Recognition of mineralization-related anomaly patterns through an autoencoder neural network for mineral exploration targeting

In mineral potential mapping, supervised machine learning algorithms have shown great promise in delineating and prioritizing potential areas. However, since mineralization being a relatively rare geological event, most supervised machine learning-based models face substantial challenges in properly...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 158; p. 105807
Main Authors Mirzabozorg, Seyyed Ataollah Agha Seyyed, Abedi, Maysam
Format Journal Article
LanguageEnglish
Published 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In mineral potential mapping, supervised machine learning algorithms have shown great promise in delineating and prioritizing potential areas. However, since mineralization being a relatively rare geological event, most supervised machine learning-based models face substantial challenges in properly identifying prospective areas. Data sets with strongly imbalanced distributions of the target variable (deposits) and insufficient training data sets impose obstacles to these kinds of models which can significantly impact adversely on the performance of the models. Moreover, in some cases, negative training data sets as the non-deposit locations aren't really true negative data, which cause higher uncertainty in a mineral potential map. In this study, for handling these challenges the deep autoencoder neural network is adopted. The autoencoder can be trained to reconstruct geospatial data set in totally unsupervised manner and identify prospective areas based on the reconstruction error, where higher error corresponds with areas of higher mineral potential. In order to confirm the efficiency of the autoencoder algorithm in mineral potential modeling, the model was compared with a popular data-driven approach that assigned a weight to the evidence layer by using a concentration-area (C-A) fractal model and a prediction-area (P-A) plot, and combined them using a multi-class index overlay method. Receiver operating characteristic (ROC) curve, success-rate curve, and P-A plot were adopted to evaluate the predictive ability of Fe prospectivity models pertaining to the Esfordi district of Iran. Also, we use an area under the ROC curve (AUC) and partial AUC (pAUC) to quantitatively evaluate the overall and sensitivity performance of models, respectively.
AbstractList In mineral potential mapping, supervised machine learning algorithms have shown great promise in delineating and prioritizing potential areas. However, since mineralization being a relatively rare geological event, most supervised machine learning-based models face substantial challenges in properly identifying prospective areas. Data sets with strongly imbalanced distributions of the target variable (deposits) and insufficient training data sets impose obstacles to these kinds of models which can significantly impact adversely on the performance of the models. Moreover, in some cases, negative training data sets as the non-deposit locations aren't really true negative data, which cause higher uncertainty in a mineral potential map. In this study, for handling these challenges the deep autoencoder neural network is adopted. The autoencoder can be trained to reconstruct geospatial data set in totally unsupervised manner and identify prospective areas based on the reconstruction error, where higher error corresponds with areas of higher mineral potential. In order to confirm the efficiency of the autoencoder algorithm in mineral potential modeling, the model was compared with a popular data-driven approach that assigned a weight to the evidence layer by using a concentration-area (C-A) fractal model and a prediction-area (P-A) plot, and combined them using a multi-class index overlay method. Receiver operating characteristic (ROC) curve, success-rate curve, and P-A plot were adopted to evaluate the predictive ability of Fe prospectivity models pertaining to the Esfordi district of Iran. Also, we use an area under the ROC curve (AUC) and partial AUC (pAUC) to quantitatively evaluate the overall and sensitivity performance of models, respectively.
ArticleNumber 105807
Author Abedi, Maysam
Mirzabozorg, Seyyed Ataollah Agha Seyyed
Author_xml – sequence: 1
  givenname: Seyyed Ataollah Agha Seyyed
  surname: Mirzabozorg
  fullname: Mirzabozorg, Seyyed Ataollah Agha Seyyed
– sequence: 2
  givenname: Maysam
  orcidid: 0000-0002-5365-0694
  surname: Abedi
  fullname: Abedi, Maysam
BookMark eNqFkDtPwzAUhT0UCQr8BjyypNhxGycDA0K8JCQkBLN161ynLokdbEc8Bn47KQUGFqYjnXvO0dU3JRPnHRJyxNmMM16crGfQN-j1CrtZznIxuouSyQnZY2UpsrzK5S6ZxrhmjC0ky_fIxz1q3zibrHfUG9pZhwFa-w4bJwvYQsKagvMdtG-0h5QwuEjTKvihWY0HCkPy6LSvMVCHw9geJb348ESNDz-LFF_71oevWZogNJisaw7IjoE24uG37pPHy4uH8-vs9u7q5vzsNgMhecrMvDCyKISW-bKYV9xoXi94mbOKlzXMARhiUdWyFmK-XGojDBgNlQANOa_MUuyT4-1uH_zzgDGpzkaNbQsO_RCV4AshRVFINkZPt1EdfIwBjdI2fb2dAthWcaY2rNVa_bJWG9Zqy3rsyz_9PtgOwtu_zU9hApFx
CitedBy_id crossref_primary_10_1016_j_apgeochem_2024_106053
crossref_primary_10_1016_j_oregeorev_2025_106458
crossref_primary_10_1016_j_chemer_2024_126208
crossref_primary_10_1007_s12145_025_01708_0
crossref_primary_10_1016_j_chemer_2024_126207
crossref_primary_10_1007_s12145_024_01579_x
crossref_primary_10_1016_j_cageo_2024_105785
crossref_primary_10_1007_s11053_024_10328_2
crossref_primary_10_1007_s12145_024_01481_6
crossref_primary_10_3390_min14101015
crossref_primary_10_1007_s12145_025_01843_8
crossref_primary_10_1007_s11004_024_10164_3
crossref_primary_10_1007_s12145_024_01404_5
crossref_primary_10_1016_j_oregeorev_2023_105859
crossref_primary_10_1016_j_rsase_2024_101343
Cites_doi 10.1016/j.oregeorev.2006.10.002
10.1007/s12040-013-0313-z
10.1186/s40537-019-0230-3
10.3390/min12050616
10.1145/2500853.2500857
10.1007/s11053-018-9425-0
10.1007/s11053-017-9335-6
10.3390/app10134497
10.1016/j.cageo.2019.01.016
10.3390/min11020159
10.1007/s11053-015-9268-x
10.1016/j.tecto.2013.12.011
10.1016/j.jseaes.2019.104152
10.2113/gsecongeo.89.8.1697
10.1007/s13755-018-0051-3
10.1007/s11053-020-09700-9
10.1016/j.oregeorev.2014.09.007
10.1016/j.earscirev.2019.02.023
10.1016/j.cageo.2010.09.014
10.1002/sim.2103
10.1016/j.cageo.2015.07.006
10.1007/s11053-020-09789-y
10.1016/j.apgeochem.2023.105561
10.1016/j.oregeorev.2015.12.005
10.1016/j.cageo.2015.10.006
10.1007/s11053-019-09510-8
10.1016/0375-6742(94)90013-2
10.2475/ajs.303.7.622
10.1007/s11053-014-9261-9
10.1016/j.oregeorev.2019.103005
10.1371/journal.pone.0272861
10.1109/ACCESS.2020.3001350
10.1016/j.apgeochem.2021.104940
10.1088/1742-6596/1142/1/012012
10.1016/S0883-2927(01)00066-X
10.1007/s11053-018-9375-6
10.1097/JTO.0b013e3181ec173d
10.1007/s12145-023-01019-2
10.1016/j.gexplo.2021.106904
10.1007/s11053-005-4674-0
10.1016/j.oregeorev.2020.103611
10.1016/j.oregeorev.2018.10.006
10.1016/j.jafrearsci.2014.06.015
10.3390/app12094184
10.1016/j.oregeorev.2007.07.001
10.1080/08120099.2017.1328705
10.1007/s10661-005-9067-7
10.1016/j.oregeorev.2022.104765
10.1007/s12517-014-1326-x
10.1016/j.gexplo.2017.05.008
10.1007/s12517-012-0615-5
10.2113/gsecongeo.102.6.1111
10.1016/j.oregeorev.2019.103115
10.1016/0301-9268(88)90053-8
10.1180/minmag.2007.071.3.347
10.1016/j.cageo.2015.03.007
10.3390/min9050270
10.1016/j.oregeorev.2014.07.013
10.1177/0962280217718866
10.1148/radiology.201.3.8939225
10.1016/j.oregeorev.2014.08.012
10.2113/0100165
10.1016/j.cageo.2005.03.018
10.1007/s11053-021-09842-4
10.1016/j.cageo.2011.12.014
10.1080/19479832.2019.1589585
10.1007/s11053-019-09564-8
10.1080/10106049.2021.1953617
10.1007/s11053-020-09742-z
10.1007/s11053-020-09668-6
10.1109/TKDE.2019.2947676
10.4236/ojg.2016.612112
10.1016/j.gexplo.2017.10.020
10.1016/j.jafrearsci.2013.05.003
10.1016/j.gexplo.2021.106839
10.1016/j.jseaes.2021.104828
10.1046/j.1440-0952.2000.00807.x
10.1016/j.oregeorev.2021.104054
10.1016/j.oregeorev.2015.01.001
10.1016/j.gexplo.2021.106923
10.1016/j.patrec.2013.11.015
10.1007/s11053-022-10050-x
10.1007/s11053-021-09934-1
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apgeochem.2023.105807
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
ExternalDocumentID 10_1016_j_apgeochem_2023_105807
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CITATION
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSH
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
7S9
L.6
ID FETCH-LOGICAL-a371t-f46f7663c72b6491fc1d51820918da4aa0ee69d7d334bbcf3fafca93aca219fb3
ISSN 0883-2927
IngestDate Fri Jul 11 16:14:38 EDT 2025
Tue Jul 01 01:59:45 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a371t-f46f7663c72b6491fc1d51820918da4aa0ee69d7d334bbcf3fafca93aca219fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5365-0694
PQID 3153736670
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153736670
crossref_citationtrail_10_1016_j_apgeochem_2023_105807
crossref_primary_10_1016_j_apgeochem_2023_105807
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-00
PublicationDecade 2020
PublicationTitle Applied geochemistry
PublicationYear 2023
References Ahmadi (10.1016/j.apgeochem.2023.105807_bib5) 2022; 7
Karar (10.1016/j.apgeochem.2023.105807_bib57) 2006; 120
Cheng (10.1016/j.apgeochem.2023.105807_bib35) 2007; 32
Rodriguez-Galiano (10.1016/j.apgeochem.2023.105807_bib84) 2015; 71
Gao (10.1016/j.apgeochem.2023.105807_bib44) 2016; 75
Zuo (10.1016/j.apgeochem.2023.105807_bib114) 2011; 37
Nayebi (10.1016/j.apgeochem.2023.105807_bib72) 2021; 132
Yousefi (10.1016/j.apgeochem.2023.105807_bib107) 2019; 111
Ghezelbash (10.1016/j.apgeochem.2023.105807_bib47) 2020; 134
Goel (10.1016/j.apgeochem.2023.105807_bib48) 2013; vol. 9
Ghasemzadeh (10.1016/j.apgeochem.2023.105807_bib45) 2019; 113
Zuo (10.1016/j.apgeochem.2023.105807_bib116) 2020; 29
Shin (10.1016/j.apgeochem.2023.105807_bib88) 2020; 10
Granek (10.1016/j.apgeochem.2023.105807_bib49) 2016
Chen (10.1016/j.apgeochem.2023.105807_bib34) 2018; vols. 1–5
Malainine (10.1016/j.apgeochem.2023.105807_bib65) 2022; 37
Chen (10.1016/j.apgeochem.2023.105807_bib30) 2019; 125
Lin (10.1016/j.apgeochem.2023.105807_bib64) 2021; 11
Chen (10.1016/j.apgeochem.2023.105807_bib31) 2017; 64
Bradley (10.1016/j.apgeochem.2023.105807_bib19) 2014; 38
Jami (10.1016/j.apgeochem.2023.105807_bib55) 2007; 102
Cao (10.1016/j.apgeochem.2023.105807_bib22) 2022; 12
Guan (10.1016/j.apgeochem.2023.105807_bib50) 2021; 156
Calvert (10.1016/j.apgeochem.2023.105807_bib21) 2019; 6
Yang (10.1016/j.apgeochem.2023.105807_bib101) 2021; 30
Carranza (10.1016/j.apgeochem.2023.105807_bib23) 2001; 10
Carranza (10.1016/j.apgeochem.2023.105807_bib26) 2008
Carranza (10.1016/j.apgeochem.2023.105807_bib25) 2016; 25
Mokhtari (10.1016/j.apgeochem.2023.105807_bib71) 2013; 122
Zuo (10.1016/j.apgeochem.2023.105807_bib115) 2022; 31
Daviran (10.1016/j.apgeochem.2023.105807_bib41) 2023; 16
Chen (10.1016/j.apgeochem.2023.105807_bib32) 2015; 71
Torab (10.1016/j.apgeochem.2023.105807_bib90) 2007; 71
Sadeghi (10.1016/j.apgeochem.2023.105807_bib86) 2013; 85
Prado (10.1016/j.apgeochem.2023.105807_bib77) 2020; 124
Rezapour (10.1016/j.apgeochem.2023.105807_bib83) 2020; 10
Hariri (10.1016/j.apgeochem.2023.105807_bib52) 2019; 33
Chen (10.1016/j.apgeochem.2023.105807_bib28) 2022; 143
Nykänen (10.1016/j.apgeochem.2023.105807_bib74) 2015; 71
Yousefi (10.1016/j.apgeochem.2023.105807_bib105) 2021; 229
Daliran (10.1016/j.apgeochem.2023.105807_bib40) 2010; 20
Yousefi (10.1016/j.apgeochem.2023.105807_bib106) 2023; 149
Bauder (10.1016/j.apgeochem.2023.105807_bib14) 2018; 6
Bonyadi (10.1016/j.apgeochem.2023.105807_bib18) 2020; 189
Porwal (10.1016/j.apgeochem.2023.105807_bib76) 2006; 32
Daliran (10.1016/j.apgeochem.2023.105807_bib39) 2002; 2
Chen (10.1016/j.apgeochem.2023.105807_bib29) 2019; 9
Carranza (10.1016/j.apgeochem.2023.105807_bib24) 2008; 33
Agterberg (10.1016/j.apgeochem.2023.105807_bib3) 2005; 14
Finke (10.1016/j.apgeochem.2023.105807_bib42) 2021
Xia (10.1016/j.apgeochem.2023.105807_bib95) 2015
Kingma (10.1016/j.apgeochem.2023.105807_bib60) 2014
Yousefi (10.1016/j.apgeochem.2023.105807_bib102) 2015; 83
Zavrak (10.1016/j.apgeochem.2023.105807_bib108) 2020; 8
Zuo (10.1016/j.apgeochem.2023.105807_bib113) 2020; 29
Ahmadi (10.1016/j.apgeochem.2023.105807_bib4) 2022; 16
Cevik (10.1016/j.apgeochem.2023.105807_bib27) 2020
Zumlot (10.1016/j.apgeochem.2023.105807_bib111) 2012; 4
Kheyrollahi (10.1016/j.apgeochem.2023.105807_bib59) 2021; 217
Meigooni (10.1016/j.apgeochem.2023.105807_bib68) 2021; 11
Walter (10.1016/j.apgeochem.2023.105807_bib92) 2005; 24
Mhangara (10.1016/j.apgeochem.2023.105807_bib69) 2005
Yousefi (10.1016/j.apgeochem.2023.105807_bib104) 2016; 25
Blakely (10.1016/j.apgeochem.2023.105807_bib16) 1996
Ghezelbash (10.1016/j.apgeochem.2023.105807_bib46) 2021; 30
Ammar (10.1016/j.apgeochem.2023.105807_bib9) 2014; 100
Li (10.1016/j.apgeochem.2023.105807_bib62) 2021; 30
Xiong (10.1016/j.apgeochem.2023.105807_bib98) 2018; 102
Yang (10.1016/j.apgeochem.2023.105807_bib100) 2019; 28
Torab (10.1016/j.apgeochem.2023.105807_bib91) 2008
Ramezani (10.1016/j.apgeochem.2023.105807_bib81) 2003; 303
Hariharan (10.1016/j.apgeochem.2023.105807_bib51) 2017; 26
Rahimi (10.1016/j.apgeochem.2023.105807_bib79) 2021; 128
Xiong (10.1016/j.apgeochem.2023.105807_bib96) 2016; 86
Li (10.1016/j.apgeochem.2023.105807_bib63) 2020; 29
Zuo (10.1016/j.apgeochem.2023.105807_bib117) 2019; 192
Samani (10.1016/j.apgeochem.2023.105807_bib87) 1988; 39
Taghipour (10.1016/j.apgeochem.2023.105807_bib89) 2015; 8
Abedi (10.1016/j.apgeochem.2023.105807_bib1) 2012; 46
Rajan Girija (10.1016/j.apgeochem.2023.105807_bib80) 2019; 10
Porwal (10.1016/j.apgeochem.2023.105807_bib75) 2015; vol. 71
Mandrekar (10.1016/j.apgeochem.2023.105807_bib66) 2010; 5
Abedi (10.1016/j.apgeochem.2023.105807_bib2) 2013; 6
Rajabi (10.1016/j.apgeochem.2023.105807_bib78) 2015; 64
Reimann (10.1016/j.apgeochem.2023.105807_bib82) 2002; 17
Chen (10.1016/j.apgeochem.2023.105807_bib33) 2019; 28
Khalid (10.1016/j.apgeochem.2023.105807_bib58) 2014
Wang (10.1016/j.apgeochem.2023.105807_bib93) 2020; 29
Ahmadi (10.1016/j.apgeochem.2023.105807_bib6) 2021; 55
Moeini (10.1016/j.apgeochem.2023.105807_bib70) 2017; 180
Wu (10.1016/j.apgeochem.2023.105807_bib94) 2022; 232
Mangortey (10.1016/j.apgeochem.2023.105807_bib67) 2020
Neukirchen (10.1016/j.apgeochem.2023.105807_bib73) 2019
Zuo (10.1016/j.apgeochem.2023.105807_bib112) 2018; 184
Alzubi (10.1016/j.apgeochem.2023.105807_bib7) 2018; 1142
Zhang (10.1016/j.apgeochem.2023.105807_bib110) 2019; 28
Li (10.1016/j.apgeochem.2023.105807_bib61) 2022; 12
Foerster (10.1016/j.apgeochem.2023.105807_bib43) 1994; 89
Amer (10.1016/j.apgeochem.2023.105807_bib8) 2013
Zhang (10.1016/j.apgeochem.2023.105807_bib109) 2021; 30
Azadi (10.1016/j.apgeochem.2023.105807_bib12) 2021
Bonham-Carter (10.1016/j.apgeochem.2023.105807_bib17) 1994
Clark (10.1016/j.apgeochem.2023.105807_bib37) 2014; 624
Xiong (10.1016/j.apgeochem.2023.105807_bib97) 2021; 147
Xu (10.1016/j.apgeochem.2023.105807_bib99) 2015
Ikotun (10.1016/j.apgeochem.2023.105807_bib54) 2022; 17
Bigdeli (10.1016/j.apgeochem.2023.105807_bib15) 2022; 233
Brown (10.1016/j.apgeochem.2023.105807_bib20) 2000; 47
Ayodele (10.1016/j.apgeochem.2023.105807_bib10) 2010; 3
Daliran (10.1016/j.apgeochem.2023.105807_bib38) 2007
Yousefi (10.1016/j.apgeochem.2023.105807_bib103) 2015; 79
Cheng (10.1016/j.apgeochem.2023.105807_bib36) 1994; 51
Bakhtiyari (10.1016/j.apgeochem.2023.105807_bib13) 2016; 6
Azadi (10.1016/j.apgeochem.2023.105807_bib11) 2021; 12
Jiang (10.1016/j.apgeochem.2023.105807_bib56) 1996; 201
References_xml – volume: 32
  start-page: 314
  issue: 1–2
  year: 2007
  ident: 10.1016/j.apgeochem.2023.105807_bib35
  article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2006.10.002
– volume: 122
  start-page: 795
  issue: 3
  year: 2013
  ident: 10.1016/j.apgeochem.2023.105807_bib71
  article-title: Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry
  publication-title: Journal of Earth System Science
  doi: 10.1007/s12040-013-0313-z
– volume: 10
  start-page: 149
  issue: 1
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib83
  article-title: A clustering approach for mineral potential mapping: a deposit-scale porphyry copper exploration targeting
  publication-title: Geopersia
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib21
  article-title: Impact of class distribution on the detection of slow HTTP DoS attacks using Big Data
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0230-3
– volume: 12
  start-page: 616
  issue: 5
  year: 2022
  ident: 10.1016/j.apgeochem.2023.105807_bib61
  article-title: Overview on the development of intelligent methods for mineral resource prediction under the background of geological big data
  publication-title: Minerals
  doi: 10.3390/min12050616
– start-page: 8
  year: 2013
  ident: 10.1016/j.apgeochem.2023.105807_bib8
  article-title: Enhancing one-class support vector machines for unsupervised anomaly detection
  publication-title: Proc. ACM SIGKDD Workshop Outlier Detect. Descrip.
  doi: 10.1145/2500853.2500857
– volume: 28
  start-page: 645
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib110
  article-title: Maximum entropy and random forest modeling of mineral potential: analysis of gold prospectivity in the Hezuo--Meiwu district, west Qinling Orogen, China
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9425-0
– volume: vols. 1–5
  year: 2018
  ident: 10.1016/j.apgeochem.2023.105807_bib34
– volume: 26
  start-page: 489
  issue: 4
  year: 2017
  ident: 10.1016/j.apgeochem.2023.105807_bib51
  article-title: Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: an example from the Tanami Region, Western Australia
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-017-9335-6
– year: 2016
  ident: 10.1016/j.apgeochem.2023.105807_bib49
– volume: 10
  issue: 13
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib88
  article-title: Extended autoencoder for novelty detection with reconstruction along projection pathway
  publication-title: Applied Sciences
  doi: 10.3390/app10134497
– volume: 125
  start-page: 43
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib30
  article-title: A spatially constrained multi-autoencoder approach for multivariate geochemical anomaly recognition
  publication-title: Computers \& Geosciences
  doi: 10.1016/j.cageo.2019.01.016
– volume: 11
  start-page: 159
  issue: 2
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib64
  article-title: A comparative study of machine learning models with hyperparameter optimization algorithm for mapping mineral prospectivity
  publication-title: Minerals
  doi: 10.3390/min11020159
– volume: 25
  start-page: 35
  year: 2016
  ident: 10.1016/j.apgeochem.2023.105807_bib25
  article-title: Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines)
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-015-9268-x
– volume: 624
  start-page: 46
  year: 2014
  ident: 10.1016/j.apgeochem.2023.105807_bib37
  article-title: Magnetic effects of hydrothermal alteration in porphyry copper and iron-oxide copper--gold systems: a review
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2013.12.011
– volume: 189
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib18
  article-title: Hydrothermal alteration associated with magnetite mineralization in the Bafq iron deposits, Iran
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2019.104152
– volume: 89
  start-page: 1697
  issue: 8
  year: 1994
  ident: 10.1016/j.apgeochem.2023.105807_bib43
  article-title: The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.89.8.1697
– volume: 7
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.apgeochem.2023.105807_bib5
  article-title: Mineral potential mapping using satellite images of sentinel-2, landsat-8 and ASTER for iron ore at Esfordi 1: 100000 sheet
  publication-title: J. Min. Resour. Eng.
– start-page: 1501
  year: 2007
  ident: 10.1016/j.apgeochem.2023.105807_bib38
  article-title: Multistage metasomatism and mineralization at hydrothermal Fe oxide-REE-apatite deposits and “apatitites” of the Bafq District, Central-East Iran
  publication-title: Digging Deeper. Proceedings of the 9th Biennial SGA Meeting Dublin
– start-page: 1
  year: 2014
  ident: 10.1016/j.apgeochem.2023.105807_bib60
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.apgeochem.2023.105807_bib14
  article-title: The effects of varying class distribution on learner behavior for medicare fraud detection with imbalanced big data
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-018-0051-3
– volume: 29
  start-page: 3415
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib113
  article-title: Geodata science-based mineral prospectivity mapping: a review
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09700-9
– volume: 71
  start-page: 853
  year: 2015
  ident: 10.1016/j.apgeochem.2023.105807_bib74
  article-title: Receiver operating characteristics (ROC) as validation tool for prospectivity models—a magmatic Ni--Cu case study from the Central Lapland Greenstone Belt, Northern Finland
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.09.007
– volume: 192
  start-page: 1
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib117
  article-title: Deep learning and its application in geochemical mapping
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2019.02.023
– volume: 37
  start-page: 1967
  issue: 12
  year: 2011
  ident: 10.1016/j.apgeochem.2023.105807_bib114
  article-title: Support vector machine: a tool for mapping mineral prospectivity
  publication-title: Computers \& Geosciences
  doi: 10.1016/j.cageo.2010.09.014
– volume: 24
  start-page: 2025
  issue: 13
  year: 2005
  ident: 10.1016/j.apgeochem.2023.105807_bib92
  article-title: The partial area under the summary ROC curve
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.2103
– volume: 12
  start-page: 547
  issue: 2
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib11
  article-title: Stable downward continuation of airborne potential field geophysical data: an investigation of stabilizer family
  publication-title: J. Min. Environ.
– volume: 2
  start-page: 303
  year: 2002
  ident: 10.1016/j.apgeochem.2023.105807_bib39
  article-title: Kiruna-type iron oxide-apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites
  publication-title: Hydrothermal Iron Oxide Copper Gold and Related Deposits: A Global Perspective
– volume: 83
  start-page: 72
  year: 2015
  ident: 10.1016/j.apgeochem.2023.105807_bib102
  article-title: Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping
  publication-title: Computers \& Geosciences
  doi: 10.1016/j.cageo.2015.07.006
– volume: 30
  start-page: 1011
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib109
  article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09789-y
– volume: 149
  year: 2023
  ident: 10.1016/j.apgeochem.2023.105807_bib106
  article-title: Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2023.105561
– volume: 55
  start-page: 171
  issue: 2
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib6
  article-title: Geochemical potential mapping of iron-oxide targets by Prediction-Area plot and Concentration-Number fractal model in Esfordi, Iran
  publication-title: Int. J. Min. Geol. Eng.
– volume: 75
  start-page: 16
  year: 2016
  ident: 10.1016/j.apgeochem.2023.105807_bib44
  article-title: Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.12.005
– volume: 86
  start-page: 75
  year: 2016
  ident: 10.1016/j.apgeochem.2023.105807_bib96
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Computers \& Geosciences
  doi: 10.1016/j.cageo.2015.10.006
– volume: 29
  start-page: 189
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib93
  article-title: Mapping mineral prospectivity via semi-supervised random forest
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09510-8
– volume: 51
  start-page: 109
  issue: 2
  year: 1994
  ident: 10.1016/j.apgeochem.2023.105807_bib36
  article-title: The separation of geochemical anomalies from background by fractal methods
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/0375-6742(94)90013-2
– volume: 303
  start-page: 622
  issue: 7
  year: 2003
  ident: 10.1016/j.apgeochem.2023.105807_bib81
  article-title: The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics
  publication-title: American Journal of Science
  doi: 10.2475/ajs.303.7.622
– volume: 25
  start-page: 3
  year: 2016
  ident: 10.1016/j.apgeochem.2023.105807_bib104
  article-title: Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-014-9261-9
– volume: 111
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib107
  article-title: Exploration information systems--A proposal for the future use of GIS in mineral exploration targeting
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2019.103005
– volume: 17
  issue: 8
  year: 2022
  ident: 10.1016/j.apgeochem.2023.105807_bib54
  article-title: Boosting k-means clustering with symbiotic organisms search for automatic clustering problems
  publication-title: Plos One
  doi: 10.1371/journal.pone.0272861
– volume: 8
  start-page: 108346
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib108
  article-title: Anomaly-based intrusion detection from network flow features using variational autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001350
– volume: 128
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib79
  article-title: Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2021.104940
– volume: 1142
  year: 2018
  ident: 10.1016/j.apgeochem.2023.105807_bib7
  article-title: Machine learning from theory to algorithms: an overview
  publication-title: J. Phys. Conf.
  doi: 10.1088/1742-6596/1142/1/012012
– volume: 17
  start-page: 185
  issue: 3
  year: 2002
  ident: 10.1016/j.apgeochem.2023.105807_bib82
  article-title: Factor analysis applied to regional geochemical data: problems and possibilities
  publication-title: Applied Geochemistry
  doi: 10.1016/S0883-2927(01)00066-X
– volume: 28
  start-page: 31
  issue: 1
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib33
  article-title: Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9375-6
– volume: 5
  start-page: 1315
  issue: 9
  year: 2010
  ident: 10.1016/j.apgeochem.2023.105807_bib66
  article-title: Receiver operating characteristic curve in diagnostic test assessment
  publication-title: Journal of Thoracic Oncology
  doi: 10.1097/JTO.0b013e3181ec173d
– volume: 16
  start-page: 2143
  year: 2023
  ident: 10.1016/j.apgeochem.2023.105807_bib41
  article-title: Hybridizing K-means clustering algorithm with harmony search and artificial bee colony optimizers for intelligence mineral prospectivity mapping
  publication-title: Earth Science Informatics
  doi: 10.1007/s12145-023-01019-2
– volume: 232
  year: 2022
  ident: 10.1016/j.apgeochem.2023.105807_bib94
  article-title: Transfer learning and siamese neural network based identification of geochemical anomalies for mineral exploration: a case study from the CuAu deposit in the NW Junggar area of northern Xinjiang Province, China
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2021.106904
– start-page: 1850
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib67
– volume: 14
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.apgeochem.2023.105807_bib3
  article-title: Measuring the performance of mineral-potential maps
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-005-4674-0
– volume: 124
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib77
  article-title: Modeling of Cu-Au prospectivity in the Carajás mineral province (Brazil) through machine learning: dealing with imbalanced training data
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2020.103611
– volume: 102
  start-page: 811
  year: 2018
  ident: 10.1016/j.apgeochem.2023.105807_bib98
  article-title: Mapping mineral prospectivity through big data analytics and a deep learning algorithm
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2018.10.006
– volume: 100
  start-page: 81
  year: 2014
  ident: 10.1016/j.apgeochem.2023.105807_bib9
  article-title: Hydro-geochemical processes in the Complexe Terminal aquifer of southern Tunisia: an integrated investigation based on geochemical and multivariate statistical methods
  publication-title: J. Afr. Earth Sci.
  doi: 10.1016/j.jafrearsci.2014.06.015
– volume: 12
  start-page: 4184
  issue: 9
  year: 2022
  ident: 10.1016/j.apgeochem.2023.105807_bib22
  article-title: Network intrusion detection model based on CNN and GRU
  publication-title: Appl. Sci.
  doi: 10.3390/app12094184
– year: 2015
  ident: 10.1016/j.apgeochem.2023.105807_bib99
– volume: 33
  start-page: 536
  issue: 3–4
  year: 2008
  ident: 10.1016/j.apgeochem.2023.105807_bib24
  article-title: Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2007.07.001
– volume: 16
  issue: 62
  year: 2022
  ident: 10.1016/j.apgeochem.2023.105807_bib4
  article-title: Integration of airborne magnetic and satellite imagery data to identify potential zones of iron occurrences using the prediction-area plot in the Esfordi area
  publication-title: Iranian J. Geol.
– volume: 64
  start-page: 639
  issue: 5
  year: 2017
  ident: 10.1016/j.apgeochem.2023.105807_bib31
  article-title: Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1080/08120099.2017.1328705
– volume: 120
  start-page: 347
  issue: 1
  year: 2006
  ident: 10.1016/j.apgeochem.2023.105807_bib57
  article-title: Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM10 particulates at the two sites of Kolkata, India
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-005-9067-7
– volume: 11
  start-page: 115
  issue: 1
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib68
  article-title: Detection of rare earth element anomalies in Esfordi phosphate deposit of Central Iran, using geostatistical-fractal simulation
  publication-title: Geopersia
– volume: 143
  year: 2022
  ident: 10.1016/j.apgeochem.2023.105807_bib28
  article-title: Mineral prospectivity mapping based on wavelet neural network and Monte Carlo simulations in the Nanling W-Sn metallogenic province
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2022.104765
– volume: 8
  start-page: 2967
  year: 2015
  ident: 10.1016/j.apgeochem.2023.105807_bib89
  article-title: Skarn mineral assemblages in the Esfordi iron oxide--apatite deposit, Bafq district, Central Iran
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-014-1326-x
– volume: vol. 9
  start-page: 392
  year: 2013
  ident: 10.1016/j.apgeochem.2023.105807_bib48
– volume: 180
  start-page: 15
  year: 2017
  ident: 10.1016/j.apgeochem.2023.105807_bib70
  article-title: Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at Hamich exploration area, east of Iran
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2017.05.008
– volume: 134
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib47
  article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm
  publication-title: Computers \& Geosciences
– volume: 6
  start-page: 3601
  issue: 10
  year: 2013
  ident: 10.1016/j.apgeochem.2023.105807_bib2
  article-title: Clustering of mineral prospectivity area as an unsupervised classification approach to explore copper deposit
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-012-0615-5
– start-page: 372
  year: 2014
  ident: 10.1016/j.apgeochem.2023.105807_bib58
– volume: 102
  start-page: 1111
  issue: 6
  year: 2007
  ident: 10.1016/j.apgeochem.2023.105807_bib55
  article-title: Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.102.6.1111
– volume: 113
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib45
  article-title: Stream sediment geochemical data analysis for district-scale mineral exploration targeting: measuring the performance of the spatial U-statistic and CA fractal modeling
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2019.103115
– volume: 39
  start-page: 85
  year: 1988
  ident: 10.1016/j.apgeochem.2023.105807_bib87
  article-title: Metallogeny of the precambrian in Iran
  publication-title: Precambrian Research
  doi: 10.1016/0301-9268(88)90053-8
– volume: 71
  start-page: 347
  issue: 3
  year: 2007
  ident: 10.1016/j.apgeochem.2023.105807_bib90
  article-title: Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology
  publication-title: Mineralogical Magazine
  doi: 10.1180/minmag.2007.071.3.347
– volume: 79
  start-page: 69
  year: 2015
  ident: 10.1016/j.apgeochem.2023.105807_bib103
  article-title: Prediction--area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling
  publication-title: Computers \& Geosciences
  doi: 10.1016/j.cageo.2015.03.007
– start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib42
  article-title: Autoencoders for unsupervised anomaly detection in high energy physics
  publication-title: Journal of High Energy Physics
– year: 2008
  ident: 10.1016/j.apgeochem.2023.105807_bib91
– volume: 9
  start-page: 270
  issue: 5
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib29
  article-title: A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition
  publication-title: Minerals
  doi: 10.3390/min9050270
– start-page: 1511
  year: 2015
  ident: 10.1016/j.apgeochem.2023.105807_bib95
  article-title: Learning discriminative reconstructions for unsupervised outlier removal
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 4
  start-page: 756
  issue: 7
  year: 2012
  ident: 10.1016/j.apgeochem.2023.105807_bib111
  article-title: Multivariate statistical approach to geochemical methods in water quality factor identification; application to the shallow aquifer system of the Yarmouk Basin of north Jordan
  publication-title: Research Journal of Environmental and Earth Sciences
– volume: 64
  start-page: 328
  year: 2015
  ident: 10.1016/j.apgeochem.2023.105807_bib78
  article-title: Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn–Pb deposits of the early Cambrian Zarigan–Chahmir Basin, Central Iran
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.07.013
– volume: 28
  start-page: 184
  issue: 1
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib100
  article-title: Two-way partial AUC and its properties
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/0962280217718866
– volume: 201
  start-page: 745
  issue: 3
  year: 1996
  ident: 10.1016/j.apgeochem.2023.105807_bib56
  article-title: A receiver operating characteristic partial area index for highly sensitive diagnostic tests
  publication-title: Radiology
  doi: 10.1148/radiology.201.3.8939225
– volume: 71
  start-page: 749
  year: 2015
  ident: 10.1016/j.apgeochem.2023.105807_bib32
  article-title: Mineral potential mapping with a restricted Boltzmann machine
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.08.012
– volume: 10
  start-page: 165
  issue: 3
  year: 2001
  ident: 10.1016/j.apgeochem.2023.105807_bib23
  article-title: Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines
  publication-title: Explor. Min. Geol.
  doi: 10.2113/0100165
– volume: 32
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.apgeochem.2023.105807_bib76
  article-title: Bayesian network classifiers for mineral potential mapping
  publication-title: Computers \& Geosciences
  doi: 10.1016/j.cageo.2005.03.018
– volume: 30
  start-page: 1977
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib46
  article-title: Regional-scale mineral prospectivity mapping: support vector machines and an improved data-driven multi-criteria decision-making technique
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09842-4
– volume: 46
  start-page: 272
  year: 2012
  ident: 10.1016/j.apgeochem.2023.105807_bib1
  article-title: Support vector machine for multi-classification of mineral prospectivity areas
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.12.014
– start-page: 1
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib12
  article-title: Two-step inversion of airborne geophysical data: a stable downward continuation approach for physical modelling
  publication-title: Acta Geophys.
– volume: 10
  start-page: 79
  issue: 2
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib80
  article-title: Mapping of mineral resources and lithological units: a review of remote sensing techniques
  publication-title: International Journal of Image and Data Fusion
  doi: 10.1080/19479832.2019.1589585
– volume: 29
  start-page: 203
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib63
  article-title: Prospectivity mapping for tungsten polymetallic mineral resources, Nanling metallogenic belt, south China: use of random forest algorithm from a perspective of data imbalance
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09564-8
– volume: 37
  start-page: 6579
  issue: 22
  year: 2022
  ident: 10.1016/j.apgeochem.2023.105807_bib65
  article-title: An integrated ASTER-based approach for mapping carbonatite and iron oxide-apatite deposits
  publication-title: Geocarto International
  doi: 10.1080/10106049.2021.1953617
– volume: 30
  start-page: 27
  issue: 1
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib62
  article-title: Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09742-z
– volume: 29
  start-page: 3443
  year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib116
  article-title: Effects of random negative training samples on mineral prospectivity mapping
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09668-6
– volume: vol. 71
  start-page: 477
  year: 2015
  ident: 10.1016/j.apgeochem.2023.105807_bib75
  article-title: Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration
– volume: 33
  start-page: 1479
  issue: 4
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib52
  article-title: Extended isolation forest
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2019.2947676
– volume: 6
  start-page: 1580
  year: 2016
  ident: 10.1016/j.apgeochem.2023.105807_bib13
  article-title: Economic geology of the χіv iron-oxide prospect, Bafq mining district, Central Iran: a preliminary approach
  publication-title: Open J. Geol.
  doi: 10.4236/ojg.2016.612112
– volume: 147
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib97
  article-title: A positive and unlabeled learning algorithm for mineral prospectivity mapping
  publication-title: Computers \& Geosciences
– volume: 184
  start-page: 150
  year: 2018
  ident: 10.1016/j.apgeochem.2023.105807_bib112
  article-title: Selection of an elemental association related to mineralization using spatial analysis
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2017.10.020
– volume: 85
  start-page: 103
  year: 2013
  ident: 10.1016/j.apgeochem.2023.105807_bib86
  article-title: Using ETM+ and ASTER sensors to identify iron occurrences in the Esfordi 1: 100,000 mapping sheet of Central Iran
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2013.05.003
– volume: 229
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib105
  article-title: Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: state-of-the-art and outlook
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2021.106839
– volume: 3
  start-page: 19
  year: 2010
  ident: 10.1016/j.apgeochem.2023.105807_bib10
  article-title: Types of machine learning algorithms
  publication-title: New Adv. Mach. Learn.
– year: 2008
  ident: 10.1016/j.apgeochem.2023.105807_bib26
– volume: 156
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib50
  article-title: A spatial-compositional feature fusion convolutional autoencoder for multivariate geochemical anomaly recognition
  publication-title: Computers \& Geosciences
– volume: 217
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib59
  article-title: Regional magnetic and gravity structures and distribution of mineral deposits in Central Iran: implications for mineral exploration
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2021.104828
– year: 1994
  ident: 10.1016/j.apgeochem.2023.105807_bib17
– volume: 47
  start-page: 757
  issue: 4
  year: 2000
  ident: 10.1016/j.apgeochem.2023.105807_bib20
  article-title: Artificial neural networks: a new method for mineral prospectivity mapping
  publication-title: Aust. J. Earth Sci.
  doi: 10.1046/j.1440-0952.2000.00807.x
– volume: 132
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib72
  article-title: Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenic belt (Central Iran), with implications for the Chadormalu iron-apatite deposit
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2021.104054
– volume: 71
  start-page: 804
  year: 2015
  ident: 10.1016/j.apgeochem.2023.105807_bib84
  article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.01.001
– volume: 233
  year: 2022
  ident: 10.1016/j.apgeochem.2023.105807_bib15
  article-title: Application of self-organizing map (SOM) and K-means clustering algorithms for portraying geochemical anomaly patterns in Moalleman district, NE Iran
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2021.106923
– volume: 38
  start-page: 93
  year: 2014
  ident: 10.1016/j.apgeochem.2023.105807_bib19
  article-title: Half-AUC for the evaluation of sensitive or specific classifiers
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2013.11.015
– volume: 20
  start-page: 143
  year: 2010
  ident: 10.1016/j.apgeochem.2023.105807_bib40
  article-title: Early Cambrian iron oxide-apatite-REE (U) deposits of the Bafq district, east-central Iran
  publication-title: Exploring for Iron Oxide Copper--Gold Deposits: Canada and Global Analogues. Geol Assoc Canada, Short Course Notes
– volume: 31
  start-page: 1121
  issue: 3
  year: 2022
  ident: 10.1016/j.apgeochem.2023.105807_bib115
  article-title: A geologically constrained variational autoencoder for mineral prospectivity mapping
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-022-10050-x
– volume: 30
  start-page: 3905
  issue: 6
  year: 2021
  ident: 10.1016/j.apgeochem.2023.105807_bib101
  article-title: A convolutional neural network of GoogLeNet applied in mineral prospectivity prediction based on multi-source geoinformation
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09934-1
– year: 1996
  ident: 10.1016/j.apgeochem.2023.105807_bib16
– year: 2020
  ident: 10.1016/j.apgeochem.2023.105807_bib27
– year: 2005
  ident: 10.1016/j.apgeochem.2023.105807_bib69
– start-page: 371
  year: 2019
  ident: 10.1016/j.apgeochem.2023.105807_bib73
SSID ssj0005702
Score 2.510118
Snippet In mineral potential mapping, supervised machine learning algorithms have shown great promise in delineating and prioritizing potential areas. However, since...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 105807
SubjectTerms algorithms
data collection
geochemistry
Iran
mineralization
spatial data
uncertainty
Title Recognition of mineralization-related anomaly patterns through an autoencoder neural network for mineral exploration targeting
URI https://www.proquest.com/docview/3153736670
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx2AvY1fW7oIGeysOjiXfHsNoV0bXwZZA3syRLfVCa4fWeUge-tt3dI0DgXV7MUGxFKPzRedYOuf7CPki46bkOVeRSnEJxIgAIijNNkfDU1kCs1XvP86ykxn_Pk_nG_1OU13Si1G93llX8j9WxTa0q66S_QfLhkGxAT-jffGKFsbrg2z8y2f_2KDv5tJQSLvKysiUqUhNxdrdgN7EMFSa7V3Q5sG_Niz7TlNZakYJTW2JBmttYrjJP3Qjah2Aa48VmzvuPZ4nsHXB7LnUClxWQi7Y8vJ2jVBbdzaR7LdcrfDOSQ8agheHk_MLcI2bsyh0qbaSaGV1bcLORMJcid5wAdM6cbb2P6y2aXG40OrCRZxHO9dwu51wNYKFe-aRHtx12bgtf1R_9rM6np2eVtOj-fQxeZLg64Je70b3g1Sf3OSehufZyvPb-TPbUcq2kzaRx_QFee5eGejE2v8leSTbV-TpNyPJvHpN7gcooJ2iu1FAHQqoRwF1KMAv6AAF1KKAOhRQRIEfkQ5QQAMK3pDZ8dH060nkVDUiYPm4jxTPVI5xZp0nIuPlWNXjJtU0_uW4aIADxFJmZZM3jHEhasUUqBpKBjWgd1OCvSV7bdfKd4TKMkmkYEUtZMk1xXHaAGjhIygEFzXsk8zPYlU7ynmtfHJd-dzCqypMf6Wnv7LTv0_i0HFhWVf-3uWzN1OFKNfHXtDKbnlXMXTqOcuyPD54wD3vybMNlj-Qvf52KT9i3NmLTwZUfwDRN46t
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+mineralization-related+anomaly+patterns+through+an+autoencoder+neural+network+for+mineral+exploration+targeting&rft.jtitle=Applied+geochemistry&rft.au=Mirzabozorg%2C+Seyyed+Ataollah+Agha+Seyyed&rft.au=Abedi%2C+Maysam&rft.date=2023-11-01&rft.issn=0883-2927&rft.volume=158+p.105807-&rft_id=info:doi/10.1016%2Fj.apgeochem.2023.105807&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon