Miniature Amperometric Self-Powered Continuous Glucose Sensor with Linear Response
Continuous glucose measurement has improved the treatment of type 1 diabetes and is typically provided by externally powered transcutaneous amperometric sensors. Self-powered glucose sensors (SPGSs) could provide an improvement over these conventionally powered devices, especially for fully implante...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 84; no. 7; pp. 3403 - 3409 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
03.04.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Continuous glucose measurement has improved the treatment of type 1 diabetes and is typically provided by externally powered transcutaneous amperometric sensors. Self-powered glucose sensors (SPGSs) could provide an improvement over these conventionally powered devices, especially for fully implanted long-term applications where implanted power sources are problematic. Toward this end, we describe a robust SPGS that may be built from four simple components: (1) a low-potential, wired glucose oxidase anode; (2) a Pt/C cathode; (3) an overlying glucose flux–limiting membrane; and (4) a resistor bridging the anode and cathode. In vitro evaluation showed that the sensor output is linear over physiologic glucose concentrations (2–30 mM), even at low O2 concentrations. Output was independent of the connecting resistor values over the range from 0 to 10 MΩ. The output was also stable over 60 days of continuous in vitro operation at 37 °C in 30 mM glucose. A 5-day trial in a volunteer demonstrated that the performance of the device was virtually identical to that of a conventional amperometric sensor. Thus, this SPGS is an attractive alternative to conventionally powered devices, especially for fully implanted long-term applications. |
---|---|
AbstractList | Continuous glucose measurement has improved the treatment of type 1 diabetes and is typically provided by externally powered transcutaneous amperometric sensors. Self-powered glucose sensors (SPGSs) could provide an improvement over these conventionally powered devices, especially for fully implanted long-term applications where implanted power sources are problematic. Toward this end, we describe a robust SPGS that may be built from four simple components: (1) a low-potential, wired glucose oxidase anode; (2) a Pt/C cathode; (3) an overlying glucose flux-limiting membrane; and (4) a resistor bridging the anode and cathode. In vitro evaluation showed that the sensor output is linear over physiologic glucose concentrations (2-30 mM), even at low O(2) concentrations. Output was independent of the connecting resistor values over the range from 0 to 10 MΩ. The output was also stable over 60 days of continuous in vitro operation at 37 °C in 30 mM glucose. A 5-day trial in a volunteer demonstrated that the performance of the device was virtually identical to that of a conventional amperometric sensor. Thus, this SPGS is an attractive alternative to conventionally powered devices, especially for fully implanted long-term applications. Continuous glucose measurement has improved the treatment of type 1 diabetes and is typically provided by externally powered transcutaneous amperometric sensors. Self-powered glucose sensors (SPGSs) could provide an improvement over these conventionally powered devices, especially for fully implanted long-term applications where implanted power sources are problematic. Toward this end, we describe a robust SPGS that may be built from four simple components: (1) a low-potential, wired glucose oxidase anode; (2) a Pt/C cathode; (3) an overlying glucose flux–limiting membrane; and (4) a resistor bridging the anode and cathode. In vitro evaluation showed that the sensor output is linear over physiologic glucose concentrations (2–30 mM), even at low O2 concentrations. Output was independent of the connecting resistor values over the range from 0 to 10 MΩ. The output was also stable over 60 days of continuous in vitro operation at 37 °C in 30 mM glucose. A 5-day trial in a volunteer demonstrated that the performance of the device was virtually identical to that of a conventional amperometric sensor. Thus, this SPGS is an attractive alternative to conventionally powered devices, especially for fully implanted long-term applications. Continuous glucose measurement has improved the treatment of type 1 diabetes and is typically provided by externally powered transcutaneous amperometric sensors. Self-powered glucose sensors (SPGSs) could provide an improvement over these conventionally powered devices, especially for fully implanted long-term applications where implanted power sources are problematic. Toward this end, we describe a robust SPGS that may be built from four simple components: (1) a low-potential, wired glucose oxidase anode; (2) a Pt/C cathode; (3) an overlying glucose flux-limiting membrane; and (4) a resistor bridging the anode and cathode. In vitro evaluation showed that the sensor output is linear over physiologic glucose concentrations (2-30 mM), even at low O2 concentrations. Output was independent of the connecting resistor values over the range from 0 to 10 MΩ. The output was also stable over 60 days of continuous in vitro operation at 37 °C in 30 mM glucose. A 5-day trial in a volunteer demonstrated that the performance of the device was virtually identical to that of a conventional amperometric sensor. Thus, this SPGS is an attractive alternative to conventionally powered devices, especially for fully implanted long-term applications. [PUBLICATION ABSTRACT] |
Author | Liu, Zenghe Ouyang, Tianmei Cho, Brian Feldman, Ben |
AuthorAffiliation | Abbott Diabetes Care |
AuthorAffiliation_xml | – name: Abbott Diabetes Care |
Author_xml | – sequence: 1 givenname: Zenghe surname: Liu fullname: Liu, Zenghe – sequence: 2 givenname: Brian surname: Cho fullname: Cho, Brian – sequence: 3 givenname: Tianmei surname: Ouyang fullname: Ouyang, Tianmei – sequence: 4 givenname: Ben surname: Feldman fullname: Feldman, Ben email: ben.feldman@abbott.com |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25773588$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22424266$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0E9LHDEYBvAgSnfX9uAXkAEppYdpk0z-HmWpVlix2HoeMpl3MDKTjMkM4rc34rpbJIf3kB9vnjwrdOiDB4ROCP5BMCU_ja1wnnI8QEvCKS6FUvQQLTHGVUklxgu0SukBY0IwEZ_QglKWjxBLdHvtvDPTHKE4H0aIYYApOlv8hb4r_4QniNAW6-An5-cwp-Kyn21IkO99CrF4ctN9sXEeTCxuIY3BJ_iMjjrTJ_iyncfo7uLXv_XvcnNzebU-35SmknQqrZRaaMK7TmjFG9VKpqUgyrBGyg63LYb8lYZoTa3lsuFMtA1lWXXAGVHVMfr2tneM4XGGNNWDSxb63njIUWstGNGCEJbl2Qf5EOboc7ia5I5YpaniWX1_UzaGlCJ09RjdYOJzRvVrz_Wu52xPtxvnZoB2J9-LzeDrFphkTd9F461Le8elrLhSe2ds-j_VxwdfAJEHkNo |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1039_C4RA08896D crossref_primary_10_1016_j_biotechadv_2015_12_005 crossref_primary_10_1039_C7CS00148G crossref_primary_10_3390_polym14071321 crossref_primary_10_1021_acs_analchem_7b01142 crossref_primary_10_1016_j_bios_2015_12_020 crossref_primary_10_1016_j_bej_2023_108860 crossref_primary_10_1021_acssensors_7b00818 crossref_primary_10_1039_D0CS00304B crossref_primary_10_1016_j_bioelechem_2022_108314 crossref_primary_10_1016_j_bios_2015_11_022 crossref_primary_10_1016_j_jelechem_2021_115357 crossref_primary_10_1039_c2ra22351a crossref_primary_10_1002_advs_202203690 crossref_primary_10_1039_c3cp44617d crossref_primary_10_1021_ac503277w crossref_primary_10_1038_s41598_017_01665_9 crossref_primary_10_1016_j_talanta_2021_122637 crossref_primary_10_1016_j_bios_2016_04_016 crossref_primary_10_1021_acsaem_0c00140 crossref_primary_10_1016_j_nanoen_2021_105853 crossref_primary_10_1002_elan_201700785 crossref_primary_10_1016_j_electacta_2017_01_050 crossref_primary_10_1016_j_nanoen_2015_03_035 crossref_primary_10_1016_j_snb_2019_04_125 crossref_primary_10_1007_s00216_013_7356_5 crossref_primary_10_1016_j_biotechadv_2015_11_004 crossref_primary_10_1016_j_trac_2021_116476 crossref_primary_10_1039_C9MH00013E crossref_primary_10_1016_j_ijhydene_2019_06_153 crossref_primary_10_1039_c3ee41028e crossref_primary_10_1021_am302546d crossref_primary_10_1002_elan_201800487 crossref_primary_10_1016_j_snb_2019_127468 crossref_primary_10_1016_j_heliyon_2024_e33615 crossref_primary_10_1016_j_bios_2016_04_049 crossref_primary_10_1016_j_talanta_2015_02_011 crossref_primary_10_1002_chem_201502062 crossref_primary_10_1039_C8RA09599J crossref_primary_10_1016_j_jpowsour_2021_230631 crossref_primary_10_1021_acsami_7b07104 crossref_primary_10_1016_j_bios_2013_08_004 crossref_primary_10_1039_D1MA00377A crossref_primary_10_1002_elan_201500173 crossref_primary_10_1021_acs_analchem_7b04075 crossref_primary_10_35193_bseufbd_631288 crossref_primary_10_1002_admt_202001051 crossref_primary_10_1016_j_msec_2016_01_068 crossref_primary_10_1021_acsami_8b13457 crossref_primary_10_1002_celc_201600466 crossref_primary_10_1007_s00005_016_0419_5 crossref_primary_10_2174_1385272823666190320145410 crossref_primary_10_1016_j_ijbiomac_2023_126680 crossref_primary_10_1021_ac504694z |
Cites_doi | 10.1021/ja0163164 10.1089/152091503322526978 10.1089/dia.2009.0121 10.4158/EP09287.OR 10.1089/dia.2008.0133 10.1016/j.bios.2006.11.004 10.1039/b313149a 10.1021/ja029510e 10.1021/ja0167102 10.1021/ja0346328 10.1177/193229681100500502 10.2337/dc09-1502 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American
Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Apr 3, 2012 |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Apr 3, 2012 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1021/ac300217p |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 3409 |
ExternalDocumentID | 2634754851 10_1021_ac300217p 22424266 25773588 g91295437 |
Genre | Journal Article |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC .GJ .HR 08R 186 1WB 2KS 3EH 3O- 6J9 6TJ AAUTI ABDEX ABFRP ABHFT ABHMW ABQRX ACBEA ACGFO ACKIV ACKOT ACPVT ACQAM ADHLV AETEA AFDAS AFFDN AFFNX AGXLV AHGAQ AIDAL ANTXH G8K GGK IQODW KZ1 LMP MVM NHB OHT OMK RNS UBC UBX VOH XOL XSW YQI YQJ YXE YYP ZCA ZCG ZE2 ZGI ~02 AAHBH ABJNI CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-a372t-c7796915ff6985b8d7497618a4b77f0dd0e520b1992cc57b546db24749fe54183 |
IEDL.DBID | ACS |
ISSN | 0003-2700 |
IngestDate | Sat Aug 17 01:39:05 EDT 2024 Thu Oct 10 16:53:14 EDT 2024 Fri Aug 23 00:19:01 EDT 2024 Sat Sep 28 07:49:31 EDT 2024 Sun Oct 29 17:09:37 EDT 2023 Thu Aug 27 13:41:58 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Performance evaluation Human Glucose oxidase Implant Enzyme Cathode Device Concentration Chemical sensor In vitro Electrochemical detector Improvement Treatment Amperometry Membrane End Continuous measurement Oxidoreductases Application Resistor |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a372t-c7796915ff6985b8d7497618a4b77f0dd0e520b1992cc57b546db24749fe54183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22424266 |
PQID | 1000439285 |
PQPubID | 45400 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_964196114 proquest_journals_1000439285 crossref_primary_10_1021_ac300217p pubmed_primary_22424266 pascalfrancis_primary_25773588 acs_journals_10_1021_ac300217p |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2012-04-03 |
PublicationDateYYYYMMDD | 2012-04-03 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Halford J. (ref1/cit1) 2010; 12 ref6/cit6 Guyton A. C. (ref16/cit16) 2000 Leinung M. (ref2/cit2) 2010; 16 (ref3/cit3) 2010; 33 Mano N. (ref9/cit9) 2003; 125 Sawyer D. T. (ref14/cit14) 1995 Feldman B. (ref15/cit15) 2003; 5 Katz E. (ref5/cit5) 2001; 123 Kakehi N. (ref7/cit7) 2007; 22 ref13/cit13 Heller A. (ref11/cit11) 2004; 6 McGarraugh G. (ref4/cit4) 2009; 11 Chen T. (ref10/cit10) 2001; 123 Mao F. (ref12/cit12) 2003; 125 Hanashi T. (ref8/cit8) 2011; 5 |
References_xml | – volume: 123 start-page: 8630 year: 2001 ident: ref10/cit10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0163164 contributor: fullname: Chen T. – volume: 5 start-page: 769 year: 2003 ident: ref15/cit15 publication-title: Diabetes Technol. Ther. doi: 10.1089/152091503322526978 contributor: fullname: Feldman B. – volume: 12 start-page: 201 year: 2010 ident: ref1/cit1 publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2009.0121 contributor: fullname: Halford J. – volume: 16 start-page: 371 year: 2010 ident: ref2/cit2 publication-title: Endocr. Pract. doi: 10.4158/EP09287.OR contributor: fullname: Leinung M. – volume: 11 start-page: S-17 year: 2009 ident: ref4/cit4 publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2008.0133 contributor: fullname: McGarraugh G. – volume-title: Textbook of Medical Physiology year: 2000 ident: ref16/cit16 contributor: fullname: Guyton A. C. – volume-title: Electrochemistry for Chemists year: 1995 ident: ref14/cit14 contributor: fullname: Sawyer D. T. – volume: 22 start-page: 2250 year: 2007 ident: ref7/cit7 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2006.11.004 contributor: fullname: Kakehi N. – ident: ref13/cit13 – volume: 6 start-page: 209 year: 2004 ident: ref11/cit11 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b313149a contributor: fullname: Heller A. – volume: 125 start-page: 4951 year: 2003 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029510e contributor: fullname: Mao F. – volume: 123 start-page: 10752 year: 2001 ident: ref5/cit5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0167102 contributor: fullname: Katz E. – ident: ref6/cit6 – volume: 125 start-page: 6588 year: 2003 ident: ref9/cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0346328 contributor: fullname: Mano N. – volume: 5 start-page: 1030 year: 2011 ident: ref8/cit8 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681100500502 contributor: fullname: Hanashi T. – volume: 33 start-page: 17 year: 2010 ident: ref3/cit3 publication-title: Diabetes Care doi: 10.2337/dc09-1502 |
SSID | ssj0011016 |
Score | 2.3346076 |
Snippet | Continuous glucose measurement has improved the treatment of type 1 diabetes and is typically provided by externally powered transcutaneous amperometric... |
SourceID | proquest crossref pubmed pascalfrancis acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3403 |
SubjectTerms | Analytical chemistry Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Chemical compounds Chemistry Electric Conductivity Electrochemical methods Electrochemistry - instrumentation Electrochemistry - methods Electrodes Exact sciences and technology General, instrumentation Glucose Glucose - analysis Glucose - chemistry Glucose Oxidase - metabolism Linear Models Microtechnology - instrumentation Microtechnology - methods Oxidation-Reduction Polyvinyls - chemistry |
Title | Miniature Amperometric Self-Powered Continuous Glucose Sensor with Linear Response |
URI | http://dx.doi.org/10.1021/ac300217p https://www.ncbi.nlm.nih.gov/pubmed/22424266 https://www.proquest.com/docview/1000439285 https://search.proquest.com/docview/964196114 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ZS8QwEB48HlTE-6jHEtTXapsmTfoo64WgiAf4Vpo0gUW3u9jdF3-9k3a7rni9lSZtycwkM-k3-QbgKMyZzozKfam48lmIulCBTnydZAL9jbaBcojuzW189cSun_nzFBz-guDT8CTTURU496dhlgqcFC7-aT-MoQK3_WzK4jkUtaEPmnzUuR5dfnE9i_2sRCnYunzF7_Fl5WculuGsOa1Tp5e8HA8H6li_fydv_GsIK7A0ijPJaW0YqzBlijWYazfl3dZgYYKJcB3ubzpFp-L4JKddxx3edZW2NHkwr9a_c5XUTE4ck1WnGPaGJbmsM92xvSh7b8T9zSW4rcVpQ-7rrFuzAU8X54_tK39UbsHPIkEHvhYiiZOQWxsnkiuZC4axSigzpoSwQZ4HhtNAuXxVrblQnLlaVAx7WcNRy9EmzBS9wmwDwfuJlTJWUaiYtZHijhNIRnhFtaTagxbqIx1NlzKtkHAapmNBeXDQqCrt17QbP3VqfVHiuCcuQyLiUnqw12h18lsO_Uyo5B6QcTMK3yElWWFQiGkSM1yZcKvowVZtDJ_vdudpMKrZ-W8IuzCPxk6rLJ9oD2YGb0OzjwHMQLUqA_4Aj3boHg |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8xeGBo2oBtLAOKNe01kA87dh5RBSsbRRMfEm9R7NhStZFWpH3ZX787pyllAo23KHEc-872nXPn3w_ga1xxU1pdhUoLHfIYdaEjk4cmLyXaG-MiTRHd4UU2uOHfb8XtHCaHzsJgIxqsqfFB_Ad0gfioNKn3nyevYE1INJTkBvWvFhED2oV27HgUTO1QhJZfJQtkmkcW6M2kbFAYrmWxeN7N9Obm9F3LW-Qb6rNMfh3OpvrQ_PkHw_FlPdmEt3Ovkx23w2QLVmy9Dev9juxtGzaWcAnfw-VwVI884ic7viMk8Tvi3TLsyv524U_iVbMVI1yrUT0bzxr2rc17x-d1M75n9G-X4SYXJxG7bHNw7Qe4OT257g_COflCWKYymYZGyjzLY-FcliuhVSU5ei6xKrmW0kVVFVmRRJqyV40RUgtOzFQcSzkrUOfpR1itx7X9BAzv506pTKex5s6lWhBCkErxKjEqMQH0UE7FfPI0hY-LJ3GxEFQAXzqNFZMWhOOpQr1HulyUxEVJpkKpAPY65S5_i2KheaJEAGzxGIVPcZOytijEIs84rlO4cQxgpx0TD3XT6Rr0cT7_rwsHsD64Hp4X52cXP3bhNU6DxOf_pHuwOr2f2X10baa658f0XyOu8IM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB5BkYAKcfQiUBYL8Zo2hx07j6uFpRwtVUulvkWxY0sr2uyq2X3h1zPjHGwRCN6ixHHsGY9nJjP-BuBtXHFTWl2FSgsd8hh5oSOThyYvJeob4yJNEd3jk-zogn-6FJedo0hnYXAQDfbU-CA-SfWich3CQHxYmtTb0Iu7cE_I2Idlx5PzIWpAnmhfIY8Cqj2S0PqrpIVMc0sLPVqUDRLEtZUs_m5qepUzfQJfh8H6TJPvB6ulPjA_fsNx_P_ZPIXHnfXJxu1yeQZ3bL0FDyZ90bct2FzDJ9yGs-NZPfPIn2x8TYji11R_y7Bze-XCU6qvZitG-FazejVfNexDm_-Oz-tmfsPoHy9DZxeFiZ21ubh2By6m779NjsKuCENYpjJZhkbKPMtj4VyWK6FVJTlaMLEquZbSRVUVWZFEmrJYjRFSC04Vqji2clYg79Nd2KjntX0ODO_nTqlMp7HmzqVaEFKQSvEqMSoxAYyQVkUnRE3h4-NJXAyECuBNz7Vi0YJx_KnR6BY_h5a4OclUKBXAfs_g9W9RTDRPlAiADY-R-BQ_KWuLRCzyjON-hQ5kAHvtuvjVN52yQVvnxb-m8Brun76bFl8-nnx-CQ9RGhKfBpTuw8byZmVfoYWz1CO_rH8C_NHy_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Miniature+Amperometric+Self-Powered+Continuous+Glucose+Sensor+with+Linear+Response&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Liu%2C+Zenghe&rft.au=Cho%2C+Brian&rft.au=Ouyang%2C+Tianmei&rft.au=Feldman%2C+Ben&rft.date=2012-04-03&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=84&rft.issue=7&rft.spage=3403&rft.epage=3409&rft_id=info:doi/10.1021%2Fac300217p&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ac300217p |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |