Statistical Variability and Tokunaga Branching of Aftershock Sequences Utilizing BASS Model Simulations
Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg–Richter (GR) frequency–magnitude statistics. They also satisfy Omori’s law for power-law seismicity rate decay and Båth’s law for maximum-magnitude s...
Saved in:
Published in | Pure and applied geophysics Vol. 170; no. 1-2; pp. 155 - 171 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
SP Birkhäuser Verlag Basel
01.01.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0033-4553 1420-9136 |
DOI | 10.1007/s00024-011-0411-2 |
Cover
Loading…
Abstract | Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg–Richter (GR) frequency–magnitude statistics. They also satisfy Omori’s law for power-law seismicity rate decay and Båth’s law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency–magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Båth’s law and do not generate inverse GR scaling. |
---|---|
AbstractList | Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg-Richter (GR) frequency-magnitude statistics. They also satisfy Omori's law for power-law seismicity rate decay and Bath's law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency-magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Bath's law and do not generate inverse GR scaling. Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg–Richter (GR) frequency–magnitude statistics. They also satisfy Omori’s law for power-law seismicity rate decay and Båth’s law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency–magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Båth’s law and do not generate inverse GR scaling. Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg-Richter (GR) frequency-magnitude statistics. They also satisfy Omori's law for power-law seismicity rate decay and Båth's law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency-magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Båth's law and do not generate inverse GR scaling.[PUBLICATION ABSTRACT] |
Author | Turcotte, Donald L. Yoder, Mark R. Abaimov, Sergey G. Van Aalsburg, Jordan Rundle, John B. |
Author_xml | – sequence: 1 givenname: Mark R. surname: Yoder fullname: Yoder, Mark R. email: yoder@physics.ucdavis.edu organization: Department of Physics, University of California – sequence: 2 givenname: Jordan surname: Van Aalsburg fullname: Van Aalsburg, Jordan organization: Department of Physics, University of California, Department of Geology, University of California – sequence: 3 givenname: Donald L. surname: Turcotte fullname: Turcotte, Donald L. organization: Department of Geology, University of California – sequence: 4 givenname: Sergey G. surname: Abaimov fullname: Abaimov, Sergey G. organization: Department of Geology, University of California, Department of Geosciences, Pennsylvania State University – sequence: 5 givenname: John B. surname: Rundle fullname: Rundle, John B. organization: Department of Physics, University of California, Department of Geology, University of California, Santa Fe Institute |
BookMark | eNp9kUtPAyEUhYnRxPr4Ae5I3LgZvTDM0C6r8ZVoXEzrljDAtNQpKDAL_fVS68KY6OayOd-553IO0K7zziB0QuCcAPCLCACUFUBIASwPuoNGhFEoJqSsd9EIoCwLVlXlPjqIcQVAOK8mI7Rokkw2Jqtkj59lsLK1vU3vWDqNZ_5lcHIh8WWQTi2tW2Df4WmXTIhLr15wY94G45SJeJ4y9rFRXE6bBj96bXrc2PXQZ3vv4hHa62QfzfH3e4jmN9ezq7vi4en2_mr6UMiS01S0jAHvaEe1IpLQnLGbtLyu27HWjEoFWleK5IsVGytKWz4GoivatZoqBpSXh-hs6_safM4Wk1jbqEzfS2f8EAUpSVXX-U9Ilp7-kq78EFxOJ_JmKFnNJxtDvlWp4GMMphPKpq-bUpC2FwTEpgCxLUDkAsSmAEEzSX6Rr8GuZXj_l6FbJmatW5jwI9Of0Cc8kJlh |
CitedBy_id | crossref_primary_10_1007_s00024_012_0476_6 crossref_primary_10_1063_1_5029937 crossref_primary_10_1007_s10712_021_09682_0 crossref_primary_10_1214_19_PS331 crossref_primary_10_1103_PhysRevE_105_014301 crossref_primary_10_1016_j_soildyn_2023_108107 crossref_primary_10_1093_gji_ggac204 crossref_primary_10_1007_s00024_014_0824_9 crossref_primary_10_1007_s00024_014_0887_7 crossref_primary_10_1007_s00024_014_0785_z crossref_primary_10_1016_j_compgeo_2022_105069 crossref_primary_10_1002_eqe_3068 crossref_primary_10_1061__ASCE_EM_1943_7889_0002176 |
Cites_doi | 10.1785/0120060217 10.1016/0040-1951(65)90003-X 10.1038/35046046 10.1023/A:1003403601725 10.1029/2006JB004754 10.1007/s000240050270 10.1029/1998JB900089 10.1029/2003JB002485 10.1785/012003098 10.1111/j.1365-246X.1995.tb03524.x 10.1029/92JB01891 10.1029/2003JB002409 10.1103/PhysRevA.38.364 10.1029/2003GL018186 10.1007/978-3-0348-7875-3_19 10.1016/j.tecto.2005.10.016 10.1785/BSSA0570030341 10.1111/j.1365-246X.2005.02717.x 10.1785/0120030069 10.1103/PhysRevE.50.1009 10.1126/science.281.5384.1840 10.1785/012003162 10.1785/0120080211 10.1029/94WR03155 10.1098/rstb.2000.0566 10.1029/2004GL019808 10.1126/science.156.3775.636 10.1029/1998JB900110 10.1029/2005JB003621 10.1029/2001JB001580 10.1029/TR038i006p00913 10.1017/CBO9781139174695 10.1103/PhysRevLett.88.178501 10.1103/PhysRevE.60.5293 10.1007/s000240050275 10.1007/978-3-0348-8677-2_8 10.1785/BSSA0670051363 10.1029/2007GL029696 10.1103/PhysRevA.40.6470 10.1103/PhysRevLett.69.1629 10.1006/jtbi.1998.0723 10.1016/j.physa.2007.09.045 10.1038/nature04799 10.1007/s00024-008-0344-6 10.1103/PhysRevLett.95.218501 10.1029/2004JB003535 10.1029/2001JB001645 10.1103/PhysRevA.45.1058 10.1103/PhysRevLett.47.1400 10.1029/ME004p0566 10.1016/S0378-4371(99)00092-8 10.1029/91JB00191 10.1063/1.882305 |
ContentType | Journal Article |
Copyright | Springer Basel AG 2011 Springer Basel 2013 |
Copyright_xml | – notice: Springer Basel AG 2011 – notice: Springer Basel 2013 |
DBID | AAYXX CITATION 3V. 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M M2P P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U |
DOI | 10.1007/s00024-011-0411-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Statistics Law |
EISSN | 1420-9136 |
EndPage | 171 |
ExternalDocumentID | 2867766211 10_1007_s00024_011_0411_2 |
Genre | Feature |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 67M 67Z 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ATCPS AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAS LK5 LLZTM M2P M4Y M7R MA- MBV N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8R Z8T Z8W ZMTXR ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TG 7UA 7XB 8FD 8FK ABRTQ C1K F1W H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-a372t-b4407f2f2dc1a12775f9b766b8dd42ac0dd5c1100c48c22b7801d52fbd2c40273 |
IEDL.DBID | U2A |
ISSN | 0033-4553 |
IngestDate | Mon Jul 21 11:27:20 EDT 2025 Sat Jul 26 01:08:36 EDT 2025 Thu Apr 24 22:57:49 EDT 2025 Tue Jul 01 02:36:56 EDT 2025 Fri Feb 21 02:39:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | foreshocks Tokunaga networks ETAS model Aftershocks BASS model |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a372t-b4407f2f2dc1a12775f9b766b8dd42ac0dd5c1100c48c22b7801d52fbd2c40273 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1270346797 |
PQPubID | 54182 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1315661361 proquest_journals_1270346797 crossref_citationtrail_10_1007_s00024_011_0411_2 crossref_primary_10_1007_s00024_011_0411_2 springer_journals_10_1007_s00024_011_0411_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130100 2013-1-00 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 1 year: 2013 text: 20130100 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationSubtitle | pageoph |
PublicationTitle | Pure and applied geophysics |
PublicationTitleAbbrev | Pure Appl. Geophys |
PublicationYear | 2013 |
Publisher | SP Birkhäuser Verlag Basel Springer Nature B.V |
Publisher_xml | – name: SP Birkhäuser Verlag Basel – name: Springer Nature B.V |
References | Tokunaga, E.: Consideration on the composition of drainage networks and their evolution, Geographical Rep. Tokya Metro. Univ., 13, 1–27, 1978. Shcherbakov, R. and Turcotte, D. L.: A modified form of Båth’s law, Bull. Seis. Soc. Am, 94, 1968–1975. doi:10.1785/012003162, 2004b. Pelletier, J. D. and Turcotte, D. L.: Shapes of river networks and leaves: Are they statistically similar?, Phil. Trans. Roy. Soc., B 355, 307–311, 2000. Yakovlev, G., Newman, W. I., Turcotte, D. L., and Gabrielov, A.: An inverse cascade model for self-organized complexity and natural hazards, Geophys. J. Int., 163, 433–442, 2005. King, G., Stein, R.S., and Lin, J.: Static stress changes and the triggering of earthquakes, Bull. Seism. Soc. Am., 84, 935–953, 1994. Carlson, J. and Langer, J.: Mechanical model of an earthquake fault, Phys. Rev. A, 40, 6470–6484, 1989. Maeda, K.: Time distribution of immediate foreshocks obtained by a stacking method, Pure Appl. Geophys., 155, 381–394, 1999. Felzer, K. R., Abercrombie, R. E., and Ekstrom, G.: A common origin for aftershocks, foreshocks, and multiplets, Bull. Seis. Soc. Am., 94, 88–98, 2004. Kilb, D., Gomberg, J., and Bodin, P.: Triggering of earthquake aftershocks by dynamic stress, Nature. doi:10.1038/35046046, 2000. Helmstetter, A. and Sornette, D.: Foreshocks explained by cascades of triggered seismicity, J. Geophys. Res., 108, 2457, 2003a. Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638. doi:10.1126/science.156.3775.636, 1967b. Burridge, R. and Knopoff, L.: Model and theoretical seismicity, Bull. Seis. Soc. Am., 57, 341–371, 1967. Malamud, B. D., Morein, G., and Turcotte, D. L.: Forest Fires: An Example of Self-Organized Critical Behavior, Science, 281, 1840–1842. doi:10.1126/science.281.5384.1840, 1998. Båth, M.: Lateral inhomogeneities in the upper mantle, Tectonophysics, 2, 483–514, 1965. Ossadnik, P.: Branch order and ramification analysis of large diffusion limited aggregation clusters, Phys. Rev. A., 45, 1058–1066, 1992. Tormann, T., Savage, M. K., Smith, E. G. C., Stirling, M. W., and Wiemer, S.: Time-distance-, and magnitude-dependent foreshock probability model for New Zealand, Bull. Seis. Soc. Am., 98, 2149–2160, 2008. Aki, K.: A probabilistic synthesis of precursory phenomena, Earthquake Prediction, pp. 566–574, American Geophysical Union, Washington, DC, 1981. Sornette, D. and Werner, M. J.: Constraints on the size of the smallest triggering earthquake from the epidemic-type aftershock sequence model, Båth’s law, and observed aftershock sequences, J. Geophys. Res., 110, B08 304, 2005b. Felzer, K. and Brodsky, E.: Decay of aftershock density with distance indicates triggering by dynamic stress, Nature, 441, 735–738. doi:10.1038/nature04799, 2006. Jones, L. M.: Foreshocks and time-dependent earthquake hazard assessment in southern California, Bull. Seis. Sec. Am., 75, 1669–1679, 1985. Rodriguez-Iturbe, I. and Rinaldo, A.: Fractal river basins: Chance and self-organization, Cambridge University Press, 1997. Ogata, Y.: Space–time point process models for earthquake occurrences, Ann. Inst. Statist. Math, 50, 379–402, 1998. Holliday, J. R., Turcotte, D. L., and Rundle, J. B.: Self-similar branching of aftershock sequences, Physica A, 387, 933–943, 2008a. Peckham, S.: New results for self-similar trees with application to river networks, Water Resour. Res., 31, 1023–1029, 1995. Turcotte, D. L.: Fractals and Chaos in Geology and Geophysics, Cambridge University Press, 2nd edn., 1997. Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638. doi:10.1126/science.156.3775.636, 1967a. Reasenberg, P. A.: Foreshock occurrence rates before large earthquakes worldwide, Pure Ap. Geophys., 155, 355–379, 1999b. Clar, S., Drossel, B., and Schwabl, F.: Scaling laws and simulation results for the self-organized critical forest-fire model, Phys. Rev. E, 50, 1009–1019. doi:10.1103/PhysRevE.50.1009, 1994. Agnew, D. C. and Jones, L. M.: Prediction probabilities from foreshocks, J. Geophys. Res., 96, 11959–11971, 1991. Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality, Phys. Rev. A, 38, 364–374. doi:10.1103/PhysRevA.38.364, 1988. Witten, T. A. and Sander, L. M.: Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Let., 47, 1400–1403, 1981. Enescu, B., Mori, J., Miyazawa, M., and Kano, Y.: Omori-Utsu law c-values associated with recent moderate earthquakes in Japan, Bull. Seismol. Soc. Am., 99, 884–891. doi:10.1785/0120080211, 2009. Utsu, T.: Estimation of parameters for recurrence models of earthquakes, Earthquake Res. Insti. Univ. Tokyo, 59, 53–66, 1984. Helmstetter, A., Sornette, D., and Grasso, J. R.: Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws, J. Geophys. Res., 108, 2046, 2003. Bak, P., Christensen, K., Danon, L., and Scanlon, T.: Unified Scaling Law for Earthquakes, Phys. Rev. Lett., 88, 178 501. doi:10.1103/PhysRevLett.88.178501, 2002. Pelletier, J.: Self-organization and scaling relationships of evolving river networks, J. Geophys. Res., 104, 7359–7375, 1999. Helmstetter, A. and Sornette, D.: Predictability in the epidemic-type aftershock sequence model of interacting triggered seismicity, J. Geophys. Res., 108, 2482, 2003b. Kagan, Y.: Short-term properties of earthquake catalogs and models of earthquake source, Bull. Seismol. Soc. Am., 94, 1207–1228. doi:10.1785/012003098, 2004. Sornette, D. and Werner, M. J.: Apparent clustering and apparent background earthquakes biased by undetected seismicity, J. Geophys. Res., 110, B09 303, 2005a. Frohlich, C. and Davis, S. D.: Teleseismic b values; Or, Much Ado about 1.0, J Geophys Res, 98, 631–644. doi:10.1029/92JB01891, 1993. Drossel, B. and Schwabl, F.: Self-organized critical forest-fire model, 1992. Savage, M. K. and de Polo, D. M.: Foreshock probabilities in the western Great-Basin eastern Sierra Nevada, Bull. Seism. Soc. Am., 83, 1910–1938, 1993. Turcotte, D. L., Pelletier, J., and Newman, W. I.: Networks with side branching in biology, J. Theor. Biol., 193, 577–592, 1998. Horton, R. E.: Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull, 56, 275–370. doi:10.1130/0016-7606, 1945. Shcherbakov, R., Turcotte, D. L., and Rundle, J. B.: A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11 613, 2004. Helmstetter, A. and Sornette, D.: Subcritical and supercritical regimes in epidemic models of earthquake aftershocks, J. Geophys. Res., 107, 2237, 2002. Ogata, Y., Utsu, T., and Katsura, K.: Statistical features of foreshocks in comparison with other earthquake clusters, Geophys. J. Int., 121, 233–254, 1995. Strahler, A. N.: Quantitative analysis of watershed geomorphology, Am. Geophys. Un. Trans, 38, 913–920, 1957. Shcherbakov, R., Yakovlev, G., Turcotte, D. L., and Rundle, J. B.: Model for the distribution of aftershock interoccurrence times, Phys. Rev. Let., 95. doi:10.1103/PhysRevLett.95.218501, 2005. Shcherbakov, R. and Turcotte, D. L.: A damage mechanics model for aftershocks, Pure Ap. Geophys., 161, 2379–2391, 2004a. Gabrielov, A., Newman, W. I., and Turcotte, D. L.: Exactly soluble hierarchical cluster model: inverse cascades, self-similarity and scaling, Phys. Rev. E, 60, 5293–5300, 1999. Huc, M. and Main, I. G.: Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality, J. Geophys. Res., 108. doi:10.1029/2001JB001645, 2003. Rundle, J. B. and Jackson, D. D.: Numerical simulation of earthquake sequences, Bull. Seis. Soc. Am., 67, 1363–1377, 1977. Gutenberg, B. and Richter, C. F.: Seismicity of the Earth and Associated Phenomenon, Princeton Univ. Press, 2nd edn., 1954. Holliday, J. R., Turcotte, D. L., and Rundle, J. B.: A review of earthquake statistics: Fault and seismicity-based models, ETAS and BASS, Pure Ap. Geophys., 165, 1003–1024, 2008b. Turcotte, D. L., Holliday, J. R., and Rundle, J. B.: BASS, an alternative to ETAS, Geophys. Res. Lett., 34, L12 303, 2007. Ogata, Y. and Zhuang, H. C.: Space–time ETAS models and an improved extension, Tectonophys., 413, 13–23, 2006. Turcotte, D. L., Malamud, B. D., Morein, G., and Newman, W. I.: An inverse-cascade model for self-organized critical behavior, Physica A., 268, 629–643. doi:10.1016/S0378-4371(99)00092-8, 1999. Nanjo, K. Z., Enescu, B., Shcherbakov, R., Turcotte, D. L., Iwata, T., and Ogata, Y.: Decay of aftershock activity for Japanese earthquakes, J. Geophys. Res., 112, B08 309, 2007. Ogata, Y.: Seismicity analysis through point-process modeling: a review, Pure Appl. Geophys., 155, 471–507, 1999. Helmstetter, A. and Sornette, D.: Båth’s law derived from the Gutenberg–Richter law and from aftershock properties, Geophys. Res. Lett., 30, 2069, 2003c. Reasenberg, P. A.: Foreshock occurrence before large earthquakes, J. Geophys. Res., 104, 4755–4768, 1999a. 411_CR51 411_CR52 411_CR50 411_CR15 411_CR59 411_CR16 411_CR13 411_CR57 411_CR14 411_CR58 411_CR11 411_CR55 411_CR12 411_CR56 411_CR53 411_CR10 411_CR54 411_CR19 411_CR17 411_CR18 411_CR62 411_CR60 411_CR61 411_CR26 411_CR27 411_CR24 411_CR25 411_CR22 411_CR23 411_CR20 411_CR21 411_CR28 411_CR29 411_CR30 411_CR37 411_CR38 411_CR35 411_CR36 411_CR33 411_CR34 411_CR31 411_CR32 411_CR39 411_CR40 411_CR41 411_CR1 411_CR2 411_CR48 411_CR3 411_CR49 411_CR4 411_CR46 411_CR5 411_CR47 411_CR6 411_CR44 411_CR7 411_CR45 411_CR8 411_CR42 411_CR9 411_CR43 |
References_xml | – reference: Shcherbakov, R., Turcotte, D. L., and Rundle, J. B.: A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11 613, 2004. – reference: King, G., Stein, R.S., and Lin, J.: Static stress changes and the triggering of earthquakes, Bull. Seism. Soc. Am., 84, 935–953, 1994. – reference: Sornette, D. and Werner, M. J.: Constraints on the size of the smallest triggering earthquake from the epidemic-type aftershock sequence model, Båth’s law, and observed aftershock sequences, J. Geophys. Res., 110, B08 304, 2005b. – reference: Carlson, J. and Langer, J.: Mechanical model of an earthquake fault, Phys. Rev. A, 40, 6470–6484, 1989. – reference: Enescu, B., Mori, J., Miyazawa, M., and Kano, Y.: Omori-Utsu law c-values associated with recent moderate earthquakes in Japan, Bull. Seismol. Soc. Am., 99, 884–891. doi:10.1785/0120080211, 2009. – reference: Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality, Phys. Rev. A, 38, 364–374. doi:10.1103/PhysRevA.38.364, 1988. – reference: Ogata, Y.: Seismicity analysis through point-process modeling: a review, Pure Appl. Geophys., 155, 471–507, 1999. – reference: Shcherbakov, R., Yakovlev, G., Turcotte, D. L., and Rundle, J. B.: Model for the distribution of aftershock interoccurrence times, Phys. Rev. Let., 95. doi:10.1103/PhysRevLett.95.218501, 2005. – reference: Helmstetter, A. and Sornette, D.: Foreshocks explained by cascades of triggered seismicity, J. Geophys. Res., 108, 2457, 2003a. – reference: Peckham, S.: New results for self-similar trees with application to river networks, Water Resour. Res., 31, 1023–1029, 1995. – reference: Malamud, B. D., Morein, G., and Turcotte, D. L.: Forest Fires: An Example of Self-Organized Critical Behavior, Science, 281, 1840–1842. doi:10.1126/science.281.5384.1840, 1998. – reference: Ogata, Y.: Space–time point process models for earthquake occurrences, Ann. Inst. Statist. Math, 50, 379–402, 1998. – reference: Reasenberg, P. A.: Foreshock occurrence rates before large earthquakes worldwide, Pure Ap. Geophys., 155, 355–379, 1999b. – reference: Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638. doi:10.1126/science.156.3775.636, 1967b. – reference: Reasenberg, P. A.: Foreshock occurrence before large earthquakes, J. Geophys. Res., 104, 4755–4768, 1999a. – reference: Helmstetter, A. and Sornette, D.: Predictability in the epidemic-type aftershock sequence model of interacting triggered seismicity, J. Geophys. Res., 108, 2482, 2003b. – reference: Gutenberg, B. and Richter, C. F.: Seismicity of the Earth and Associated Phenomenon, Princeton Univ. Press, 2nd edn., 1954. – reference: Kagan, Y.: Short-term properties of earthquake catalogs and models of earthquake source, Bull. Seismol. Soc. Am., 94, 1207–1228. doi:10.1785/012003098, 2004. – reference: Pelletier, J. D. and Turcotte, D. L.: Shapes of river networks and leaves: Are they statistically similar?, Phil. Trans. Roy. Soc., B 355, 307–311, 2000. – reference: Huc, M. and Main, I. G.: Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality, J. Geophys. Res., 108. doi:10.1029/2001JB001645, 2003. – reference: Turcotte, D. L., Holliday, J. R., and Rundle, J. B.: BASS, an alternative to ETAS, Geophys. Res. Lett., 34, L12 303, 2007. – reference: Tormann, T., Savage, M. K., Smith, E. G. C., Stirling, M. W., and Wiemer, S.: Time-distance-, and magnitude-dependent foreshock probability model for New Zealand, Bull. Seis. Soc. Am., 98, 2149–2160, 2008. – reference: Horton, R. E.: Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull, 56, 275–370. doi:10.1130/0016-7606, 1945. – reference: Ossadnik, P.: Branch order and ramification analysis of large diffusion limited aggregation clusters, Phys. Rev. A., 45, 1058–1066, 1992. – reference: Utsu, T.: Estimation of parameters for recurrence models of earthquakes, Earthquake Res. Insti. Univ. Tokyo, 59, 53–66, 1984. – reference: Jones, L. M.: Foreshocks and time-dependent earthquake hazard assessment in southern California, Bull. Seis. Sec. Am., 75, 1669–1679, 1985. – reference: Burridge, R. and Knopoff, L.: Model and theoretical seismicity, Bull. Seis. Soc. Am., 57, 341–371, 1967. – reference: Holliday, J. R., Turcotte, D. L., and Rundle, J. B.: Self-similar branching of aftershock sequences, Physica A, 387, 933–943, 2008a. – reference: Aki, K.: A probabilistic synthesis of precursory phenomena, Earthquake Prediction, pp. 566–574, American Geophysical Union, Washington, DC, 1981. – reference: Turcotte, D. L., Pelletier, J., and Newman, W. I.: Networks with side branching in biology, J. Theor. Biol., 193, 577–592, 1998. – reference: Pelletier, J.: Self-organization and scaling relationships of evolving river networks, J. Geophys. Res., 104, 7359–7375, 1999. – reference: Tokunaga, E.: Consideration on the composition of drainage networks and their evolution, Geographical Rep. Tokya Metro. Univ., 13, 1–27, 1978. – reference: Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638. doi:10.1126/science.156.3775.636, 1967a. – reference: Nanjo, K. Z., Enescu, B., Shcherbakov, R., Turcotte, D. L., Iwata, T., and Ogata, Y.: Decay of aftershock activity for Japanese earthquakes, J. Geophys. Res., 112, B08 309, 2007. – reference: Turcotte, D. L.: Fractals and Chaos in Geology and Geophysics, Cambridge University Press, 2nd edn., 1997. – reference: Drossel, B. and Schwabl, F.: Self-organized critical forest-fire model, 1992. – reference: Savage, M. K. and de Polo, D. M.: Foreshock probabilities in the western Great-Basin eastern Sierra Nevada, Bull. Seism. Soc. Am., 83, 1910–1938, 1993. – reference: Felzer, K. and Brodsky, E.: Decay of aftershock density with distance indicates triggering by dynamic stress, Nature, 441, 735–738. doi:10.1038/nature04799, 2006. – reference: Helmstetter, A. and Sornette, D.: Subcritical and supercritical regimes in epidemic models of earthquake aftershocks, J. Geophys. Res., 107, 2237, 2002. – reference: Agnew, D. C. and Jones, L. M.: Prediction probabilities from foreshocks, J. Geophys. Res., 96, 11959–11971, 1991. – reference: Sornette, D. and Werner, M. J.: Apparent clustering and apparent background earthquakes biased by undetected seismicity, J. Geophys. Res., 110, B09 303, 2005a. – reference: Shcherbakov, R. and Turcotte, D. L.: A damage mechanics model for aftershocks, Pure Ap. Geophys., 161, 2379–2391, 2004a. – reference: Felzer, K. R., Abercrombie, R. E., and Ekstrom, G.: A common origin for aftershocks, foreshocks, and multiplets, Bull. Seis. Soc. Am., 94, 88–98, 2004. – reference: Gabrielov, A., Newman, W. I., and Turcotte, D. L.: Exactly soluble hierarchical cluster model: inverse cascades, self-similarity and scaling, Phys. Rev. E, 60, 5293–5300, 1999. – reference: Strahler, A. N.: Quantitative analysis of watershed geomorphology, Am. Geophys. Un. Trans, 38, 913–920, 1957. – reference: Ogata, Y., Utsu, T., and Katsura, K.: Statistical features of foreshocks in comparison with other earthquake clusters, Geophys. J. Int., 121, 233–254, 1995. – reference: Turcotte, D. L., Malamud, B. D., Morein, G., and Newman, W. I.: An inverse-cascade model for self-organized critical behavior, Physica A., 268, 629–643. doi:10.1016/S0378-4371(99)00092-8, 1999. – reference: Holliday, J. R., Turcotte, D. L., and Rundle, J. B.: A review of earthquake statistics: Fault and seismicity-based models, ETAS and BASS, Pure Ap. Geophys., 165, 1003–1024, 2008b. – reference: Rodriguez-Iturbe, I. and Rinaldo, A.: Fractal river basins: Chance and self-organization, Cambridge University Press, 1997. – reference: Helmstetter, A., Sornette, D., and Grasso, J. R.: Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws, J. Geophys. Res., 108, 2046, 2003. – reference: Maeda, K.: Time distribution of immediate foreshocks obtained by a stacking method, Pure Appl. Geophys., 155, 381–394, 1999. – reference: Helmstetter, A. and Sornette, D.: Båth’s law derived from the Gutenberg–Richter law and from aftershock properties, Geophys. Res. Lett., 30, 2069, 2003c. – reference: Rundle, J. B. and Jackson, D. D.: Numerical simulation of earthquake sequences, Bull. Seis. Soc. Am., 67, 1363–1377, 1977. – reference: Yakovlev, G., Newman, W. I., Turcotte, D. L., and Gabrielov, A.: An inverse cascade model for self-organized complexity and natural hazards, Geophys. J. Int., 163, 433–442, 2005. – reference: Clar, S., Drossel, B., and Schwabl, F.: Scaling laws and simulation results for the self-organized critical forest-fire model, Phys. Rev. E, 50, 1009–1019. doi:10.1103/PhysRevE.50.1009, 1994. – reference: Frohlich, C. and Davis, S. D.: Teleseismic b values; Or, Much Ado about 1.0, J Geophys Res, 98, 631–644. doi:10.1029/92JB01891, 1993. – reference: Witten, T. A. and Sander, L. M.: Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Let., 47, 1400–1403, 1981. – reference: Shcherbakov, R. and Turcotte, D. L.: A modified form of Båth’s law, Bull. Seis. Soc. Am, 94, 1968–1975. doi:10.1785/012003162, 2004b. – reference: Ogata, Y. and Zhuang, H. C.: Space–time ETAS models and an improved extension, Tectonophys., 413, 13–23, 2006. – reference: Bak, P., Christensen, K., Danon, L., and Scanlon, T.: Unified Scaling Law for Earthquakes, Phys. Rev. Lett., 88, 178 501. doi:10.1103/PhysRevLett.88.178501, 2002. – reference: Båth, M.: Lateral inhomogeneities in the upper mantle, Tectonophysics, 2, 483–514, 1965. – reference: Kilb, D., Gomberg, J., and Bodin, P.: Triggering of earthquake aftershocks by dynamic stress, Nature. doi:10.1038/35046046, 2000. – ident: 411_CR55 doi: 10.1785/0120060217 – ident: 411_CR3 doi: 10.1016/0040-1951(65)90003-X – ident: 411_CR27 doi: 10.1038/35046046 – ident: 411_CR34 doi: 10.1023/A:1003403601725 – ident: 411_CR33 doi: 10.1029/2006JB004754 – ident: 411_CR29 doi: 10.1007/s000240050270 – ident: 411_CR60 – ident: 411_CR42 doi: 10.1029/1998JB900089 – ident: 411_CR18 doi: 10.1029/2003JB002485 – ident: 411_CR26 doi: 10.1785/012003098 – ident: 411_CR54 – ident: 411_CR37 doi: 10.1111/j.1365-246X.1995.tb03524.x – ident: 411_CR13 doi: 10.1029/92JB01891 – ident: 411_CR17 doi: 10.1029/2003JB002409 – ident: 411_CR4 doi: 10.1103/PhysRevA.38.364 – ident: 411_CR19 doi: 10.1029/2003GL018186 – ident: 411_CR47 doi: 10.1007/978-3-0348-7875-3_19 – ident: 411_CR36 doi: 10.1016/j.tecto.2005.10.016 – ident: 411_CR6 doi: 10.1785/BSSA0570030341 – ident: 411_CR23 – ident: 411_CR62 doi: 10.1111/j.1365-246X.2005.02717.x – ident: 411_CR12 doi: 10.1785/0120030069 – ident: 411_CR8 doi: 10.1103/PhysRevE.50.1009 – ident: 411_CR30 doi: 10.1126/science.281.5384.1840 – ident: 411_CR48 doi: 10.1785/012003162 – ident: 411_CR10 doi: 10.1785/0120080211 – ident: 411_CR39 doi: 10.1029/94WR03155 – ident: 411_CR41 doi: 10.1098/rstb.2000.0566 – ident: 411_CR49 doi: 10.1029/2004GL019808 – ident: 411_CR32 doi: 10.1126/science.156.3775.636 – ident: 411_CR40 doi: 10.1029/1998JB900110 – ident: 411_CR51 doi: 10.1029/2005JB003621 – ident: 411_CR16 doi: 10.1029/2001JB001580 – ident: 411_CR53 doi: 10.1029/TR038i006p00913 – ident: 411_CR20 – ident: 411_CR56 doi: 10.1017/CBO9781139174695 – ident: 411_CR5 doi: 10.1103/PhysRevLett.88.178501 – ident: 411_CR28 – ident: 411_CR14 doi: 10.1103/PhysRevE.60.5293 – ident: 411_CR35 doi: 10.1007/s000240050275 – ident: 411_CR43 doi: 10.1007/978-3-0348-8677-2_8 – ident: 411_CR45 doi: 10.1785/BSSA0670051363 – ident: 411_CR59 doi: 10.1029/2007GL029696 – ident: 411_CR7 doi: 10.1103/PhysRevA.40.6470 – ident: 411_CR9 doi: 10.1103/PhysRevLett.69.1629 – ident: 411_CR57 doi: 10.1006/jtbi.1998.0723 – ident: 411_CR21 doi: 10.1016/j.physa.2007.09.045 – ident: 411_CR11 doi: 10.1038/nature04799 – ident: 411_CR22 doi: 10.1007/s00024-008-0344-6 – ident: 411_CR50 doi: 10.1103/PhysRevLett.95.218501 – ident: 411_CR46 – ident: 411_CR52 doi: 10.1029/2004JB003535 – ident: 411_CR25 – ident: 411_CR24 doi: 10.1029/2001JB001645 – ident: 411_CR38 doi: 10.1103/PhysRevA.45.1058 – ident: 411_CR61 doi: 10.1103/PhysRevLett.47.1400 – ident: 411_CR2 doi: 10.1029/ME004p0566 – ident: 411_CR58 doi: 10.1016/S0378-4371(99)00092-8 – ident: 411_CR1 doi: 10.1029/91JB00191 – ident: 411_CR44 doi: 10.1063/1.882305 – ident: 411_CR31 doi: 10.1126/science.156.3775.636 – ident: 411_CR15 |
SSID | ssj0017759 |
Score | 2.052264 |
Snippet | Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg–Richter... Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg-Richter... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 155 |
SubjectTerms | Bass Computer simulation Decay rate Drainage patterns Earth and Environmental Science Earth Sciences Earthquakes Geophysics/Geodesy Inverse Law Numerical analysis Physics Plate tectonics Scaling laws Seismic activity Seismology Shock waves Simulation Statistics |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS-RAFH64MOBlcJnBdlRK8OQQplNLKjlJK7Yi6KVt8RZqSRxRE510H8Zf73vZnBH0EgipJbxa3sr3AexHmVLCU1lFnCeBVNwE1jgZhHmsbZJrG3kKDVxcRmdTeX6jbtqAW9WWVXZ3Yn1R-9JRjPwXZUgFnupEHz49B8QaRdnVlkJjEZZD1DS0w-PxaZ9F0Fo15q8Q-BtKdFnNYQ0iitopqAOEEh_8f730Zmy-y4_Wame8Cl9be5GNmgVeg4WsWIcvdd2mq9ZhhYzFBmt5A277F-xxjU5wg8H9l5nCs6vyfl6YW8OOiEqD4k6szNmIKMKr33gpsklXVM2mM-z2Qi2ORpMJI7q0Bza5e2yZvqpvMB2fXB2fBS2RQmCE5rPASnTbcp5z70KDgtQqT6yOIht7L7lxQ--VI-w4J2PHudWotrziufXcSQK8-Q5LRVlkm8C0Di3aRNxZYaW2MQ2XoBljI0E5TzmAYSfG1LUo40R28ZD2-Mi15FOUfEqST_kADvouTw3ExmeNt7u1SdvTVqVve2MAe_1nPCeU_DBFVs6xjSBPNRRROICf3Zr-M8RHE259PuEPWOE1QQYFZbZhafZnnu2gmTKzu_VefAUCF-Ef priority: 102 providerName: ProQuest |
Title | Statistical Variability and Tokunaga Branching of Aftershock Sequences Utilizing BASS Model Simulations |
URI | https://link.springer.com/article/10.1007/s00024-011-0411-2 https://www.proquest.com/docview/1270346797 https://www.proquest.com/docview/1315661361 |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5ah0IvIX1R52E2kFOLINqHVjrKwXZoSQh1XNKT2IfkhCRyiOxD8uszI0tKW9pCL9JBsyuY3Z39Zmf2G4CDKFdKeEqriIskkIqbwBong7CItU0KbSNPRwMnp9HxTH65UBfNPe6qzXZvQ5K1pe4uu9HipYwJdH8lPtDubih03Wlaz3jahQ60VmvMKwT-W4k2lPmnLn7djJ4R5m9B0XqvGW_BZgMSWboe1TfwIi_fwqs6WdNV72BOCLEmWEah7-jsrrm2H5gpPTtfXK9KMzdsSCUz6HyJLQqWUinw6hKNH5u2ydNstsRmjyQxTKdTRmXRbtj06rap6FW9h9l4dH50HDQFEwIjNF8GVqJ7VvCCexeakKMmisTqKLKx95Ibd-i9csQR52TsOLcatyeveGE9d5KIbT5Ar1yU-UdgWocWsQ93VlipbUzdJQhXbCQotin7cNhqLnMNmzgVtbjJOh7kWtkZKjsjZWe8D5-6JndrKo1_Ce-2w5E1q6rKKEou0LInug_73WdcDxTkMGW-WKGMII80FFHYh8_tMP7Uxd9-uP1f0jvwmtd1MegsZhd6y_tVvofoZGkH8DIeTwawkU5-fB3hezg6Pfs2qOfoE5IB3TI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gxMiLEdR4iLIm-qJpvO5uu-2DIYd4HvLxcneGt7IfLRqhBXoXA38UfyMz_UJN5I2XJk13p-nszO58dX4Ab8M0CISjsoooiz0ZcO0ZbaXnZ5EycaZM6Cg0sH8Qjqby22FwuADX7b8wVFbZ7onVRu0KSzHyj5QhFajVsdo8O_cINYqyqy2ERi0Wu-nlb3TZyk8727i-7zgffpl8HnkNqoCnheIzz0j0YTKecWd9jVRVkMVGhaGJnJNc275zgaVGalZGlnOjcA93Ac-M41ZS9xek-wCWpBAxlRBGw69d1gJp1ea2EPjZgWizqP2qaSmehl4VkJR44X-fg7fG7T_52OqYGz6Bx419yga1QK3AQpqvwsOqTtSWq7BMxmnd2_kpHHc3OOM7Ot11z-9LpnPHJsWvea6PNdsi6A6Kc7EiYwOCJC9_4CbMxm0RN5vOcNoVjdgajMeM4NlO2PjnaYMsVj6D6b2w-Dks5kWevgCmlG_QBuPWCCOViYhcjGaTCQXlWGUP-i0bE9t0NSdwjZOk68dccT5BzifE-YT34H035axu6XHX4PV2bZJGu8vkVhZ78KZ7jHpJyRadp8UcxwjyjH0R-j340K7pHyT-98K1u1-4AY9Gk_29ZG_nYPclLPMKnIMCQuuwOLuYp6_QRJqZ15VcMji6b0W4AVbmHZI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gRMOLEdR4irIm-oJpuO5uu-2DMQd4gCgxOc7wVveji0Zs0d7F4J_mX-dMvxATeOOlSdPd2WR2ZnZ2Zjo_gBdxHkXCUVlF4tNARlwHRlsZhD5RJvXKxI5CAx8O472pfHccHS_An-5fGCqr7GxibahdaSlGvkkZUoFanapN35ZFfNwZvzn7ERCCFGVaOziNRkQO8vNfeH2rXu_v4F6_5Hz89mh7L2gRBgItFJ8FRuJ9xnPPnQ01rqAinxoVxyZxTnJth85FlpqqWZlYzo1Ce-4i7o3jVlInGKR7C5aUSIaEnpCMd_sMBtJqXG8hkAWR6DKqw7qBKZ6MQR2clPjgl8_EC0f3v9xsfeSN78Hd1ldlo0a4VmAhL1bhdl0zaqtVWCZHtenzfB9O-hec8Qkv4E3_73OmC8eOym_zQp9otkUwHhTzYqVnI4Inr76gQWaTrqCbTWc47TeN2BpNJoyg2k7Z5Ov3FmWsegDTG2HxQ1gsyiJ_BEyp0KA_xq0RRiqTELkUXSgTC8q3ygEMOzZmtu1wTkAbp1nfm7nmfIacz4jzGR_ARj_lrGnvcd3gtW5vslbTq-xCLgfwvP-MOkqJF13k5RzHCLolhyIOB_Cq29N_SFy14OPrF1yHO6gC2fv9w4MnsMxrnA6KDa3B4uznPH-K3tLMPKvFksHnm9aDv62gIb8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Variability+and+Tokunaga+Branching+of+Aftershock+Sequences+Utilizing+BASS+Model+Simulations&rft.jtitle=Pure+and+applied+geophysics&rft.au=Yoder%2C+Mark+R.&rft.au=Van+Aalsburg%2C+Jordan&rft.au=Turcotte%2C+Donald+L.&rft.au=Abaimov%2C+Sergey+G.&rft.date=2013-01-01&rft.pub=SP+Birkh%C3%A4user+Verlag+Basel&rft.issn=0033-4553&rft.eissn=1420-9136&rft.volume=170&rft.issue=1-2&rft.spage=155&rft.epage=171&rft_id=info:doi/10.1007%2Fs00024-011-0411-2&rft.externalDocID=10_1007_s00024_011_0411_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-4553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-4553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-4553&client=summon |