Statistical Variability and Tokunaga Branching of Aftershock Sequences Utilizing BASS Model Simulations

Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg–Richter (GR) frequency–magnitude statistics. They also satisfy Omori’s law for power-law seismicity rate decay and Båth’s law for maximum-magnitude s...

Full description

Saved in:
Bibliographic Details
Published inPure and applied geophysics Vol. 170; no. 1-2; pp. 155 - 171
Main Authors Yoder, Mark R., Van Aalsburg, Jordan, Turcotte, Donald L., Abaimov, Sergey G., Rundle, John B.
Format Journal Article
LanguageEnglish
Published Basel SP Birkhäuser Verlag Basel 01.01.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0033-4553
1420-9136
DOI10.1007/s00024-011-0411-2

Cover

Loading…
Abstract Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg–Richter (GR) frequency–magnitude statistics. They also satisfy Omori’s law for power-law seismicity rate decay and Båth’s law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency–magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Båth’s law and do not generate inverse GR scaling.
AbstractList Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg-Richter (GR) frequency-magnitude statistics. They also satisfy Omori's law for power-law seismicity rate decay and Bath's law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency-magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Bath's law and do not generate inverse GR scaling.
Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg–Richter (GR) frequency–magnitude statistics. They also satisfy Omori’s law for power-law seismicity rate decay and Båth’s law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency–magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Båth’s law and do not generate inverse GR scaling.
Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg-Richter (GR) frequency-magnitude statistics. They also satisfy Omori's law for power-law seismicity rate decay and Båth's law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency-magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Båth's law and do not generate inverse GR scaling.[PUBLICATION ABSTRACT]
Author Turcotte, Donald L.
Yoder, Mark R.
Abaimov, Sergey G.
Van Aalsburg, Jordan
Rundle, John B.
Author_xml – sequence: 1
  givenname: Mark R.
  surname: Yoder
  fullname: Yoder, Mark R.
  email: yoder@physics.ucdavis.edu
  organization: Department of Physics, University of California
– sequence: 2
  givenname: Jordan
  surname: Van Aalsburg
  fullname: Van Aalsburg, Jordan
  organization: Department of Physics, University of California, Department of Geology, University of California
– sequence: 3
  givenname: Donald L.
  surname: Turcotte
  fullname: Turcotte, Donald L.
  organization: Department of Geology, University of California
– sequence: 4
  givenname: Sergey G.
  surname: Abaimov
  fullname: Abaimov, Sergey G.
  organization: Department of Geology, University of California, Department of Geosciences, Pennsylvania State University
– sequence: 5
  givenname: John B.
  surname: Rundle
  fullname: Rundle, John B.
  organization: Department of Physics, University of California, Department of Geology, University of California, Santa Fe Institute
BookMark eNp9kUtPAyEUhYnRxPr4Ae5I3LgZvTDM0C6r8ZVoXEzrljDAtNQpKDAL_fVS68KY6OayOd-553IO0K7zziB0QuCcAPCLCACUFUBIASwPuoNGhFEoJqSsd9EIoCwLVlXlPjqIcQVAOK8mI7Rokkw2Jqtkj59lsLK1vU3vWDqNZ_5lcHIh8WWQTi2tW2Df4WmXTIhLr15wY94G45SJeJ4y9rFRXE6bBj96bXrc2PXQZ3vv4hHa62QfzfH3e4jmN9ezq7vi4en2_mr6UMiS01S0jAHvaEe1IpLQnLGbtLyu27HWjEoFWleK5IsVGytKWz4GoivatZoqBpSXh-hs6_safM4Wk1jbqEzfS2f8EAUpSVXX-U9Ilp7-kq78EFxOJ_JmKFnNJxtDvlWp4GMMphPKpq-bUpC2FwTEpgCxLUDkAsSmAEEzSX6Rr8GuZXj_l6FbJmatW5jwI9Of0Cc8kJlh
CitedBy_id crossref_primary_10_1007_s00024_012_0476_6
crossref_primary_10_1063_1_5029937
crossref_primary_10_1007_s10712_021_09682_0
crossref_primary_10_1214_19_PS331
crossref_primary_10_1103_PhysRevE_105_014301
crossref_primary_10_1016_j_soildyn_2023_108107
crossref_primary_10_1093_gji_ggac204
crossref_primary_10_1007_s00024_014_0824_9
crossref_primary_10_1007_s00024_014_0887_7
crossref_primary_10_1007_s00024_014_0785_z
crossref_primary_10_1016_j_compgeo_2022_105069
crossref_primary_10_1002_eqe_3068
crossref_primary_10_1061__ASCE_EM_1943_7889_0002176
Cites_doi 10.1785/0120060217
10.1016/0040-1951(65)90003-X
10.1038/35046046
10.1023/A:1003403601725
10.1029/2006JB004754
10.1007/s000240050270
10.1029/1998JB900089
10.1029/2003JB002485
10.1785/012003098
10.1111/j.1365-246X.1995.tb03524.x
10.1029/92JB01891
10.1029/2003JB002409
10.1103/PhysRevA.38.364
10.1029/2003GL018186
10.1007/978-3-0348-7875-3_19
10.1016/j.tecto.2005.10.016
10.1785/BSSA0570030341
10.1111/j.1365-246X.2005.02717.x
10.1785/0120030069
10.1103/PhysRevE.50.1009
10.1126/science.281.5384.1840
10.1785/012003162
10.1785/0120080211
10.1029/94WR03155
10.1098/rstb.2000.0566
10.1029/2004GL019808
10.1126/science.156.3775.636
10.1029/1998JB900110
10.1029/2005JB003621
10.1029/2001JB001580
10.1029/TR038i006p00913
10.1017/CBO9781139174695
10.1103/PhysRevLett.88.178501
10.1103/PhysRevE.60.5293
10.1007/s000240050275
10.1007/978-3-0348-8677-2_8
10.1785/BSSA0670051363
10.1029/2007GL029696
10.1103/PhysRevA.40.6470
10.1103/PhysRevLett.69.1629
10.1006/jtbi.1998.0723
10.1016/j.physa.2007.09.045
10.1038/nature04799
10.1007/s00024-008-0344-6
10.1103/PhysRevLett.95.218501
10.1029/2004JB003535
10.1029/2001JB001645
10.1103/PhysRevA.45.1058
10.1103/PhysRevLett.47.1400
10.1029/ME004p0566
10.1016/S0378-4371(99)00092-8
10.1029/91JB00191
10.1063/1.882305
ContentType Journal Article
Copyright Springer Basel AG 2011
Springer Basel 2013
Copyright_xml – notice: Springer Basel AG 2011
– notice: Springer Basel 2013
DBID AAYXX
CITATION
3V.
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
M2P
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
DOI 10.1007/s00024-011-0411-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Technology Research Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Statistics
Law
EISSN 1420-9136
EndPage 171
ExternalDocumentID 2867766211
10_1007_s00024_011_0411_2
Genre Feature
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
67M
67Z
6NX
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ATCPS
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAS
LK5
LLZTM
M2P
M4Y
M7R
MA-
MBV
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8R
Z8T
Z8W
ZMTXR
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-a372t-b4407f2f2dc1a12775f9b766b8dd42ac0dd5c1100c48c22b7801d52fbd2c40273
IEDL.DBID U2A
ISSN 0033-4553
IngestDate Mon Jul 21 11:27:20 EDT 2025
Sat Jul 26 01:08:36 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Tue Jul 01 02:36:56 EDT 2025
Fri Feb 21 02:39:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords foreshocks
Tokunaga networks
ETAS model
Aftershocks
BASS model
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a372t-b4407f2f2dc1a12775f9b766b8dd42ac0dd5c1100c48c22b7801d52fbd2c40273
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1270346797
PQPubID 54182
PageCount 17
ParticipantIDs proquest_miscellaneous_1315661361
proquest_journals_1270346797
crossref_citationtrail_10_1007_s00024_011_0411_2
crossref_primary_10_1007_s00024_011_0411_2
springer_journals_10_1007_s00024_011_0411_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130100
2013-1-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 1
  year: 2013
  text: 20130100
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationSubtitle pageoph
PublicationTitle Pure and applied geophysics
PublicationTitleAbbrev Pure Appl. Geophys
PublicationYear 2013
Publisher SP Birkhäuser Verlag Basel
Springer Nature B.V
Publisher_xml – name: SP Birkhäuser Verlag Basel
– name: Springer Nature B.V
References Tokunaga, E.: Consideration on the composition of drainage networks and their evolution, Geographical Rep. Tokya Metro. Univ., 13, 1–27, 1978.
Shcherbakov, R. and Turcotte, D. L.: A modified form of Båth’s law, Bull. Seis. Soc. Am, 94, 1968–1975. doi:10.1785/012003162, 2004b.
Pelletier, J. D. and Turcotte, D. L.: Shapes of river networks and leaves: Are they statistically similar?, Phil. Trans. Roy. Soc., B 355, 307–311, 2000.
Yakovlev, G., Newman, W. I., Turcotte, D. L., and Gabrielov, A.: An inverse cascade model for self-organized complexity and natural hazards, Geophys. J. Int., 163, 433–442, 2005.
King, G., Stein, R.S., and Lin, J.: Static stress changes and the triggering of earthquakes, Bull. Seism. Soc. Am., 84, 935–953, 1994.
Carlson, J. and Langer, J.: Mechanical model of an earthquake fault, Phys. Rev. A, 40, 6470–6484, 1989.
Maeda, K.: Time distribution of immediate foreshocks obtained by a stacking method, Pure Appl. Geophys., 155, 381–394, 1999.
Felzer, K. R., Abercrombie, R. E., and Ekstrom, G.: A common origin for aftershocks, foreshocks, and multiplets, Bull. Seis. Soc. Am., 94, 88–98, 2004.
Kilb, D., Gomberg, J., and Bodin, P.: Triggering of earthquake aftershocks by dynamic stress, Nature. doi:10.1038/35046046, 2000.
Helmstetter, A. and Sornette, D.: Foreshocks explained by cascades of triggered seismicity, J. Geophys. Res., 108, 2457, 2003a.
Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638. doi:10.1126/science.156.3775.636, 1967b.
Burridge, R. and Knopoff, L.: Model and theoretical seismicity, Bull. Seis. Soc. Am., 57, 341–371, 1967.
Malamud, B. D., Morein, G., and Turcotte, D. L.: Forest Fires: An Example of Self-Organized Critical Behavior, Science, 281, 1840–1842. doi:10.1126/science.281.5384.1840, 1998.
Båth, M.: Lateral inhomogeneities in the upper mantle, Tectonophysics, 2, 483–514, 1965.
Ossadnik, P.: Branch order and ramification analysis of large diffusion limited aggregation clusters, Phys. Rev. A., 45, 1058–1066, 1992.
Tormann, T., Savage, M. K., Smith, E. G. C., Stirling, M. W., and Wiemer, S.: Time-distance-, and magnitude-dependent foreshock probability model for New Zealand, Bull. Seis. Soc. Am., 98, 2149–2160, 2008.
Aki, K.: A probabilistic synthesis of precursory phenomena, Earthquake Prediction, pp. 566–574, American Geophysical Union, Washington, DC, 1981.
Sornette, D. and Werner, M. J.: Constraints on the size of the smallest triggering earthquake from the epidemic-type aftershock sequence model, Båth’s law, and observed aftershock sequences, J. Geophys. Res., 110, B08 304, 2005b.
Felzer, K. and Brodsky, E.: Decay of aftershock density with distance indicates triggering by dynamic stress, Nature, 441, 735–738. doi:10.1038/nature04799, 2006.
Jones, L. M.: Foreshocks and time-dependent earthquake hazard assessment in southern California, Bull. Seis. Sec. Am., 75, 1669–1679, 1985.
Rodriguez-Iturbe, I. and Rinaldo, A.: Fractal river basins: Chance and self-organization, Cambridge University Press, 1997.
Ogata, Y.: Space–time point process models for earthquake occurrences, Ann. Inst. Statist. Math, 50, 379–402, 1998.
Holliday, J. R., Turcotte, D. L., and Rundle, J. B.: Self-similar branching of aftershock sequences, Physica A, 387, 933–943, 2008a.
Peckham, S.: New results for self-similar trees with application to river networks, Water Resour. Res., 31, 1023–1029, 1995.
Turcotte, D. L.: Fractals and Chaos in Geology and Geophysics, Cambridge University Press, 2nd edn., 1997.
Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638. doi:10.1126/science.156.3775.636, 1967a.
Reasenberg, P. A.: Foreshock occurrence rates before large earthquakes worldwide, Pure Ap. Geophys., 155, 355–379, 1999b.
Clar, S., Drossel, B., and Schwabl, F.: Scaling laws and simulation results for the self-organized critical forest-fire model, Phys. Rev. E, 50, 1009–1019. doi:10.1103/PhysRevE.50.1009, 1994.
Agnew, D. C. and Jones, L. M.: Prediction probabilities from foreshocks, J. Geophys. Res., 96, 11959–11971, 1991.
Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality, Phys. Rev. A, 38, 364–374. doi:10.1103/PhysRevA.38.364, 1988.
Witten, T. A. and Sander, L. M.: Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Let., 47, 1400–1403, 1981.
Enescu, B., Mori, J., Miyazawa, M., and Kano, Y.: Omori-Utsu law c-values associated with recent moderate earthquakes in Japan, Bull. Seismol. Soc. Am., 99, 884–891. doi:10.1785/0120080211, 2009.
Utsu, T.: Estimation of parameters for recurrence models of earthquakes, Earthquake Res. Insti. Univ. Tokyo, 59, 53–66, 1984.
Helmstetter, A., Sornette, D., and Grasso, J. R.: Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws, J. Geophys. Res., 108, 2046, 2003.
Bak, P., Christensen, K., Danon, L., and Scanlon, T.: Unified Scaling Law for Earthquakes, Phys. Rev. Lett., 88, 178 501. doi:10.1103/PhysRevLett.88.178501, 2002.
Pelletier, J.: Self-organization and scaling relationships of evolving river networks, J. Geophys. Res., 104, 7359–7375, 1999.
Helmstetter, A. and Sornette, D.: Predictability in the epidemic-type aftershock sequence model of interacting triggered seismicity, J. Geophys. Res., 108, 2482, 2003b.
Kagan, Y.: Short-term properties of earthquake catalogs and models of earthquake source, Bull. Seismol. Soc. Am., 94, 1207–1228. doi:10.1785/012003098, 2004.
Sornette, D. and Werner, M. J.: Apparent clustering and apparent background earthquakes biased by undetected seismicity, J. Geophys. Res., 110, B09 303, 2005a.
Frohlich, C. and Davis, S. D.: Teleseismic b values; Or, Much Ado about 1.0, J Geophys Res, 98, 631–644. doi:10.1029/92JB01891, 1993.
Drossel, B. and Schwabl, F.: Self-organized critical forest-fire model, 1992.
Savage, M. K. and de Polo, D. M.: Foreshock probabilities in the western Great-Basin eastern Sierra Nevada, Bull. Seism. Soc. Am., 83, 1910–1938, 1993.
Turcotte, D. L., Pelletier, J., and Newman, W. I.: Networks with side branching in biology, J. Theor. Biol., 193, 577–592, 1998.
Horton, R. E.: Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull, 56, 275–370. doi:10.1130/0016-7606, 1945.
Shcherbakov, R., Turcotte, D. L., and Rundle, J. B.: A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11 613, 2004.
Helmstetter, A. and Sornette, D.: Subcritical and supercritical regimes in epidemic models of earthquake aftershocks, J. Geophys. Res., 107, 2237, 2002.
Ogata, Y., Utsu, T., and Katsura, K.: Statistical features of foreshocks in comparison with other earthquake clusters, Geophys. J. Int., 121, 233–254, 1995.
Strahler, A. N.: Quantitative analysis of watershed geomorphology, Am. Geophys. Un. Trans, 38, 913–920, 1957.
Shcherbakov, R., Yakovlev, G., Turcotte, D. L., and Rundle, J. B.: Model for the distribution of aftershock interoccurrence times, Phys. Rev. Let., 95. doi:10.1103/PhysRevLett.95.218501, 2005.
Shcherbakov, R. and Turcotte, D. L.: A damage mechanics model for aftershocks, Pure Ap. Geophys., 161, 2379–2391, 2004a.
Gabrielov, A., Newman, W. I., and Turcotte, D. L.: Exactly soluble hierarchical cluster model: inverse cascades, self-similarity and scaling, Phys. Rev. E, 60, 5293–5300, 1999.
Huc, M. and Main, I. G.: Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality, J. Geophys. Res., 108. doi:10.1029/2001JB001645, 2003.
Rundle, J. B. and Jackson, D. D.: Numerical simulation of earthquake sequences, Bull. Seis. Soc. Am., 67, 1363–1377, 1977.
Gutenberg, B. and Richter, C. F.: Seismicity of the Earth and Associated Phenomenon, Princeton Univ. Press, 2nd edn., 1954.
Holliday, J. R., Turcotte, D. L., and Rundle, J. B.: A review of earthquake statistics: Fault and seismicity-based models, ETAS and BASS, Pure Ap. Geophys., 165, 1003–1024, 2008b.
Turcotte, D. L., Holliday, J. R., and Rundle, J. B.: BASS, an alternative to ETAS, Geophys. Res. Lett., 34, L12 303, 2007.
Ogata, Y. and Zhuang, H. C.: Space–time ETAS models and an improved extension, Tectonophys., 413, 13–23, 2006.
Turcotte, D. L., Malamud, B. D., Morein, G., and Newman, W. I.: An inverse-cascade model for self-organized critical behavior, Physica A., 268, 629–643. doi:10.1016/S0378-4371(99)00092-8, 1999.
Nanjo, K. Z., Enescu, B., Shcherbakov, R., Turcotte, D. L., Iwata, T., and Ogata, Y.: Decay of aftershock activity for Japanese earthquakes, J. Geophys. Res., 112, B08 309, 2007.
Ogata, Y.: Seismicity analysis through point-process modeling: a review, Pure Appl. Geophys., 155, 471–507, 1999.
Helmstetter, A. and Sornette, D.: Båth’s law derived from the Gutenberg–Richter law and from aftershock properties, Geophys. Res. Lett., 30, 2069, 2003c.
Reasenberg, P. A.: Foreshock occurrence before large earthquakes, J. Geophys. Res., 104, 4755–4768, 1999a.
411_CR51
411_CR52
411_CR50
411_CR15
411_CR59
411_CR16
411_CR13
411_CR57
411_CR14
411_CR58
411_CR11
411_CR55
411_CR12
411_CR56
411_CR53
411_CR10
411_CR54
411_CR19
411_CR17
411_CR18
411_CR62
411_CR60
411_CR61
411_CR26
411_CR27
411_CR24
411_CR25
411_CR22
411_CR23
411_CR20
411_CR21
411_CR28
411_CR29
411_CR30
411_CR37
411_CR38
411_CR35
411_CR36
411_CR33
411_CR34
411_CR31
411_CR32
411_CR39
411_CR40
411_CR41
411_CR1
411_CR2
411_CR48
411_CR3
411_CR49
411_CR4
411_CR46
411_CR5
411_CR47
411_CR6
411_CR44
411_CR7
411_CR45
411_CR8
411_CR42
411_CR9
411_CR43
References_xml – reference: Shcherbakov, R., Turcotte, D. L., and Rundle, J. B.: A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11 613, 2004.
– reference: King, G., Stein, R.S., and Lin, J.: Static stress changes and the triggering of earthquakes, Bull. Seism. Soc. Am., 84, 935–953, 1994.
– reference: Sornette, D. and Werner, M. J.: Constraints on the size of the smallest triggering earthquake from the epidemic-type aftershock sequence model, Båth’s law, and observed aftershock sequences, J. Geophys. Res., 110, B08 304, 2005b.
– reference: Carlson, J. and Langer, J.: Mechanical model of an earthquake fault, Phys. Rev. A, 40, 6470–6484, 1989.
– reference: Enescu, B., Mori, J., Miyazawa, M., and Kano, Y.: Omori-Utsu law c-values associated with recent moderate earthquakes in Japan, Bull. Seismol. Soc. Am., 99, 884–891. doi:10.1785/0120080211, 2009.
– reference: Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality, Phys. Rev. A, 38, 364–374. doi:10.1103/PhysRevA.38.364, 1988.
– reference: Ogata, Y.: Seismicity analysis through point-process modeling: a review, Pure Appl. Geophys., 155, 471–507, 1999.
– reference: Shcherbakov, R., Yakovlev, G., Turcotte, D. L., and Rundle, J. B.: Model for the distribution of aftershock interoccurrence times, Phys. Rev. Let., 95. doi:10.1103/PhysRevLett.95.218501, 2005.
– reference: Helmstetter, A. and Sornette, D.: Foreshocks explained by cascades of triggered seismicity, J. Geophys. Res., 108, 2457, 2003a.
– reference: Peckham, S.: New results for self-similar trees with application to river networks, Water Resour. Res., 31, 1023–1029, 1995.
– reference: Malamud, B. D., Morein, G., and Turcotte, D. L.: Forest Fires: An Example of Self-Organized Critical Behavior, Science, 281, 1840–1842. doi:10.1126/science.281.5384.1840, 1998.
– reference: Ogata, Y.: Space–time point process models for earthquake occurrences, Ann. Inst. Statist. Math, 50, 379–402, 1998.
– reference: Reasenberg, P. A.: Foreshock occurrence rates before large earthquakes worldwide, Pure Ap. Geophys., 155, 355–379, 1999b.
– reference: Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638. doi:10.1126/science.156.3775.636, 1967b.
– reference: Reasenberg, P. A.: Foreshock occurrence before large earthquakes, J. Geophys. Res., 104, 4755–4768, 1999a.
– reference: Helmstetter, A. and Sornette, D.: Predictability in the epidemic-type aftershock sequence model of interacting triggered seismicity, J. Geophys. Res., 108, 2482, 2003b.
– reference: Gutenberg, B. and Richter, C. F.: Seismicity of the Earth and Associated Phenomenon, Princeton Univ. Press, 2nd edn., 1954.
– reference: Kagan, Y.: Short-term properties of earthquake catalogs and models of earthquake source, Bull. Seismol. Soc. Am., 94, 1207–1228. doi:10.1785/012003098, 2004.
– reference: Pelletier, J. D. and Turcotte, D. L.: Shapes of river networks and leaves: Are they statistically similar?, Phil. Trans. Roy. Soc., B 355, 307–311, 2000.
– reference: Huc, M. and Main, I. G.: Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality, J. Geophys. Res., 108. doi:10.1029/2001JB001645, 2003.
– reference: Turcotte, D. L., Holliday, J. R., and Rundle, J. B.: BASS, an alternative to ETAS, Geophys. Res. Lett., 34, L12 303, 2007.
– reference: Tormann, T., Savage, M. K., Smith, E. G. C., Stirling, M. W., and Wiemer, S.: Time-distance-, and magnitude-dependent foreshock probability model for New Zealand, Bull. Seis. Soc. Am., 98, 2149–2160, 2008.
– reference: Horton, R. E.: Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull, 56, 275–370. doi:10.1130/0016-7606, 1945.
– reference: Ossadnik, P.: Branch order and ramification analysis of large diffusion limited aggregation clusters, Phys. Rev. A., 45, 1058–1066, 1992.
– reference: Utsu, T.: Estimation of parameters for recurrence models of earthquakes, Earthquake Res. Insti. Univ. Tokyo, 59, 53–66, 1984.
– reference: Jones, L. M.: Foreshocks and time-dependent earthquake hazard assessment in southern California, Bull. Seis. Sec. Am., 75, 1669–1679, 1985.
– reference: Burridge, R. and Knopoff, L.: Model and theoretical seismicity, Bull. Seis. Soc. Am., 57, 341–371, 1967.
– reference: Holliday, J. R., Turcotte, D. L., and Rundle, J. B.: Self-similar branching of aftershock sequences, Physica A, 387, 933–943, 2008a.
– reference: Aki, K.: A probabilistic synthesis of precursory phenomena, Earthquake Prediction, pp. 566–574, American Geophysical Union, Washington, DC, 1981.
– reference: Turcotte, D. L., Pelletier, J., and Newman, W. I.: Networks with side branching in biology, J. Theor. Biol., 193, 577–592, 1998.
– reference: Pelletier, J.: Self-organization and scaling relationships of evolving river networks, J. Geophys. Res., 104, 7359–7375, 1999.
– reference: Tokunaga, E.: Consideration on the composition of drainage networks and their evolution, Geographical Rep. Tokya Metro. Univ., 13, 1–27, 1978.
– reference: Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638. doi:10.1126/science.156.3775.636, 1967a.
– reference: Nanjo, K. Z., Enescu, B., Shcherbakov, R., Turcotte, D. L., Iwata, T., and Ogata, Y.: Decay of aftershock activity for Japanese earthquakes, J. Geophys. Res., 112, B08 309, 2007.
– reference: Turcotte, D. L.: Fractals and Chaos in Geology and Geophysics, Cambridge University Press, 2nd edn., 1997.
– reference: Drossel, B. and Schwabl, F.: Self-organized critical forest-fire model, 1992.
– reference: Savage, M. K. and de Polo, D. M.: Foreshock probabilities in the western Great-Basin eastern Sierra Nevada, Bull. Seism. Soc. Am., 83, 1910–1938, 1993.
– reference: Felzer, K. and Brodsky, E.: Decay of aftershock density with distance indicates triggering by dynamic stress, Nature, 441, 735–738. doi:10.1038/nature04799, 2006.
– reference: Helmstetter, A. and Sornette, D.: Subcritical and supercritical regimes in epidemic models of earthquake aftershocks, J. Geophys. Res., 107, 2237, 2002.
– reference: Agnew, D. C. and Jones, L. M.: Prediction probabilities from foreshocks, J. Geophys. Res., 96, 11959–11971, 1991.
– reference: Sornette, D. and Werner, M. J.: Apparent clustering and apparent background earthquakes biased by undetected seismicity, J. Geophys. Res., 110, B09 303, 2005a.
– reference: Shcherbakov, R. and Turcotte, D. L.: A damage mechanics model for aftershocks, Pure Ap. Geophys., 161, 2379–2391, 2004a.
– reference: Felzer, K. R., Abercrombie, R. E., and Ekstrom, G.: A common origin for aftershocks, foreshocks, and multiplets, Bull. Seis. Soc. Am., 94, 88–98, 2004.
– reference: Gabrielov, A., Newman, W. I., and Turcotte, D. L.: Exactly soluble hierarchical cluster model: inverse cascades, self-similarity and scaling, Phys. Rev. E, 60, 5293–5300, 1999.
– reference: Strahler, A. N.: Quantitative analysis of watershed geomorphology, Am. Geophys. Un. Trans, 38, 913–920, 1957.
– reference: Ogata, Y., Utsu, T., and Katsura, K.: Statistical features of foreshocks in comparison with other earthquake clusters, Geophys. J. Int., 121, 233–254, 1995.
– reference: Turcotte, D. L., Malamud, B. D., Morein, G., and Newman, W. I.: An inverse-cascade model for self-organized critical behavior, Physica A., 268, 629–643. doi:10.1016/S0378-4371(99)00092-8, 1999.
– reference: Holliday, J. R., Turcotte, D. L., and Rundle, J. B.: A review of earthquake statistics: Fault and seismicity-based models, ETAS and BASS, Pure Ap. Geophys., 165, 1003–1024, 2008b.
– reference: Rodriguez-Iturbe, I. and Rinaldo, A.: Fractal river basins: Chance and self-organization, Cambridge University Press, 1997.
– reference: Helmstetter, A., Sornette, D., and Grasso, J. R.: Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws, J. Geophys. Res., 108, 2046, 2003.
– reference: Maeda, K.: Time distribution of immediate foreshocks obtained by a stacking method, Pure Appl. Geophys., 155, 381–394, 1999.
– reference: Helmstetter, A. and Sornette, D.: Båth’s law derived from the Gutenberg–Richter law and from aftershock properties, Geophys. Res. Lett., 30, 2069, 2003c.
– reference: Rundle, J. B. and Jackson, D. D.: Numerical simulation of earthquake sequences, Bull. Seis. Soc. Am., 67, 1363–1377, 1977.
– reference: Yakovlev, G., Newman, W. I., Turcotte, D. L., and Gabrielov, A.: An inverse cascade model for self-organized complexity and natural hazards, Geophys. J. Int., 163, 433–442, 2005.
– reference: Clar, S., Drossel, B., and Schwabl, F.: Scaling laws and simulation results for the self-organized critical forest-fire model, Phys. Rev. E, 50, 1009–1019. doi:10.1103/PhysRevE.50.1009, 1994.
– reference: Frohlich, C. and Davis, S. D.: Teleseismic b values; Or, Much Ado about 1.0, J Geophys Res, 98, 631–644. doi:10.1029/92JB01891, 1993.
– reference: Witten, T. A. and Sander, L. M.: Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Let., 47, 1400–1403, 1981.
– reference: Shcherbakov, R. and Turcotte, D. L.: A modified form of Båth’s law, Bull. Seis. Soc. Am, 94, 1968–1975. doi:10.1785/012003162, 2004b.
– reference: Ogata, Y. and Zhuang, H. C.: Space–time ETAS models and an improved extension, Tectonophys., 413, 13–23, 2006.
– reference: Bak, P., Christensen, K., Danon, L., and Scanlon, T.: Unified Scaling Law for Earthquakes, Phys. Rev. Lett., 88, 178 501. doi:10.1103/PhysRevLett.88.178501, 2002.
– reference: Båth, M.: Lateral inhomogeneities in the upper mantle, Tectonophysics, 2, 483–514, 1965.
– reference: Kilb, D., Gomberg, J., and Bodin, P.: Triggering of earthquake aftershocks by dynamic stress, Nature. doi:10.1038/35046046, 2000.
– ident: 411_CR55
  doi: 10.1785/0120060217
– ident: 411_CR3
  doi: 10.1016/0040-1951(65)90003-X
– ident: 411_CR27
  doi: 10.1038/35046046
– ident: 411_CR34
  doi: 10.1023/A:1003403601725
– ident: 411_CR33
  doi: 10.1029/2006JB004754
– ident: 411_CR29
  doi: 10.1007/s000240050270
– ident: 411_CR60
– ident: 411_CR42
  doi: 10.1029/1998JB900089
– ident: 411_CR18
  doi: 10.1029/2003JB002485
– ident: 411_CR26
  doi: 10.1785/012003098
– ident: 411_CR54
– ident: 411_CR37
  doi: 10.1111/j.1365-246X.1995.tb03524.x
– ident: 411_CR13
  doi: 10.1029/92JB01891
– ident: 411_CR17
  doi: 10.1029/2003JB002409
– ident: 411_CR4
  doi: 10.1103/PhysRevA.38.364
– ident: 411_CR19
  doi: 10.1029/2003GL018186
– ident: 411_CR47
  doi: 10.1007/978-3-0348-7875-3_19
– ident: 411_CR36
  doi: 10.1016/j.tecto.2005.10.016
– ident: 411_CR6
  doi: 10.1785/BSSA0570030341
– ident: 411_CR23
– ident: 411_CR62
  doi: 10.1111/j.1365-246X.2005.02717.x
– ident: 411_CR12
  doi: 10.1785/0120030069
– ident: 411_CR8
  doi: 10.1103/PhysRevE.50.1009
– ident: 411_CR30
  doi: 10.1126/science.281.5384.1840
– ident: 411_CR48
  doi: 10.1785/012003162
– ident: 411_CR10
  doi: 10.1785/0120080211
– ident: 411_CR39
  doi: 10.1029/94WR03155
– ident: 411_CR41
  doi: 10.1098/rstb.2000.0566
– ident: 411_CR49
  doi: 10.1029/2004GL019808
– ident: 411_CR32
  doi: 10.1126/science.156.3775.636
– ident: 411_CR40
  doi: 10.1029/1998JB900110
– ident: 411_CR51
  doi: 10.1029/2005JB003621
– ident: 411_CR16
  doi: 10.1029/2001JB001580
– ident: 411_CR53
  doi: 10.1029/TR038i006p00913
– ident: 411_CR20
– ident: 411_CR56
  doi: 10.1017/CBO9781139174695
– ident: 411_CR5
  doi: 10.1103/PhysRevLett.88.178501
– ident: 411_CR28
– ident: 411_CR14
  doi: 10.1103/PhysRevE.60.5293
– ident: 411_CR35
  doi: 10.1007/s000240050275
– ident: 411_CR43
  doi: 10.1007/978-3-0348-8677-2_8
– ident: 411_CR45
  doi: 10.1785/BSSA0670051363
– ident: 411_CR59
  doi: 10.1029/2007GL029696
– ident: 411_CR7
  doi: 10.1103/PhysRevA.40.6470
– ident: 411_CR9
  doi: 10.1103/PhysRevLett.69.1629
– ident: 411_CR57
  doi: 10.1006/jtbi.1998.0723
– ident: 411_CR21
  doi: 10.1016/j.physa.2007.09.045
– ident: 411_CR11
  doi: 10.1038/nature04799
– ident: 411_CR22
  doi: 10.1007/s00024-008-0344-6
– ident: 411_CR50
  doi: 10.1103/PhysRevLett.95.218501
– ident: 411_CR46
– ident: 411_CR52
  doi: 10.1029/2004JB003535
– ident: 411_CR25
– ident: 411_CR24
  doi: 10.1029/2001JB001645
– ident: 411_CR38
  doi: 10.1103/PhysRevA.45.1058
– ident: 411_CR61
  doi: 10.1103/PhysRevLett.47.1400
– ident: 411_CR2
  doi: 10.1029/ME004p0566
– ident: 411_CR58
  doi: 10.1016/S0378-4371(99)00092-8
– ident: 411_CR1
  doi: 10.1029/91JB00191
– ident: 411_CR44
  doi: 10.1063/1.882305
– ident: 411_CR31
  doi: 10.1126/science.156.3775.636
– ident: 411_CR15
SSID ssj0017759
Score 2.052264
Snippet Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg–Richter...
Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg-Richter...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 155
SubjectTerms Bass
Computer simulation
Decay rate
Drainage patterns
Earth and Environmental Science
Earth Sciences
Earthquakes
Geophysics/Geodesy
Inverse
Law
Numerical analysis
Physics
Plate tectonics
Scaling laws
Seismic activity
Seismology
Shock waves
Simulation
Statistics
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS-RAFH64MOBlcJnBdlRK8OQQplNLKjlJK7Yi6KVt8RZqSRxRE510H8Zf73vZnBH0EgipJbxa3sr3AexHmVLCU1lFnCeBVNwE1jgZhHmsbZJrG3kKDVxcRmdTeX6jbtqAW9WWVXZ3Yn1R-9JRjPwXZUgFnupEHz49B8QaRdnVlkJjEZZD1DS0w-PxaZ9F0Fo15q8Q-BtKdFnNYQ0iitopqAOEEh_8f730Zmy-y4_Wame8Cl9be5GNmgVeg4WsWIcvdd2mq9ZhhYzFBmt5A277F-xxjU5wg8H9l5nCs6vyfl6YW8OOiEqD4k6szNmIKMKr33gpsklXVM2mM-z2Qi2ORpMJI7q0Bza5e2yZvqpvMB2fXB2fBS2RQmCE5rPASnTbcp5z70KDgtQqT6yOIht7L7lxQ--VI-w4J2PHudWotrziufXcSQK8-Q5LRVlkm8C0Di3aRNxZYaW2MQ2XoBljI0E5TzmAYSfG1LUo40R28ZD2-Mi15FOUfEqST_kADvouTw3ExmeNt7u1SdvTVqVve2MAe_1nPCeU_DBFVs6xjSBPNRRROICf3Zr-M8RHE259PuEPWOE1QQYFZbZhafZnnu2gmTKzu_VefAUCF-Ef
  priority: 102
  providerName: ProQuest
Title Statistical Variability and Tokunaga Branching of Aftershock Sequences Utilizing BASS Model Simulations
URI https://link.springer.com/article/10.1007/s00024-011-0411-2
https://www.proquest.com/docview/1270346797
https://www.proquest.com/docview/1315661361
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5ah0IvIX1R52E2kFOLINqHVjrKwXZoSQh1XNKT2IfkhCRyiOxD8uszI0tKW9pCL9JBsyuY3Z39Zmf2G4CDKFdKeEqriIskkIqbwBong7CItU0KbSNPRwMnp9HxTH65UBfNPe6qzXZvQ5K1pe4uu9HipYwJdH8lPtDubih03Wlaz3jahQ60VmvMKwT-W4k2lPmnLn7djJ4R5m9B0XqvGW_BZgMSWboe1TfwIi_fwqs6WdNV72BOCLEmWEah7-jsrrm2H5gpPTtfXK9KMzdsSCUz6HyJLQqWUinw6hKNH5u2ydNstsRmjyQxTKdTRmXRbtj06rap6FW9h9l4dH50HDQFEwIjNF8GVqJ7VvCCexeakKMmisTqKLKx95Ibd-i9csQR52TsOLcatyeveGE9d5KIbT5Ar1yU-UdgWocWsQ93VlipbUzdJQhXbCQotin7cNhqLnMNmzgVtbjJOh7kWtkZKjsjZWe8D5-6JndrKo1_Ce-2w5E1q6rKKEou0LInug_73WdcDxTkMGW-WKGMII80FFHYh8_tMP7Uxd9-uP1f0jvwmtd1MegsZhd6y_tVvofoZGkH8DIeTwawkU5-fB3hezg6Pfs2qOfoE5IB3TI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gxMiLEdR4iLIm-qJpvO5uu-2DIYd4HvLxcneGt7IfLRqhBXoXA38UfyMz_UJN5I2XJk13p-nszO58dX4Ab8M0CISjsoooiz0ZcO0ZbaXnZ5EycaZM6Cg0sH8Qjqby22FwuADX7b8wVFbZ7onVRu0KSzHyj5QhFajVsdo8O_cINYqyqy2ERi0Wu-nlb3TZyk8727i-7zgffpl8HnkNqoCnheIzz0j0YTKecWd9jVRVkMVGhaGJnJNc275zgaVGalZGlnOjcA93Ac-M41ZS9xek-wCWpBAxlRBGw69d1gJp1ea2EPjZgWizqP2qaSmehl4VkJR44X-fg7fG7T_52OqYGz6Bx419yga1QK3AQpqvwsOqTtSWq7BMxmnd2_kpHHc3OOM7Ot11z-9LpnPHJsWvea6PNdsi6A6Kc7EiYwOCJC9_4CbMxm0RN5vOcNoVjdgajMeM4NlO2PjnaYMsVj6D6b2w-Dks5kWevgCmlG_QBuPWCCOViYhcjGaTCQXlWGUP-i0bE9t0NSdwjZOk68dccT5BzifE-YT34H035axu6XHX4PV2bZJGu8vkVhZ78KZ7jHpJyRadp8UcxwjyjH0R-j340K7pHyT-98K1u1-4AY9Gk_29ZG_nYPclLPMKnIMCQuuwOLuYp6_QRJqZ15VcMji6b0W4AVbmHZI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gRMOLEdR4irIm-oJpuO5uu-2DMQd4gCgxOc7wVveji0Zs0d7F4J_mX-dMvxATeOOlSdPd2WR2ZnZ2Zjo_gBdxHkXCUVlF4tNARlwHRlsZhD5RJvXKxI5CAx8O472pfHccHS_An-5fGCqr7GxibahdaSlGvkkZUoFanapN35ZFfNwZvzn7ERCCFGVaOziNRkQO8vNfeH2rXu_v4F6_5Hz89mh7L2gRBgItFJ8FRuJ9xnPPnQ01rqAinxoVxyZxTnJth85FlpqqWZlYzo1Ce-4i7o3jVlInGKR7C5aUSIaEnpCMd_sMBtJqXG8hkAWR6DKqw7qBKZ6MQR2clPjgl8_EC0f3v9xsfeSN78Hd1ldlo0a4VmAhL1bhdl0zaqtVWCZHtenzfB9O-hec8Qkv4E3_73OmC8eOym_zQp9otkUwHhTzYqVnI4Inr76gQWaTrqCbTWc47TeN2BpNJoyg2k7Z5Ov3FmWsegDTG2HxQ1gsyiJ_BEyp0KA_xq0RRiqTELkUXSgTC8q3ygEMOzZmtu1wTkAbp1nfm7nmfIacz4jzGR_ARj_lrGnvcd3gtW5vslbTq-xCLgfwvP-MOkqJF13k5RzHCLolhyIOB_Cq29N_SFy14OPrF1yHO6gC2fv9w4MnsMxrnA6KDa3B4uznPH-K3tLMPKvFksHnm9aDv62gIb8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Variability+and+Tokunaga+Branching+of+Aftershock+Sequences+Utilizing+BASS+Model+Simulations&rft.jtitle=Pure+and+applied+geophysics&rft.au=Yoder%2C+Mark+R.&rft.au=Van+Aalsburg%2C+Jordan&rft.au=Turcotte%2C+Donald+L.&rft.au=Abaimov%2C+Sergey+G.&rft.date=2013-01-01&rft.pub=SP+Birkh%C3%A4user+Verlag+Basel&rft.issn=0033-4553&rft.eissn=1420-9136&rft.volume=170&rft.issue=1-2&rft.spage=155&rft.epage=171&rft_id=info:doi/10.1007%2Fs00024-011-0411-2&rft.externalDocID=10_1007_s00024_011_0411_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-4553&client=summon