Photodegradation of Secondary Organic Aerosols by Long-Term Exposure to Solar Actinic Radiation

Sunlight-driven chemical transformations of secondary organic aerosol (SOA) are important for understanding the climate- and health-relevant properties of atmospheric particulate matter, but these photochemical processes are not well understood. We measured the photodegradation rates of SOA by obser...

Full description

Saved in:
Bibliographic Details
Published inACS earth and space chemistry Vol. 4; no. 7; pp. 1078 - 1089
Main Authors Baboomian, Vahe J, Gu, Yiran, Nizkorodov, Sergey A
Format Journal Article
LanguageEnglish
Published American Chemical Society 16.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sunlight-driven chemical transformations of secondary organic aerosol (SOA) are important for understanding the climate- and health-relevant properties of atmospheric particulate matter, but these photochemical processes are not well understood. We measured the photodegradation rates of SOA by observing condensed-phase photochemical processes over many days of UV exposure. The experiments relied on a quartz crystal microbalance to quantify the mass loss rate from SOA materials prepared by ozonolysis of d-limonene and α-pinene and photo-oxidation of toluene under either high or low NO x conditions. We observed that 254 nm irradiation degraded SOA almost entirely after 24 h. The mass loss rates were higher for toluene-derived SOA, which absorbs strongly at 254 nm. Irradiation at 305 nm, which is more relevant for the troposphere, resulted in larger mass loss rates from SOA generated from α-pinene and d-limonene, even though toluene-derived SOA had a higher absorption coefficient. In all 305 nm irradiation experiments, the initial mass loss rate was high (corresponding to 1–5% fractional mass loss per hour), but it slowed down after 24 h of irradiation, with a photorecalcitrant fraction of SOA degrading much slower (<1% fractional mass loss per hour). The mass loss rates were observed to increase at a higher relative humidity because volatile photoproducts could diffuse out of SOA faster. Long-term changes in the chemical composition of limonene ozonolysis SOA were examined using high-resolution electrospray ionization mass spectrometry and revealed a more complex mixture of species after photodegradation compared to the initial SOA. The compounds in the photodegraded sample had on average lower molecular weights, lower H/C ratios, and higher O/C ratios compared to the compounds in the un-photolyzed sample. These experiments confirm that condensed-phase photochemistry is an important aging mechanism for SOA during long-range transport.
AbstractList Sunlight-driven chemical transformations of secondary organic aerosol (SOA) are important for understanding the climate- and health-relevant properties of atmospheric particulate matter, but these photochemical processes are not well understood. We measured the photodegradation rates of SOA by observing condensed-phase photochemical processes over many days of UV exposure. The experiments relied on a quartz crystal microbalance to quantify the mass loss rate from SOA materials prepared by ozonolysis of d-limonene and α-pinene and photo-oxidation of toluene under either high or low NO x conditions. We observed that 254 nm irradiation degraded SOA almost entirely after 24 h. The mass loss rates were higher for toluene-derived SOA, which absorbs strongly at 254 nm. Irradiation at 305 nm, which is more relevant for the troposphere, resulted in larger mass loss rates from SOA generated from α-pinene and d-limonene, even though toluene-derived SOA had a higher absorption coefficient. In all 305 nm irradiation experiments, the initial mass loss rate was high (corresponding to 1–5% fractional mass loss per hour), but it slowed down after 24 h of irradiation, with a photorecalcitrant fraction of SOA degrading much slower (<1% fractional mass loss per hour). The mass loss rates were observed to increase at a higher relative humidity because volatile photoproducts could diffuse out of SOA faster. Long-term changes in the chemical composition of limonene ozonolysis SOA were examined using high-resolution electrospray ionization mass spectrometry and revealed a more complex mixture of species after photodegradation compared to the initial SOA. The compounds in the photodegraded sample had on average lower molecular weights, lower H/C ratios, and higher O/C ratios compared to the compounds in the un-photolyzed sample. These experiments confirm that condensed-phase photochemistry is an important aging mechanism for SOA during long-range transport.
Author Gu, Yiran
Nizkorodov, Sergey A
Baboomian, Vahe J
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Vahe J
  orcidid: 0000-0002-7274-7109
  surname: Baboomian
  fullname: Baboomian, Vahe J
– sequence: 2
  givenname: Yiran
  surname: Gu
  fullname: Gu, Yiran
– sequence: 3
  givenname: Sergey A
  orcidid: 0000-0003-0891-0052
  surname: Nizkorodov
  fullname: Nizkorodov, Sergey A
  email: nizkorod@uci.edu
BookMark eNqNkM1uwjAQhK2KSqWUd3AfINRO4sQ5IkR_JCSqQs_Rxl6HILCRHaTy9jWFQ6Veeto9zDeamXsysM4iIY-cTThL-ROogOD7TTiAQrXB_YQpxpiUN2SY5mWaZLlIB7_-OzIOYRslvMoyyeSQ1O8b1zuNrQcNfecsdYauUDmrwZ_o0rdgO0Wn6F1wu0CbE1042yZr9Hs6_zq4cPRIe0dXbgeeTlXfnfUfoLsfuwdya2AXcHy9I_L5PF_PXpPF8uVtNl0kkJVZnwgDEhsoc1A5FrqsBPCmwcII0CZFyVCWQnDNGgDToI4lq8ykRSVFAQgiG5Hq4qti0ODR1Aff7WOFmrP6PFb9Z6z6OlZkxYWNknrrjt7GpP_gvgFC9noE
CitedBy_id crossref_primary_10_1021_acsearthspacechem_2c00259
crossref_primary_10_1021_acsearthspacechem_2c00007
crossref_primary_10_1021_acs_jpca_2c06459
crossref_primary_10_1016_j_aeaoa_2021_100102
crossref_primary_10_1007_s43630_023_00369_6
crossref_primary_10_1021_acs_est_3c10184
crossref_primary_10_1021_acsearthspacechem_3c00279
crossref_primary_10_5194_acp_23_5043_2023
crossref_primary_10_1039_D4EM00106K
crossref_primary_10_1073_pnas_2208121119
crossref_primary_10_1038_s41612_022_00238_6
crossref_primary_10_1021_acs_est_3c08662
crossref_primary_10_1021_acs_jpca_1c01513
crossref_primary_10_1039_D3EA00078H
crossref_primary_10_1126_science_abm7915
crossref_primary_10_1007_s43630_020_00001_x
crossref_primary_10_1021_acsearthspacechem_0c00346
crossref_primary_10_1039_D0CP06308H
crossref_primary_10_5194_acp_22_10155_2022
Cites_doi 10.5194/acp-14-9317-2014
10.1016/j.scitotenv.2016.06.036
10.1039/C4CP03130J
10.1021/acs.jpclett.9b01417
10.1039/c1cp20526a
10.1021/acs.jpca.5b06946
10.1073/pnas.1219548110
10.5194/acp-11-12673-2011
10.5194/acp-15-9253-2015
10.1016/j.atmosenv.2008.01.003
10.1021/acs.analchem.8b01410
10.1073/pnas.0907922106
10.1021/jp0554442
10.1021/acs.jpca.6b10900
10.5194/acp-18-1643-2018
10.5194/acp-16-7917-2016
10.1021/acs.jpca.6b08961
10.1016/j.chempr.2016.09.007
10.1021/acs.est.6b02313
10.1039/c2cp40944e
10.1039/B712620D
10.1016/j.atmosenv.2015.10.019
10.1007/128_2012_355
10.1021/jp210288s
10.5194/acp-9-3851-2009
10.1126/science.aad5456
10.1021/jp211304v
10.5194/acp-12-5523-2012
10.1039/C8CP03981J
10.1039/C5CP05226B
10.1021/cr500648z
10.1021/acs.est.9b07051
10.1073/pnas.1701170114
10.1002/rcm.2386
10.1021/acs.est.7b01397
10.5194/acp-19-7319-2019
10.1039/c0cp01953d
10.1002/2016RG000540
10.5194/acp-10-2893-2010
10.1021/acs.jpca.7b04066
10.1029/95JD02119
10.1029/2007GL032523
10.1021/acsearthspacechem.9b00109
10.1021/es102166c
10.1029/2008GL033884
10.1039/b905288g
10.5194/acp-20-1105-2020
10.1021/acs.estlett.8b00231
10.1029/93JD02456
10.1038/ncomms15002
10.1021/jp804376c
10.5194/acp-9-5155-2009
10.1021/jp506898c
10.5194/acp-16-12815-2016
10.1146/annurev.physchem.58.032806.104432
10.1021/jp4093018
10.1029/2005GL023831
10.1021/es502350u
10.1021/acsearthspacechem.9b00222
10.1021/cr500549n
10.1021/cr5005259
10.1007/BF01337937
10.1002/rcm.7433
10.1002/anie.201003826
10.1021/jp309470z
10.1021/acsearthspacechem.7b00153
10.1073/pnas.1705463114
10.1021/jp066293l
10.1371/journal.pone.0077515
10.5194/acp-17-6373-2017
10.1021/acs.jpca.6b04459
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acsearthspacechem.0c00088
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2472-3452
EndPage 1089
ExternalDocumentID 10_1021_acsearthspacechem_0c00088
a717741867
GroupedDBID ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
AAYXX
ABQRX
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a373t-5fa8eba74ac4e6d795a1bbe6f5adf2e80e87551d0baafbed00893f269856aea53
IEDL.DBID ACS
ISSN 2472-3452
IngestDate Fri Aug 23 02:35:40 EDT 2024
Thu Aug 27 13:41:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords condensed-phase photochemistry
atmospheric organic aerosol
photolysis
particle mass loss
chemical aging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a373t-5fa8eba74ac4e6d795a1bbe6f5adf2e80e87551d0baafbed00893f269856aea53
ORCID 0000-0003-0891-0052
0000-0002-7274-7109
PageCount 12
ParticipantIDs crossref_primary_10_1021_acsearthspacechem_0c00088
acs_journals_10_1021_acsearthspacechem_0c00088
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
PublicationCentury 2000
PublicationDate 2020-07-16
PublicationDateYYYYMMDD 2020-07-16
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-16
  day: 16
PublicationDecade 2020
PublicationTitle ACS earth and space chemistry
PublicationTitleAlternate ACS Earth Space Chem
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
Finlayson-Pitts B. J. (ref68/cit68) 2000
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
Donahue N. M. (ref9/cit9) 2012; 339
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.5194/acp-14-9317-2014
– ident: ref60/cit60
  doi: 10.1016/j.scitotenv.2016.06.036
– ident: ref53/cit53
  doi: 10.1039/C4CP03130J
– ident: ref29/cit29
  doi: 10.1021/acs.jpclett.9b01417
– ident: ref33/cit33
  doi: 10.1039/c1cp20526a
– ident: ref39/cit39
  doi: 10.1021/acs.jpca.5b06946
– ident: ref66/cit66
  doi: 10.1073/pnas.1219548110
– ident: ref25/cit25
  doi: 10.5194/acp-11-12673-2011
– ident: ref22/cit22
  doi: 10.5194/acp-15-9253-2015
– ident: ref2/cit2
  doi: 10.1016/j.atmosenv.2008.01.003
– ident: ref40/cit40
  doi: 10.1021/acs.analchem.8b01410
– ident: ref21/cit21
  doi: 10.1073/pnas.0907922106
– ident: ref18/cit18
  doi: 10.1021/jp0554442
– ident: ref35/cit35
  doi: 10.1021/acs.jpca.6b10900
– ident: ref41/cit41
  doi: 10.5194/acp-18-1643-2018
– ident: ref28/cit28
  doi: 10.5194/acp-16-7917-2016
– ident: ref69/cit69
– ident: ref56/cit56
  doi: 10.1021/acs.jpca.6b08961
– ident: ref43/cit43
  doi: 10.1016/j.chempr.2016.09.007
– ident: ref11/cit11
  doi: 10.1021/acs.est.6b02313
– ident: ref34/cit34
  doi: 10.1039/c2cp40944e
– ident: ref62/cit62
  doi: 10.1039/B712620D
– ident: ref47/cit47
  doi: 10.1016/j.atmosenv.2015.10.019
– volume: 339
  start-page: 97
  volume-title: Atmospheric and Aerosol Chemistry
  year: 2012
  ident: ref9/cit9
  doi: 10.1007/128_2012_355
  contributor:
    fullname: Donahue N. M.
– ident: ref14/cit14
  doi: 10.1021/jp210288s
– ident: ref15/cit15
  doi: 10.5194/acp-9-3851-2009
– ident: ref27/cit27
  doi: 10.1126/science.aad5456
– ident: ref54/cit54
  doi: 10.1021/jp211304v
– ident: ref63/cit63
  doi: 10.5194/acp-12-5523-2012
– ident: ref32/cit32
  doi: 10.1039/C8CP03981J
– ident: ref65/cit65
  doi: 10.1039/C5CP05226B
– ident: ref7/cit7
  doi: 10.1021/cr500648z
– ident: ref23/cit23
  doi: 10.1021/acs.est.9b07051
– ident: ref73/cit73
  doi: 10.1073/pnas.1701170114
– ident: ref59/cit59
  doi: 10.1002/rcm.2386
– ident: ref55/cit55
  doi: 10.1021/acs.est.7b01397
– ident: ref37/cit37
  doi: 10.5194/acp-19-7319-2019
– ident: ref46/cit46
  doi: 10.1039/c0cp01953d
– ident: ref5/cit5
  doi: 10.1002/2016RG000540
– ident: ref49/cit49
  doi: 10.5194/acp-10-2893-2010
– ident: ref44/cit44
  doi: 10.1021/acs.jpca.7b04066
– ident: ref17/cit17
  doi: 10.1029/95JD02119
– ident: ref72/cit72
  doi: 10.1029/2007GL032523
– ident: ref20/cit20
  doi: 10.1021/acsearthspacechem.9b00109
– ident: ref42/cit42
  doi: 10.1021/es102166c
– ident: ref71/cit71
  doi: 10.1021/acs.jpca.5b06946
– ident: ref70/cit70
  doi: 10.1029/2008GL033884
– ident: ref64/cit64
  doi: 10.1039/b905288g
– ident: ref31/cit31
  doi: 10.5194/acp-20-1105-2020
– ident: ref12/cit12
  doi: 10.1021/acs.estlett.8b00231
– ident: ref24/cit24
  doi: 10.1029/93JD02456
– ident: ref74/cit74
  doi: 10.1038/ncomms15002
– ident: ref16/cit16
  doi: 10.1021/jp804376c
– ident: ref3/cit3
  doi: 10.5194/acp-9-5155-2009
– ident: ref13/cit13
  doi: 10.1021/jp506898c
– ident: ref48/cit48
  doi: 10.5194/acp-16-12815-2016
– ident: ref8/cit8
  doi: 10.1146/annurev.physchem.58.032806.104432
– ident: ref52/cit52
  doi: 10.1021/jp4093018
– ident: ref26/cit26
  doi: 10.1029/2005GL023831
– ident: ref10/cit10
  doi: 10.1021/es502350u
– ident: ref36/cit36
  doi: 10.1021/acsearthspacechem.9b00222
– ident: ref4/cit4
  doi: 10.1021/cr500549n
– ident: ref6/cit6
  doi: 10.1021/cr5005259
– ident: ref45/cit45
  doi: 10.1007/BF01337937
– ident: ref58/cit58
  doi: 10.1002/rcm.7433
– ident: ref67/cit67
  doi: 10.1002/anie.201003826
– ident: ref30/cit30
  doi: 10.1021/jp309470z
– ident: ref38/cit38
  doi: 10.1021/acsearthspacechem.7b00153
– ident: ref51/cit51
  doi: 10.1073/pnas.1705463114
– ident: ref19/cit19
  doi: 10.1021/jp066293l
– ident: ref61/cit61
  doi: 10.1371/journal.pone.0077515
– volume-title: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications
  year: 2000
  ident: ref68/cit68
  contributor:
    fullname: Finlayson-Pitts B. J.
– ident: ref50/cit50
  doi: 10.5194/acp-17-6373-2017
– ident: ref57/cit57
  doi: 10.1021/acs.jpca.6b04459
SSID ssj0001933808
Score 2.301604
Snippet Sunlight-driven chemical transformations of secondary organic aerosol (SOA) are important for understanding the climate- and health-relevant properties of...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 1078
Title Photodegradation of Secondary Organic Aerosols by Long-Term Exposure to Solar Actinic Radiation
URI http://dx.doi.org/10.1021/acsearthspacechem.0c00088
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4Uo_HFuxFvqYmvxa3rZTwSAhKjxggkvC1t10qiboSNRPz1tmwEIg-Ep71s3U572nO-duf7ALj3CCdGMYIsUCOISCKRpMpDfiykUaHyhOcKnF9eWadPngZ0sKjj_n-Cj_0HodyY50M7wZS2hnzXPOUiV7gNdjC3V5cPNbuLjRUL0cNCiY5wjAJC8R64W9uai04qW4pOS2GmfQh682Kd4u-Sz9oklzX1u8rduIkFR-CgTDtho_CTY7ClkxOw-ziT9Z2eguhtmOZp7IgjCo0lmBrYdVg5FuMpLAo2FWxo-9XpVwblFD6nyQfq2XUdtn5GqdtnhHkKuw4pw4ZdRN397474wDV3BvrtVq_ZQaX0AhIBD3JEjQi1FJwIRTSLeZ0KX0rNDBWxwTr0tMU51I89KYSROrbW1AODWT2kTGhBg3NQSdJEXwBIuc1q6iIQ0omwGy09bpSvKbOOgJniVWA9J4vKqZNFs1Nx7EcrvRaVvVYFeD5G0aig5Fj_0OWmb7kC-9hBa8ehya5BJR9P9I3NP3J5O_O3P2hE3E0
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xiOXCjiirkbi6ZLGd5FhVQIGCEG0lJA6R7dhUAhrUpBLl67GTsAgOFVyjZDKbPfO8zAAcOSQgWjKCDVAjmAgisKDSwW7ChZahdLhjLzhfXbNWj1zc0bvqVKW9C2OYyAylrNjE_6ou4B6bZ8b0ed-MM6mMPM91R9oAFk7DLA1M4LRpUbPztb5ikHpYNqQjgYd9Qr15OJxIzQYpmX0LUt-izeky3H_yWRwyeayPclGXbz9KOP5PkBVYqpJQ1Ci9ZhWm1GAN5s6KJr_jdYhv-mmeJraMRNlxCaUadSxyTvhwjMrrmxI1lGE-fcqQGKN2OnjAXTPLo5PXl9SuOqI8RR2Lm1HDTKn2_VtbBsGS24De6Um32cJVIwbM_cDPMdU8VIIHhEuiWBJElLtCKKYpT7SnQkcZ1EPdxBGca6ESI03ka49FIWVccepvwswgHagtQIWpIu5zYVuyayWcQEtXUWbcwmMyqIFVWlwNpCwu9sg9N_6ltbjSWg28D1PFL2WBjskfbf_1Lwew0OpeteP2-fXlDix6FnTb6ppsF2by4UjtmcwkF_uFC74DHSLksg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZTsMwzIIhEC_ciHEGideMHjm6xwkY9zQxkHirkjRhErBOaycxvp6kLYfgAcFr1bqxY8dXbAMceIQToxjB1lEjmEgisaTKw34ipFGR8oTnCpyvO-zsjlzc0_sq4OZqYewiMgspK5L4TqqHiak6DPiH9rnd_rxvZU1pi9Nzw1NOiUXTMEO5X6RpW0e9zxiL9dajcigd4QEOCQ3mYP9XaE5RqeyLovqicdqLEH-stbho8tgY57KhXr-1cfw_MkuwUBmjqFVyzzJM6cEKzJ4Ww34nqxB3-2meJq6dRDl5CaUG9ZwHnYjRBJVlnAq1tEUgfcqQnKCrdPCAb-1pj05ehqmLPqI8RT3nP6OWPVrd-zeuHYIDtwZ37ZPbozNcDWTAIuRhjqkRkZaCE6GIZglvUuFLqZmhIjGBjjxtvR_qJ54UwkidWGyaoQlYM6JMaEHDdagN0oHeAES5tXWaIhTSjWY3WnrcKF9TZtkjYIrXwREurgQqi4tceeDHP6gWV1SrQ_C-XfGwbNTx-0ebf_3LHsx1j9vx1XnncgvmA-d7uyabbBtq-Wisd6yBksvdggvfAFS_5yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photodegradation+of+Secondary+Organic+Aerosols+by+Long-Term+Exposure+to+Solar+Actinic+Radiation&rft.jtitle=ACS+earth+and+space+chemistry&rft.au=Baboomian%2C+Vahe+J&rft.au=Gu%2C+Yiran&rft.au=Nizkorodov%2C+Sergey+A&rft.date=2020-07-16&rft.pub=American+Chemical+Society&rft.issn=2472-3452&rft.eissn=2472-3452&rft.volume=4&rft.issue=7&rft.spage=1078&rft.epage=1089&rft_id=info:doi/10.1021%2Facsearthspacechem.0c00088&rft.externalDocID=a717741867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-3452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-3452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-3452&client=summon