Soil pH change induced by smelting activities affects secondary carbonate production and long-term Cd activity in subsoils
Cadmium (Cd) is a typical element with contamination risk caused by anthropogenic sources. Cd is known to associate with Fe (hydr)oxides in pH-neutral to slightly acidic soils. However, field evidence on the effects of high pH on the long-term migration and redistribution of Cd in the soil is lackin...
Saved in:
Published in | Applied geochemistry Vol. 152; p. 105663 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cadmium (Cd) is a typical element with contamination risk caused by anthropogenic sources. Cd is known to associate with Fe (hydr)oxides in pH-neutral to slightly acidic soils. However, field evidence on the effects of high pH on the long-term migration and redistribution of Cd in the soil is lacking. In this study, a comprehensive investigation of Cd, Pb, and Zn distribution in soils was performed at a Pb–Zn smelter site to unravel the pH control of long-term Cd activity in soils contaminated by non-ferrous metal smelting. Atmospheric deposition caused widespread contamination of the surface soil. In contrast, the discharge of heavy metals and alkaline waste liquid from two separate pollutant sources inside the smelter resulted in severe pollution migrating from the deeper layers up to a depth of 10 m. Elemental analysis showed that the Cd/Zn ratio in soil increased as the pH value increased, indicating that Cd was progressively decoupled from Zn and accumulated in the solid phase. Chemical extraction, SEM-EDS mapping, and micro-FTIR mapping analysis of soil particles revealed that most of the Cd were correlated with calcite, which formed as a secondary mineral at a higher pH. The production of secondary carbonate as a geochemical barrier enhanced the natural attenuation of Cd, which provides a reference for remediating Cd pollution. Overall, the results provide information for studying the transport and accumulation of heavy metals in deep soil layers. On the other hand, as carbonate is an unstable sink compared to other carriers, this mechanism should be considered in future studies on health and ecological risk assessment criteria for heavy metal pollutants in alkaline environments.
[Display omitted]
•Leaching of waste liquid brings severe pollution in deep layers up to 10 m in depth.•Alkaline substances showed extreme vertical migration capacity.•With increased pH value, Cd is progressively more enriched to Zn.•Most of Cd correlated with secondary mineral carbonates at a higher pH.•A comprehensive investigation of Cd distribution in soils near a smelter was performed. |
---|---|
AbstractList | Cadmium (Cd) is a typical element with contamination risk caused by anthropogenic sources. Cd is known to associate with Fe (hydr)oxides in pH-neutral to slightly acidic soils. However, field evidence on the effects of high pH on the long-term migration and redistribution of Cd in the soil is lacking. In this study, a comprehensive investigation of Cd, Pb, and Zn distribution in soils was performed at a Pb–Zn smelter site to unravel the pH control of long-term Cd activity in soils contaminated by non-ferrous metal smelting. Atmospheric deposition caused widespread contamination of the surface soil. In contrast, the discharge of heavy metals and alkaline waste liquid from two separate pollutant sources inside the smelter resulted in severe pollution migrating from the deeper layers up to a depth of 10 m. Elemental analysis showed that the Cd/Zn ratio in soil increased as the pH value increased, indicating that Cd was progressively decoupled from Zn and accumulated in the solid phase. Chemical extraction, SEM-EDS mapping, and micro-FTIR mapping analysis of soil particles revealed that most of the Cd were correlated with calcite, which formed as a secondary mineral at a higher pH. The production of secondary carbonate as a geochemical barrier enhanced the natural attenuation of Cd, which provides a reference for remediating Cd pollution. Overall, the results provide information for studying the transport and accumulation of heavy metals in deep soil layers. On the other hand, as carbonate is an unstable sink compared to other carriers, this mechanism should be considered in future studies on health and ecological risk assessment criteria for heavy metal pollutants in alkaline environments. Cadmium (Cd) is a typical element with contamination risk caused by anthropogenic sources. Cd is known to associate with Fe (hydr)oxides in pH-neutral to slightly acidic soils. However, field evidence on the effects of high pH on the long-term migration and redistribution of Cd in the soil is lacking. In this study, a comprehensive investigation of Cd, Pb, and Zn distribution in soils was performed at a Pb–Zn smelter site to unravel the pH control of long-term Cd activity in soils contaminated by non-ferrous metal smelting. Atmospheric deposition caused widespread contamination of the surface soil. In contrast, the discharge of heavy metals and alkaline waste liquid from two separate pollutant sources inside the smelter resulted in severe pollution migrating from the deeper layers up to a depth of 10 m. Elemental analysis showed that the Cd/Zn ratio in soil increased as the pH value increased, indicating that Cd was progressively decoupled from Zn and accumulated in the solid phase. Chemical extraction, SEM-EDS mapping, and micro-FTIR mapping analysis of soil particles revealed that most of the Cd were correlated with calcite, which formed as a secondary mineral at a higher pH. The production of secondary carbonate as a geochemical barrier enhanced the natural attenuation of Cd, which provides a reference for remediating Cd pollution. Overall, the results provide information for studying the transport and accumulation of heavy metals in deep soil layers. On the other hand, as carbonate is an unstable sink compared to other carriers, this mechanism should be considered in future studies on health and ecological risk assessment criteria for heavy metal pollutants in alkaline environments. [Display omitted] •Leaching of waste liquid brings severe pollution in deep layers up to 10 m in depth.•Alkaline substances showed extreme vertical migration capacity.•With increased pH value, Cd is progressively more enriched to Zn.•Most of Cd correlated with secondary mineral carbonates at a higher pH.•A comprehensive investigation of Cd distribution in soils near a smelter was performed. |
ArticleNumber | 105663 |
Author | Ouyang, Hao Ye, Jiaxin Yu, Qianqian Wu, Chen Bi, Xiangyang Wen, Junwei Zhang, Sili Ohnuki, Toshihiko |
Author_xml | – sequence: 1 givenname: Junwei surname: Wen fullname: Wen, Junwei organization: Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan, 430074, China – sequence: 2 givenname: Chen surname: Wu fullname: Wu, Chen organization: Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan, 430074, China – sequence: 3 givenname: Xiangyang surname: Bi fullname: Bi, Xiangyang organization: Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan, 430074, China – sequence: 4 givenname: Sili surname: Zhang fullname: Zhang, Sili organization: Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan, 430074, China – sequence: 5 givenname: Hao surname: Ouyang fullname: Ouyang, Hao organization: Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan, 430074, China – sequence: 6 givenname: Jiaxin surname: Ye fullname: Ye, Jiaxin organization: Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan, 430074, China – sequence: 7 givenname: Toshihiko surname: Ohnuki fullname: Ohnuki, Toshihiko organization: Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1-16 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan – sequence: 8 givenname: Qianqian orcidid: 0000-0002-4003-0744 surname: Yu fullname: Yu, Qianqian email: yuqq@cug.edu.cn organization: Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan, 430074, China |
BookMark | eNqNkc1O3DAURi1EJQbKM-Alm0z9k8TJggUaQamExKLt2rpxrgePEnuwPUjTp69HA12wKasrWd_5fH18Tk598EjIFWdLznj7bbOE7RqDecZ5KZiQ5bRpW3lCFrxTouq5rE_JgnWdrEQv1Bk5T2nDGGsUEwvy52dwE90-UPMMfo3U-XFncKTDnqYZp-z8moLJ7tVlh4mCtWhyoglN8CPEPTUQh-AhI93GUNjsgqfgRzoFv64yxpmuxveKfemnaTekcmn6Sr5YmBJevs0L8vv-7tfqoXp8-v5jdftYgVQ8VygYs31n6543tQCQ0rSjtICibkAh9KB6W4tB8NqqFmolORv6BoauM3ZEJi_I9bG3LPiyw5T17JLBaQKPYZe06GQtOFMdL9GbY9TEkFJEq43LcHhSjuAmzZk-ONcb_c-5PjjXR-eFVx_4bXRz0fQJ8vZIYjHx6jDqZBz68hUuFuN6DO6_HX8BxU2ljw |
CitedBy_id | crossref_primary_10_3390_app131910810 crossref_primary_10_1016_j_jcis_2024_05_021 crossref_primary_10_1016_j_jclepro_2023_140334 crossref_primary_10_1007_s11771_024_5631_6 crossref_primary_10_1016_j_scitotenv_2024_178147 crossref_primary_10_1016_j_ultsonch_2024_106764 crossref_primary_10_1016_j_envpol_2024_125259 crossref_primary_10_1007_s10661_023_12258_7 crossref_primary_10_1016_j_jhazmat_2024_134546 crossref_primary_10_1016_j_apgeochem_2023_105700 crossref_primary_10_1016_j_scitotenv_2023_167535 crossref_primary_10_1080_15320383_2024_2363302 crossref_primary_10_18006_2024_12_4__573_587 crossref_primary_10_1016_j_psep_2024_06_081 crossref_primary_10_3390_pr12010160 crossref_primary_10_1016_j_apgeochem_2024_105924 crossref_primary_10_1016_j_jhazmat_2024_135665 crossref_primary_10_1088_2515_7620_ad33ed crossref_primary_10_1016_j_apgeochem_2024_106149 |
Cites_doi | 10.1016/j.scitotenv.2020.136536 10.1006/jcis.1996.0575 10.1126/science.272.5259.223 10.1016/j.ecoenv.2020.110529 10.1016/j.geoderma.2013.04.033 10.1021/es00073a013 10.1016/j.geoderma.2019.06.015 10.1016/j.scitotenv.2020.144879 10.1016/j.jclepro.2020.124989 10.1016/j.gexplo.2015.02.005 10.1016/j.ijheh.2019.10.005 10.1007/s12583-012-0237-6 10.1007/s12583-020-1103-6 10.1016/j.epsl.2011.10.004 10.1016/j.geoderma.2014.06.029 10.1016/j.apgeochem.2014.03.008 10.1016/S0016-7037(99)00263-X 10.1021/es025558g 10.1016/j.envpol.2013.03.008 10.1051/agro:19980502 10.1080/00385417.1961.10770757 10.1021/es026083w 10.2475/ajs.305.6-8.854 10.1016/j.desal.2011.04.034 10.1016/j.ecoenv.2018.06.095 10.1016/j.chemosphere.2021.131350 10.1007/s13762-013-0206-3 10.1016/j.jhazmat.2020.123255 10.1080/09593330.2018.1521473 10.1007/s12583-017-0728-6 10.1016/j.jenvman.2018.03.055 10.1023/A:1005195920876 10.1016/S0269-7491(99)00165-7 10.1016/S0269-7491(01)00294-9 10.1016/j.ecoenv.2017.01.044 10.1016/j.molliq.2019.111197 10.1016/j.scitotenv.2018.09.081 10.1016/j.geoderma.2012.08.029 10.1002/etc.5620200823 10.1080/01490451.2013.774075 10.1016/j.chemgeo.2012.03.029 10.1016/j.conbuildmat.2021.125413 10.1016/j.etap.2019.103219 10.1021/ac50043a017 10.1021/es9026248 10.1100/2012/916705 10.1016/j.chemgeo.2015.02.029 10.1016/j.ecoenv.2022.113617 10.1021/es500612p 10.1007/s11631-019-00313-5 10.1016/j.ecoenv.2014.12.025 10.1016/j.ibiod.2014.07.007 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apgeochem.2023.105663 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9134 |
ExternalDocumentID | 10_1016_j_apgeochem_2023_105663 S0883292723001087 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a371t-e200f98f491542aa33c6d3fae245a7ea9a79f42b214f76a47310b95ab88cfde03 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Fri Jul 11 00:50:12 EDT 2025 Tue Jul 01 01:59:45 EDT 2025 Thu Apr 24 22:55:26 EDT 2025 Fri Feb 23 02:35:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Subsoil Alkaline soil Spatial distribution Pb-Zn smelter Cadmium pollution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a371t-e200f98f491542aa33c6d3fae245a7ea9a79f42b214f76a47310b95ab88cfde03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4003-0744 |
PQID | 2834210781 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2834210781 crossref_citationtrail_10_1016_j_apgeochem_2023_105663 crossref_primary_10_1016_j_apgeochem_2023_105663 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2023_105663 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied geochemistry |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Jiang, Sun, She, Yin, Fang, Xiao, Song, Liu (bib43) 2020; 196 Liang, Han, Xu, Sun, Wang, Tan (bib23) 2014 Xu, Fu, Liu, Guo (bib48) 2021; 286 Borch, Kretzschmar, Kappler, Van Cappellen, Ginder-Vogel, Voegelin, Campbell (bib4) 2010; 44 Liu, Zhang, Yang, Wang, Li, Shi, Li, Holm, Ou, Hu (bib24) 2021; 767 Tessier, Campbell, Bisson (bib40) 1979; 51 Zhang, Xing, Ge, Li, Zhu (bib53) 2017; 42 Francis, Dodge (bib10) 1990; 24 Mayanna, Peacock, Schäffner, Grawunder, Merten, Kothe, Büchel (bib28) 2015; 402 Cai, Wang, Luo, Chen, Zhu, Wang, Tang (bib6) 2019; 650 Charlatchka, Cambier (bib7) 2000; 118 Santos, Pontin, Ponzi, Stepanha, Martel, Schütz, Einloft, Dalla Vecchia (bib37) 2021; 313 Martinez, Ferris (bib27) 2005; 305 Vardhan, Kumar, Panda (bib41) 2019; 290 Reyes-Hinojosa, Lozada-Pérez, Zamudio Cuevas, López-Reyes, Martínez-Nava, Fernández-Torres, Olivos-Meza, Landa-Solis, Gutiérrez-Ruiz, Rojas del Castillo, Martínez-Flores (bib36) 2019; 72 Yu, Sasaki, Tanaka, Ohnuki, Hirajima (bib51) 2013; 30 Horner, Rickaby, Henderson (bib13) 2011; 312 Jung, Yun, Kim, Oh, Kang (bib15) 2014; 45 Lombi, Zhao, Zhang, Sun, Fitz, Zhang, McGrath (bib26) 2002; 118 Wang, Yang, Li, Zhang, Chen (bib44) 2022; 33 MEE (bib29) 2018 Zhang, Li, Takeuchi, Wang, Wang, You, Zhou (bib54) 2017; 28 Yang, Guo, Jiang, Sarkodie, Li, Shi, Deng, Zhang, Liu, Liang, Yin, Liu (bib50) 2022; 239 Yu, Sasaki, Tanaka, Ohnuki, Hirajima (bib52) 2012; 310–311 Nriagu (bib31) 1996; 272 Xiao, Shen, Du, Li, Lahori, Zhang (bib47) 2018; 162 Karimi Nezhad, Tabatabaii, Gholami (bib17) 2015; 152 Randall, Sherman, Ragnarsdottir, Collins (bib35) 1999; 63 Hua, Luo, Cheng, Xiang (bib14) 2012; 23 Pelfrêne, Waterlot, Douay (bib33) 2013; 178 Bhattacharya, Naik, Khare (bib2) 2018; 215 Waseem, Mustafa, Naeem, Koper, Shah (bib45) 2011; 277 Álvarez-Ayuso, Otones, Murciego, García-Sánchez, Regin (bib1) 2013; 207–208 Cheng, Tian, Zhao, Lu, Wang, Chen, Liu, Jia, Huang (bib8) 2014; 11 Venema, Hiemstra, van Riemsdijk (bib42) 1996; 183 Kumari, Pan, Lee, Achal (bib18) 2014; 94 Lombi, Hamon, McGrath, McLaughlin (bib25) 2003; 37 Oste, Dolfing, Ma, Lexmond (bib32) 2001; 20 Watanabe, Nogawa, Nishijo, Sakurai, Ishizaki, Morikawa, Kido, Nakagawa, Suwazono (bib46) 2020; 223 Xu, Dai, Skuza, Wei (bib49) 2021; 285 Muehe, Adaktylou, Obst, Zeitvogel, Behrens, Planar-Friedrich, Kraemer, Kappler (bib30) 2014; 48 Boisson, Mench, Sappin-Didier, Solda, Vangronsveld (bib3) 1998; 18 Egerić, Smičiklas, Dojčinović, Sikirić, Jović, Šljivić-Ivanović, Čakmak (bib9) 2019; 352 Gonzalez-Montero, Iglesias-Gonzalez, Romero, Mazuelos, Carranza (bib11) 2020; 41 Perel’man (bib34) 1961; 2 Li, Zhao, Jin, Hu, Zhong, He (bib22) 2020; 400 Shen, Liao, Ali, Mahar, Guo, Li, Xining, Awasthi, Wang, Zhang (bib38) 2017; 139 Boussen, Soubrand, Bril, Ouerfelli, Abdeljaouad (bib5) 2013; 192 Sterckeman, Douay, Proix, Fourrier (bib39) 2000; 107 Hamon, McLaughlin, Cozens (bib12) 2002; 36 Lan, Ning, Liu, Xiao, Chen, Xiao, Xiao (bib19) 2019; 38 Li, Lin, Cheng, Duan, Lei (bib21) 2015; 113 Kabir, Ray, Kim, Yoon, Jeon, Kim, Cho, Yun, Brown (bib16) 2012 Lee, Kang, Yu, Kwon (bib20) 2020; 713 Bhattacharya (10.1016/j.apgeochem.2023.105663_bib2) 2018; 215 MEE (10.1016/j.apgeochem.2023.105663_bib29) 2018 Wang (10.1016/j.apgeochem.2023.105663_bib44) 2022; 33 Lee (10.1016/j.apgeochem.2023.105663_bib20) 2020; 713 Tessier (10.1016/j.apgeochem.2023.105663_bib40) 1979; 51 Watanabe (10.1016/j.apgeochem.2023.105663_bib46) 2020; 223 Lombi (10.1016/j.apgeochem.2023.105663_bib25) 2003; 37 Yang (10.1016/j.apgeochem.2023.105663_bib50) 2022; 239 Boussen (10.1016/j.apgeochem.2023.105663_bib5) 2013; 192 Lan (10.1016/j.apgeochem.2023.105663_bib19) 2019; 38 Randall (10.1016/j.apgeochem.2023.105663_bib35) 1999; 63 Shen (10.1016/j.apgeochem.2023.105663_bib38) 2017; 139 Waseem (10.1016/j.apgeochem.2023.105663_bib45) 2011; 277 Xiao (10.1016/j.apgeochem.2023.105663_bib47) 2018; 162 Wang (10.1016/j.apgeochem.2023.105663_bib43) 2020; 196 Cheng (10.1016/j.apgeochem.2023.105663_bib8) 2014; 11 Pelfrêne (10.1016/j.apgeochem.2023.105663_bib33) 2013; 178 Perel’man (10.1016/j.apgeochem.2023.105663_bib34) 1961; 2 Martinez (10.1016/j.apgeochem.2023.105663_bib27) 2005; 305 Venema (10.1016/j.apgeochem.2023.105663_bib42) 1996; 183 Kabir (10.1016/j.apgeochem.2023.105663_bib16) 2012 Lombi (10.1016/j.apgeochem.2023.105663_bib26) 2002; 118 Cai (10.1016/j.apgeochem.2023.105663_bib6) 2019; 650 Nriagu (10.1016/j.apgeochem.2023.105663_bib31) 1996; 272 Xu (10.1016/j.apgeochem.2023.105663_bib48) 2021; 286 Kumari (10.1016/j.apgeochem.2023.105663_bib18) 2014; 94 Yu (10.1016/j.apgeochem.2023.105663_bib52) 2012; 310–311 Gonzalez-Montero (10.1016/j.apgeochem.2023.105663_bib11) 2020; 41 Xu (10.1016/j.apgeochem.2023.105663_bib49) 2021; 285 Li (10.1016/j.apgeochem.2023.105663_bib21) 2015; 113 Muehe (10.1016/j.apgeochem.2023.105663_bib30) 2014; 48 Yu (10.1016/j.apgeochem.2023.105663_bib51) 2013; 30 Liu (10.1016/j.apgeochem.2023.105663_bib24) 2021; 767 Francis (10.1016/j.apgeochem.2023.105663_bib10) 1990; 24 Karimi Nezhad (10.1016/j.apgeochem.2023.105663_bib17) 2015; 152 Santos (10.1016/j.apgeochem.2023.105663_bib37) 2021; 313 Zhang (10.1016/j.apgeochem.2023.105663_bib54) 2017; 28 Reyes-Hinojosa (10.1016/j.apgeochem.2023.105663_bib36) 2019; 72 Jung (10.1016/j.apgeochem.2023.105663_bib15) 2014; 45 Li (10.1016/j.apgeochem.2023.105663_bib22) 2020; 400 Liang (10.1016/j.apgeochem.2023.105663_bib23) 2014 Hamon (10.1016/j.apgeochem.2023.105663_bib12) 2002; 36 Hua (10.1016/j.apgeochem.2023.105663_bib14) 2012; 23 Mayanna (10.1016/j.apgeochem.2023.105663_bib28) 2015; 402 Álvarez-Ayuso (10.1016/j.apgeochem.2023.105663_bib1) 2013; 207–208 Oste (10.1016/j.apgeochem.2023.105663_bib32) 2001; 20 Zhang (10.1016/j.apgeochem.2023.105663_bib53) 2017; 42 Charlatchka (10.1016/j.apgeochem.2023.105663_bib7) 2000; 118 Boisson (10.1016/j.apgeochem.2023.105663_bib3) 1998; 18 Borch (10.1016/j.apgeochem.2023.105663_bib4) 2010; 44 Horner (10.1016/j.apgeochem.2023.105663_bib13) 2011; 312 Egerić (10.1016/j.apgeochem.2023.105663_bib9) 2019; 352 Vardhan (10.1016/j.apgeochem.2023.105663_bib41) 2019; 290 Sterckeman (10.1016/j.apgeochem.2023.105663_bib39) 2000; 107 |
References_xml | – volume: 107 start-page: 377 year: 2000 end-page: 389 ident: bib39 article-title: Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France publication-title: Environ. Pollut. – volume: 94 start-page: 98 year: 2014 end-page: 102 ident: bib18 article-title: Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature publication-title: Int. Biodeterior. Biodegrad. – volume: 72 year: 2019 ident: bib36 article-title: Toxicity of cadmium in musculoskeletal diseases publication-title: Environ. Toxicol. Pharmacol. – volume: 290 year: 2019 ident: bib41 article-title: A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives publication-title: J. Mol. Liq. – volume: 196 year: 2020 ident: bib43 article-title: Geochemical transfer of cadmium in river sediments near a lead-zinc smelter publication-title: Ecotoxicol. Environ. Saf. – volume: 192 start-page: 227 year: 2013 end-page: 236 ident: bib5 article-title: Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils publication-title: Geoderma – volume: 139 start-page: 254 year: 2017 end-page: 262 ident: bib38 article-title: Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China publication-title: Ecotoxicol. Environ. Saf. – volume: 223 start-page: 65 year: 2020 end-page: 70 ident: bib46 article-title: Relationship between cancer mortality and environmental cadmium exposure in the general Japanese population in cadmium non-polluted areas publication-title: Int. J. Hyg Environ. Health – volume: 2 start-page: 63 year: 1961 end-page: 73 ident: bib34 article-title: Geochemical principles of landscape classification publication-title: Sov. Geogr. – volume: 118 start-page: 143 year: 2000 end-page: 167 ident: bib7 article-title: Influence of reducing conditions on solubility of trace metals in contaminated soils. Water publication-title: Air Soil Pollut – volume: 272 year: 1996 ident: bib31 article-title: A history of global metal pollution publication-title: Science – volume: 286 year: 2021 ident: bib48 article-title: Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: a critical review publication-title: J. Clean. Prod. – volume: 118 start-page: 435 year: 2002 end-page: 443 ident: bib26 article-title: In situ fixation of metals in soils using bauxite residue: chemical assessment publication-title: Environ. Pollut. – volume: 650 start-page: 725 year: 2019 end-page: 733 ident: bib6 article-title: Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China publication-title: Sci. Total Environ. – volume: 713 year: 2020 ident: bib20 article-title: Assessment of trace metal pollution in roof dusts and soils near a large Zn smelter publication-title: Sci. Total Environ. – volume: 44 start-page: 15 year: 2010 end-page: 23 ident: bib4 article-title: Biogeochemical redox processes and their impact on contaminant dynamics publication-title: Environ. Sci. Technol. – volume: 152 start-page: 91 year: 2015 end-page: 109 ident: bib17 article-title: Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran publication-title: J. Geochem. Explor. – volume: 277 start-page: 221 year: 2011 end-page: 226 ident: bib45 article-title: Cd2+ sorption characteristics of iron coated silica publication-title: Desalination – volume: 28 start-page: 535 year: 2017 end-page: 544 ident: bib54 article-title: Heavy metal-polluted aerosols collected at a rural site, Northwest China publication-title: J. Earth Sci. – volume: 313 year: 2021 ident: bib37 article-title: Application of Fourier Transform infrared spectroscopy (FTIR) coupled with multivariate regression for calcium carbonate (CaCO3) quantification in cement publication-title: Construct. Build. Mater. – volume: 352 start-page: 241 year: 2019 end-page: 250 ident: bib9 article-title: Interactions of acidic soil near copper mining and smelting complex and waste-derived alkaline additives publication-title: Geoderma – volume: 51 start-page: 844 year: 1979 end-page: 851 ident: bib40 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal. Chem. – volume: 33 start-page: 1047 year: 2022 end-page: 1055 ident: bib44 article-title: Early warning of heavy metal pollution after tailing pond failure accident publication-title: J. Earth Sci. – volume: 310–311 start-page: 106 year: 2012 end-page: 113 ident: bib52 article-title: Structural factors of biogenic birnessite produced by fungus Paraconiothyrium sp. WL-2 strain affecting sorption of Co2 publication-title: Chem. Geol. – volume: 63 start-page: 2971 year: 1999 end-page: 2987 ident: bib35 article-title: The mechanism of cadmium surface complexation on iron oxyhydroxide minerals publication-title: Geochem. Cosmochim. Acta – volume: 312 start-page: 243 year: 2011 end-page: 253 ident: bib13 article-title: Isotopic fractionation of cadmium into calcite publication-title: Earth Planet Sci. Lett. – volume: 30 start-page: 829 year: 2013 end-page: 839 ident: bib51 article-title: Zinc sorption during bio-oxidation and precipitation of manganese modifies the layer stacking of biogenic birnessite publication-title: Geomicrobiol. J. – volume: 45 start-page: 82 year: 2014 end-page: 93 ident: bib15 article-title: Role of an impermeable layer in controlling groundwater chemistry in a basaltic aquifer beneath an agricultural field, Jeju Island, South Korea publication-title: Appl. Geochem. – volume: 767 year: 2021 ident: bib24 article-title: Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China publication-title: Sci. Total Environ. – volume: 36 start-page: 3991 year: 2002 end-page: 3996 ident: bib12 article-title: Mechanisms of attenuation of metal availability in in situ remediation treatments publication-title: Environ. Sci. Technol. – volume: 178 start-page: 80 year: 2013 end-page: 88 ident: bib33 article-title: Influence of land use on human bioaccessibility of metals in smelter-impacted soils publication-title: Environ. Pollut. – volume: 285 year: 2021 ident: bib49 article-title: Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites publication-title: Chemosphere – volume: 183 start-page: 515 year: 1996 end-page: 527 ident: bib42 article-title: Multisite adsorption of cadmium on goethite publication-title: J. Colloid Interface Sci. – volume: 113 start-page: 391 year: 2015 end-page: 399 ident: bib21 article-title: Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China publication-title: Ecotoxicol. Environ. Saf. – volume: 402 start-page: 6 year: 2015 end-page: 17 ident: bib28 article-title: Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH publication-title: Chem. Geol. – year: 2018 ident: bib29 article-title: Soil Environmental Quality Construction Land Soil Pollution Risk Control Standard (Trial)(GB36600-2018) – volume: 305 start-page: 854 year: 2005 end-page: 871 ident: bib27 article-title: Review of the surface chemical heterogeneity of bacteriogenic iron oxides: proton and cadmium sorption publication-title: Am. J. Sci. – volume: 18 start-page: 347 year: 1998 end-page: 359 ident: bib3 article-title: Short-term in situ immobilization of Cd and Ni by beringite and steel shots application to long-term sludged plots publication-title: Agronomie – volume: 162 start-page: 178 year: 2018 end-page: 183 ident: bib47 article-title: Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation publication-title: Ecotoxicol. Environ. Saf. – volume: 24 start-page: 373 year: 1990 end-page: 378 ident: bib10 article-title: Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide publication-title: Environ. Sci. Technol. – volume: 400 year: 2020 ident: bib22 article-title: A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter publication-title: J. Hazard Mater. – start-page: 9 year: 2014 end-page: 18 ident: bib23 article-title: In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite publication-title: Geoderma – volume: 48 year: 2014 ident: bib30 article-title: Correction to organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil publication-title: Environ. Sci. Technol. – volume: 42 start-page: 761 year: 2017 ident: bib53 article-title: Calculation method about hydraulic conductivity of quaternary aquitard in jianghan plain publication-title: Earth Sci. China Univ. Geosci. – volume: 239 year: 2022 ident: bib50 article-title: Cadmium, lead and arsenic contamination in an abandoned non-ferrous metal smelting site in southern China: chemical speciation and mobility publication-title: Ecotoxicol. Environ. Saf. – volume: 37 start-page: 979 year: 2003 end-page: 984 ident: bib25 article-title: Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques publication-title: Environ. Sci. Technol. – volume: 20 start-page: 1785 year: 2001 end-page: 1791 ident: bib32 article-title: Cadmium uptake by earthworms as related to the availability in the soil and the intestine publication-title: Environ. Toxicol. Chem. – volume: 11 start-page: 605 year: 2014 end-page: 616 ident: bib8 article-title: Atmospheric emission inventory of cadmium from anthropogenic sources publication-title: Int. J. Environ. Sci. Technol. – year: 2012 ident: bib16 article-title: Current status of trace metal pollution in soils affected by industrial activities publication-title: Sci. World J. – volume: 41 start-page: 1093 year: 2020 end-page: 1100 ident: bib11 article-title: Recovery of zinc and copper from copper smelter flue dust. Optimisation of sulphuric acid leaching publication-title: Environ. Technol. – volume: 207–208 start-page: 25 year: 2013 end-page: 34 ident: bib1 article-title: Zinc, cadmium and thallium distribution in soils and plants of an area impacted by sphalerite-bearing mine wastes publication-title: Geoderma – volume: 38 start-page: 190 year: 2019 end-page: 201 ident: bib19 article-title: Geochemical distribution, fractionation, and sources of heavy metals in dammed-river sediments: the Longjiang River, Southern China publication-title: Acta Geochim – volume: 23 start-page: 121 year: 2012 end-page: 128 ident: bib14 article-title: Health risks of organic contaminated soil in an out-of-service oil refinery site publication-title: J. Earth Sci. – volume: 215 start-page: 143 year: 2018 end-page: 152 ident: bib2 article-title: Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II) publication-title: J. Environ. Manag. – volume: 713 year: 2020 ident: 10.1016/j.apgeochem.2023.105663_bib20 article-title: Assessment of trace metal pollution in roof dusts and soils near a large Zn smelter publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136536 – volume: 183 start-page: 515 year: 1996 ident: 10.1016/j.apgeochem.2023.105663_bib42 article-title: Multisite adsorption of cadmium on goethite publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0575 – volume: 272 year: 1996 ident: 10.1016/j.apgeochem.2023.105663_bib31 article-title: A history of global metal pollution publication-title: Science doi: 10.1126/science.272.5259.223 – volume: 196 year: 2020 ident: 10.1016/j.apgeochem.2023.105663_bib43 article-title: Geochemical transfer of cadmium in river sediments near a lead-zinc smelter publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110529 – volume: 207–208 start-page: 25 year: 2013 ident: 10.1016/j.apgeochem.2023.105663_bib1 article-title: Zinc, cadmium and thallium distribution in soils and plants of an area impacted by sphalerite-bearing mine wastes publication-title: Geoderma doi: 10.1016/j.geoderma.2013.04.033 – volume: 24 start-page: 373 year: 1990 ident: 10.1016/j.apgeochem.2023.105663_bib10 article-title: Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide publication-title: Environ. Sci. Technol. doi: 10.1021/es00073a013 – year: 2018 ident: 10.1016/j.apgeochem.2023.105663_bib29 – volume: 352 start-page: 241 year: 2019 ident: 10.1016/j.apgeochem.2023.105663_bib9 article-title: Interactions of acidic soil near copper mining and smelting complex and waste-derived alkaline additives publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.015 – volume: 767 year: 2021 ident: 10.1016/j.apgeochem.2023.105663_bib24 article-title: Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144879 – volume: 286 year: 2021 ident: 10.1016/j.apgeochem.2023.105663_bib48 article-title: Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: a critical review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124989 – volume: 152 start-page: 91 year: 2015 ident: 10.1016/j.apgeochem.2023.105663_bib17 article-title: Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.02.005 – volume: 223 start-page: 65 year: 2020 ident: 10.1016/j.apgeochem.2023.105663_bib46 article-title: Relationship between cancer mortality and environmental cadmium exposure in the general Japanese population in cadmium non-polluted areas publication-title: Int. J. Hyg Environ. Health doi: 10.1016/j.ijheh.2019.10.005 – volume: 23 start-page: 121 year: 2012 ident: 10.1016/j.apgeochem.2023.105663_bib14 article-title: Health risks of organic contaminated soil in an out-of-service oil refinery site publication-title: J. Earth Sci. doi: 10.1007/s12583-012-0237-6 – volume: 33 start-page: 1047 year: 2022 ident: 10.1016/j.apgeochem.2023.105663_bib44 article-title: Early warning of heavy metal pollution after tailing pond failure accident publication-title: J. Earth Sci. doi: 10.1007/s12583-020-1103-6 – volume: 312 start-page: 243 year: 2011 ident: 10.1016/j.apgeochem.2023.105663_bib13 article-title: Isotopic fractionation of cadmium into calcite publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2011.10.004 – start-page: 9 year: 2014 ident: 10.1016/j.apgeochem.2023.105663_bib23 article-title: In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite publication-title: Geoderma doi: 10.1016/j.geoderma.2014.06.029 – volume: 45 start-page: 82 year: 2014 ident: 10.1016/j.apgeochem.2023.105663_bib15 article-title: Role of an impermeable layer in controlling groundwater chemistry in a basaltic aquifer beneath an agricultural field, Jeju Island, South Korea publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.03.008 – volume: 63 start-page: 2971 year: 1999 ident: 10.1016/j.apgeochem.2023.105663_bib35 article-title: The mechanism of cadmium surface complexation on iron oxyhydroxide minerals publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00263-X – volume: 36 start-page: 3991 year: 2002 ident: 10.1016/j.apgeochem.2023.105663_bib12 article-title: Mechanisms of attenuation of metal availability in in situ remediation treatments publication-title: Environ. Sci. Technol. doi: 10.1021/es025558g – volume: 42 start-page: 761 year: 2017 ident: 10.1016/j.apgeochem.2023.105663_bib53 article-title: Calculation method about hydraulic conductivity of quaternary aquitard in jianghan plain publication-title: Earth Sci. China Univ. Geosci. – volume: 178 start-page: 80 year: 2013 ident: 10.1016/j.apgeochem.2023.105663_bib33 article-title: Influence of land use on human bioaccessibility of metals in smelter-impacted soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.03.008 – volume: 18 start-page: 347 year: 1998 ident: 10.1016/j.apgeochem.2023.105663_bib3 article-title: Short-term in situ immobilization of Cd and Ni by beringite and steel shots application to long-term sludged plots publication-title: Agronomie doi: 10.1051/agro:19980502 – volume: 2 start-page: 63 year: 1961 ident: 10.1016/j.apgeochem.2023.105663_bib34 article-title: Geochemical principles of landscape classification publication-title: Sov. Geogr. doi: 10.1080/00385417.1961.10770757 – volume: 37 start-page: 979 year: 2003 ident: 10.1016/j.apgeochem.2023.105663_bib25 article-title: Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques publication-title: Environ. Sci. Technol. doi: 10.1021/es026083w – volume: 305 start-page: 854 year: 2005 ident: 10.1016/j.apgeochem.2023.105663_bib27 article-title: Review of the surface chemical heterogeneity of bacteriogenic iron oxides: proton and cadmium sorption publication-title: Am. J. Sci. doi: 10.2475/ajs.305.6-8.854 – volume: 277 start-page: 221 year: 2011 ident: 10.1016/j.apgeochem.2023.105663_bib45 article-title: Cd2+ sorption characteristics of iron coated silica publication-title: Desalination doi: 10.1016/j.desal.2011.04.034 – volume: 162 start-page: 178 year: 2018 ident: 10.1016/j.apgeochem.2023.105663_bib47 article-title: Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.06.095 – volume: 285 year: 2021 ident: 10.1016/j.apgeochem.2023.105663_bib49 article-title: Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131350 – volume: 11 start-page: 605 year: 2014 ident: 10.1016/j.apgeochem.2023.105663_bib8 article-title: Atmospheric emission inventory of cadmium from anthropogenic sources publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-013-0206-3 – volume: 400 year: 2020 ident: 10.1016/j.apgeochem.2023.105663_bib22 article-title: A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.123255 – volume: 41 start-page: 1093 year: 2020 ident: 10.1016/j.apgeochem.2023.105663_bib11 article-title: Recovery of zinc and copper from copper smelter flue dust. Optimisation of sulphuric acid leaching publication-title: Environ. Technol. doi: 10.1080/09593330.2018.1521473 – volume: 28 start-page: 535 year: 2017 ident: 10.1016/j.apgeochem.2023.105663_bib54 article-title: Heavy metal-polluted aerosols collected at a rural site, Northwest China publication-title: J. Earth Sci. doi: 10.1007/s12583-017-0728-6 – volume: 215 start-page: 143 year: 2018 ident: 10.1016/j.apgeochem.2023.105663_bib2 article-title: Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II) publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.03.055 – volume: 118 start-page: 143 year: 2000 ident: 10.1016/j.apgeochem.2023.105663_bib7 article-title: Influence of reducing conditions on solubility of trace metals in contaminated soils. Water publication-title: Air Soil Pollut doi: 10.1023/A:1005195920876 – volume: 107 start-page: 377 year: 2000 ident: 10.1016/j.apgeochem.2023.105663_bib39 article-title: Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(99)00165-7 – volume: 118 start-page: 435 year: 2002 ident: 10.1016/j.apgeochem.2023.105663_bib26 article-title: In situ fixation of metals in soils using bauxite residue: chemical assessment publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(01)00294-9 – volume: 139 start-page: 254 year: 2017 ident: 10.1016/j.apgeochem.2023.105663_bib38 article-title: Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.01.044 – volume: 290 year: 2019 ident: 10.1016/j.apgeochem.2023.105663_bib41 article-title: A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111197 – volume: 650 start-page: 725 year: 2019 ident: 10.1016/j.apgeochem.2023.105663_bib6 article-title: Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.081 – volume: 192 start-page: 227 year: 2013 ident: 10.1016/j.apgeochem.2023.105663_bib5 article-title: Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils publication-title: Geoderma doi: 10.1016/j.geoderma.2012.08.029 – volume: 20 start-page: 1785 year: 2001 ident: 10.1016/j.apgeochem.2023.105663_bib32 article-title: Cadmium uptake by earthworms as related to the availability in the soil and the intestine publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620200823 – volume: 30 start-page: 829 year: 2013 ident: 10.1016/j.apgeochem.2023.105663_bib51 article-title: Zinc sorption during bio-oxidation and precipitation of manganese modifies the layer stacking of biogenic birnessite publication-title: Geomicrobiol. J. doi: 10.1080/01490451.2013.774075 – volume: 310–311 start-page: 106 year: 2012 ident: 10.1016/j.apgeochem.2023.105663_bib52 article-title: Structural factors of biogenic birnessite produced by fungus Paraconiothyrium sp. WL-2 strain affecting sorption of Co2+ publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2012.03.029 – volume: 313 year: 2021 ident: 10.1016/j.apgeochem.2023.105663_bib37 article-title: Application of Fourier Transform infrared spectroscopy (FTIR) coupled with multivariate regression for calcium carbonate (CaCO3) quantification in cement publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125413 – volume: 72 year: 2019 ident: 10.1016/j.apgeochem.2023.105663_bib36 article-title: Toxicity of cadmium in musculoskeletal diseases publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2019.103219 – volume: 51 start-page: 844 year: 1979 ident: 10.1016/j.apgeochem.2023.105663_bib40 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal. Chem. doi: 10.1021/ac50043a017 – volume: 44 start-page: 15 year: 2010 ident: 10.1016/j.apgeochem.2023.105663_bib4 article-title: Biogeochemical redox processes and their impact on contaminant dynamics publication-title: Environ. Sci. Technol. doi: 10.1021/es9026248 – year: 2012 ident: 10.1016/j.apgeochem.2023.105663_bib16 article-title: Current status of trace metal pollution in soils affected by industrial activities publication-title: Sci. World J. doi: 10.1100/2012/916705 – volume: 402 start-page: 6 year: 2015 ident: 10.1016/j.apgeochem.2023.105663_bib28 article-title: Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2015.02.029 – volume: 239 year: 2022 ident: 10.1016/j.apgeochem.2023.105663_bib50 article-title: Cadmium, lead and arsenic contamination in an abandoned non-ferrous metal smelting site in southern China: chemical speciation and mobility publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2022.113617 – volume: 48 year: 2014 ident: 10.1016/j.apgeochem.2023.105663_bib30 article-title: Correction to organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil publication-title: Environ. Sci. Technol. doi: 10.1021/es500612p – volume: 38 start-page: 190 year: 2019 ident: 10.1016/j.apgeochem.2023.105663_bib19 article-title: Geochemical distribution, fractionation, and sources of heavy metals in dammed-river sediments: the Longjiang River, Southern China publication-title: Acta Geochim doi: 10.1007/s11631-019-00313-5 – volume: 113 start-page: 391 year: 2015 ident: 10.1016/j.apgeochem.2023.105663_bib21 article-title: Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2014.12.025 – volume: 94 start-page: 98 year: 2014 ident: 10.1016/j.apgeochem.2023.105663_bib18 article-title: Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2014.07.007 |
SSID | ssj0005702 |
Score | 2.490568 |
Snippet | Cadmium (Cd) is a typical element with contamination risk caused by anthropogenic sources. Cd is known to associate with Fe (hydr)oxides in pH-neutral to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105663 |
SubjectTerms | Alkaline soil atmospheric deposition cadmium Cadmium pollution calcite carbonates environmental assessment geochemistry heavy metals liquids Pb-Zn smelter pollutants pollution risk soil pH Spatial distribution Subsoil |
Title | Soil pH change induced by smelting activities affects secondary carbonate production and long-term Cd activity in subsoils |
URI | https://dx.doi.org/10.1016/j.apgeochem.2023.105663 https://www.proquest.com/docview/2834210781 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhpdBLSfqgSZugQq_qriXZknoLS9NtC7mkgdzEWBqHLVuvWW8Km0N-e0Z-hKZQcujRRiMZfdJoRv5mhrEPMlMRAZ1AG3KhrSxFiWhEMGhyl6kQQ0eQPSvmF_rbZX65w2ZjLEyiVQ66v9fpnbYe3kyG2Zw0i8XknPaHkk4aMqLJqbApolxrk1b5x9s_aB6m4x2mxiK1fsDxguYKU2GqFJIuVVeFvlD_OqH-0tXdAXS6x54PliM_6T9un-1g_YI9_dJV5t2-ZDfnq8WSN3Peh_Jy8rUJtcjLLW9_4TKxm3kKYvjdpVDl0PM4eJsc4gjrLQ-wLtNVOvKmzwJLiHGoI1-u6iuRNDifxbGLLfXPW1I6NGj7il2cfv4xm4uhsIIAZbKNQNoalbOVdmRASQClQhFVBSh1DgbBgXGVlqXMdGUK0IZswNLlUFobqohT9Zrt1qsa3zBuLEIRoSosOvL0nHUG0DoN1oItp-GAFeNk-jBkHU_FL5Z-pJf99Pco-ISC71E4YNN7waZPvPG4yKcRLf9gDXk6Hh4Xfj_i62mHpd8mUOPquvVkgGlyjI3NDv9ngLfsWXrqyZLv2O5mfY1HZNBsyuNuxR6zJydfv8_P7gBzlPij |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVgguiKcoTyNxtXZjO7HNrVpRUlr20lbqzRrbk2rRko02W6Tl12PnUVQk1APXJGNH_jzjmeSbGUI-8kwEBDQMtc-Z1Nwxh6iYV6hykwkffEeQXRTlhfx6mV_ukfmYC5NolYPt7216Z62HK9NhNafNcjk9i_ohuOEqOtExqNDqHtlP1anyCdk_PD4pF3-YHqqjHqbnWRK4RfOC5gpTb6qUlc5F14i-EP86pP4y190ZdPSYPBqcR3rYv98Tsof1U3L_S9ecd_eM_DpbL1e0KWmfzUtjuB2BC9TtaPsDV4ngTFMew8-uiiqFnspB2xQTB9jsqIeNS1_TkTZ9IdgIGoU60NW6vmLJiNN5GIfYxfFpG-1OnLR9Ti6OPp_PSzb0VmAgVLZlGLWjMrqSJvpQHEAIXwRRAXKZg0IwoEwlueOZrFQBUkU30JkcnNa-CjgTL8ikXtf4klClEYoAVaHRxGDPaKMAtZGgNWg38wekGBfT-qHweOp_sbIjw-y7vUHBJhRsj8IBmd0INn3tjbtFPo1o2VvbyMYT4m7hDyO-NipZ-nMCNa6vWxt9MBljY6WzV_8zwXvyoDz_dmpPjxcnr8nDdKfnTr4hk-3mGt9G_2br3g379zfw5vtU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+pH+change+induced+by+smelting+activities+affects+secondary+carbonate+production+and+long-term+Cd+activity+in+subsoils&rft.jtitle=Applied+geochemistry&rft.au=Wen%2C+Junwei&rft.au=Wu%2C+Chen&rft.au=Bi%2C+Xiangyang&rft.au=Zhang%2C+Sili&rft.date=2023-05-01&rft.issn=0883-2927&rft.volume=152+p.105663-&rft_id=info:doi/10.1016%2Fj.apgeochem.2023.105663&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |