1PI7XtH0h8M-fs-3rjvYP-kdWPUUAUt4zMst4fMuhi0a493C8LWhPw5snzPq86TLhJlolyRdF-N4IBgP3MhNHKpUhK49kjSSHq57C26b9KC53O31vrWeHuE7byYk4DLjhrlodasm6kl9OepdA2XLkDZ4AL_bwygrWc52izzalT_-4on8f0_rIdyv0TTZq9T_EaypdAPurXAsbsDm_kUrH4rWvkw_hl-jeS7OFBFpTKqJnEZfSUXnrEmWkEv_PF-Sr6YXHzWR9EyvZ1oTDpeiCKPJ0EBttcimsdlSmk8ttF40uFlZyECOJ6vZA9LHHWeJSoUk05TUaTZyssiKnOx8Meyik2UqJ4UmsyWCfP3uCYxu5Cg3YT3NUvUMiOP7NlWe4wvuUmnbAmE3ohtHxYo6kcc7sI1aENbuR4dlZYHrhK0KdGCn0b9Q1uTvZgbJ-VWir1vRecV4cpXQVqPEF09Fc0D86DOvA6T9Fb2VSUGJVGWFDhkCduohRLxehJumVUTFTgeeVtbRbgPBKjNVlc__9bqv4M5xfxB-OhwebcHdquDDs5zuC1jPF4V6iTgyj7ZLYyZwetP28AebfnnV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uptake+and+Biological+Effects+of+Environmentally+Relevant+Concentrations+of+the+Nonsteroidal+Anti-inflammatory+Pharmaceutical+Diclofenac+in+Rainbow+Trout+%28Oncorhynchus+mykiss%29&rft.jtitle=Environmental+science+%26+technology&rft.au=Mehinto%2C+Alvine+C&rft.au=Hill%2C+Elizabeth+M&rft.au=Tyler%2C+Charles+R&rft.date=2010-03-15&rft.issn=0013-936X&rft.volume=44&rft.issue=6&rft.spage=2176&rft.epage=2182&rft_id=info:doi/10.1021%2Fes903702m&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon