Uptake and Biological Effects of Environmentally Relevant Concentrations of the Nonsteroidal Anti-inflammatory Pharmaceutical Diclofenac in Rainbow Trout (Oncorhynchus mykiss)
Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/...
Saved in:
Published in | Environmental science & technology Vol. 44; no. 6; pp. 2176 - 2182 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.03.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/L) in rainbow trout. Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 μg/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 μg/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment. |
---|---|
AbstractList | Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0,0.5, 1, 5, and 25 mu g/L) in rainbow trout. Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 plus or minus 27 and 657 plus or minus 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 mu g/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 mu g/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment. Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 ...g/L) in rainbow trout. Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 ...g/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 ...g/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment. (ProQuest: ... denotes formulae/symbols omitted.) Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/L) in rainbow trout Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 μg/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 μg/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment.Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/L) in rainbow trout Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 μg/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 μg/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment. Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/L) in rainbow trout. Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 μg/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 μg/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment. |
Author | Tyler, Charles R Mehinto, Alvine C Hill, Elizabeth M |
Author_xml | – sequence: 1 givenname: Alvine C surname: Mehinto fullname: Mehinto, Alvine C – sequence: 2 givenname: Elizabeth M surname: Hill fullname: Hill, Elizabeth M – sequence: 3 givenname: Charles R surname: Tyler fullname: Tyler, Charles R email: c.r.tyler@exeter.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20175546$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt9uFCEUxompsdvqhS9giInRXowFBgbmsm7XP0ljTdMm3k0YFlxaBrbA1MxT9RWlu60m1cQLcgj5ne8cznf2wI4PXgPwEqP3GBF8qFOLao7I8ATMMCOoYoLhHTBDCNdVWzffd8FeSpcIIVIj8QzsEoQ5Y7SZgduLdZZXGkq_hB9scOGHVdLBhTFa5QSDgQt_Y2Pwg_ZZOjfBM-30jfQZzoNX5THKbIPfoHml4ddyzzoGuywyRz7bynrj5DDIHOIEv61kHKTSY97UObbKBaO9VNB6eCat78NPeB7DmOG7U69CXE1ercYEh-nKpnTwHDw10iX94j7ug4uPi_P55-rk9NOX-dFJJWte50o2ghGK6FIQgcohgraoEZw2wjAuWRmKMYxwwlvJRUt6YjDVukd10yvaq3ofvN3qrmO4HnXK3WCT0s5Jr8OYOtFgLgRt8H9JziijtWB1IV8_Ii_DGH35Rld8wQw3_A56dQ-N_aCX3TraQcape7CsAIdbQMWQUtSmUzZvPChWWNdh1N0tRfd7KUrGwaOMB9F_sW-2rFTpT3t_c78AhHzEew |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_174036 crossref_primary_10_1371_journal_pone_0288542 crossref_primary_10_14321_aehm_024_02_17 crossref_primary_10_1007_s11356_018_2123_y crossref_primary_10_1016_j_chemosphere_2018_04_080 crossref_primary_10_1002_etc_5634 crossref_primary_10_1007_s11356_022_21815_5 crossref_primary_10_1016_j_envpol_2017_10_080 crossref_primary_10_3390_w15101838 crossref_primary_10_1002_etc_2240 crossref_primary_10_1016_j_scitotenv_2013_05_002 crossref_primary_10_1007_s11270_013_1689_8 crossref_primary_10_2166_wst_2020_121 crossref_primary_10_1016_j_etap_2015_07_016 crossref_primary_10_1021_acs_est_9b07127 crossref_primary_10_1016_j_scitotenv_2020_139715 crossref_primary_10_1016_j_scitotenv_2025_178927 crossref_primary_10_1016_j_jhazmat_2010_05_139 crossref_primary_10_1039_D3AY01333B crossref_primary_10_1007_s11356_016_6433_7 crossref_primary_10_1016_j_cbpc_2010_11_004 crossref_primary_10_1007_s11033_011_0959_z crossref_primary_10_1016_j_watres_2017_12_077 crossref_primary_10_1007_s11430_012_4384_5 crossref_primary_10_1007_s00216_013_7371_6 crossref_primary_10_1016_j_ecoenv_2017_02_003 crossref_primary_10_1016_j_etap_2024_104453 crossref_primary_10_1016_j_jece_2021_106743 crossref_primary_10_1016_j_cbpc_2021_109107 crossref_primary_10_1016_j_marpolbul_2017_02_024 crossref_primary_10_1016_j_fsi_2017_03_033 crossref_primary_10_1002_tox_22173 crossref_primary_10_3390_ijerph15112395 crossref_primary_10_1007_s10646_015_1417_9 crossref_primary_10_2166_wst_2017_075 crossref_primary_10_1002_etc_501 crossref_primary_10_1016_j_chemosphere_2016_09_116 crossref_primary_10_1007_s00267_019_01174_7 crossref_primary_10_1016_j_scitotenv_2023_162557 crossref_primary_10_1016_j_chemosphere_2013_09_074 crossref_primary_10_1007_s10646_011_0799_6 crossref_primary_10_1016_j_seppur_2017_10_030 crossref_primary_10_4236_jep_2013_49109 crossref_primary_10_1186_s13568_018_0546_y crossref_primary_10_1016_j_snb_2017_07_123 crossref_primary_10_1038_s41598_017_12473_6 crossref_primary_10_1021_acs_est_6b04365 crossref_primary_10_1016_j_bios_2017_10_043 crossref_primary_10_1016_j_chemosphere_2017_01_030 crossref_primary_10_1016_j_envint_2023_107798 crossref_primary_10_1039_c1em10015g crossref_primary_10_3390_molecules25081796 crossref_primary_10_1007_s00244_014_0048_0 crossref_primary_10_1016_j_scitotenv_2016_09_095 crossref_primary_10_1038_s41598_024_59971_y crossref_primary_10_1002_etc_3240 crossref_primary_10_1016_j_envpol_2017_02_061 crossref_primary_10_1134_S0036024421110224 crossref_primary_10_1016_j_marpolbul_2018_04_053 crossref_primary_10_1016_j_jhazmat_2019_121407 crossref_primary_10_1016_j_watres_2024_122388 crossref_primary_10_1016_j_isci_2023_107688 crossref_primary_10_1080_10408444_2017_1288024 crossref_primary_10_1002_etc_3899 crossref_primary_10_1016_j_chemosphere_2018_07_016 crossref_primary_10_1016_j_ecoenv_2020_111812 crossref_primary_10_1016_j_scitotenv_2013_12_123 crossref_primary_10_1016_j_cej_2015_05_038 crossref_primary_10_1016_j_ecoenv_2022_114138 crossref_primary_10_1002_adfm_202000612 crossref_primary_10_1016_j_watres_2014_09_018 crossref_primary_10_1016_j_snb_2019_02_069 crossref_primary_10_1007_s11356_017_9228_6 crossref_primary_10_1371_journal_pone_0168837 crossref_primary_10_1016_j_envpol_2013_09_013 crossref_primary_10_1016_j_scitotenv_2019_134057 crossref_primary_10_1002_etc_599 crossref_primary_10_1016_j_envpol_2022_120384 crossref_primary_10_1002_etc_2457 crossref_primary_10_1016_j_aquatox_2024_107031 crossref_primary_10_1002_etc_3545 crossref_primary_10_1002_etc_3302 crossref_primary_10_2139_ssrn_4140141 crossref_primary_10_1016_j_scitotenv_2018_04_015 crossref_primary_10_1007_s10646_016_1682_2 crossref_primary_10_5937_zasmat1803367R crossref_primary_10_1016_j_chemosphere_2018_05_066 crossref_primary_10_1007_s10646_014_1371_y crossref_primary_10_3390_w8110542 crossref_primary_10_1016_j_envint_2016_09_014 crossref_primary_10_1016_j_aquatox_2017_03_007 crossref_primary_10_3390_su13031125 crossref_primary_10_1016_j_envpol_2014_12_026 crossref_primary_10_1016_j_envpol_2024_123424 crossref_primary_10_1016_j_envpol_2014_01_015 crossref_primary_10_1021_acs_est_6b03504 crossref_primary_10_1016_j_jhazmat_2014_07_031 crossref_primary_10_1039_C8CS00479J crossref_primary_10_1016_j_ecoenv_2021_112454 crossref_primary_10_3390_su15107922 crossref_primary_10_1007_s10661_018_6683_6 crossref_primary_10_1007_s11270_018_3845_7 crossref_primary_10_1016_j_scitotenv_2022_157921 crossref_primary_10_1016_j_chemosphere_2015_08_038 crossref_primary_10_3390_catal8020045 crossref_primary_10_1016_j_scitotenv_2024_173655 crossref_primary_10_1155_2014_253468 crossref_primary_10_1016_j_scitotenv_2021_148251 crossref_primary_10_1016_j_aquatox_2013_12_010 crossref_primary_10_1007_s11783_014_0640_6 crossref_primary_10_1016_j_chemosphere_2012_02_018 crossref_primary_10_1002_etc_3444 crossref_primary_10_1039_D2VA00207H crossref_primary_10_1016_j_chroma_2018_01_037 crossref_primary_10_1016_j_cej_2018_06_157 crossref_primary_10_1016_j_cdc_2022_100982 crossref_primary_10_1021_es103122g crossref_primary_10_1016_j_scitotenv_2019_01_350 crossref_primary_10_1016_j_diamond_2023_110328 crossref_primary_10_1016_j_jhazmat_2012_05_077 crossref_primary_10_1016_j_ecoenv_2023_115024 crossref_primary_10_1016_j_watres_2017_08_018 crossref_primary_10_1080_09593330_2014_994044 crossref_primary_10_1007_s11356_024_32477_w crossref_primary_10_1016_j_chemosphere_2019_03_034 crossref_primary_10_1016_j_envpol_2022_118898 crossref_primary_10_1016_j_scitotenv_2020_139797 crossref_primary_10_1016_j_scitotenv_2023_166897 crossref_primary_10_1002_etc_2085 crossref_primary_10_1016_j_eti_2020_101160 crossref_primary_10_1038_s41598_020_63481_y crossref_primary_10_1016_j_scitotenv_2017_10_305 crossref_primary_10_1016_j_ceramint_2017_01_018 crossref_primary_10_1021_acs_est_6b05079 crossref_primary_10_1371_journal_pone_0243462 crossref_primary_10_2478_v10181_011_0081_0 crossref_primary_10_1016_j_watres_2021_117441 crossref_primary_10_1038_s41598_021_82711_5 crossref_primary_10_1016_j_ecoenv_2019_109513 crossref_primary_10_1016_j_envint_2020_106222 crossref_primary_10_1002_etc_3742 crossref_primary_10_1016_j_chroma_2018_04_003 crossref_primary_10_1016_j_chemosphere_2017_04_084 crossref_primary_10_5012_bkcs_2010_31_10_3007 crossref_primary_10_1002_jsfa_13430 crossref_primary_10_1016_j_etap_2018_03_008 crossref_primary_10_1021_es303013j crossref_primary_10_1016_j_envint_2015_09_023 crossref_primary_10_1016_j_microc_2018_10_017 crossref_primary_10_1021_es2039097 crossref_primary_10_1016_j_ecolind_2021_108172 crossref_primary_10_1016_j_ecoenv_2014_11_020 crossref_primary_10_1016_j_jwpe_2022_103360 crossref_primary_10_2139_ssrn_4147222 crossref_primary_10_1016_j_jenvman_2013_12_017 crossref_primary_10_1016_j_fsi_2014_07_009 crossref_primary_10_3109_00498254_2011_607865 crossref_primary_10_1021_acs_est_1c08068 crossref_primary_10_1016_j_molcata_2016_07_021 crossref_primary_10_1016_j_aquatox_2018_02_007 crossref_primary_10_2166_wpt_2016_036 crossref_primary_10_1016_j_scitotenv_2017_01_063 crossref_primary_10_1016_j_envpol_2019_113762 crossref_primary_10_1007_s00216_016_9541_9 crossref_primary_10_1007_s00216_015_9048_9 crossref_primary_10_1016_j_aquatox_2018_10_006 crossref_primary_10_1016_j_matpr_2021_07_356 crossref_primary_10_1016_j_scitotenv_2013_01_061 crossref_primary_10_3390_molecules27175740 crossref_primary_10_1038_s41545_024_00315_8 crossref_primary_10_1039_C4EM00472H crossref_primary_10_1039_D0AY02098B crossref_primary_10_1080_23308249_2024_2433581 crossref_primary_10_1016_j_envpol_2020_115053 crossref_primary_10_1007_s11356_011_0441_4 crossref_primary_10_1007_s11356_017_1081_0 crossref_primary_10_1016_j_aquatox_2017_05_017 crossref_primary_10_1155_2014_645737 crossref_primary_10_1016_j_jiec_2015_05_018 crossref_primary_10_1016_j_scitotenv_2017_07_042 crossref_primary_10_1002_etc_1879 crossref_primary_10_1016_j_scitotenv_2021_150020 crossref_primary_10_1007_s11356_021_16146_w crossref_primary_10_1177_0192623321989653 crossref_primary_10_18633_biotecnia_v26_2292 crossref_primary_10_1016_j_cej_2014_10_102 crossref_primary_10_1016_j_envpol_2019_01_073 crossref_primary_10_1016_j_scitotenv_2012_01_039 crossref_primary_10_3390_ma13183964 crossref_primary_10_1021_acsomega_2c01204 crossref_primary_10_1016_j_talanta_2018_09_103 crossref_primary_10_1016_j_envpol_2023_121457 crossref_primary_10_1016_j_ecoenv_2021_112874 crossref_primary_10_1016_j_chroma_2012_07_026 crossref_primary_10_1016_j_chroma_2013_03_001 crossref_primary_10_1016_j_chemosphere_2014_11_062 crossref_primary_10_3390_w16131888 crossref_primary_10_1002_etc_3948 crossref_primary_10_1016_j_scitotenv_2014_05_055 crossref_primary_10_3390_catal11111330 crossref_primary_10_1007_s43188_022_00167_9 crossref_primary_10_1016_j_seppur_2024_127768 crossref_primary_10_1016_j_snb_2018_04_106 crossref_primary_10_1016_j_jhazmat_2011_05_038 crossref_primary_10_1007_s11270_021_05167_3 crossref_primary_10_1016_j_cbpc_2024_109845 crossref_primary_10_1016_j_cej_2015_07_032 crossref_primary_10_1016_j_cbpc_2024_109846 crossref_primary_10_1016_j_chemosphere_2016_08_049 crossref_primary_10_1016_j_eti_2022_102504 crossref_primary_10_1016_j_envpol_2020_115239 crossref_primary_10_1021_acs_est_0c07887 crossref_primary_10_1016_j_envint_2019_04_075 crossref_primary_10_1016_j_scitotenv_2019_05_275 crossref_primary_10_1007_s00128_020_03025_2 crossref_primary_10_1016_j_aquatox_2013_10_033 crossref_primary_10_1016_j_cbpc_2016_04_003 crossref_primary_10_1007_s00216_012_6144_y crossref_primary_10_1016_j_ecoenv_2017_01_053 crossref_primary_10_1016_j_aquatox_2014_11_006 crossref_primary_10_1016_j_envadv_2021_100164 crossref_primary_10_1016_j_chemosphere_2019_02_009 crossref_primary_10_1016_j_envpol_2020_114150 crossref_primary_10_1002_etc_5573 crossref_primary_10_1111_j_1751_7915_2011_00325_x crossref_primary_10_1016_j_cej_2017_10_099 crossref_primary_10_1016_j_envpol_2017_05_060 crossref_primary_10_1016_j_cbpc_2022_109335 crossref_primary_10_1080_09603123_2018_1548697 crossref_primary_10_1007_s12595_021_00402_5 crossref_primary_10_1016_j_jcis_2017_02_022 crossref_primary_10_1007_s00216_011_4826_5 crossref_primary_10_1007_s41204_020_00099_5 crossref_primary_10_1186_s12302_022_00601_7 crossref_primary_10_18502_espoch_v3i4_17164 crossref_primary_10_1016_j_etap_2022_103821 crossref_primary_10_1007_s11356_013_1957_6 crossref_primary_10_1016_j_chemosphere_2013_06_018 crossref_primary_10_1016_j_chroma_2014_09_001 |
Cites_doi | 10.1016/S0006-2952(99)00167-7 10.1016/j.envint.2007.02.010 10.1016/j.etap.2007.06.005 10.1016/j.jenvman.2009.01.023 10.1016/j.aquatox.2005.07.006 10.1289/ehp.99107s6907 10.1016/j.mito.2006.08.032 10.1016/j.ecoenv.2007.10.020 10.1016/S0016-5085(98)70026-5 10.1016/j.chemosphere.2006.12.090 10.1016/j.aquatox.2004.03.014 10.1289/ehp.10443 10.1186/1471-2199-8-10 10.1016/j.brainresrev.2006.02.002 10.1021/es9710870 10.1038/nature02317 10.1016/j.tox.2003.11.002 10.1016/S1382-6689(02)00126-6 10.1016/j.aquatox.2005.09.008 10.1016/S0045-6535(97)00354-8 10.1016/j.scitotenv.2008.05.036 10.1016/j.ecoenv.2005.04.004 10.1016/j.aquatox.2005.09.009 10.1016/j.trac.2008.09.010 10.1016/S0090-9556(24)14912-4 10.1016/j.chemosphere.2004.04.007 10.1016/S0048-9697(99)00500-8 10.1016/j.aquatox.2004.03.015 10.1016/j.envint.2008.09.002 10.1016/j.pharmthera.2006.05.007 10.1016/j.aquatox.2009.09.002 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society Copyright American Chemical Society Mar 15, 2010 |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: Copyright American Chemical Society Mar 15, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7QH 7TN 7TV 7UA F1W H95 H97 L.G 7X8 |
DOI | 10.1021/es903702m |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Aqualine Oceanic Abstracts Pollution Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Pollution Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 2182 |
ExternalDocumentID | 2006943521 20175546 10_1021_es903702m b22442263 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7QH 7TN 7TV 7UA F1W H95 H97 L.G 7X8 |
ID | FETCH-LOGICAL-a373t-a6852404d828082828490687468f57a5936ff527279a7892b2f14eeb036bc4bc3 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Fri Jul 11 02:50:22 EDT 2025 Thu Jul 10 18:06:16 EDT 2025 Fri Jul 25 05:50:58 EDT 2025 Thu Apr 03 07:02:00 EDT 2025 Tue Jul 01 05:29:11 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Thu Aug 27 13:42:05 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a373t-a6852404d828082828490687468f57a5936ff527279a7892b2f14eeb036bc4bc3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 20175546 |
PQID | 230151673 |
PQPubID | 45412 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_861788461 proquest_miscellaneous_754543853 proquest_journals_230151673 pubmed_primary_20175546 crossref_citationtrail_10_1021_es903702m crossref_primary_10_1021_es903702m acs_journals_10_1021_es903702m |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-03-15 |
PublicationDateYYYYMMDD | 2010-03-15 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ng L. E. (ref26/cit26) 2006; 6 Giltrow E. (ref33/cit33) 2009; 95 van der Oost R. (ref17/cit17) 2003; 13 Triebskorn R. (ref27/cit27) 2004; 68 Hoeger B. (ref30/cit30) 2008; 71 Daughton C. (ref5/cit5) 1999; 107 Tang W. (ref15/cit15) 1999; 27 Stülten D. (ref12/cit12) 2008; 405 Hong H. N. (ref19/cit19) 2007; 67 Farré M. l. (ref2/cit2) 2008; 27 Sarasquete C. (ref16/cit16) 2000; 247 Halling-Sorensen B. (ref1/cit1) 1998; 36 Oaks J. L. (ref11/cit11) 2004; 427 Brown J. N. (ref24/cit24) 2007; 24 Hoeger B. (ref14/cit14) 2005; 75 Gagné F. (ref7/cit7) 2006; 64 Kümmerer K. (ref3/cit3) 2009; 90 Filby A. L. (ref9/cit9) 2007; 115 Fent K. (ref6/cit6) 2006; 76 Letzel M. (ref13/cit13) 2009; 35 Taggart M. A. (ref25/cit25) 2007; 33 Holland J. W. (ref28/cit28) 1999; 122 Jobling S. (ref8/cit8) 1998; 32 Treinen-Moslen M. (ref22/cit22) 2006; 112 Schwaiger J. (ref23/cit23) 2004; 68 Phillis J. W. (ref10/cit10) 2006; 52 Hutchinson T. H. (ref32/cit32) 2006; 76 Hallare A. V. (ref21/cit21) 2004; 56 Filby A. L. (ref20/cit20) 2007; 8 Laville N. (ref18/cit18) 2004; 196 Carlsson G. (ref4/cit4) 2009 Seitz S. (ref31/cit31) 1998; 115 Bort R. (ref29/cit29) 1999; 58 |
References_xml | – volume: 58 start-page: 787 year: 1999 ident: ref29/cit29 publication-title: Biochem. Pharmacol. doi: 10.1016/S0006-2952(99)00167-7 – volume: 33 start-page: 759 year: 2007 ident: ref25/cit25 publication-title: Environ. Int. doi: 10.1016/j.envint.2007.02.010 – volume: 24 start-page: 267 year: 2007 ident: ref24/cit24 publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2007.06.005 – volume: 90 start-page: 2354 year: 2009 ident: ref3/cit3 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2009.01.023 – volume: 75 start-page: 53 year: 2005 ident: ref14/cit14 publication-title: Aquatic Toxicol. doi: 10.1016/j.aquatox.2005.07.006 – volume: 122 start-page: 297 issue: 3 year: 1999 ident: ref28/cit28 publication-title: Comp. Biochem. Physiol. Part C: Pharmacol., Toxicol. Endocrinol. – volume: 107 start-page: 907 year: 1999 ident: ref5/cit5 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.99107s6907 – volume: 6 start-page: 13 year: 2006 ident: ref26/cit26 publication-title: Mitochondrion doi: 10.1016/j.mito.2006.08.032 – volume: 71 start-page: 412 year: 2008 ident: ref30/cit30 publication-title: Ecotoxicol. Environ. Safety doi: 10.1016/j.ecoenv.2007.10.020 – volume: 115 start-page: 1476 year: 1998 ident: ref31/cit31 publication-title: Gastroenterology doi: 10.1016/S0016-5085(98)70026-5 – volume: 67 start-page: 2115 year: 2007 ident: ref19/cit19 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.12.090 – volume: 68 start-page: 141 year: 2004 ident: ref23/cit23 publication-title: Aquatic Toxicol. doi: 10.1016/j.aquatox.2004.03.014 – volume: 115 start-page: 1704 year: 2007 ident: ref9/cit9 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.10443 – volume: 8 start-page: 8 year: 2007 ident: ref20/cit20 publication-title: BMC Molec. Biol. doi: 10.1186/1471-2199-8-10 – volume: 52 start-page: 201 year: 2006 ident: ref10/cit10 publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2006.02.002 – volume: 32 start-page: 2498 year: 1998 ident: ref8/cit8 publication-title: Environ. Sci. Technol. doi: 10.1021/es9710870 – volume: 427 start-page: 630 year: 2004 ident: ref11/cit11 publication-title: Nature doi: 10.1038/nature02317 – volume: 196 start-page: 41 year: 2004 ident: ref18/cit18 publication-title: Toxicol. doi: 10.1016/j.tox.2003.11.002 – volume: 13 start-page: 57 year: 2003 ident: ref17/cit17 publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/S1382-6689(02)00126-6 – volume: 76 start-page: 69 year: 2006 ident: ref32/cit32 publication-title: Aquatic Toxicol. doi: 10.1016/j.aquatox.2005.09.008 – volume: 36 start-page: 357 year: 1998 ident: ref1/cit1 publication-title: Chemosphere doi: 10.1016/S0045-6535(97)00354-8 – start-page: 1 year: 2009 ident: ref4/cit4 publication-title: Environ. Toxicol. Chem. – volume: 405 start-page: 310 issue: 1 year: 2008 ident: ref12/cit12 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.05.036 – volume: 64 start-page: 329 year: 2006 ident: ref7/cit7 publication-title: Ecotoxicol. Environ. Safety doi: 10.1016/j.ecoenv.2005.04.004 – volume: 76 start-page: 122 year: 2006 ident: ref6/cit6 publication-title: Aquatic Toxicol. doi: 10.1016/j.aquatox.2005.09.009 – volume: 27 start-page: 991 year: 2008 ident: ref2/cit2 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2008.09.010 – volume: 27 start-page: 365 year: 1999 ident: ref15/cit15 publication-title: Drug Metab. Dispos. doi: 10.1016/S0090-9556(24)14912-4 – volume: 56 start-page: 659 year: 2004 ident: ref21/cit21 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.04.007 – volume: 247 start-page: 313 year: 2000 ident: ref16/cit16 publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(99)00500-8 – volume: 68 start-page: 151 year: 2004 ident: ref27/cit27 publication-title: Aquatic Toxicol. doi: 10.1016/j.aquatox.2004.03.015 – volume: 35 start-page: 363 year: 2009 ident: ref13/cit13 publication-title: Environ. Int. doi: 10.1016/j.envint.2008.09.002 – volume: 112 start-page: 649 year: 2006 ident: ref22/cit22 publication-title: Pharmacol. Therapeut. doi: 10.1016/j.pharmthera.2006.05.007 – volume: 95 start-page: 195 year: 2009 ident: ref33/cit33 publication-title: Aquatic Toxicol. doi: 10.1016/j.aquatox.2009.09.002 |
SSID | ssj0002308 |
Score | 2.4559293 |
Snippet | Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2176 |
SubjectTerms | Animals Anti-Inflammatory Agents, Non-Steroidal - metabolism Aquatic ecosystems Biomarkers - metabolism Cell cycle Cyclooxygenase 1 - genetics Cyclooxygenase 1 - metabolism Cyclooxygenase 2 - genetics Cyclooxygenase 2 - metabolism Cytochrome P-450 CYP1A1 - genetics Cytochrome P-450 CYP1A1 - metabolism Diclofenac - metabolism Dose-Response Relationship, Drug Ecotoxicology and Human Environmental Health Environmental science Female Gene expression Gene Expression - drug effects Genes Intestines - metabolism Intestines - pathology Kidney - metabolism Kidney - pathology Liver - metabolism Nonsteroidal anti-inflammatory drugs Oncorhynchus mykiss Oncorhynchus mykiss - metabolism Pharmaceuticals RNA, Messenger - metabolism Trout Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Water Pollutants, Chemical - metabolism |
Title | Uptake and Biological Effects of Environmentally Relevant Concentrations of the Nonsteroidal Anti-inflammatory Pharmaceutical Diclofenac in Rainbow Trout (Oncorhynchus mykiss) |
URI | http://dx.doi.org/10.1021/es903702m https://www.ncbi.nlm.nih.gov/pubmed/20175546 https://www.proquest.com/docview/230151673 https://www.proquest.com/docview/754543853 https://www.proquest.com/docview/861788461 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3fb9MwEMdPY7zAAz8Gg24wWcDDeMhIbCd2Hqdu04TEQLBKfYscx1Grrc7UJA_dP8W_yDm_1okVnntRXN2593HP9z2AT5pyaXTGPaGMwANKHHuY543HJDUacUGkmWtO_nYRnU_412k43YKPGyr4NPhiythnwqeLR_CYRlK4E9bx-Nfwc4sMLfsxBTGLpr180PqjLvXo8n7q2cCTTV45ew4nfXdOe53k6qiu0iN9-7dY47-W_AKedVxJjttAeAlbxu7A0zW1wR3YPb1rakPTbleXr-D35KZSV4Yom5F2NqXzHGmFjUtS5OTek9cr8tN1paNPyNh1PdpOercxRaAkFw46zbKYZ25Jtpp7GMcYeoumpE9-zNb_RycnuOIiN1ZpMrekKziRy2VRV-Twu9PZnK2sntUlWawQd8vPr2Fydno5Pve6QQ6eYoJVnopkiOTAMzzeOck8TImxj67kkcxDodxQwTwPKaJUrISMaUrzgBuTYnZNNU8124VtW1jzFkgQRT43LIiUpFz7vkIAxTwfmMzwIGVyBAfo6aTbiGXS1NhpkAwuGcFhHwSJ7mTQ3TSO64dMPwymN632x0NG-30k3b0VYxJJKhJsBGT4FPetK8Yoa4q6TASiK2cIS5tNpGvfRD4MRvCmDdFhGYhtwt0v3Pvf192HJ-19B-YF4TvYrpa1eY8YVaUHzTb6Aw76GS0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VcgAO_BQKoVBWCKRycLHXG6994FClrVLaBgSJlJtZr9dK1MausrZQeBReggfg5Zj1X1LUilMlzpmsx-v5-VY78w3AG0mZr2TMLC4UxwNKEFiY55Xl-lRJhAs8ik1z8unA64_Yx3F3vAY_m14YVELjSrq8xF-yCzjvlQ5sl9t0VhdQHqvFdzye6Q9H-_gt31J6eDDs9a16goAlXO7mlvD8LqYsFuO5wnC1YSwObM_nzPOTLhdmml2SdCnm8EBwP6ARTRymVIRhPZIski6uewtuI-ih5mC31_vaRnmE7n4zHQGXGTesRauqmown9eWMdw2MLdPZ4QP43W5EWcVytlvk0a788RdH5P-5Uw_hfo2iyV5l9o9gTaUbcG-FW3EDNg-WLXwoWscw_Rh-jS5ycaaISGNSTeI0dkoqGmdNsoRc-uf5gnwxPfhogaRnejzTmmi4FEX4TAYGYqt5No2NSmk-tdBr0dFmZQED-TxZvTUg-6hxlqhUSDJNSX29RobzrMjJzifDKjpZpHJSaDJbILjX757A6Ea2chPW0yxVz4A4nmcz5Tqe8CmTti0QbiOqcVSsmBO5fge20QLCOuzosKwooE7YmkAHdhrbC2VN-m5mj5xfJfq6Fb2omE6uEtpqDHj5VHQFxI0edztA2l8xSpmrJ5GqrNAhR6DOXISG14v4plkV0bDTgaeVZ7RqIEjlppry-b9e9xXc6Q9PT8KTo8HxFtytKj1cy-m-gPV8XqiXCCDzaLv0ZALfbtoh_gA-w3dS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIiE48CgUQqGsEEjl4OLHxrs-cKiSRi2FUEEj5eau12slamNHWVso_Bj-Aj-Bv8asX01RK06VOGeyXq_n8a1m5huAN9KlXMmYWkwohheUILAwzivL466SCBdYFJvm5M9D_2BEP4674zX42fTC4CY0rqTLJL6x6nmc1AwDznulA9tjtjuriyiP1PI7XtH0h8M-fs-3rjvYP-kdWPUUAUt4zMst4fMuhi0a493C8LWhPw5snzPq86TLhJlolyRdF-N4IBgP3MhNHKpUhK49kjSSHq57C26b9KC53O31vrWeHuE7byYk4DLjhrlodasm6kl9OepdA2XLkDZ4AL_bwygrWc52izzalT_-4on8f0_rIdyv0TTZq9T_EaypdAPurXAsbsDm_kUrH4rWvkw_hl-jeS7OFBFpTKqJnEZfSUXnrEmWkEv_PF-Sr6YXHzWR9EyvZ1oTDpeiCKPJ0EBttcimsdlSmk8ttF40uFlZyECOJ6vZA9LHHWeJSoUk05TUaTZyssiKnOx8Meyik2UqJ4UmsyWCfP3uCYxu5Cg3YT3NUvUMiOP7NlWe4wvuUmnbAmE3ohtHxYo6kcc7sI1aENbuR4dlZYHrhK0KdGCn0b9Q1uTvZgbJ-VWir1vRecV4cpXQVqPEF09Fc0D86DOvA6T9Fb2VSUGJVGWFDhkCduohRLxehJumVUTFTgeeVtbRbgPBKjNVlc__9bqv4M5xfxB-OhwebcHdquDDs5zuC1jPF4V6iTgyj7ZLYyZwetP28AebfnnV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uptake+and+Biological+Effects+of+Environmentally+Relevant+Concentrations+of+the+Nonsteroidal+Anti-inflammatory+Pharmaceutical+Diclofenac+in+Rainbow+Trout+%28Oncorhynchus+mykiss%29&rft.jtitle=Environmental+science+%26+technology&rft.au=Mehinto%2C+Alvine+C&rft.au=Hill%2C+Elizabeth+M&rft.au=Tyler%2C+Charles+R&rft.date=2010-03-15&rft.issn=0013-936X&rft.volume=44&rft.issue=6&rft.spage=2176&rft.epage=2182&rft_id=info:doi/10.1021%2Fes903702m&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |