Demonstrating sorption analogy of lanthanides in environmental matrices for effective decision-making: The case of carbon-rich materials, clay minerals, and soils
Examining the effect of lanthanide-contaminated wastes, which have the potential to impact to other environmental compartments, requires conducting interaction studies with soils, as feasible first receptors of lanthanide leachates, and, if necessary, with sorbent materials, such as clay minerals an...
Saved in:
Published in | Geoderma Vol. 440; p. 116730 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Examining the effect of lanthanide-contaminated wastes, which have the potential to impact to other environmental compartments, requires conducting interaction studies with soils, as feasible first receptors of lanthanide leachates, and, if necessary, with sorbent materials, such as clay minerals and carbon-rich materials, which can serve as natural barriers and immobilisation agents used in remediation strategies. In this context, it is relevant to have available and reliable data on solid–liquid distribution coefficients (Kd) to understand the lanthanide sorption in these environmental matrices. Moreover, confirming lanthanide sorption analogies permits filling data gaps and data extrapolation among different contaminated scenarios, and thus facilitate to have available input data for decision-making related to the impact of a contaminated site. In this study, we demonstrate for the first time an analogous sorption of La, Sm, and Lu in carbon-rich materials (i.e., biochar and activated charcoal), clay minerals and soils, through laboratory batch experiments. The obtained sorption Kd values revealed similar sorption patterns among the three lanthanides for each matrix tested, even at different initial lanthanide concentrations. In all matrices, the maximum Kd values exceeded 10⁴ L kg⁻¹, with a significant decrease when testing high lanthanide concentrations. The analogy was first confirmed by examining the Kd correlations for the La-Sm, Lu-Sm, and La-Lu pairs within each matrix, for which strong linear correlations were obtained in all cases. Data compilations were built with own and literature data, and derived cumulative distribution functions revealed statistically equal lanthanide distributions and Kd best estimates. In addition to this, Kd variability decreased when grouping the data according to significant material properties. For the first time, Kd (Ln) best-estimates for different scenarios and materials were proposed as input data for risk assessment models. |
---|---|
AbstractList | Examining the effect of lanthanide-contaminated wastes, which have the potential to impact to other environmental compartments, requires conducting interaction studies with soils, as feasible first receptors of lanthanide leachates, and, if necessary, with sorbent materials, such as clay minerals and carbon-rich materials, which can serve as natural barriers and immobilisation agents used in remediation strategies. In this context, it is relevant to have available and reliable data on solid–liquid distribution coefficients (Kd) to understand the lanthanide sorption in these environmental matrices. Moreover, confirming lanthanide sorption analogies permits filling data gaps and data extrapolation among different contaminated scenarios, and thus facilitate to have available input data for decision-making related to the impact of a contaminated site. In this study, we demonstrate for the first time an analogous sorption of La, Sm, and Lu in carbon-rich materials (i.e., biochar and activated charcoal), clay minerals and soils, through laboratory batch experiments. The obtained sorption Kd values revealed similar sorption patterns among the three lanthanides for each matrix tested, even at different initial lanthanide concentrations. In all matrices, the maximum Kd values exceeded 104 L kg−1, with a significant decrease when testing high lanthanide concentrations. The analogy was first confirmed by examining the Kd correlations for the La-Sm, Lu-Sm, and La-Lu pairs within each matrix, for which strong linear correlations were obtained in all cases. Data compilations were built with own and literature data, and derived cumulative distribution functions revealed statistically equal lanthanide distributions and Kd best estimates. In addition to this, Kd variability decreased when grouping the data according to significant material properties. For the first time, Kd (Ln) best-estimates for different scenarios and materials were proposed as input data for risk assessment models. Examining the effect of lanthanide-contaminated wastes, which have the potential to impact to other environmental compartments, requires conducting interaction studies with soils, as feasible first receptors of lanthanide leachates, and, if necessary, with sorbent materials, such as clay minerals and carbon-rich materials, which can serve as natural barriers and immobilisation agents used in remediation strategies. In this context, it is relevant to have available and reliable data on solid–liquid distribution coefficients (Kd) to understand the lanthanide sorption in these environmental matrices. Moreover, confirming lanthanide sorption analogies permits filling data gaps and data extrapolation among different contaminated scenarios, and thus facilitate to have available input data for decision-making related to the impact of a contaminated site. In this study, we demonstrate for the first time an analogous sorption of La, Sm, and Lu in carbon-rich materials (i.e., biochar and activated charcoal), clay minerals and soils, through laboratory batch experiments. The obtained sorption Kd values revealed similar sorption patterns among the three lanthanides for each matrix tested, even at different initial lanthanide concentrations. In all matrices, the maximum Kd values exceeded 10⁴ L kg⁻¹, with a significant decrease when testing high lanthanide concentrations. The analogy was first confirmed by examining the Kd correlations for the La-Sm, Lu-Sm, and La-Lu pairs within each matrix, for which strong linear correlations were obtained in all cases. Data compilations were built with own and literature data, and derived cumulative distribution functions revealed statistically equal lanthanide distributions and Kd best estimates. In addition to this, Kd variability decreased when grouping the data according to significant material properties. For the first time, Kd (Ln) best-estimates for different scenarios and materials were proposed as input data for risk assessment models. |
ArticleNumber | 116730 |
Author | Vidal, Miquel Rigol, Anna Serra-Ventura, Joan |
Author_xml | – sequence: 1 givenname: Joan orcidid: 0000-0001-7646-0562 surname: Serra-Ventura fullname: Serra-Ventura, Joan – sequence: 2 givenname: Anna orcidid: 0000-0002-3383-9684 surname: Rigol fullname: Rigol, Anna – sequence: 3 givenname: Miquel surname: Vidal fullname: Vidal, Miquel |
BookMark | eNo9kc9uEzEQxi1UJNLCKyAfObCp_8X2ckOl0EqVuJSzNeudTRx27WC7lfI6PClOA5ys-eab39j-LslFTBEJec_ZmjOur_frLaYR8wJrwYRcc66NZK_IilsjOi02_QVZsebsDNP8DbksZd9KwwRbkd9fcEmx1Aw1xC0tKR9qSJFChDltjzRNdIZYdxDDiIWGSDE-h5zigrHCTBeoOfjWmVKmOE3oa3hGOqIPpXG6BX427if6uEPqoeAJ6CEPrdXmdqd5zAHm8pH6GY50CRHzSwlxbNcJc3lLXk9NwXd_zyvy4-vt481d9_D92_3N54cOpBG1A1SmvdVbpYZeWRQWB26smsQIauB6sN4Dh6mJvh-08czCKMD3I2rJhJBX5P7MHRPs3SGHBfLRJQjuRUh56yDX4Gd0tjdSemW43gwK5ACql2qQ1nA-bVD3jfXhzDrk9OsJS3VLKB7n9peYnoqTgjHJtOK6WfXZ6nMqJeP0fzVn7hSw27t_AbtTwO4csPwDIcuhLA |
Cites_doi | 10.1016/j.gca.2009.11.003 10.1016/j.scitotenv.2012.06.088 10.1524/ract.2002.90.6.345 10.1016/S0969-8043(99)00262-6 10.1039/c0nj00969e 10.1016/j.chemosphere.2014.12.058 10.1016/S0009-2541(01)00283-2 10.1016/j.enpol.2014.12.015 10.1007/s11356-017-9670-5 10.1016/S0265-931X(01)00051-0 10.1016/j.envint.2019.04.022 10.1080/10807039.2011.538641 10.1007/s12665-011-1497-7 10.1016/j.envpol.2018.10.106 10.1016/j.envpol.2017.11.072 10.1016/j.cej.2016.09.029 10.1134/S1064229319100065 10.1016/S1002-0721(14)60584-6 10.1016/j.colsurfb.2010.08.002 10.1016/j.colsurfa.2016.09.060 10.1016/j.marpolbul.2017.06.030 10.1016/j.chemgeo.2019.07.024 10.1021/es801092f 10.1016/j.gca.2005.06.021 10.1016/j.jhazmat.2010.05.124 10.1016/j.jece.2017.07.040 10.1016/j.geoderma.2016.12.010 10.1016/j.apgeochem.2004.01.016 10.1007/s11356-021-13988-2 10.1016/j.clay.2011.02.027 10.1016/j.jre.2018.03.027 10.1016/S1002-0721(10)60272-4 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.geoderma.2023.116730 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | oai_doaj_org_article_89733c47165b4a3ba4934b38711f5e69 10_1016_j_geoderma_2023_116730 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSH SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-a372t-ae47259c844b948e28eb1784f2da4b16b8cca1afb17c9b67c08ad2ac9de630223 |
IEDL.DBID | DOA |
ISSN | 0016-7061 |
IngestDate | Wed Aug 27 00:56:24 EDT 2025 Wed Jul 02 04:44:47 EDT 2025 Tue Jul 01 04:05:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a372t-ae47259c844b948e28eb1784f2da4b16b8cca1afb17c9b67c08ad2ac9de630223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3383-9684 0000-0001-7646-0562 |
OpenAccessLink | https://doaj.org/article/89733c47165b4a3ba4934b38711f5e69 |
PQID | 3200306416 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_89733c47165b4a3ba4934b38711f5e69 proquest_miscellaneous_3200306416 crossref_primary_10_1016_j_geoderma_2023_116730 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 20231201 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2023 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Pereira (10.1016/j.geoderma.2023.116730_b0100) 2022; 211 Ramírez-Guinart (10.1016/j.geoderma.2023.116730_b0105) 2017; 290 Dinali (10.1016/j.geoderma.2023.116730_b0030) 2019; 128 Sheppard (10.1016/j.geoderma.2023.116730_b0130) 2011; 17 Gopinath (10.1016/j.geoderma.2023.116730_b0045) 2021; 194 10.1016/j.geoderma.2023.116730_b0140 Stumpf (10.1016/j.geoderma.2023.116730_b0150) 2002; 90 Smith Stegen (10.1016/j.geoderma.2023.116730_b0145) 2015; 79 Wang (10.1016/j.geoderma.2023.116730_bib188) 2016; 509 Alba (10.1016/j.geoderma.2023.116730_b0005) 2011; 52 Villar (10.1016/j.geoderma.2023.116730_b0170) 1998 Aldaba (10.1016/j.geoderma.2023.116730_bib182) 2010; 181 Coppin (10.1016/j.geoderma.2023.116730_b0025) 2002; 182 Tang (10.1016/j.geoderma.2023.116730_b0160) 2005; 69 Yang (10.1016/j.geoderma.2023.116730_b0175) 2019; 525 Liatsou (10.1016/j.geoderma.2023.116730_b0085) 2017; 5 Kołodyńska (10.1016/j.geoderma.2023.116730_b0065) 2018; 36 Ramírez-Guinart (10.1016/j.geoderma.2023.116730_b0110) 2018; 234 Uddin (10.1016/j.geoderma.2023.116730_b0165) 2017; 308 Hartmann (10.1016/j.geoderma.2023.116730_b0060) 2008; 42 Saravanan (10.1016/j.geoderma.2023.116730_b0120) 2022; 214 Zhao (10.1016/j.geoderma.2023.116730_bib189) 2021; 34 Ramírez-Guinart (10.1016/j.geoderma.2023.116730_b0115) 2020; 222 10.1016/j.geoderma.2023.116730_b0135 Verplanck (10.1016/j.geoderma.2023.116730_bib186) 2004; 19 Ladonin (10.1016/j.geoderma.2023.116730_b0070) 2019; 52 Sthiannopkao (10.1016/j.geoderma.2023.116730_bib184) 2013; 463–464 Sun (10.1016/j.geoderma.2023.116730_bib185) 2012; 67 Tan (10.1016/j.geoderma.2023.116730_b0155) 2015; 125 Vidal (10.1016/j.geoderma.2023.116730_bib187) 2001; 56 Gu (10.1016/j.geoderma.2023.116730_b0050) 2022; 221 Hadjittofi (10.1016/j.geoderma.2023.116730_b0055) 2016; 34 Li (10.1016/j.geoderma.2023.116730_b0080) 2017; 24 Lecomte (10.1016/j.geoderma.2023.116730_b0075) 2017; 121 Migaszewski (10.1016/j.geoderma.2023.116730_b0090) 2019; 244 Awwad (10.1016/j.geoderma.2023.116730_b0010) 2010; 81 Eliseeva (10.1016/j.geoderma.2023.116730_b0035) 2011; 35 Gomes (10.1016/j.geoderma.2023.116730_bib192) 2022; 322 Chen (10.1016/j.geoderma.2023.116730_b0020) 2010; 28 Zuyi (10.1016/j.geoderma.2023.116730_b0180) 2000; 52 Serra-Ventura (10.1016/j.geoderma.2023.116730_b0125) 2022; 287 Galunin (10.1016/j.geoderma.2023.116730_b0040) 2010; 74 Navarro (10.1016/j.geoderma.2023.116730_b0095) 2014; 2 Brouziotis (10.1016/j.geoderma.2023.116730_b0015) 2022; 10 |
References_xml | – volume: 74 start-page: 862 issue: 3 year: 2010 ident: 10.1016/j.geoderma.2023.116730_b0040 article-title: Lanthanide sorption on smectitic clays in presence of cement leachates publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.11.003 – volume: 463–464 start-page: 1147 year: 2013 ident: 10.1016/j.geoderma.2023.116730_bib184 article-title: Handling e-waste in developed and developing countries: Initiatives, practices, and consequences publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.06.088 – volume: 90 start-page: 345 issue: 6 year: 2002 ident: 10.1016/j.geoderma.2023.116730_b0150 article-title: Inner-sphere, outer-sphere and ternary surface complexes: A TRLFS study of the sorption process of Eu(III) onto smectite and kaolinite publication-title: Radiochim. Acta doi: 10.1524/ract.2002.90.6.345 – volume: 52 start-page: 821 issue: 4 year: 2000 ident: 10.1016/j.geoderma.2023.116730_b0180 article-title: Adsorption characteristics of 47 elements on a calcareous soil, a red earth and an alumina: A multitracer study publication-title: Appl. Radiat. Isot. doi: 10.1016/S0969-8043(99)00262-6 – volume: 35 start-page: 1165 issue: 6 year: 2011 ident: 10.1016/j.geoderma.2023.116730_b0035 article-title: Rare earths: Jewels for functional materials of the future publication-title: New J. Chem. doi: 10.1039/c0nj00969e – volume: 125 start-page: 70 year: 2015 ident: 10.1016/j.geoderma.2023.116730_b0155 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.058 – volume: 182 start-page: 57 issue: 1 year: 2002 ident: 10.1016/j.geoderma.2023.116730_b0025 article-title: Sorption of lanthanides on smectite and kaolinite publication-title: Chem. Geol. doi: 10.1016/S0009-2541(01)00283-2 – volume: 221 issue: December 2021 year: 2022 ident: 10.1016/j.geoderma.2023.116730_b0050 article-title: The different effects of sulfate on the adsorption of REEs on kaolinite and ferrihydrite publication-title: Appl. Clay Sci. – volume: 79 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2023.116730_b0145 article-title: Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis publication-title: Energy Policy doi: 10.1016/j.enpol.2014.12.015 – volume: 24 start-page: 20540 issue: 25 year: 2017 ident: 10.1016/j.geoderma.2023.116730_b0080 article-title: Geochemical characteristics of dissolved rare earth elements in acid mine drainage from abandoned high-As coal mining area, southwestern China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9670-5 – volume: 322 issue: September year: 2022 ident: 10.1016/j.geoderma.2023.116730_bib192 article-title: Rare earth elements - Source and evolution in an aquatic system dominated by mine-Influenced waters publication-title: J. Environ. Manage. – volume: 211 issue: March year: 2022 ident: 10.1016/j.geoderma.2023.116730_b0100 article-title: Levels and environmental risks of rare earth elements in a gold mining area in the Amazon publication-title: Environ. Res. – volume: 56 start-page: 139 issue: 1–2 year: 2001 ident: 10.1016/j.geoderma.2023.116730_bib187 article-title: Soil- and plant-based countermeasures to reduce 137Cs and 90Sr uptake by grasses in natural meadows: The REDUP project publication-title: J. Environ. Radioact. doi: 10.1016/S0265-931X(01)00051-0 – volume: 128 start-page: 279 issue: December 2018 year: 2019 ident: 10.1016/j.geoderma.2023.116730_b0030 article-title: Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture publication-title: Environ. Int. doi: 10.1016/j.envint.2019.04.022 – volume: 17 start-page: 263 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2023.116730_b0130 article-title: Robust prediction of Kd from soil properties for environmental assessment publication-title: Hum. Ecol. Risk Assess. doi: 10.1080/10807039.2011.538641 – year: 1998 ident: 10.1016/j.geoderma.2023.116730_b0170 article-title: FEBEX – volume: 67 start-page: 205 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2023.116730_bib185 article-title: Behavior of rare earth elements in acid coal mine drainage in Shanxi Province, China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1497-7 – volume: 287 issue: P2 year: 2022 ident: 10.1016/j.geoderma.2023.116730_b0125 article-title: Examining samarium sorption in biochars and carbon-rich materials for water remediation: batch vs. continuous-flow methods publication-title: Chemosphere – volume: 244 start-page: 898 year: 2019 ident: 10.1016/j.geoderma.2023.116730_b0090 article-title: Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland) publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.10.106 – volume: 234 start-page: 439 year: 2018 ident: 10.1016/j.geoderma.2023.116730_b0110 article-title: Dependence of samarium-soil interaction on samarium concentration: Implications for environmental risk assessment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.11.072 – volume: 308 start-page: 438 year: 2017 ident: 10.1016/j.geoderma.2023.116730_b0165 article-title: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.029 – volume: 194 issue: May 2020 year: 2021 ident: 10.1016/j.geoderma.2023.116730_b0045 article-title: Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment publication-title: Environ. Res. – volume: 52 start-page: 1175 issue: 10 year: 2019 ident: 10.1016/j.geoderma.2023.116730_b0070 article-title: Comparative Evaluation of Adsorption of Rare-Earth Elements in Some Soil Types publication-title: Eurasian Soil Sci. doi: 10.1134/S1064229319100065 – volume: 10 start-page: 1 issue: September year: 2022 ident: 10.1016/j.geoderma.2023.116730_b0015 article-title: Toxicity of rare earth elements: An overview on human health impact publication-title: Front. Environ. Sci. – volume: 34 start-page: 99 issue: 1 year: 2016 ident: 10.1016/j.geoderma.2023.116730_b0055 article-title: Removal of trivalent samarium from aqueous solutions by activated biochar derived from cactus fibres publication-title: J. Rare Earths doi: 10.1016/S1002-0721(14)60584-6 – volume: 81 start-page: 593 issue: 2 year: 2010 ident: 10.1016/j.geoderma.2023.116730_b0010 article-title: Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2010.08.002 – volume: 509 start-page: 550 year: 2016 ident: 10.1016/j.geoderma.2023.116730_bib188 article-title: Ammonium citrate-modified biochar: An adsorbent for La(III) ions from aqueous solution publication-title: Colloids Surf. A: Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2016.09.060 – volume: 121 start-page: 282 issue: 1–2 year: 2017 ident: 10.1016/j.geoderma.2023.116730_b0075 article-title: Rare earth elements mobility processes in an AMD-affected estuary: Huelva Estuary (SW Spain) publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.06.030 – volume: 2 start-page: 1 issue: NOV year: 2014 ident: 10.1016/j.geoderma.2023.116730_b0095 article-title: Life-cycle assessment of the production of rare-earth elements for energy applications: A review publication-title: Front. Energy Res. – ident: 10.1016/j.geoderma.2023.116730_b0135 – volume: 525 start-page: 210 issue: June year: 2019 ident: 10.1016/j.geoderma.2023.116730_b0175 article-title: Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2019.07.024 – volume: 42 start-page: 7601 issue: 20 year: 2008 ident: 10.1016/j.geoderma.2023.116730_b0060 article-title: A spectroscopic characterization and quantification of M(III)/clay mineral outer-sphere complexes publication-title: Environ. Sci. Tech. doi: 10.1021/es801092f – volume: 69 start-page: 5247 issue: 22 year: 2005 ident: 10.1016/j.geoderma.2023.116730_b0160 article-title: Adsorption of rare earth elements onto Carrizo sand: Experimental investigations and modeling with surface complexation publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2005.06.021 – volume: 181 start-page: 1072 issue: 1–3 year: 2010 ident: 10.1016/j.geoderma.2023.116730_bib182 article-title: Diffusion experiments for estimating radiocesium and radiostrontium sorption in unsaturated soils from Spain: Comparison with batch sorption data publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.05.124 – volume: 5 start-page: 4069 issue: 4 year: 2017 ident: 10.1016/j.geoderma.2023.116730_b0085 article-title: Surface characterization of oxidized biochar fibers derived from Luffa Cylindrica and lanthanide binding publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.07.040 – volume: 290 start-page: 33 year: 2017 ident: 10.1016/j.geoderma.2023.116730_b0105 article-title: Assessing soil properties governing radiosamarium sorption in soils: Can trivalent lanthanides and actinides be considered as analogues? publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.010 – volume: 222 issue: April year: 2020 ident: 10.1016/j.geoderma.2023.116730_b0115 article-title: Deriving probabilistic soil distribution coefficients (Kd). Part 1: General approach to decreasing and describing variability and example using uranium Kd values publication-title: J. Environ. Radioact. – volume: 19 start-page: 1339 issue: 8 year: 2004 ident: 10.1016/j.geoderma.2023.116730_bib186 article-title: Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2004.01.016 – volume: 34 start-page: 47024 year: 2021 ident: 10.1016/j.geoderma.2023.116730_bib189 article-title: The potential use of straw-derived biochar as the adsorbent for La(III) and Nd(III) removal in aqueous solutions publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-13988-2 – volume: 52 start-page: 253 issue: 3 year: 2011 ident: 10.1016/j.geoderma.2023.116730_b0005 article-title: Interaction of Eu-isotopes with saponite as a component of the engineered barrier publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2011.02.027 – volume: 36 start-page: 1212 issue: 11 year: 2018 ident: 10.1016/j.geoderma.2023.116730_b0065 article-title: Sorption of lanthanide ions on biochar composites publication-title: J. Rare Earths doi: 10.1016/j.jre.2018.03.027 – volume: 214 issue: P1 year: 2022 ident: 10.1016/j.geoderma.2023.116730_b0120 article-title: Biochar derived carbonaceous material for various environmental applications: Systematic review publication-title: Environ. Res. – ident: 10.1016/j.geoderma.2023.116730_b0140 – volume: 28 start-page: 125 issue: SUPPL. 1 year: 2010 ident: 10.1016/j.geoderma.2023.116730_b0020 article-title: Study on the adsorption of lanthanum(III) from aqueous solution by bamboo charcoal publication-title: J. Rare Earths doi: 10.1016/S1002-0721(10)60272-4 |
SSID | ssj0017020 |
Score | 2.419773 |
Snippet | Examining the effect of lanthanide-contaminated wastes, which have the potential to impact to other environmental compartments, requires conducting interaction... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 116730 |
SubjectTerms | activated carbon Activated charcoal Biochar clay Clay mineral cumulative distribution decision making Lanthanides remediation risk assessment Soil sorbents Sorption |
Title | Demonstrating sorption analogy of lanthanides in environmental matrices for effective decision-making: The case of carbon-rich materials, clay minerals, and soils |
URI | https://www.proquest.com/docview/3200306416 https://doaj.org/article/89733c47165b4a3ba4934b38711f5e69 |
Volume | 440 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygvGYmRQGM7L7byUoUEE5XYrPMjUNQ6qC1D_w6_lLOToEgMLIyxY8fydz5_F5_vCDlDCovGP7CIoYKMRJbFEaSJiBLwx3CmLIvgPP74lA5H4uEleemk-vI-YXV44HriLvMi41yjCk0TJYArEAUXiiPPj8vEpuHqHu55rTHVnB9kyII694HfEQ2fWixEGmL8wh8-eL_nzlYUIvb_Ushhl7nfJBsNPaSDelhbZMW6bbI-eJ01ITLsDvm6tVNP6jx07pXOq1lY9RSc_w-zpFVJJzhdb-DGxs7p2NHOZTbsexqC8mMN0lVau3OgxqOmSbYTTUN-qiuKAkQ17nG-Qw0zhVXY7s23r6X2nOoJLOl0HAJX4yM4g8MZT-a7ZHR_93wzjJpMCxHwjC0isCJDO0jnQqhC5JblqMKzXJTMgFBxqnIEOoYSC3Wh0kz3czAMdGFsypEF8D2y6ipn9wnt87IPTFkkjkYgbmABTRZImNAKTSPTI5ftpMuPOqCGbD3N3mULk_QwyRqmHrn22Py87QNihwIUE9mIifxLTHrktEVW4gLypyLgbPU5l5wFuwmJ6cF_fOiQrPmx1x4vR2R1Mfu0x8hbFuokiOg3PZ7tNA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demonstrating+sorption+analogy+of+lanthanides+in+environmental+matrices+for+effective+decision-making%3A+The+case+of+carbon-rich+materials%2C+clay+minerals%2C+and+soils&rft.jtitle=Geoderma&rft.au=Joan+Serra-Ventura&rft.au=Anna+Rigol&rft.au=Miquel+Vidal&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=1872-6259&rft.volume=440&rft.spage=116730&rft_id=info:doi/10.1016%2Fj.geoderma.2023.116730&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_89733c47165b4a3ba4934b38711f5e69 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |