Demonstrating sorption analogy of lanthanides in environmental matrices for effective decision-making: The case of carbon-rich materials, clay minerals, and soils

Examining the effect of lanthanide-contaminated wastes, which have the potential to impact to other environmental compartments, requires conducting interaction studies with soils, as feasible first receptors of lanthanide leachates, and, if necessary, with sorbent materials, such as clay minerals an...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 440; p. 116730
Main Authors Serra-Ventura, Joan, Rigol, Anna, Vidal, Miquel
Format Journal Article
LanguageEnglish
Published Elsevier 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Examining the effect of lanthanide-contaminated wastes, which have the potential to impact to other environmental compartments, requires conducting interaction studies with soils, as feasible first receptors of lanthanide leachates, and, if necessary, with sorbent materials, such as clay minerals and carbon-rich materials, which can serve as natural barriers and immobilisation agents used in remediation strategies. In this context, it is relevant to have available and reliable data on solid–liquid distribution coefficients (Kd) to understand the lanthanide sorption in these environmental matrices. Moreover, confirming lanthanide sorption analogies permits filling data gaps and data extrapolation among different contaminated scenarios, and thus facilitate to have available input data for decision-making related to the impact of a contaminated site. In this study, we demonstrate for the first time an analogous sorption of La, Sm, and Lu in carbon-rich materials (i.e., biochar and activated charcoal), clay minerals and soils, through laboratory batch experiments. The obtained sorption Kd values revealed similar sorption patterns among the three lanthanides for each matrix tested, even at different initial lanthanide concentrations. In all matrices, the maximum Kd values exceeded 10⁴ L kg⁻¹, with a significant decrease when testing high lanthanide concentrations. The analogy was first confirmed by examining the Kd correlations for the La-Sm, Lu-Sm, and La-Lu pairs within each matrix, for which strong linear correlations were obtained in all cases. Data compilations were built with own and literature data, and derived cumulative distribution functions revealed statistically equal lanthanide distributions and Kd best estimates. In addition to this, Kd variability decreased when grouping the data according to significant material properties. For the first time, Kd (Ln) best-estimates for different scenarios and materials were proposed as input data for risk assessment models.
AbstractList Examining the effect of lanthanide-contaminated wastes, which have the potential to impact to other environmental compartments, requires conducting interaction studies with soils, as feasible first receptors of lanthanide leachates, and, if necessary, with sorbent materials, such as clay minerals and carbon-rich materials, which can serve as natural barriers and immobilisation agents used in remediation strategies. In this context, it is relevant to have available and reliable data on solid–liquid distribution coefficients (Kd) to understand the lanthanide sorption in these environmental matrices. Moreover, confirming lanthanide sorption analogies permits filling data gaps and data extrapolation among different contaminated scenarios, and thus facilitate to have available input data for decision-making related to the impact of a contaminated site. In this study, we demonstrate for the first time an analogous sorption of La, Sm, and Lu in carbon-rich materials (i.e., biochar and activated charcoal), clay minerals and soils, through laboratory batch experiments. The obtained sorption Kd values revealed similar sorption patterns among the three lanthanides for each matrix tested, even at different initial lanthanide concentrations. In all matrices, the maximum Kd values exceeded 104 L kg−1, with a significant decrease when testing high lanthanide concentrations. The analogy was first confirmed by examining the Kd correlations for the La-Sm, Lu-Sm, and La-Lu pairs within each matrix, for which strong linear correlations were obtained in all cases. Data compilations were built with own and literature data, and derived cumulative distribution functions revealed statistically equal lanthanide distributions and Kd best estimates. In addition to this, Kd variability decreased when grouping the data according to significant material properties. For the first time, Kd (Ln) best-estimates for different scenarios and materials were proposed as input data for risk assessment models.
Examining the effect of lanthanide-contaminated wastes, which have the potential to impact to other environmental compartments, requires conducting interaction studies with soils, as feasible first receptors of lanthanide leachates, and, if necessary, with sorbent materials, such as clay minerals and carbon-rich materials, which can serve as natural barriers and immobilisation agents used in remediation strategies. In this context, it is relevant to have available and reliable data on solid–liquid distribution coefficients (Kd) to understand the lanthanide sorption in these environmental matrices. Moreover, confirming lanthanide sorption analogies permits filling data gaps and data extrapolation among different contaminated scenarios, and thus facilitate to have available input data for decision-making related to the impact of a contaminated site. In this study, we demonstrate for the first time an analogous sorption of La, Sm, and Lu in carbon-rich materials (i.e., biochar and activated charcoal), clay minerals and soils, through laboratory batch experiments. The obtained sorption Kd values revealed similar sorption patterns among the three lanthanides for each matrix tested, even at different initial lanthanide concentrations. In all matrices, the maximum Kd values exceeded 10⁴ L kg⁻¹, with a significant decrease when testing high lanthanide concentrations. The analogy was first confirmed by examining the Kd correlations for the La-Sm, Lu-Sm, and La-Lu pairs within each matrix, for which strong linear correlations were obtained in all cases. Data compilations were built with own and literature data, and derived cumulative distribution functions revealed statistically equal lanthanide distributions and Kd best estimates. In addition to this, Kd variability decreased when grouping the data according to significant material properties. For the first time, Kd (Ln) best-estimates for different scenarios and materials were proposed as input data for risk assessment models.
ArticleNumber 116730
Author Vidal, Miquel
Rigol, Anna
Serra-Ventura, Joan
Author_xml – sequence: 1
  givenname: Joan
  orcidid: 0000-0001-7646-0562
  surname: Serra-Ventura
  fullname: Serra-Ventura, Joan
– sequence: 2
  givenname: Anna
  orcidid: 0000-0002-3383-9684
  surname: Rigol
  fullname: Rigol, Anna
– sequence: 3
  givenname: Miquel
  surname: Vidal
  fullname: Vidal, Miquel
BookMark eNo9kc9uEzEQxi1UJNLCKyAfObCp_8X2ckOl0EqVuJSzNeudTRx27WC7lfI6PClOA5ys-eab39j-LslFTBEJec_ZmjOur_frLaYR8wJrwYRcc66NZK_IilsjOi02_QVZsebsDNP8DbksZd9KwwRbkd9fcEmx1Aw1xC0tKR9qSJFChDltjzRNdIZYdxDDiIWGSDE-h5zigrHCTBeoOfjWmVKmOE3oa3hGOqIPpXG6BX427if6uEPqoeAJ6CEPrdXmdqd5zAHm8pH6GY50CRHzSwlxbNcJc3lLXk9NwXd_zyvy4-vt481d9_D92_3N54cOpBG1A1SmvdVbpYZeWRQWB26smsQIauB6sN4Dh6mJvh-08czCKMD3I2rJhJBX5P7MHRPs3SGHBfLRJQjuRUh56yDX4Gd0tjdSemW43gwK5ACql2qQ1nA-bVD3jfXhzDrk9OsJS3VLKB7n9peYnoqTgjHJtOK6WfXZ6nMqJeP0fzVn7hSw27t_AbtTwO4csPwDIcuhLA
Cites_doi 10.1016/j.gca.2009.11.003
10.1016/j.scitotenv.2012.06.088
10.1524/ract.2002.90.6.345
10.1016/S0969-8043(99)00262-6
10.1039/c0nj00969e
10.1016/j.chemosphere.2014.12.058
10.1016/S0009-2541(01)00283-2
10.1016/j.enpol.2014.12.015
10.1007/s11356-017-9670-5
10.1016/S0265-931X(01)00051-0
10.1016/j.envint.2019.04.022
10.1080/10807039.2011.538641
10.1007/s12665-011-1497-7
10.1016/j.envpol.2018.10.106
10.1016/j.envpol.2017.11.072
10.1016/j.cej.2016.09.029
10.1134/S1064229319100065
10.1016/S1002-0721(14)60584-6
10.1016/j.colsurfb.2010.08.002
10.1016/j.colsurfa.2016.09.060
10.1016/j.marpolbul.2017.06.030
10.1016/j.chemgeo.2019.07.024
10.1021/es801092f
10.1016/j.gca.2005.06.021
10.1016/j.jhazmat.2010.05.124
10.1016/j.jece.2017.07.040
10.1016/j.geoderma.2016.12.010
10.1016/j.apgeochem.2004.01.016
10.1007/s11356-021-13988-2
10.1016/j.clay.2011.02.027
10.1016/j.jre.2018.03.027
10.1016/S1002-0721(10)60272-4
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.geoderma.2023.116730
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID oai_doaj_org_article_89733c47165b4a3ba4934b38711f5e69
10_1016_j_geoderma_2023_116730
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSH
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
7S9
L.6
EFKBS
ID FETCH-LOGICAL-a372t-ae47259c844b948e28eb1784f2da4b16b8cca1afb17c9b67c08ad2ac9de630223
IEDL.DBID DOA
ISSN 0016-7061
IngestDate Wed Aug 27 00:56:24 EDT 2025
Wed Jul 02 04:44:47 EDT 2025
Tue Jul 01 04:05:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a372t-ae47259c844b948e28eb1784f2da4b16b8cca1afb17c9b67c08ad2ac9de630223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3383-9684
0000-0001-7646-0562
OpenAccessLink https://doaj.org/article/89733c47165b4a3ba4934b38711f5e69
PQID 3200306416
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_89733c47165b4a3ba4934b38711f5e69
proquest_miscellaneous_3200306416
crossref_primary_10_1016_j_geoderma_2023_116730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
20231201
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2023
Publisher Elsevier
Publisher_xml – name: Elsevier
References Pereira (10.1016/j.geoderma.2023.116730_b0100) 2022; 211
Ramírez-Guinart (10.1016/j.geoderma.2023.116730_b0105) 2017; 290
Dinali (10.1016/j.geoderma.2023.116730_b0030) 2019; 128
Sheppard (10.1016/j.geoderma.2023.116730_b0130) 2011; 17
Gopinath (10.1016/j.geoderma.2023.116730_b0045) 2021; 194
10.1016/j.geoderma.2023.116730_b0140
Stumpf (10.1016/j.geoderma.2023.116730_b0150) 2002; 90
Smith Stegen (10.1016/j.geoderma.2023.116730_b0145) 2015; 79
Wang (10.1016/j.geoderma.2023.116730_bib188) 2016; 509
Alba (10.1016/j.geoderma.2023.116730_b0005) 2011; 52
Villar (10.1016/j.geoderma.2023.116730_b0170) 1998
Aldaba (10.1016/j.geoderma.2023.116730_bib182) 2010; 181
Coppin (10.1016/j.geoderma.2023.116730_b0025) 2002; 182
Tang (10.1016/j.geoderma.2023.116730_b0160) 2005; 69
Yang (10.1016/j.geoderma.2023.116730_b0175) 2019; 525
Liatsou (10.1016/j.geoderma.2023.116730_b0085) 2017; 5
Kołodyńska (10.1016/j.geoderma.2023.116730_b0065) 2018; 36
Ramírez-Guinart (10.1016/j.geoderma.2023.116730_b0110) 2018; 234
Uddin (10.1016/j.geoderma.2023.116730_b0165) 2017; 308
Hartmann (10.1016/j.geoderma.2023.116730_b0060) 2008; 42
Saravanan (10.1016/j.geoderma.2023.116730_b0120) 2022; 214
Zhao (10.1016/j.geoderma.2023.116730_bib189) 2021; 34
Ramírez-Guinart (10.1016/j.geoderma.2023.116730_b0115) 2020; 222
10.1016/j.geoderma.2023.116730_b0135
Verplanck (10.1016/j.geoderma.2023.116730_bib186) 2004; 19
Ladonin (10.1016/j.geoderma.2023.116730_b0070) 2019; 52
Sthiannopkao (10.1016/j.geoderma.2023.116730_bib184) 2013; 463–464
Sun (10.1016/j.geoderma.2023.116730_bib185) 2012; 67
Tan (10.1016/j.geoderma.2023.116730_b0155) 2015; 125
Vidal (10.1016/j.geoderma.2023.116730_bib187) 2001; 56
Gu (10.1016/j.geoderma.2023.116730_b0050) 2022; 221
Hadjittofi (10.1016/j.geoderma.2023.116730_b0055) 2016; 34
Li (10.1016/j.geoderma.2023.116730_b0080) 2017; 24
Lecomte (10.1016/j.geoderma.2023.116730_b0075) 2017; 121
Migaszewski (10.1016/j.geoderma.2023.116730_b0090) 2019; 244
Awwad (10.1016/j.geoderma.2023.116730_b0010) 2010; 81
Eliseeva (10.1016/j.geoderma.2023.116730_b0035) 2011; 35
Gomes (10.1016/j.geoderma.2023.116730_bib192) 2022; 322
Chen (10.1016/j.geoderma.2023.116730_b0020) 2010; 28
Zuyi (10.1016/j.geoderma.2023.116730_b0180) 2000; 52
Serra-Ventura (10.1016/j.geoderma.2023.116730_b0125) 2022; 287
Galunin (10.1016/j.geoderma.2023.116730_b0040) 2010; 74
Navarro (10.1016/j.geoderma.2023.116730_b0095) 2014; 2
Brouziotis (10.1016/j.geoderma.2023.116730_b0015) 2022; 10
References_xml – volume: 74
  start-page: 862
  issue: 3
  year: 2010
  ident: 10.1016/j.geoderma.2023.116730_b0040
  article-title: Lanthanide sorption on smectitic clays in presence of cement leachates
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.11.003
– volume: 463–464
  start-page: 1147
  year: 2013
  ident: 10.1016/j.geoderma.2023.116730_bib184
  article-title: Handling e-waste in developed and developing countries: Initiatives, practices, and consequences
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.06.088
– volume: 90
  start-page: 345
  issue: 6
  year: 2002
  ident: 10.1016/j.geoderma.2023.116730_b0150
  article-title: Inner-sphere, outer-sphere and ternary surface complexes: A TRLFS study of the sorption process of Eu(III) onto smectite and kaolinite
  publication-title: Radiochim. Acta
  doi: 10.1524/ract.2002.90.6.345
– volume: 52
  start-page: 821
  issue: 4
  year: 2000
  ident: 10.1016/j.geoderma.2023.116730_b0180
  article-title: Adsorption characteristics of 47 elements on a calcareous soil, a red earth and an alumina: A multitracer study
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/S0969-8043(99)00262-6
– volume: 35
  start-page: 1165
  issue: 6
  year: 2011
  ident: 10.1016/j.geoderma.2023.116730_b0035
  article-title: Rare earths: Jewels for functional materials of the future
  publication-title: New J. Chem.
  doi: 10.1039/c0nj00969e
– volume: 125
  start-page: 70
  year: 2015
  ident: 10.1016/j.geoderma.2023.116730_b0155
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.058
– volume: 182
  start-page: 57
  issue: 1
  year: 2002
  ident: 10.1016/j.geoderma.2023.116730_b0025
  article-title: Sorption of lanthanides on smectite and kaolinite
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(01)00283-2
– volume: 221
  issue: December 2021
  year: 2022
  ident: 10.1016/j.geoderma.2023.116730_b0050
  article-title: The different effects of sulfate on the adsorption of REEs on kaolinite and ferrihydrite
  publication-title: Appl. Clay Sci.
– volume: 79
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2023.116730_b0145
  article-title: Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2014.12.015
– volume: 24
  start-page: 20540
  issue: 25
  year: 2017
  ident: 10.1016/j.geoderma.2023.116730_b0080
  article-title: Geochemical characteristics of dissolved rare earth elements in acid mine drainage from abandoned high-As coal mining area, southwestern China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9670-5
– volume: 322
  issue: September
  year: 2022
  ident: 10.1016/j.geoderma.2023.116730_bib192
  article-title: Rare earth elements - Source and evolution in an aquatic system dominated by mine-Influenced waters
  publication-title: J. Environ. Manage.
– volume: 211
  issue: March
  year: 2022
  ident: 10.1016/j.geoderma.2023.116730_b0100
  article-title: Levels and environmental risks of rare earth elements in a gold mining area in the Amazon
  publication-title: Environ. Res.
– volume: 56
  start-page: 139
  issue: 1–2
  year: 2001
  ident: 10.1016/j.geoderma.2023.116730_bib187
  article-title: Soil- and plant-based countermeasures to reduce 137Cs and 90Sr uptake by grasses in natural meadows: The REDUP project
  publication-title: J. Environ. Radioact.
  doi: 10.1016/S0265-931X(01)00051-0
– volume: 128
  start-page: 279
  issue: December 2018
  year: 2019
  ident: 10.1016/j.geoderma.2023.116730_b0030
  article-title: Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.04.022
– volume: 17
  start-page: 263
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2023.116730_b0130
  article-title: Robust prediction of Kd from soil properties for environmental assessment
  publication-title: Hum. Ecol. Risk Assess.
  doi: 10.1080/10807039.2011.538641
– year: 1998
  ident: 10.1016/j.geoderma.2023.116730_b0170
  article-title: FEBEX
– volume: 67
  start-page: 205
  issue: 1
  year: 2012
  ident: 10.1016/j.geoderma.2023.116730_bib185
  article-title: Behavior of rare earth elements in acid coal mine drainage in Shanxi Province, China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1497-7
– volume: 287
  issue: P2
  year: 2022
  ident: 10.1016/j.geoderma.2023.116730_b0125
  article-title: Examining samarium sorption in biochars and carbon-rich materials for water remediation: batch vs. continuous-flow methods
  publication-title: Chemosphere
– volume: 244
  start-page: 898
  year: 2019
  ident: 10.1016/j.geoderma.2023.116730_b0090
  article-title: Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland)
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.10.106
– volume: 234
  start-page: 439
  year: 2018
  ident: 10.1016/j.geoderma.2023.116730_b0110
  article-title: Dependence of samarium-soil interaction on samarium concentration: Implications for environmental risk assessment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.11.072
– volume: 308
  start-page: 438
  year: 2017
  ident: 10.1016/j.geoderma.2023.116730_b0165
  article-title: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.029
– volume: 194
  issue: May 2020
  year: 2021
  ident: 10.1016/j.geoderma.2023.116730_b0045
  article-title: Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment
  publication-title: Environ. Res.
– volume: 52
  start-page: 1175
  issue: 10
  year: 2019
  ident: 10.1016/j.geoderma.2023.116730_b0070
  article-title: Comparative Evaluation of Adsorption of Rare-Earth Elements in Some Soil Types
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229319100065
– volume: 10
  start-page: 1
  issue: September
  year: 2022
  ident: 10.1016/j.geoderma.2023.116730_b0015
  article-title: Toxicity of rare earth elements: An overview on human health impact
  publication-title: Front. Environ. Sci.
– volume: 34
  start-page: 99
  issue: 1
  year: 2016
  ident: 10.1016/j.geoderma.2023.116730_b0055
  article-title: Removal of trivalent samarium from aqueous solutions by activated biochar derived from cactus fibres
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(14)60584-6
– volume: 81
  start-page: 593
  issue: 2
  year: 2010
  ident: 10.1016/j.geoderma.2023.116730_b0010
  article-title: Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2010.08.002
– volume: 509
  start-page: 550
  year: 2016
  ident: 10.1016/j.geoderma.2023.116730_bib188
  article-title: Ammonium citrate-modified biochar: An adsorbent for La(III) ions from aqueous solution
  publication-title: Colloids Surf. A: Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2016.09.060
– volume: 121
  start-page: 282
  issue: 1–2
  year: 2017
  ident: 10.1016/j.geoderma.2023.116730_b0075
  article-title: Rare earth elements mobility processes in an AMD-affected estuary: Huelva Estuary (SW Spain)
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2017.06.030
– volume: 2
  start-page: 1
  issue: NOV
  year: 2014
  ident: 10.1016/j.geoderma.2023.116730_b0095
  article-title: Life-cycle assessment of the production of rare-earth elements for energy applications: A review
  publication-title: Front. Energy Res.
– ident: 10.1016/j.geoderma.2023.116730_b0135
– volume: 525
  start-page: 210
  issue: June
  year: 2019
  ident: 10.1016/j.geoderma.2023.116730_b0175
  article-title: Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2019.07.024
– volume: 42
  start-page: 7601
  issue: 20
  year: 2008
  ident: 10.1016/j.geoderma.2023.116730_b0060
  article-title: A spectroscopic characterization and quantification of M(III)/clay mineral outer-sphere complexes
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es801092f
– volume: 69
  start-page: 5247
  issue: 22
  year: 2005
  ident: 10.1016/j.geoderma.2023.116730_b0160
  article-title: Adsorption of rare earth elements onto Carrizo sand: Experimental investigations and modeling with surface complexation
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2005.06.021
– volume: 181
  start-page: 1072
  issue: 1–3
  year: 2010
  ident: 10.1016/j.geoderma.2023.116730_bib182
  article-title: Diffusion experiments for estimating radiocesium and radiostrontium sorption in unsaturated soils from Spain: Comparison with batch sorption data
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.05.124
– volume: 5
  start-page: 4069
  issue: 4
  year: 2017
  ident: 10.1016/j.geoderma.2023.116730_b0085
  article-title: Surface characterization of oxidized biochar fibers derived from Luffa Cylindrica and lanthanide binding
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.07.040
– volume: 290
  start-page: 33
  year: 2017
  ident: 10.1016/j.geoderma.2023.116730_b0105
  article-title: Assessing soil properties governing radiosamarium sorption in soils: Can trivalent lanthanides and actinides be considered as analogues?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.010
– volume: 222
  issue: April
  year: 2020
  ident: 10.1016/j.geoderma.2023.116730_b0115
  article-title: Deriving probabilistic soil distribution coefficients (Kd). Part 1: General approach to decreasing and describing variability and example using uranium Kd values
  publication-title: J. Environ. Radioact.
– volume: 19
  start-page: 1339
  issue: 8
  year: 2004
  ident: 10.1016/j.geoderma.2023.116730_bib186
  article-title: Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2004.01.016
– volume: 34
  start-page: 47024
  year: 2021
  ident: 10.1016/j.geoderma.2023.116730_bib189
  article-title: The potential use of straw-derived biochar as the adsorbent for La(III) and Nd(III) removal in aqueous solutions
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-13988-2
– volume: 52
  start-page: 253
  issue: 3
  year: 2011
  ident: 10.1016/j.geoderma.2023.116730_b0005
  article-title: Interaction of Eu-isotopes with saponite as a component of the engineered barrier
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2011.02.027
– volume: 36
  start-page: 1212
  issue: 11
  year: 2018
  ident: 10.1016/j.geoderma.2023.116730_b0065
  article-title: Sorption of lanthanide ions on biochar composites
  publication-title: J. Rare Earths
  doi: 10.1016/j.jre.2018.03.027
– volume: 214
  issue: P1
  year: 2022
  ident: 10.1016/j.geoderma.2023.116730_b0120
  article-title: Biochar derived carbonaceous material for various environmental applications: Systematic review
  publication-title: Environ. Res.
– ident: 10.1016/j.geoderma.2023.116730_b0140
– volume: 28
  start-page: 125
  issue: SUPPL. 1
  year: 2010
  ident: 10.1016/j.geoderma.2023.116730_b0020
  article-title: Study on the adsorption of lanthanum(III) from aqueous solution by bamboo charcoal
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(10)60272-4
SSID ssj0017020
Score 2.419773
Snippet Examining the effect of lanthanide-contaminated wastes, which have the potential to impact to other environmental compartments, requires conducting interaction...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 116730
SubjectTerms activated carbon
Activated charcoal
Biochar
clay
Clay mineral
cumulative distribution
decision making
Lanthanides
remediation
risk assessment
Soil
sorbents
Sorption
Title Demonstrating sorption analogy of lanthanides in environmental matrices for effective decision-making: The case of carbon-rich materials, clay minerals, and soils
URI https://www.proquest.com/docview/3200306416
https://doaj.org/article/89733c47165b4a3ba4934b38711f5e69
Volume 440
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygvGYmRQGM7L7byUoUEE5XYrPMjUNQ6qC1D_w6_lLOToEgMLIyxY8fydz5_F5_vCDlDCovGP7CIoYKMRJbFEaSJiBLwx3CmLIvgPP74lA5H4uEleemk-vI-YXV44HriLvMi41yjCk0TJYArEAUXiiPPj8vEpuHqHu55rTHVnB9kyII694HfEQ2fWixEGmL8wh8-eL_nzlYUIvb_Ushhl7nfJBsNPaSDelhbZMW6bbI-eJ01ITLsDvm6tVNP6jx07pXOq1lY9RSc_w-zpFVJJzhdb-DGxs7p2NHOZTbsexqC8mMN0lVau3OgxqOmSbYTTUN-qiuKAkQ17nG-Qw0zhVXY7s23r6X2nOoJLOl0HAJX4yM4g8MZT-a7ZHR_93wzjJpMCxHwjC0isCJDO0jnQqhC5JblqMKzXJTMgFBxqnIEOoYSC3Wh0kz3czAMdGFsypEF8D2y6ipn9wnt87IPTFkkjkYgbmABTRZImNAKTSPTI5ftpMuPOqCGbD3N3mULk_QwyRqmHrn22Py87QNihwIUE9mIifxLTHrktEVW4gLypyLgbPU5l5wFuwmJ6cF_fOiQrPmx1x4vR2R1Mfu0x8hbFuokiOg3PZ7tNA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demonstrating+sorption+analogy+of+lanthanides+in+environmental+matrices+for+effective+decision-making%3A+The+case+of+carbon-rich+materials%2C+clay+minerals%2C+and+soils&rft.jtitle=Geoderma&rft.au=Joan+Serra-Ventura&rft.au=Anna+Rigol&rft.au=Miquel+Vidal&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=1872-6259&rft.volume=440&rft.spage=116730&rft_id=info:doi/10.1016%2Fj.geoderma.2023.116730&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_89733c47165b4a3ba4934b38711f5e69
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon