Strontium isotopes as tracers for water-rocks interactions of groundwater to delineate iodine enrichment in aquifer of Datong Basin, northern China
Groundwater iodine has direct importance for human dietary iodine intake in areas where drinking water is of groundwater origin. Iodine affected aquifer system in Datong Basin of North China was studied with a focus on strontium isotopes and major ion chemistry, in order to estimate the controlling...
Saved in:
Published in | Applied geochemistry Vol. 158; p. 105783 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Groundwater iodine has direct importance for human dietary iodine intake in areas where drinking water is of groundwater origin. Iodine affected aquifer system in Datong Basin of North China was studied with a focus on strontium isotopes and major ion chemistry, in order to estimate the controlling hydrological and geochemical processes. The data revealed a rather complicated mixing pattern of various groundwater source end-members that were subject to different water-rock interactions, such as silicate weathering, evaporite and carbonate dissolution. Groundwater from the recharge area of east margin was characteristic by 87Sr/86Sr ratios higher than 0.71643, which implied the silicate weathering process. Groundwater from the discharge area and west margin might be originated from evaporite and carbonate dissolution processes with low 87Sr/86Sr ratios. Mixing models of three end-members based on Sr isotope and contents reflected that the type of water-rock interactions shifted from silicate weathering towards evaporite dissolution along the groundwater flow path from east margin to basin center. Abundant iodine and natural organic matters (NOMs) were discovered in groundwater located at the discharge area with Sr isotopic values between 0.710 and 0.717, implying evaporite dissolution governing iodine and NOMs enrichment in groundwater. Silicate weathering process had negligible influence on iodine and NOMs enrichment in groundwater. While carbonate dissolution made negative contribution for iodine releasing to aqueous phases. The PHREEQC inverse modeling results illustrated that dissolution of halite, calcite, gypsum and kaolinite and cation exchange significantly changed chemical composition of groundwater along the groundwater paths from the two basin margins to central area.
•Elevated iodine groundwater was found in Datong Basin.•Silicate weathering caused high 87Sr/86Sr values.•Evaporite and carbonate dissolution caused low 87Sr/86Sr values.•Evaporite dissolution governed iodine releasing to groundwater.•Iodine enrichment was related to NOMs by water-rock interaction. |
---|---|
AbstractList | Groundwater iodine has direct importance for human dietary iodine intake in areas where drinking water is of groundwater origin. Iodine affected aquifer system in Datong Basin of North China was studied with a focus on strontium isotopes and major ion chemistry, in order to estimate the controlling hydrological and geochemical processes. The data revealed a rather complicated mixing pattern of various groundwater source end-members that were subject to different water-rock interactions, such as silicate weathering, evaporite and carbonate dissolution. Groundwater from the recharge area of east margin was characteristic by 87Sr/86Sr ratios higher than 0.71643, which implied the silicate weathering process. Groundwater from the discharge area and west margin might be originated from evaporite and carbonate dissolution processes with low 87Sr/86Sr ratios. Mixing models of three end-members based on Sr isotope and contents reflected that the type of water-rock interactions shifted from silicate weathering towards evaporite dissolution along the groundwater flow path from east margin to basin center. Abundant iodine and natural organic matters (NOMs) were discovered in groundwater located at the discharge area with Sr isotopic values between 0.710 and 0.717, implying evaporite dissolution governing iodine and NOMs enrichment in groundwater. Silicate weathering process had negligible influence on iodine and NOMs enrichment in groundwater. While carbonate dissolution made negative contribution for iodine releasing to aqueous phases. The PHREEQC inverse modeling results illustrated that dissolution of halite, calcite, gypsum and kaolinite and cation exchange significantly changed chemical composition of groundwater along the groundwater paths from the two basin margins to central area.
•Elevated iodine groundwater was found in Datong Basin.•Silicate weathering caused high 87Sr/86Sr values.•Evaporite and carbonate dissolution caused low 87Sr/86Sr values.•Evaporite dissolution governed iodine releasing to groundwater.•Iodine enrichment was related to NOMs by water-rock interaction. Groundwater iodine has direct importance for human dietary iodine intake in areas where drinking water is of groundwater origin. Iodine affected aquifer system in Datong Basin of North China was studied with a focus on strontium isotopes and major ion chemistry, in order to estimate the controlling hydrological and geochemical processes. The data revealed a rather complicated mixing pattern of various groundwater source end-members that were subject to different water-rock interactions, such as silicate weathering, evaporite and carbonate dissolution. Groundwater from the recharge area of east margin was characteristic by ⁸⁷Sr/⁸⁶Sr ratios higher than 0.71643, which implied the silicate weathering process. Groundwater from the discharge area and west margin might be originated from evaporite and carbonate dissolution processes with low ⁸⁷Sr/⁸⁶Sr ratios. Mixing models of three end-members based on Sr isotope and contents reflected that the type of water-rock interactions shifted from silicate weathering towards evaporite dissolution along the groundwater flow path from east margin to basin center. Abundant iodine and natural organic matters (NOMs) were discovered in groundwater located at the discharge area with Sr isotopic values between 0.710 and 0.717, implying evaporite dissolution governing iodine and NOMs enrichment in groundwater. Silicate weathering process had negligible influence on iodine and NOMs enrichment in groundwater. While carbonate dissolution made negative contribution for iodine releasing to aqueous phases. The PHREEQC inverse modeling results illustrated that dissolution of halite, calcite, gypsum and kaolinite and cation exchange significantly changed chemical composition of groundwater along the groundwater paths from the two basin margins to central area. |
ArticleNumber | 105783 |
Author | Xie, Xianjun Li, Junxia Qian, Kun Sun, Haowei |
Author_xml | – sequence: 1 givenname: Kun surname: Qian fullname: Qian, Kun organization: School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China – sequence: 2 givenname: Haowei surname: Sun fullname: Sun, Haowei organization: School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China – sequence: 3 givenname: Junxia surname: Li fullname: Li, Junxia email: jxli@cug.edu.cn organization: School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China – sequence: 4 givenname: Xianjun surname: Xie fullname: Xie, Xianjun organization: School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China |
BookMark | eNqNkT2PEzEQhi10SOQOfgMuKdicvd7PguLI8SWdRAHUlmOPkwm7npztPcTv4A_jEERBA5XHo-eZ4n0v2UWgAIw9l2ItheyuD2tz3AHZPczrWtSqbNt-UI_YSg59XY1SNRdsJYZBVfVY90_YZUoHIQok6hX78SlHChmXmWOiTEdI3CSeo7EQE_cU-TeTIVaR7NfEMZTZ2IwUEifPd5GW4H4RPBN3MGGA8uNIrkwcQkS7nyHkonJzv6AvZBFvTaaw469NwvCSB4p5DzHwzR6DecoeezMlePb7vWJf3r75vHlf3X1892Fzc1cZ1ctcbVs3etl7oRqrejf0wrmt99Io67rGj41ot0p21jkHxgvTdcqPWy-tVA46J9QVe3G-e4x0v0DKesZkYZpMAFqSVrJtZNt2Q1_QV2fURkopgtcWsznFUJLCSUuhT2Xog_5Thj6Voc9lFL__yz9GnE38_h_mzdmEksQDQtTJIgQLDiPYrB3hP2_8BNMNsG4 |
CitedBy_id | crossref_primary_10_1016_j_apgeochem_2024_106030 crossref_primary_10_1038_s41598_024_83601_2 crossref_primary_10_3724_EE_1672_9250_2024_52_067 |
Cites_doi | 10.1016/j.gexplo.2012.08.019 10.1007/s12403-020-00348-7 10.1039/c3em30841c 10.1016/j.jenvrad.2015.12.022 10.1016/j.apgeochem.2021.105068 10.1016/j.jhydrol.2006.01.006 10.1016/j.chemer.2015.07.003 10.1016/j.gexplo.2012.11.016 10.1016/j.apgeochem.2020.104698 10.1016/j.envpol.2021.116493 10.1016/j.gca.2011.10.034 10.1016/j.jhydrol.2020.124860 10.1016/j.gexplo.2005.08.002 10.1021/es902865s 10.1016/j.scitotenv.2020.138460 10.1016/j.apgeochem.2008.12.015 10.1016/j.scitotenv.2016.06.196 10.1007/s12665-016-5781-4 10.1016/j.jhazmat.2015.07.080 10.1016/j.gca.2009.02.016 10.1016/j.scitotenv.2018.05.019 10.1016/j.gca.2016.11.032 10.3390/w10111700 10.1016/j.gexplo.2013.02.008 10.1007/s12665-014-3952-8 10.1007/s11356-020-11159-3 10.1080/10643389.2020.1807452 10.1016/j.proeps.2016.12.089 10.1016/j.proeps.2013.03.183 10.1130/G31145.1 10.1016/j.scitotenv.2016.08.087 10.1016/j.jhydrol.2012.10.016 10.1016/j.scitotenv.2013.08.092 10.1016/j.scitotenv.2020.140922 10.1016/j.maturitas.2011.10.001 10.1016/j.jconhyd.2017.04.008 10.1007/s12665-017-6775-6 10.1016/j.chemosphere.2018.09.027 10.1016/j.jhydrol.2019.124441 10.1016/j.scitotenv.2017.05.127 10.1016/j.gexplo.2009.11.002 10.1016/j.apgeochem.2018.06.006 10.1016/j.gca.2015.03.032 10.1016/j.gca.2016.07.012 10.1016/j.chemgeo.2006.04.004 10.1016/j.jhydrol.2017.12.013 10.1016/j.jconhyd.2021.103894 10.1016/j.jhydrol.2011.12.017 10.1016/j.scitotenv.2015.08.144 10.1007/s11356-018-1843-3 10.1016/j.apgeochem.2016.03.011 10.1016/0160-4120(84)90139-9 10.1016/j.jhydrol.2016.10.002 10.1016/S0883-2927(02)00069-0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apgeochem.2023.105783 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9134 |
ExternalDocumentID | 10_1016_j_apgeochem_2023_105783 S0883292723002287 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a371t-b5d9f17f034c37d870ddbff1a3cd64f9405b316cdddeaf0a663f9bf1c13de6d03 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Fri Jul 11 15:17:01 EDT 2025 Tue Jul 01 01:59:45 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Fri Feb 23 02:35:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrogeochemistry Water-rock interactions Groundwater Strontium isotopes Iodine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a371t-b5d9f17f034c37d870ddbff1a3cd64f9405b316cdddeaf0a663f9bf1c13de6d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3154155687 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3154155687 crossref_citationtrail_10_1016_j_apgeochem_2023_105783 crossref_primary_10_1016_j_apgeochem_2023_105783 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2023_105783 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2023 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied geochemistry |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tang, Xu, Zhang, Huang, Liu, Wang, Yang, Liu (bib38) 2013; 135 Zhang, Chen, Cao, Tian, Hu, Mi, Wu (bib54) 2021; 28 Christensen, Dafflon, Shiel, Tokunaga, Wan, Faybishenko, Dong, Williams, Hobson, Brown (bib8) 2018; 637–638 Zia, Watts, Gardner, Chenery (bib56) 2015; 73 Xu, Ma, Shi, Zhang, Wang, Dong (bib52) 2013; 7 Santoni, Huneau, Garel, Aquilina, Vergnaud-Ayraud, Labasque, Celle-Jeanton (bib35) 2016; 573 Lu, Jenkyns, Rickaby (bib27) 2010; 38 Alonso-Azcárate, Bottrell, Mas (bib1) 2006; 234 Nigro, Sappa, Barbieri (bib29) 2017; 17 Huang, Liu, Li, Zhang, Chen (bib16) 2020; 585 Fox, Davis, Luther (bib10) 2009; 73 Andersen, Iversen, Terpling (bib4) 2012; 71 Watts, O"Reilly, Maricelli, Coleman, Ander, Ward (bib45) 2010; 107 Kaown, Koh, Mayer, Ju, Kim, Lee, Lee, Park, Lee (bib18) 2021; 273 Duan, Wang, Sun, Zhang, Sun (bib9) 2020; 12 Rao, Jin, Jiang, Tan, Han, Tang (bib34) 2015; 75 Boschetti, Awaleh, Barbieri (bib7) 2018; 10 Álvarez, Reich, Snyder, Pérez-Fodich, Muramatsu, Daniele, Fehn (bib3) 2016; 68 Li, Wang, Guo, Xie, Zhang, Liu, Kong (bib21) 2014; 468–469 Han (bib14) 2008; 31 Togo, Takahashi, Amano, Matsuzaki, Suzuki, Terada, Muramatsu, Ito, Iwatsuki (bib39) 2016; 191 Pi, Wang, Xie, Su, Ma, Li, Liu (bib30) 2015; 300 Álvarez, Reich, Pérez-Fodich, Snyder, Muramatsu, Vargas, Fehn (bib2) 2015; 161 Neymark, Premo, Emsbo (bib28) 2018; 96 Wang, Li, Ma, Xie, Gan (bib43) 2020 Wei, Nghiem, Ma, Sun, Gong, Zhou, Prommer (bib46) 2021; 243 Li, Wang, Xie, Zhang, Guo (bib24) 2013; 15 Qian, Li, Chi, Liu, Wang, Xie (bib32) 2020; 730 Lei, Wang, Sun, Zhang (bib20) 2016; 75 Simonetti, Buzon, Corcoran, Breidenstein, Emberling (bib37) 2021; 132 Wang, Li, Ma, Xie, Deng, Gan (bib42) 2021; 51 Li, Wang, Xie (bib22) 2016; 544 Wen, Zhou, Zhou, Liu, Huang, Li (bib47) 2018; 557 Zhang, Wu, Sun, Hu, Zhang, Xiang (bib55) 2018; 25 Fox, Kent, Davis (bib11) 2010; 44 Bakari, Aagaard, Vogt, Ruden, Johansen, Vuai (bib5) 2013; 130 Jiang, Huang, Jiang, Dong, Shi, Li, Wang (bib17) 2023 Shetaya, Young, Watts, Ander, Bailey (bib36) 2012; 77 Kim, Choi, Kim, Ryu, Lee (bib19) 2020; 581 Whitehead (bib48) 1984; 10 Qian, Li, Xie, Wang (bib33) 2017; 601–602 Li, Zhou, Wang, Xie, Qian (bib26) 2017; 201 Barbieri, Morotti (bib6) 2003; 18 Li, Wang, Xue, Xie, Wang (bib25) 2020; 745 Podder, Lin, Sun, Botis, Tse, Chen, Hu, Li, Seaman, Pan (bib31) 2017; 198 Zou, Yang, Zhang (bib57) 2018; 212 Frei, Frei, Kristiansen, Jessen, Hansen (bib12) 2020 Guo, Wang (bib13) 2005; 87 Xie, Wang, Su, Li, Li (bib50) 2012; 424–425 Wang, Shvartsev, Su (bib44) 2009; 24 Xu, Zhang, Sugiyama, Ohte, Ho, Fujitake, Kaplan, Yeager, Schwehr, Santschi (bib51) 2016; 153 Herod, Li, Pellerin, Kieser, Clark (bib15) 2016; 569–570 Voutchkova, Ernstsen, Kristiansen, Hansen (bib40) 2017; 76 Zhang, Wang, Qian, Ma, Zhang, Zhan, Zhang, Fei, Wang (bib53) 2013; 135 Li, Wang, Xie, DePaolo (bib23) 2016; 543 Wang, Guo, Su, Ma (bib41) 2006; 328 Xie, Wang, Ellis, Su, Li, Li, Duan (bib49) 2013; 476 Li (10.1016/j.apgeochem.2023.105783_bib26) 2017; 201 Togo (10.1016/j.apgeochem.2023.105783_bib39) 2016; 191 Guo (10.1016/j.apgeochem.2023.105783_bib13) 2005; 87 Christensen (10.1016/j.apgeochem.2023.105783_bib8) 2018; 637–638 Qian (10.1016/j.apgeochem.2023.105783_bib33) 2017; 601–602 Li (10.1016/j.apgeochem.2023.105783_bib25) 2020; 745 Tang (10.1016/j.apgeochem.2023.105783_bib38) 2013; 135 Lu (10.1016/j.apgeochem.2023.105783_bib27) 2010; 38 Fox (10.1016/j.apgeochem.2023.105783_bib10) 2009; 73 Huang (10.1016/j.apgeochem.2023.105783_bib16) 2020; 585 Duan (10.1016/j.apgeochem.2023.105783_bib9) 2020; 12 Shetaya (10.1016/j.apgeochem.2023.105783_bib36) 2012; 77 Boschetti (10.1016/j.apgeochem.2023.105783_bib7) 2018; 10 Han (10.1016/j.apgeochem.2023.105783_bib14) 2008; 31 Nigro (10.1016/j.apgeochem.2023.105783_bib29) 2017; 17 Rao (10.1016/j.apgeochem.2023.105783_bib34) 2015; 75 Wen (10.1016/j.apgeochem.2023.105783_bib47) 2018; 557 Wang (10.1016/j.apgeochem.2023.105783_bib41) 2006; 328 Jiang (10.1016/j.apgeochem.2023.105783_bib17) 2023 Álvarez (10.1016/j.apgeochem.2023.105783_bib3) 2016; 68 Kim (10.1016/j.apgeochem.2023.105783_bib19) 2020; 581 Li (10.1016/j.apgeochem.2023.105783_bib22) 2016; 544 Watts (10.1016/j.apgeochem.2023.105783_bib45) 2010; 107 Podder (10.1016/j.apgeochem.2023.105783_bib31) 2017; 198 Santoni (10.1016/j.apgeochem.2023.105783_bib35) 2016; 573 Xu (10.1016/j.apgeochem.2023.105783_bib52) 2013; 7 Pi (10.1016/j.apgeochem.2023.105783_bib30) 2015; 300 Fox (10.1016/j.apgeochem.2023.105783_bib11) 2010; 44 Li (10.1016/j.apgeochem.2023.105783_bib24) 2013; 15 Bakari (10.1016/j.apgeochem.2023.105783_bib5) 2013; 130 Frei (10.1016/j.apgeochem.2023.105783_bib12) 2020 Álvarez (10.1016/j.apgeochem.2023.105783_bib2) 2015; 161 Li (10.1016/j.apgeochem.2023.105783_bib21) 2014; 468–469 Wang (10.1016/j.apgeochem.2023.105783_bib42) 2021; 51 Herod (10.1016/j.apgeochem.2023.105783_bib15) 2016; 569–570 Zhang (10.1016/j.apgeochem.2023.105783_bib54) 2021; 28 Zou (10.1016/j.apgeochem.2023.105783_bib57) 2018; 212 Li (10.1016/j.apgeochem.2023.105783_bib23) 2016; 543 Zhang (10.1016/j.apgeochem.2023.105783_bib55) 2018; 25 Simonetti (10.1016/j.apgeochem.2023.105783_bib37) 2021; 132 Andersen (10.1016/j.apgeochem.2023.105783_bib4) 2012; 71 Kaown (10.1016/j.apgeochem.2023.105783_bib18) 2021; 273 Zia (10.1016/j.apgeochem.2023.105783_bib56) 2015; 73 Qian (10.1016/j.apgeochem.2023.105783_bib32) 2020; 730 Wang (10.1016/j.apgeochem.2023.105783_bib44) 2009; 24 Alonso-Azcárate (10.1016/j.apgeochem.2023.105783_bib1) 2006; 234 Lei (10.1016/j.apgeochem.2023.105783_bib20) 2016; 75 Wei (10.1016/j.apgeochem.2023.105783_bib46) 2021; 243 Xu (10.1016/j.apgeochem.2023.105783_bib51) 2016; 153 Voutchkova (10.1016/j.apgeochem.2023.105783_bib40) 2017; 76 Barbieri (10.1016/j.apgeochem.2023.105783_bib6) 2003; 18 Whitehead (10.1016/j.apgeochem.2023.105783_bib48) 1984; 10 Zhang (10.1016/j.apgeochem.2023.105783_bib53) 2013; 135 Xie (10.1016/j.apgeochem.2023.105783_bib49) 2013; 476 Xie (10.1016/j.apgeochem.2023.105783_bib50) 2012; 424–425 Wang (10.1016/j.apgeochem.2023.105783_bib43) 2020 Neymark (10.1016/j.apgeochem.2023.105783_bib28) 2018; 96 |
References_xml | – volume: 17 start-page: 352 year: 2017 end-page: 355 ident: bib29 article-title: Strontium isotope as tracers of groundwater contamination publication-title: Proc. Earth and Planet. Sci. – volume: 201 start-page: 39 year: 2017 ident: bib26 article-title: Sorption and speciation of iodine in groundwater system: the roles of organic matter and organic-mineral complexes publication-title: J. Contam. Hydrol. – volume: 96 start-page: 11 year: 2018 end-page: 23 ident: bib28 article-title: Combined radiogenic (87Sr/86Sr, 234U/238U) and stable (δ88Sr) isotope systematics as tracers of anthropogenic groundwater contamination within the Williston BasinUSA publication-title: Appl. Geochem. – volume: 15 start-page: 848 year: 2013 end-page: 859 ident: bib24 article-title: Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China publication-title: Environ. sci. Proc. impacts – volume: 31 start-page: 138 year: 2008 end-page: 146 ident: bib14 article-title: Characters of the groundwater flow field and hydrochemistry field in Datong Basin publication-title: Geological Survey & Research – volume: 18 start-page: 117 year: 2003 end-page: 125 ident: bib6 article-title: Hydrogeochemistry and strontium isotopes of spring and mineral waters from Monte Vulture volcano publication-title: Italy. Appl. Geochem. – volume: 557 start-page: 211 year: 2018 end-page: 221 ident: bib47 article-title: Coupled S and Sr isotope evidences for elevated arsenic concentrations in groundwater from the world's largest antimony mine, Central China publication-title: J. Hydrol. – volume: 745 year: 2020 ident: bib25 article-title: Mechanistic insights into iodine enrichment in groundwater during the transformation of iron minerals in aquifer sediments publication-title: Sci. Total Environ. – volume: 107 start-page: 87 year: 2010 end-page: 93 ident: bib45 article-title: A snapshot of environmental iodine and selenium in La Pampa and San Juan provinces of Argentina publication-title: J. Geochem. Explor. – volume: 243 year: 2021 ident: bib46 article-title: Factors controlling iodine enrichment in a coastal plain aquifer in the North Jiangsu Yishusi Plain, China publication-title: J. Contam. Hydrol. – volume: 637–638 start-page: 672 year: 2018 end-page: 685 ident: bib8 article-title: Using strontium isotopes to evaluate the spatial variation of groundwater recharge publication-title: Sci. Total Environ. – volume: 161 start-page: 50 year: 2015 end-page: 70 ident: bib2 article-title: Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin publication-title: Geochem. Cosmochim. Acta – volume: 7 start-page: 908 year: 2013 end-page: 911 ident: bib52 article-title: The hydrogeochemical characteristics of high iodine and fluoride groundwater in the Hetao Plain, inner Mongolia publication-title: Procedia Earth & Planet. Sci. – volume: 12 start-page: 369 year: 2020 end-page: 383 ident: bib9 article-title: Hydrogeochemical characteristics and health effects of iodine in groundwater in Wei River Basin publication-title: Exposure and Health – volume: 424–425 start-page: 37 year: 2012 end-page: 47 ident: bib50 article-title: Influence of irrigation practices on arsenic mobilization: evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China publication-title: J. Hydrol. – volume: 44 start-page: 1940 year: 2010 end-page: 1946 ident: bib11 article-title: Redox transformations and transport of cesium and iodine (−1, 0, +5) in oxidizing and reducing zones of a sand and gravel aquifer publication-title: Environ. Sci. Technol. – volume: 543 start-page: 293 year: 2016 end-page: 304 ident: bib23 article-title: Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater publication-title: J. Hydrol. – volume: 135 start-page: 117 year: 2013 end-page: 123 ident: bib38 article-title: Geochemistry of iodine-rich groundwater in the Taiyuan Basin of central Shanxi province, north China publication-title: J. Geochem. Explor. – volume: 28 start-page: 10552 year: 2021 end-page: 10563 ident: bib54 article-title: Iodine enrichment and the underlying mechanism in deep groundwater in the Cangzhou Region, North China publication-title: Environ. Sci. Pollut. Control Ser. – volume: 68 start-page: 53 year: 2016 end-page: 63 ident: bib3 article-title: Iodine budget in surface waters from Atacama: natural and anthropogenic iodine sources revealed by halogen geochemistry and iodine-129 isotopes publication-title: Appl. Geochem. – volume: 77 start-page: 457 year: 2012 end-page: 473 ident: bib36 article-title: Iodine dynamics in soils publication-title: Geochem. Cosmochim. Acta – volume: 38 start-page: 1107 year: 2010 end-page: 1110 ident: bib27 article-title: Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events publication-title: Geology – volume: 75 start-page: 365 year: 2015 end-page: 374 ident: bib34 article-title: Chemical and strontium isotopic characteristics of shallow groundwater in the Ordos Desert Plateau, North China: implications for the dissolved Sr source and water–rock interactions publication-title: Geochemistry – volume: 585 year: 2020 ident: bib16 article-title: Spatial distribution and origin of shallow groundwater iodide in a rapidly urbanized delta: a case study of the Pearl River Delta publication-title: J. Hydrol. – volume: 273 year: 2021 ident: bib18 article-title: Differentiation of natural and anthropogenic contaminant sources using isotopic and microbial signatures in a heavily cultivated coastal area publication-title: Environ. Pollut. – volume: 730 year: 2020 ident: bib32 article-title: Natural organic matter-enhanced transportation of iodine in groundwater in the Datong Basin: impact of irrigation activities publication-title: Sci. Total Environ. – volume: 198 start-page: 218 year: 2017 end-page: 228 ident: bib31 article-title: Iodate in calcite and vaterite: insights from synchrotron X-ray absorption spectroscopy and first-principles calculations publication-title: Geochem. Cosmochim. Acta – volume: 468–469 start-page: 738 year: 2014 end-page: 745 ident: bib21 article-title: Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics publication-title: Sci. Total Environ. – volume: 73 start-page: 2850 year: 2009 end-page: 2861 ident: bib10 article-title: The kinetics of iodide oxidation by the manganese oxide mineral birnessite publication-title: Geochem. Cosmochim. Acta – volume: 300 start-page: 652 year: 2015 end-page: 661 ident: bib30 article-title: Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China publication-title: J. Hazard Mater. – volume: 10 year: 2018 ident: bib7 article-title: Waters from the Djiboutian Afar: a review of strontium isotopic composition and a comparison with Ethiopian waters and red sea brines publication-title: Water – volume: 25 start-page: 16702 year: 2018 end-page: 16709 ident: bib55 article-title: Controls on the spatial distribution of iodine in groundwater in the Hebei Plain, China publication-title: Environ. Sci. Pollut. Control Ser. – volume: 130 start-page: 1 year: 2013 end-page: 14 ident: bib5 article-title: Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania publication-title: J. Geochem. Explor. – volume: 24 start-page: 641 year: 2009 end-page: 649 ident: bib44 article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China publication-title: Appl. Geochem. – year: 2023 ident: bib17 article-title: Microbial Contributions to Iodide Enrichment in Deep Groundwater in the North China Plain – volume: 191 start-page: 165 year: 2016 end-page: 186 ident: bib39 article-title: Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan: implications for the origin and migration of iodine during basin evolution publication-title: Geochem. Cosmochim. Acta – volume: 76 start-page: 447 year: 2017 ident: bib40 article-title: Iodine in major Danish aquifers publication-title: Environ. Earth Sci. – volume: 573 start-page: 233 year: 2016 end-page: 246 ident: bib35 article-title: Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France) publication-title: Sci. Total Environ. – volume: 132 year: 2021 ident: bib37 article-title: Trace element and Pb and Sr isotope investigation of tooth enamel from archaeological remains at El-Kurru, Sudan: evaluating the role of groundwater-related diagenetic alteration publication-title: Appl. Geochem. – volume: 75 start-page: 970 year: 2016 ident: bib20 article-title: Iodine in groundwater of the Guanzhong Basin, China: sources and hydrogeochemical controls on its distribution publication-title: Environ. Earth Sci. – volume: 153 start-page: 156 year: 2016 end-page: 166 ident: bib51 article-title: Role of natural organic matter on iodine and 239,240Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan publication-title: J. Environ. Radioact. – volume: 569–570 start-page: 1212 year: 2016 end-page: 1223 ident: bib15 article-title: The seasonal fluctuations and accumulation of iodine-129 in relation to the hydrogeochemistry of the Wolf Creek Research Basin, a discontinuous permafrost watershed publication-title: Sci. Total Environ. – volume: 212 start-page: 1095 year: 2018 end-page: 1103 ident: bib57 article-title: Sr isotope fingerprinting of multiple water-source characterizations and its environmental implications in a complex lake-groundwater system, Wudalianchi, Northeast China publication-title: Chemosphere – volume: 234 start-page: 46 year: 2006 end-page: 57 ident: bib1 article-title: Synsedimentary versus metamorphic control of S, O and Sr isotopic compositions in gypsum evaporites from the Cameros Basin, Spain publication-title: Chem. Geol. – year: 2020 ident: bib12 article-title: The link between surface water and groundwater-based drinking water – strontium isotope spatial distribution patterns and their relationships to Danish sediments publication-title: Appl. Geochem. – start-page: 1 year: 2020 end-page: 39 ident: bib43 article-title: Genesis of geogenic contaminated groundwater: as, F and I publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 51 start-page: 2895 year: 2021 end-page: 2933 ident: bib42 article-title: Genesis of geogenic contaminated groundwater: as, F and I publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 10 start-page: 321 year: 1984 end-page: 339 ident: bib48 article-title: The distribution and transformations of iodine in the environment publication-title: Environ. Int. – volume: 71 start-page: 39 year: 2012 end-page: 43 ident: bib4 article-title: Iodine deficiency influences thyroid autoimmunity in old age--a comparative population-based study publication-title: Maturitas – volume: 328 year: 2006 ident: bib41 article-title: Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China publication-title: J. Hydrol. – volume: 135 start-page: 40 year: 2013 end-page: 53 ident: bib53 article-title: Iodine in groundwater of the North China Plain: spatial patterns and hydrogeochemical processes of enrichment publication-title: J. Geochem. Explor. – volume: 73 start-page: 1 year: 2015 end-page: 14 ident: bib56 article-title: Iodine status of soils, grain crops, and irrigation waters in Pakistan publication-title: Environ. Earth Sci. – volume: 601–602 start-page: 380 year: 2017 end-page: 390 ident: bib33 article-title: Organic and inorganic colloids impacting total iodine behavior in groundwater from the Datong Basin publication-title: China. Sci. Total Environ. – volume: 476 start-page: 87 year: 2013 end-page: 96 ident: bib49 article-title: Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: a case study in high arsenic aquifer systems of the Datong basin, northern China publication-title: J. Hydrol. – volume: 87 start-page: 109 year: 2005 end-page: 120 ident: bib13 article-title: Geochemical characteristics of shallow groundwater in Datong basin, northwestern China publication-title: J. Geochem. Explor. – volume: 581 year: 2020 ident: bib19 article-title: Using isotopes (strontium and radon) and microbial communities to quantify groundwater mixing influenced by anthropogenic factors at riverside area publication-title: J. Hydrol. – volume: 544 start-page: 158 year: 2016 end-page: 167 ident: bib22 article-title: Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin publication-title: China. Sci. Total Environ. – volume: 135 start-page: 117 year: 2013 ident: 10.1016/j.apgeochem.2023.105783_bib38 article-title: Geochemistry of iodine-rich groundwater in the Taiyuan Basin of central Shanxi province, north China publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2012.08.019 – volume: 12 start-page: 369 year: 2020 ident: 10.1016/j.apgeochem.2023.105783_bib9 article-title: Hydrogeochemical characteristics and health effects of iodine in groundwater in Wei River Basin publication-title: Exposure and Health doi: 10.1007/s12403-020-00348-7 – volume: 15 start-page: 848 year: 2013 ident: 10.1016/j.apgeochem.2023.105783_bib24 article-title: Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China publication-title: Environ. sci. Proc. impacts doi: 10.1039/c3em30841c – volume: 153 start-page: 156 year: 2016 ident: 10.1016/j.apgeochem.2023.105783_bib51 article-title: Role of natural organic matter on iodine and 239,240Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2015.12.022 – volume: 132 year: 2021 ident: 10.1016/j.apgeochem.2023.105783_bib37 article-title: Trace element and Pb and Sr isotope investigation of tooth enamel from archaeological remains at El-Kurru, Sudan: evaluating the role of groundwater-related diagenetic alteration publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2021.105068 – volume: 328 year: 2006 ident: 10.1016/j.apgeochem.2023.105783_bib41 article-title: Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.01.006 – volume: 75 start-page: 365 year: 2015 ident: 10.1016/j.apgeochem.2023.105783_bib34 article-title: Chemical and strontium isotopic characteristics of shallow groundwater in the Ordos Desert Plateau, North China: implications for the dissolved Sr source and water–rock interactions publication-title: Geochemistry doi: 10.1016/j.chemer.2015.07.003 – volume: 135 start-page: 40 year: 2013 ident: 10.1016/j.apgeochem.2023.105783_bib53 article-title: Iodine in groundwater of the North China Plain: spatial patterns and hydrogeochemical processes of enrichment publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2012.11.016 – year: 2020 ident: 10.1016/j.apgeochem.2023.105783_bib12 article-title: The link between surface water and groundwater-based drinking water – strontium isotope spatial distribution patterns and their relationships to Danish sediments publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2020.104698 – volume: 273 year: 2021 ident: 10.1016/j.apgeochem.2023.105783_bib18 article-title: Differentiation of natural and anthropogenic contaminant sources using isotopic and microbial signatures in a heavily cultivated coastal area publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.116493 – volume: 77 start-page: 457 year: 2012 ident: 10.1016/j.apgeochem.2023.105783_bib36 article-title: Iodine dynamics in soils publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2011.10.034 – volume: 585 year: 2020 ident: 10.1016/j.apgeochem.2023.105783_bib16 article-title: Spatial distribution and origin of shallow groundwater iodide in a rapidly urbanized delta: a case study of the Pearl River Delta publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124860 – volume: 87 start-page: 109 year: 2005 ident: 10.1016/j.apgeochem.2023.105783_bib13 article-title: Geochemical characteristics of shallow groundwater in Datong basin, northwestern China publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2005.08.002 – volume: 44 start-page: 1940 year: 2010 ident: 10.1016/j.apgeochem.2023.105783_bib11 article-title: Redox transformations and transport of cesium and iodine (−1, 0, +5) in oxidizing and reducing zones of a sand and gravel aquifer publication-title: Environ. Sci. Technol. doi: 10.1021/es902865s – volume: 730 year: 2020 ident: 10.1016/j.apgeochem.2023.105783_bib32 article-title: Natural organic matter-enhanced transportation of iodine in groundwater in the Datong Basin: impact of irrigation activities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138460 – volume: 24 start-page: 641 year: 2009 ident: 10.1016/j.apgeochem.2023.105783_bib44 article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.12.015 – volume: 569–570 start-page: 1212 year: 2016 ident: 10.1016/j.apgeochem.2023.105783_bib15 article-title: The seasonal fluctuations and accumulation of iodine-129 in relation to the hydrogeochemistry of the Wolf Creek Research Basin, a discontinuous permafrost watershed publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.06.196 – volume: 75 start-page: 970 year: 2016 ident: 10.1016/j.apgeochem.2023.105783_bib20 article-title: Iodine in groundwater of the Guanzhong Basin, China: sources and hydrogeochemical controls on its distribution publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5781-4 – volume: 300 start-page: 652 year: 2015 ident: 10.1016/j.apgeochem.2023.105783_bib30 article-title: Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.07.080 – volume: 73 start-page: 2850 year: 2009 ident: 10.1016/j.apgeochem.2023.105783_bib10 article-title: The kinetics of iodide oxidation by the manganese oxide mineral birnessite publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2009.02.016 – volume: 637–638 start-page: 672 year: 2018 ident: 10.1016/j.apgeochem.2023.105783_bib8 article-title: Using strontium isotopes to evaluate the spatial variation of groundwater recharge publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.019 – start-page: 1 year: 2020 ident: 10.1016/j.apgeochem.2023.105783_bib43 article-title: Genesis of geogenic contaminated groundwater: as, F and I publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 198 start-page: 218 year: 2017 ident: 10.1016/j.apgeochem.2023.105783_bib31 article-title: Iodate in calcite and vaterite: insights from synchrotron X-ray absorption spectroscopy and first-principles calculations publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2016.11.032 – volume: 10 year: 2018 ident: 10.1016/j.apgeochem.2023.105783_bib7 article-title: Waters from the Djiboutian Afar: a review of strontium isotopic composition and a comparison with Ethiopian waters and red sea brines publication-title: Water doi: 10.3390/w10111700 – volume: 130 start-page: 1 year: 2013 ident: 10.1016/j.apgeochem.2023.105783_bib5 article-title: Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2013.02.008 – volume: 73 start-page: 1 year: 2015 ident: 10.1016/j.apgeochem.2023.105783_bib56 article-title: Iodine status of soils, grain crops, and irrigation waters in Pakistan publication-title: Environ. Earth Sci. doi: 10.1007/s12665-014-3952-8 – volume: 28 start-page: 10552 year: 2021 ident: 10.1016/j.apgeochem.2023.105783_bib54 article-title: Iodine enrichment and the underlying mechanism in deep groundwater in the Cangzhou Region, North China publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-020-11159-3 – volume: 51 start-page: 2895 year: 2021 ident: 10.1016/j.apgeochem.2023.105783_bib42 article-title: Genesis of geogenic contaminated groundwater: as, F and I publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1807452 – volume: 17 start-page: 352 year: 2017 ident: 10.1016/j.apgeochem.2023.105783_bib29 article-title: Strontium isotope as tracers of groundwater contamination publication-title: Proc. Earth and Planet. Sci. doi: 10.1016/j.proeps.2016.12.089 – volume: 7 start-page: 908 year: 2013 ident: 10.1016/j.apgeochem.2023.105783_bib52 article-title: The hydrogeochemical characteristics of high iodine and fluoride groundwater in the Hetao Plain, inner Mongolia publication-title: Procedia Earth & Planet. Sci. doi: 10.1016/j.proeps.2013.03.183 – volume: 38 start-page: 1107 year: 2010 ident: 10.1016/j.apgeochem.2023.105783_bib27 article-title: Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events publication-title: Geology doi: 10.1130/G31145.1 – volume: 573 start-page: 233 year: 2016 ident: 10.1016/j.apgeochem.2023.105783_bib35 article-title: Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.08.087 – volume: 476 start-page: 87 year: 2013 ident: 10.1016/j.apgeochem.2023.105783_bib49 article-title: Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: a case study in high arsenic aquifer systems of the Datong basin, northern China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.10.016 – volume: 468–469 start-page: 738 year: 2014 ident: 10.1016/j.apgeochem.2023.105783_bib21 article-title: Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.08.092 – volume: 745 year: 2020 ident: 10.1016/j.apgeochem.2023.105783_bib25 article-title: Mechanistic insights into iodine enrichment in groundwater during the transformation of iron minerals in aquifer sediments publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140922 – year: 2023 ident: 10.1016/j.apgeochem.2023.105783_bib17 – volume: 71 start-page: 39 year: 2012 ident: 10.1016/j.apgeochem.2023.105783_bib4 article-title: Iodine deficiency influences thyroid autoimmunity in old age--a comparative population-based study publication-title: Maturitas doi: 10.1016/j.maturitas.2011.10.001 – volume: 201 start-page: 39 year: 2017 ident: 10.1016/j.apgeochem.2023.105783_bib26 article-title: Sorption and speciation of iodine in groundwater system: the roles of organic matter and organic-mineral complexes publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2017.04.008 – volume: 76 start-page: 447 year: 2017 ident: 10.1016/j.apgeochem.2023.105783_bib40 article-title: Iodine in major Danish aquifers publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6775-6 – volume: 212 start-page: 1095 year: 2018 ident: 10.1016/j.apgeochem.2023.105783_bib57 article-title: Sr isotope fingerprinting of multiple water-source characterizations and its environmental implications in a complex lake-groundwater system, Wudalianchi, Northeast China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.09.027 – volume: 581 year: 2020 ident: 10.1016/j.apgeochem.2023.105783_bib19 article-title: Using isotopes (strontium and radon) and microbial communities to quantify groundwater mixing influenced by anthropogenic factors at riverside area publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124441 – volume: 601–602 start-page: 380 year: 2017 ident: 10.1016/j.apgeochem.2023.105783_bib33 article-title: Organic and inorganic colloids impacting total iodine behavior in groundwater from the Datong Basin publication-title: China. Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.127 – volume: 107 start-page: 87 year: 2010 ident: 10.1016/j.apgeochem.2023.105783_bib45 article-title: A snapshot of environmental iodine and selenium in La Pampa and San Juan provinces of Argentina publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2009.11.002 – volume: 96 start-page: 11 year: 2018 ident: 10.1016/j.apgeochem.2023.105783_bib28 article-title: Combined radiogenic (87Sr/86Sr, 234U/238U) and stable (δ88Sr) isotope systematics as tracers of anthropogenic groundwater contamination within the Williston BasinUSA publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2018.06.006 – volume: 161 start-page: 50 year: 2015 ident: 10.1016/j.apgeochem.2023.105783_bib2 article-title: Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2015.03.032 – volume: 191 start-page: 165 year: 2016 ident: 10.1016/j.apgeochem.2023.105783_bib39 article-title: Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan: implications for the origin and migration of iodine during basin evolution publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2016.07.012 – volume: 234 start-page: 46 year: 2006 ident: 10.1016/j.apgeochem.2023.105783_bib1 article-title: Synsedimentary versus metamorphic control of S, O and Sr isotopic compositions in gypsum evaporites from the Cameros Basin, Spain publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2006.04.004 – volume: 557 start-page: 211 year: 2018 ident: 10.1016/j.apgeochem.2023.105783_bib47 article-title: Coupled S and Sr isotope evidences for elevated arsenic concentrations in groundwater from the world's largest antimony mine, Central China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.12.013 – volume: 243 year: 2021 ident: 10.1016/j.apgeochem.2023.105783_bib46 article-title: Factors controlling iodine enrichment in a coastal plain aquifer in the North Jiangsu Yishusi Plain, China publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2021.103894 – volume: 424–425 start-page: 37 year: 2012 ident: 10.1016/j.apgeochem.2023.105783_bib50 article-title: Influence of irrigation practices on arsenic mobilization: evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.12.017 – volume: 544 start-page: 158 year: 2016 ident: 10.1016/j.apgeochem.2023.105783_bib22 article-title: Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin publication-title: China. Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.08.144 – volume: 25 start-page: 16702 year: 2018 ident: 10.1016/j.apgeochem.2023.105783_bib55 article-title: Controls on the spatial distribution of iodine in groundwater in the Hebei Plain, China publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-018-1843-3 – volume: 68 start-page: 53 year: 2016 ident: 10.1016/j.apgeochem.2023.105783_bib3 article-title: Iodine budget in surface waters from Atacama: natural and anthropogenic iodine sources revealed by halogen geochemistry and iodine-129 isotopes publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2016.03.011 – volume: 31 start-page: 138 year: 2008 ident: 10.1016/j.apgeochem.2023.105783_bib14 article-title: Characters of the groundwater flow field and hydrochemistry field in Datong Basin publication-title: Geological Survey & Research – volume: 10 start-page: 321 year: 1984 ident: 10.1016/j.apgeochem.2023.105783_bib48 article-title: The distribution and transformations of iodine in the environment publication-title: Environ. Int. doi: 10.1016/0160-4120(84)90139-9 – volume: 543 start-page: 293 issue: Part B year: 2016 ident: 10.1016/j.apgeochem.2023.105783_bib23 article-title: Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.10.002 – volume: 18 start-page: 117 year: 2003 ident: 10.1016/j.apgeochem.2023.105783_bib6 article-title: Hydrogeochemistry and strontium isotopes of spring and mineral waters from Monte Vulture volcano publication-title: Italy. Appl. Geochem. doi: 10.1016/S0883-2927(02)00069-0 |
SSID | ssj0005702 |
Score | 2.4306648 |
Snippet | Groundwater iodine has direct importance for human dietary iodine intake in areas where drinking water is of groundwater origin. Iodine affected aquifer system... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105783 |
SubjectTerms | aquifers basins calcite carbonates cation exchange chemical composition China geochemistry Groundwater groundwater flow gypsum humans Hydrogeochemistry Iodine isotopes kaolinite silicates strontium Strontium isotopes Water-rock interactions |
Title | Strontium isotopes as tracers for water-rocks interactions of groundwater to delineate iodine enrichment in aquifer of Datong Basin, northern China |
URI | https://dx.doi.org/10.1016/j.apgeochem.2023.105783 https://www.proquest.com/docview/3154155687 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqVkhcUMtDlEI1lTgSdhM7zqa30gcLiF5Kpd4sx48SaJ0lyari0j_RP8xMHhVFqnrglkQeJfKMZ77Y880w9jZBVGyklZE3sYiEy2U0Sz1epRS8TcKFIb7z12M5PxWfz9KzFbY_cmEorXLw_b1P77z18GQyzOZkUZaTE1wfPMmTDEE0FXEhRrkQGVn5--u_0jyyLu-QBkc0-k6Ol16cO2pMRZT0hHc9b2f8vgj1j6_uAtDROnsyIEfY6z9ug6248JQ9-th15v39jN2c0KZ2Wy4voWyqtlq4BnQDba0NIjxAbApXiCvrCCPWzwaoTETdkxoaqDwQuyPYbgS0FViiqaObdlBWGN0coJmV5jttJaIo6F9LSokhwQP8aw_n8EE3ZXgHgY6BXB2g68v9nJ0eHX7bn0dDx4VI8yxuoyK1uY8zP0UV8cziWra28D7W3FgpfI7oruCxNBadovZTjXDF54WPTcytk3bKX7DVUAX3kkGSOp8I_F_xvMAAKGbGCfQPJvemcBmXm0yOs6zMUI6cumJcqDHv7Ie6VY8i9ahePZtseiu46CtyPCyyO6pR3TEuhXHjYeGdUfEKlx6dp-jgqmWjOMLPmCq4Za_-5wVb7DHd9QTH12y1rZfuDSKdttjuTHmbre19-jI__gP7VgIf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbooqpcqtKHSh8wlXpstJs4cTa9UQosr70AEjfL8QPSFmebZFX1d_QPdyYPKiohDtwix6NEHnu-z_Y8GPsYISvWwojA6TAOYpuJYJo4fEoIvHXEY03xzidzMTuPDy-SixW2M8TCkFtlb_s7m95a675l3I_meFEU41NcHzzKohRJNCVxSR-xVcpOlYzY6vbB0Wz-z9MjbV0PqX9AArfcvNTi0lJtKopKj3hb9nbK7wKp_8x1i0F7z9jTnjzCdvd_62zF-ufs8X5bnPf3C_bnlM61m2J5DUVdNuXC1qBqaCqlkeQB0lP4hdSyChC0vtdAmSKqLq6hhtIBBXh40_aApgRDkepoqS0UJQKcBZxphb6i00QUBfVzSV4xJPgVN-7-Er6ouvCfwNNNkK08tKW5X7Lzvd2znVnQF10IFE_DJsgTk7kwdRPUEk8NLmdjcudCxbURscuQ4OU8FNqgXVRuopCxuCx3oQ65scJM-Cs28qW3rxlEiXVRjFsWx3PEwHiqbYwmQmdO5zblYoOJYZSl7jOSU2GMH3JwPfsmb9QjST2yU88Gm9wILrqkHPeLfB7UKG_NL4nQcb_wh0HxElcfXakob8tlLTky0JCSuKVvHvKBLfZkdnZyLI8P5kdv2Rq96eId37FRUy3teyQ-Tb7ZT-y_wTQE0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strontium+isotopes+as+tracers+for+water-rocks+interactions+of+groundwater+to+delineate+iodine+enrichment+in+aquifer+of+Datong+Basin%2C+northern+China&rft.jtitle=Applied+geochemistry&rft.au=Qian%2C+Kun&rft.au=Sun%2C+Haowei&rft.au=Li%2C+Junxia&rft.au=Xie%2C+Xianjun&rft.date=2023-11-01&rft.issn=0883-2927&rft.volume=158+p.105783-&rft_id=info:doi/10.1016%2Fj.apgeochem.2023.105783&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |