Photosensitized Amino Acid Degradation in the Presence of Riboflavin and Its Derivatives
The addition of photosensitizers to water can accelerate disinfection in sunlight-based systems by enhancing oxidation of target compounds through direct reaction with the excited sensitizer or through production of another oxidant, such as singlet oxygen (1O2). The kinetics of the oxidation of sele...
Saved in:
Published in | Environmental science & technology Vol. 45; no. 12; pp. 5230 - 5237 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.06.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The addition of photosensitizers to water can accelerate disinfection in sunlight-based systems by enhancing oxidation of target compounds through direct reaction with the excited sensitizer or through production of another oxidant, such as singlet oxygen (1O2). The kinetics of the oxidation of selected amino acids in the presence of the sensitizer riboflavin (Vitamin B2), its primary photoproduct lumichrome, and its derivative riboflavin tetraacetate (2′,3′,4′,5′-tetraacetylriboflavin; RTA) were quantified and the mechanisms of reaction were determined during exposure to 365 ± 9 nm light. 1O2-mediated reactions contributed to the rapid photodegradation of the four amino acids, but its contribution was sensitizer-dependent and varied from 5.4−10.2% for tyrosine, 7.1–12.4% for tryptophan, 18.7–69.0% for methionine, and 64.7–100.2% for histidine. Riboflavin was subject to rapid photodegradation (t 1/2 <8 min), while the half-lives of lumichrome and RTA were 100 and 30 times longer, respectively. Lumichrome and RTA also were more efficient 1O2 sensitizers (quantum yield (Φ) = 0.63 and 0.66) compared to riboflavin (Φ = 0.48). Of the three flavin-based compounds, RTA shows the most promise as a sensitizer in sunlight-based disinfection systems because it absorbs both visible and UV light, is an efficient 1O2 sensitizer, is a strong oxidant in its triplet state, and exhibits greater photostability. |
---|---|
AbstractList | The addition of photosensitizers to water can accelerate disinfection in sunlight-based systems by enhancing oxidation of target compounds through direct reaction with the excited sensitizer or through production of another oxidant, such as singlet oxygen (...). The kinetics of the oxidation of selected amino acids in the presence of the sensitizer riboflavin (Vitamin B2), its primary photoproduct lumichrome, and its derivative riboflavin tetraacetate (2',3',4',5'-tetraacetylriboflavin; RTA) were quantified and the mechanisms of reaction were determined during exposure to 365 ± 9 nm light. ...-mediated reactions contributed to the rapid photodegradation of the four amino acids, but its contribution was sensitizer-dependent and varied from 5.4...10.2% for tyrosine, 7.1-12.4% for tryptophan, 18.7-69.0% for methionine, and 64.7-100.2% for histidine. Riboflavin was subject to rapid photodegradation (t... <8 min), while the half-lives of lumichrome and RTA were 100 and 30 times longer, respectively. Lumichrome and RTA also were more efficient ... sensitizers (quantum yield (...) = 0.63 and 0.66) compared to riboflavin (... = 0.48). Of the three flavin-based compounds, RTA shows the most promise as a sensitizer in sunlight-based disinfection systems because it absorbs both visible and UV light, is an efficient ... sensitizer, is a strong oxidant in its triplet state, and exhibits greater photostability. (ProQuest: ... denotes formulae/symbols omitted.) The addition of photosensitizers to water can accelerate disinfection in sunlight-based systems by enhancing oxidation of target compounds through direct reaction with the excited sensitizer or through production of another oxidant, such as singlet oxygen (¹O₂). The kinetics of the oxidation of selected amino acids in the presence of the sensitizer riboflavin (Vitamin B2), its primary photoproduct lumichrome, and its derivative riboflavin tetraacetate (2',3',4',5'-tetraacetylriboflavin; RTA) were quantified and the mechanisms of reaction were determined during exposure to 365 ± 9 nm light. ¹O₂-mediated reactions contributed to the rapid photodegradation of the four amino acids, but its contribution was sensitizer-dependent and varied from 5.4-10.2% for tyrosine, 7.1-12.4% for tryptophan, 18.7-69.0% for methionine, and 64.7-100.2% for histidine. Riboflavin was subject to rapid photodegradation (t½ < 8 min), while the half-lives of lumichrome and RTA were 100 and 30 times longer, respectively. Lumichrome and RTA also were more efficient ¹O₂ sensitizers (quantum yield (Φ) = 0.63 and 0.66) compared to riboflavin (Φ = 0.48). Of the three flavin-based compounds, RTA shows the most promise as a sensitizer in sunlight-based disinfection systems because it absorbs both visible and UV light, is an efficient ¹O₂ sensitizer, is a strong oxidant in its triplet state, and exhibits greater photostability. The addition of photosensitizers to water can accelerate disinfection in sunlight-based systems by enhancing oxidation of target compounds through direct reaction with the excited sensitizer or through production of another oxidant, such as singlet oxygen (¹O₂). The kinetics of the oxidation of selected amino acids in the presence of the sensitizer riboflavin (Vitamin B2), its primary photoproduct lumichrome, and its derivative riboflavin tetraacetate (2',3',4',5'-tetraacetylriboflavin; RTA) were quantified and the mechanisms of reaction were determined during exposure to 365 ± 9 nm light. ¹O₂-mediated reactions contributed to the rapid photodegradation of the four amino acids, but its contribution was sensitizer-dependent and varied from 5.4-10.2% for tyrosine, 7.1-12.4% for tryptophan, 18.7-69.0% for methionine, and 64.7-100.2% for histidine. Riboflavin was subject to rapid photodegradation (t½ < 8 min), while the half-lives of lumichrome and RTA were 100 and 30 times longer, respectively. Lumichrome and RTA also were more efficient ¹O₂ sensitizers (quantum yield (Φ) = 0.63 and 0.66) compared to riboflavin (Φ = 0.48). Of the three flavin-based compounds, RTA shows the most promise as a sensitizer in sunlight-based disinfection systems because it absorbs both visible and UV light, is an efficient ¹O₂ sensitizer, is a strong oxidant in its triplet state, and exhibits greater photostability. The addition of photosensitizers to water can accelerate disinfection in sunlight-based systems by enhancing oxidation of target compounds through direct reaction with the excited sensitizer or through production of another oxidant, such as singlet oxygen (1O2). The kinetics of the oxidation of selected amino acids in the presence of the sensitizer riboflavin (Vitamin B2), its primary photoproduct lumichrome, and its derivative riboflavin tetraacetate (2′,3′,4′,5′-tetraacetylriboflavin; RTA) were quantified and the mechanisms of reaction were determined during exposure to 365 ± 9 nm light. 1O2-mediated reactions contributed to the rapid photodegradation of the four amino acids, but its contribution was sensitizer-dependent and varied from 5.4−10.2% for tyrosine, 7.1–12.4% for tryptophan, 18.7–69.0% for methionine, and 64.7–100.2% for histidine. Riboflavin was subject to rapid photodegradation (t 1/2 <8 min), while the half-lives of lumichrome and RTA were 100 and 30 times longer, respectively. Lumichrome and RTA also were more efficient 1O2 sensitizers (quantum yield (Φ) = 0.63 and 0.66) compared to riboflavin (Φ = 0.48). Of the three flavin-based compounds, RTA shows the most promise as a sensitizer in sunlight-based disinfection systems because it absorbs both visible and UV light, is an efficient 1O2 sensitizer, is a strong oxidant in its triplet state, and exhibits greater photostability. |
Author | McNeill, Kristopher Remucal, Christina K |
AuthorAffiliation | ETH Zurich |
AuthorAffiliation_xml | – name: ETH Zurich |
Author_xml | – sequence: 1 givenname: Christina K surname: Remucal fullname: Remucal, Christina K – sequence: 2 givenname: Kristopher surname: McNeill fullname: McNeill, Kristopher email: kristopher.mcneill@env.ethz.ch |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24252608$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21591753$$D View this record in MEDLINE/PubMed |
BookMark | eNpl0FFr2zAQB3AxWpa03cO-wBCDUfbg9U6ybPkxdO1aKLSMFvJmZPu8qDhSJzmB7dNXoWkC7Yvu4X53Ov5H7MB5R4x9RviBIPCMogDIEc0HNkUlIFNa4QGbAqDMKlnMJ-woxkcAEBL0RzYRqCoslZyy-d3Cjz6Si3a0_6njs6V1ns9a2_Gf9CeYzozWO24dHxfE7wIl2xL3Pf9tG98PZp1axnX8eoxpIth1GlhTPGGHvRkifdrWY_ZweXF_fpXd3P66Pp_dZEaWOGZlVZVaNKLBXBrcPEo3RWoBYqOpq3LZYUO5JChUWbS6h0J3ukEwhdZGyWN2-rL3Kfi_K4pjvbSxpWEwjvwq1roUSugc8iS_vpGPfhVcOi4hVUotqw36_oLa4GMM1NdPwS5N-Fcj1Juw613YyX7ZLlw1S-p28jXdBL5tgYmtGfpgXGvj3uXptAL03pk27o96_-EzCVKSCg |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2012_10_103 crossref_primary_10_1039_C3EM00596H crossref_primary_10_1016_j_watres_2014_08_017 crossref_primary_10_1038_s41598_020_63078_5 crossref_primary_10_1021_jp504919c crossref_primary_10_1039_c7pp00401j crossref_primary_10_1016_j_foodres_2013_03_025 crossref_primary_10_1021_acsestwater_4c00020 crossref_primary_10_1039_C9TA09571C crossref_primary_10_1021_acs_est_8b02822 crossref_primary_10_1016_j_ceja_2022_100296 crossref_primary_10_1016_j_jphotobiol_2021_112250 crossref_primary_10_1016_j_solener_2019_05_048 crossref_primary_10_1039_C6RA23440B crossref_primary_10_1021_ie302844v crossref_primary_10_1021_es504211x crossref_primary_10_1002_ange_202004747 crossref_primary_10_1016_j_chemosphere_2015_10_074 crossref_primary_10_3390_reactions4040046 crossref_primary_10_1002_chem_201103680 crossref_primary_10_1016_j_aca_2013_11_028 crossref_primary_10_1371_journal_pone_0253212 crossref_primary_10_1021_acs_est_8b03866 crossref_primary_10_1039_D3EM00304C crossref_primary_10_1016_j_foodchem_2024_140259 crossref_primary_10_1021_jf401117d crossref_primary_10_1002_chem_201400413 crossref_primary_10_1029_2021JG006550 crossref_primary_10_1016_j_lwt_2023_114810 crossref_primary_10_1002_btpr_2458 crossref_primary_10_1002_jctb_5861 crossref_primary_10_1007_s00217_024_04540_w crossref_primary_10_1039_C6EM00408C crossref_primary_10_1016_j_fbio_2024_104169 crossref_primary_10_1080_10837450_2016_1212883 crossref_primary_10_3390_cells12182304 crossref_primary_10_1002_ejoc_201900888 crossref_primary_10_1021_acs_est_9b01322 crossref_primary_10_1016_j_ijbiomac_2020_03_134 crossref_primary_10_1111_php_12716 crossref_primary_10_1021_acs_est_5b00466 crossref_primary_10_3389_fcell_2020_00861 crossref_primary_10_1016_j_wse_2019_12_005 crossref_primary_10_1039_D3CC00995E crossref_primary_10_1007_s13361_013_0813_8 crossref_primary_10_1016_j_jmbbm_2012_11_002 crossref_primary_10_1021_es402668h crossref_primary_10_1177_0003702817703270 crossref_primary_10_1016_j_jpowsour_2015_05_111 crossref_primary_10_1021_acs_orglett_9b00064 crossref_primary_10_1039_c2pp25111f crossref_primary_10_1039_C4NJ00356J crossref_primary_10_1039_C8EM00047F crossref_primary_10_1016_j_bbamem_2023_184155 crossref_primary_10_1039_C5RA23562F crossref_primary_10_1371_journal_pone_0111792 crossref_primary_10_1021_es404236c crossref_primary_10_1016_j_scitotenv_2022_155790 crossref_primary_10_1002_chem_201803074 crossref_primary_10_1021_acs_est_7b01270 crossref_primary_10_1016_j_molliq_2020_114955 crossref_primary_10_1039_c3em00549f crossref_primary_10_1016_j_jphotobiol_2015_10_030 crossref_primary_10_1021_acsabm_1c01042 crossref_primary_10_1039_c3ay40077h crossref_primary_10_1016_j_chemosphere_2014_04_035 crossref_primary_10_1002_jpen_1990 crossref_primary_10_1021_acs_est_6b05140 crossref_primary_10_1016_j_freeradbiomed_2018_03_025 crossref_primary_10_1002_adsc_201501123 crossref_primary_10_1016_j_cclet_2022_01_036 crossref_primary_10_1016_j_cej_2018_08_127 crossref_primary_10_3390_ijms22168411 crossref_primary_10_1016_j_biortech_2022_128232 crossref_primary_10_3389_fphar_2024_1411230 crossref_primary_10_1021_acs_est_6b02607 crossref_primary_10_1016_j_tifs_2021_04_013 crossref_primary_10_1016_j_cclet_2022_107875 crossref_primary_10_1016_j_bioelechem_2014_03_010 crossref_primary_10_1021_acs_analchem_4c00732 crossref_primary_10_1016_j_seppur_2014_12_031 crossref_primary_10_1038_s41598_019_38955_3 crossref_primary_10_1016_j_dyepig_2019_04_066 crossref_primary_10_1021_la204583v crossref_primary_10_1021_acs_est_5b03498 crossref_primary_10_1021_acssuschemeng_5b00267 crossref_primary_10_1016_j_jphotobiol_2022_112444 crossref_primary_10_1039_C7EM00208D crossref_primary_10_1002_chem_201403895 crossref_primary_10_1016_j_jphotobiol_2020_111820 crossref_primary_10_1016_j_scp_2022_100958 crossref_primary_10_1021_acs_est_9b06018 crossref_primary_10_1021_es203836f crossref_primary_10_1016_j_mtcomm_2022_103635 crossref_primary_10_1021_acs_est_1c04194 crossref_primary_10_1128_genomeA_00204_17 crossref_primary_10_1016_j_rser_2023_113548 crossref_primary_10_1002_anie_202004747 crossref_primary_10_1021_acs_est_3c01500 crossref_primary_10_1039_C7EM00235A crossref_primary_10_1007_s11095_020_02798_9 crossref_primary_10_1016_j_chemosphere_2019_125662 crossref_primary_10_1021_acs_est_3c04176 crossref_primary_10_1021_acsomega_1c04277 crossref_primary_10_1007_s00344_023_11126_5 crossref_primary_10_1016_j_tet_2014_11_072 |
Cites_doi | 10.1111/j.1751-1097.1988.tb02760.x 10.1016/S0955-2863(97)00024-7 10.1016/S0045-6535(02)00006-1 10.1111/j.1751-1097.1978.tb07647.x 10.1016/j.jphotobiol.2003.09.006 10.1021/ja809039u 10.1111/j.1751-1097.1987.tb08411.x 10.1021/j100590a002 10.1021/es9015124 10.2166/wh.2007.005 10.1021/es0340782 10.1016/j.chemosphere.2004.01.016 10.1021/ja00903a051 10.1016/S1011-1344(01)00209-3 10.1021/es00105a017 10.1021/bk-1987-0327.ch013 10.1016/0304-4165(79)90449-5 10.1039/cs9821100015 10.1111/j.1751-1097.1978.tb07691.x 10.1016/j.jphotobiol.2008.03.005 10.1021/bi00833a009 10.1016/j.chemosphere.2007.04.055 10.1021/es800185d 10.1016/S0043-1354(02)00241-5 10.1021/es061716i 10.1021/es00146a005 10.1007/s002530051649 10.1111/j.1751-1097.1987.tb05415.x 10.1016/j.energy.2004.04.032 10.1021/es071762y 10.1016/j.watres.2005.10.030 10.1002/lsm.20361 10.1021/jp037048u 10.1111/j.1751-1097.2009.00567.x 10.1016/j.transci.2008.05.003 10.1016/S1011-1344(01)00134-8 10.1128/aem.58.4.1335-1343.1992 10.1246/bcsj.55.2959 10.1039/p29890002103 10.1016/S1386-1425(01)00652-7 10.1016/j.bbapap.2004.08.007 10.1039/f19858101225 10.1128/AEM.00445-10 10.1111/j.1751-1097.1979.tb07076.x 10.1016/j.dental.2007.12.004 10.1021/jf0401165 10.1021/bi00840a069 10.1146/annurev.pc.18.100167.002205 10.1021/es100435a 10.1111/j.1462-2920.2010.02268.x 10.1021/jf052448v 10.1016/j.jphotochem.2006.07.005 10.1016/S0304-4165(02)00215-5 10.1021/ja00760a052 10.1016/j.chemosphere.2004.06.021 10.1016/1011-1344(93)06984-B 10.1021/es00033a013 10.1099/mic.0.038471-0 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Jun 15, 2011 |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Jun 15, 2011 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
DOI | 10.1021/es200411a |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 5237 |
ExternalDocumentID | 2395668201 10_1021_es200411a 21591753 24252608 c187670297 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC .HR 08R 186 1WB 42X 6TJ 8WZ A6W AAYOK ABFRP ABHMW ABQRX ABTAH ACKIV ADHLV ADMHC AETEA AFDAS AGHSJ AGXLV AHGAQ ANTXH GGK IHE IQODW MS~ MVM MW2 NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH XSW YV5 ZCA ZCG ZY4 ~A~ AAHBH ABJNI ADUKH CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
ID | FETCH-LOGICAL-a371t-799782b2b143a1143a58b6371011b8ed943d1be43e06576c8f068d8b10a688a53 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Fri Aug 16 04:57:08 EDT 2024 Thu Oct 10 19:22:22 EDT 2024 Fri Dec 06 04:19:09 EST 2024 Sat Sep 28 07:48:27 EDT 2024 Sun Oct 22 16:04:52 EDT 2023 Thu Aug 27 13:43:08 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Drinking water treatment Water treatment Microbiology Riboflavin Disinfection B-Vitamins Aminoacid Model compound Pathogenic Metabolic inactivation Biological contamination Photosensitizer Organic compounds Photochemical degradation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a371t-799782b2b143a1143a58b6371011b8ed943d1be43e06576c8f068d8b10a688a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21591753 |
PQID | 875738394 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_872528404 proquest_journals_875738394 crossref_primary_10_1021_es200411a pubmed_primary_21591753 pascalfrancis_primary_24252608 acs_journals_10_1021_es200411a |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2011-06-15 |
PublicationDateYYYYMMDD | 2011-06-15 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Haggi E. (ref16/cit16) 2004; 55 Davies M. J. (ref26/cit26) 2005; 1703 Tsentalovich Y. (ref52/cit52) 2002; 58 Straight R. (ref48/cit48) 1978; 27 Chacon J. N. (ref14/cit14) 1988; 47 Heelis P. F. (ref13/cit13) 1982; 11 Latch D. E. (ref36/cit36) 2003; 37 Heelis P. F. (ref51/cit51) 1979; 587 Kohn T. (ref9/cit9) 2007; 41 Curtis T. P. (ref11/cit11) 1992; 58 Massad W. (ref17/cit17) 2004; 57 Silva E. (ref31/cit31) 1994; 23 Oates P. M. (ref7/cit7) 2003; 37 Spikes J. (ref60/cit60) 1967; 18 Larson R. A. (ref15/cit15) 1992; 26 Wigginton K. R. (ref27/cit27) 2010; 44 Meisel D. (ref58/cit58) 1975; 79 ref38/cit38 Heelis P. F. (ref59/cit59) 1985; 81 Stahmann K. (ref12/cit12) 2000; 53 Fritz B. J. (ref23/cit23) 1987; 45 Boreen A. (ref43/cit43) 2008; 42 Hijnen W. (ref1/cit1) 2006; 40 Haag W. R. (ref10/cit10) 1986; 20 Cui H. (ref19/cit19) 2002; 47 Heaselgrave W. (ref21/cit21) 2010; 76 Solheim B. G. (ref2/cit2) 2008; 39 Sikorski M. (ref41/cit41) 2001; 60 Chu W. (ref18/cit18) 2007; 69 Heelis P. F. (ref50/cit50) 1978; 28 Bouillaguet S. (ref4/cit4) 2008; 24 Montaña M. (ref34/cit34) 2009; 85 Tomita M. (ref47/cit47) 1969; 8 Bosshard F. (ref29/cit29) 2010; 12 Sun M. (ref57/cit57) 1972; 94 Fukuzumi S. (ref40/cit40) 1989 Bosshard F. (ref28/cit28) 2010; 156 García J. (ref32/cit32) 1997; 8 MacKenzie R. E. (ref54/cit54) 1969; 8 Zeng K. (ref20/cit20) 2003; 72 Dulin D. (ref35/cit35) 1982; 16 Edwards A. (ref45/cit45) 2001; 63 Shen L. (ref55/cit55) 2008; 92 Jori G. (ref3/cit3) 2006; 38 Lu C. (ref56/cit56) 2002; 1571 Fisher M. B. (ref6/cit6) 2008; 6 Cabiscol E. (ref30/cit30) 2000; 3 Sikorska E. (ref42/cit42) 2004; 108 Koziolowa A. (ref39/cit39) 1978; 29 Smith E. G. (ref46/cit46) 1963; 85 Fritz B. J. (ref24/cit24) 1987; 45 Gueymard C. A. (ref37/cit37) 2005; 30 Huang R. (ref22/cit22) 2006; 54 Huvaere K. (ref49/cit49) 2009; 131 Jagger J. (ref8/cit8) 1985 Cardoso D. (ref33/cit33) 2004; 52 Manjon F. (ref61/cit61) 2008; 42 Insińska-Rak M. (ref25/cit25) 2007; 186 Inoue K. (ref44/cit44) 1982; 55 Mopper K. (ref53/cit53) 1987; 327 Boehm A. B. (ref5/cit5) 2009; 43 |
References_xml | – volume: 47 start-page: 647 year: 1988 ident: ref14/cit14 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1988.tb02760.x contributor: fullname: Chacon J. N. – volume: 8 start-page: 341 year: 1997 ident: ref32/cit32 publication-title: J. Nutr. Biochem. doi: 10.1016/S0955-2863(97)00024-7 contributor: fullname: García J. – volume: 47 start-page: 991 year: 2002 ident: ref19/cit19 publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00006-1 contributor: fullname: Cui H. – volume: 27 start-page: 565 year: 1978 ident: ref48/cit48 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1978.tb07647.x contributor: fullname: Straight R. – volume: 72 start-page: 95 year: 2003 ident: ref20/cit20 publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2003.09.006 contributor: fullname: Zeng K. – volume: 131 start-page: 8049 year: 2009 ident: ref49/cit49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809039u contributor: fullname: Huvaere K. – volume: 45 start-page: 113 year: 1987 ident: ref23/cit23 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1987.tb08411.x contributor: fullname: Fritz B. J. – volume: 79 start-page: 2459 year: 1975 ident: ref58/cit58 publication-title: J. Phys. Chem. doi: 10.1021/j100590a002 contributor: fullname: Meisel D. – volume: 43 start-page: 8046 year: 2009 ident: ref5/cit5 publication-title: Environ. Sci. Technol. doi: 10.1021/es9015124 contributor: fullname: Boehm A. B. – volume: 3 start-page: 3 year: 2000 ident: ref30/cit30 publication-title: Int. Microbiol. contributor: fullname: Cabiscol E. – volume: 6 start-page: 35 year: 2008 ident: ref6/cit6 publication-title: J. Water Health doi: 10.2166/wh.2007.005 contributor: fullname: Fisher M. B. – volume: 37 start-page: 3342 year: 2003 ident: ref36/cit36 publication-title: Environ. Sci. Technol. doi: 10.1021/es0340782 contributor: fullname: Latch D. E. – volume: 55 start-page: 1501 year: 2004 ident: ref16/cit16 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.01.016 contributor: fullname: Haggi E. – volume: 85 start-page: 3285 year: 1963 ident: ref46/cit46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00903a051 contributor: fullname: Smith E. G. – volume: 63 start-page: 126 year: 2001 ident: ref45/cit45 publication-title: J. Photochem. Photobiol., B doi: 10.1016/S1011-1344(01)00209-3 contributor: fullname: Edwards A. – volume: 16 start-page: 815 year: 1982 ident: ref35/cit35 publication-title: Environ. Sci. Technol. doi: 10.1021/es00105a017 contributor: fullname: Dulin D. – volume: 327 start-page: 174 volume-title: Photochemistry of Environmental Aquatic Systems year: 1987 ident: ref53/cit53 doi: 10.1021/bk-1987-0327.ch013 contributor: fullname: Mopper K. – volume: 587 start-page: 455 year: 1979 ident: ref51/cit51 publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4165(79)90449-5 contributor: fullname: Heelis P. F. – volume-title: Solar-UV Actions on Living Cells year: 1985 ident: ref8/cit8 contributor: fullname: Jagger J. – volume: 11 start-page: 15 year: 1982 ident: ref13/cit13 publication-title: Chem. Soc. Rev. doi: 10.1039/cs9821100015 contributor: fullname: Heelis P. F. – volume: 28 start-page: 169 year: 1978 ident: ref50/cit50 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1978.tb07691.x contributor: fullname: Heelis P. F. – volume: 92 start-page: 10 year: 2008 ident: ref55/cit55 publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2008.03.005 contributor: fullname: Shen L. – volume: 8 start-page: 1839 year: 1969 ident: ref54/cit54 publication-title: Biochemistry doi: 10.1021/bi00833a009 contributor: fullname: MacKenzie R. E. – volume: 69 start-page: 177 year: 2007 ident: ref18/cit18 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.04.055 contributor: fullname: Chu W. – volume: 42 start-page: 5492 year: 2008 ident: ref43/cit43 publication-title: Environ. Sci. Technol. doi: 10.1021/es800185d contributor: fullname: Boreen A. – volume: 37 start-page: 47 year: 2003 ident: ref7/cit7 publication-title: Water Res. doi: 10.1016/S0043-1354(02)00241-5 contributor: fullname: Oates P. M. – volume: 41 start-page: 192 year: 2007 ident: ref9/cit9 publication-title: Environ. Sci. Technol. doi: 10.1021/es061716i contributor: fullname: Kohn T. – volume: 20 start-page: 341 year: 1986 ident: ref10/cit10 publication-title: Environ. Sci. Technol. doi: 10.1021/es00146a005 contributor: fullname: Haag W. R. – volume: 53 start-page: 509 year: 2000 ident: ref12/cit12 publication-title: Appl. Microbiol. Biot. doi: 10.1007/s002530051649 contributor: fullname: Stahmann K. – volume: 45 start-page: 539 year: 1987 ident: ref24/cit24 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1987.tb05415.x contributor: fullname: Fritz B. J. – volume: 30 start-page: 1551 year: 2005 ident: ref37/cit37 publication-title: Energy doi: 10.1016/j.energy.2004.04.032 contributor: fullname: Gueymard C. A. – volume: 42 start-page: 301 issue: 1 year: 2008 ident: ref61/cit61 publication-title: Environ. Sci. Technol. doi: 10.1021/es071762y contributor: fullname: Manjon F. – volume: 40 start-page: 3 issue: 1 year: 2006 ident: ref1/cit1 publication-title: Water Res. doi: 10.1016/j.watres.2005.10.030 contributor: fullname: Hijnen W. – volume: 38 start-page: 468 issue: 5 year: 2006 ident: ref3/cit3 publication-title: Lasers Surg. Med. doi: 10.1002/lsm.20361 contributor: fullname: Jori G. – volume: 108 start-page: 1501 year: 2004 ident: ref42/cit42 publication-title: J. Phys. Chem. A doi: 10.1021/jp037048u contributor: fullname: Sikorska E. – ident: ref38/cit38 – volume: 85 start-page: 1097 year: 2009 ident: ref34/cit34 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2009.00567.x contributor: fullname: Montaña M. – volume: 39 start-page: 75 year: 2008 ident: ref2/cit2 publication-title: Transfus. Apher. Sci. doi: 10.1016/j.transci.2008.05.003 contributor: fullname: Solheim B. G. – volume: 60 start-page: 114 year: 2001 ident: ref41/cit41 publication-title: J. Photochem. Photobiol., B doi: 10.1016/S1011-1344(01)00134-8 contributor: fullname: Sikorski M. – volume: 58 start-page: 1335 year: 1992 ident: ref11/cit11 publication-title: Appl. Environ. Microb. doi: 10.1128/aem.58.4.1335-1343.1992 contributor: fullname: Curtis T. P. – volume: 55 start-page: 2959 year: 1982 ident: ref44/cit44 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.55.2959 contributor: fullname: Inoue K. – start-page: 2103 year: 1989 ident: ref40/cit40 publication-title: J. Chem. Soc. Perkin Trans. II doi: 10.1039/p29890002103 contributor: fullname: Fukuzumi S. – volume: 58 start-page: 2043 year: 2002 ident: ref52/cit52 publication-title: Spectrochim. Acta A doi: 10.1016/S1386-1425(01)00652-7 contributor: fullname: Tsentalovich Y. – volume: 1703 start-page: 93 year: 2005 ident: ref26/cit26 publication-title: BBA-Proteins Proteom. doi: 10.1016/j.bbapap.2004.08.007 contributor: fullname: Davies M. J. – volume: 81 start-page: 1225 year: 1985 ident: ref59/cit59 publication-title: J. Chem. Soc. Faraday Trans. 1 doi: 10.1039/f19858101225 contributor: fullname: Heelis P. F. – volume: 76 start-page: 6010 year: 2010 ident: ref21/cit21 publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.00445-10 contributor: fullname: Heaselgrave W. – volume: 29 start-page: 459 year: 1978 ident: ref39/cit39 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1979.tb07076.x contributor: fullname: Koziolowa A. – volume: 24 start-page: 1070 year: 2008 ident: ref4/cit4 publication-title: Dent. Mater. doi: 10.1016/j.dental.2007.12.004 contributor: fullname: Bouillaguet S. – volume: 52 start-page: 6602 year: 2004 ident: ref33/cit33 publication-title: J. Agric. Food Chem. doi: 10.1021/jf0401165 contributor: fullname: Cardoso D. – volume: 8 start-page: 5149 year: 1969 ident: ref47/cit47 publication-title: Biochemistry doi: 10.1021/bi00840a069 contributor: fullname: Tomita M. – volume: 18 start-page: 409 year: 1967 ident: ref60/cit60 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.18.100167.002205 contributor: fullname: Spikes J. – volume: 44 start-page: 5437 year: 2010 ident: ref27/cit27 publication-title: Environ. Sci. Technol. doi: 10.1021/es100435a contributor: fullname: Wigginton K. R. – volume: 12 start-page: 2931 year: 2010 ident: ref29/cit29 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2010.02268.x contributor: fullname: Bosshard F. – volume: 54 start-page: 2359 year: 2006 ident: ref22/cit22 publication-title: J. Agric. Food Chem. doi: 10.1021/jf052448v contributor: fullname: Huang R. – volume: 186 start-page: 14 year: 2007 ident: ref25/cit25 publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2006.07.005 contributor: fullname: Insińska-Rak M. – volume: 1571 start-page: 71 year: 2002 ident: ref56/cit56 publication-title: Biochim. Biophys. Acta, Gen. Subj. doi: 10.1016/S0304-4165(02)00215-5 contributor: fullname: Lu C. – volume: 94 start-page: 1730 year: 1972 ident: ref57/cit57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00760a052 contributor: fullname: Sun M. – volume: 57 start-page: 455 year: 2004 ident: ref17/cit17 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.06.021 contributor: fullname: Massad W. – volume: 23 start-page: 43 year: 1994 ident: ref31/cit31 publication-title: J. Photochem. Photobiol., B doi: 10.1016/1011-1344(93)06984-B contributor: fullname: Silva E. – volume: 26 start-page: 1792 year: 1992 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es00033a013 contributor: fullname: Larson R. A. – volume: 156 start-page: 2006 year: 2010 ident: ref28/cit28 publication-title: Microbiology doi: 10.1099/mic.0.038471-0 contributor: fullname: Bosshard F. |
SSID | ssj0002308 |
Score | 2.4403474 |
Snippet | The addition of photosensitizers to water can accelerate disinfection in sunlight-based systems by enhancing oxidation of target compounds through direct... |
SourceID | proquest crossref pubmed pascalfrancis acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5230 |
SubjectTerms | Amino acids Amino Acids - chemistry Applied sciences Chemical compounds Drinking water and swimming-pool water. Desalination Environmental Processes Exact sciences and technology Flavins - chemistry Furans - chemistry Light Oxidation Photodegradation Photosensitizing Agents - chemistry Pollution Riboflavin - analogs & derivatives Riboflavin - chemistry Singlet Oxygen - analysis Spectrum Analysis Ultraviolet radiation Vitamin B Water treatment and pollution |
Title | Photosensitized Amino Acid Degradation in the Presence of Riboflavin and Its Derivatives |
URI | http://dx.doi.org/10.1021/es200411a https://www.ncbi.nlm.nih.gov/pubmed/21591753 https://www.proquest.com/docview/875738394 https://search.proquest.com/docview/872528404 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB0huIAQ-1IKlQVcA3EWxzlWLAIkEGKRequ8RURAUpGUQ7-ecdK0ILZLLh4nsmfG8ya23wAcJkEohTHcESFTDkJq4XAMA07MRRglkmq_KtN5fcMuHoOrXtibgYNfdvA9emwKq0hKEQTNeRGm3Rb_nNxPllvE0LwpUxD7rNfQB33uakOPKr6EnsWBKHAWkrp8xe_4sooz58tw2tzWqY-XPB8NS3mkRt_JG_8awgosjXEm6daGsQozJluDhU_sg2uweTa95IaiYy8v1qF3-5SXeWGPtpfpyGjSfU2znHRVqsmpJZeo6zCRNCMIH8ltdYNJGZIn5C7FqPoi3rFJZJpclgX2eKsqqL2bYgMez88eTi6ccQUGR_gRLZ0oxiTTk55EVCWofYRcMmzCVUFyo-PA11SawDeIZCKmeOIyrrmkrmActe1vwmyWZ2YbiI608n0VxDI2gWt51WSkQlxumasT43ot6KCK-mMPKvrV5rhH-5O5a8F-o73-oGbi-Emo80WvE0mbWWHqxlvQbhQ9_ZYl9cdMPQ5aQCat6GZ270RkJh9aEeyPyTCKbNXmMX01IkLLd7rz3wjaMF__kWYODXdhtnwbmj2ENKXsVCb9ATJ37as |
link.rule.ids | 314,780,784,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH6a2GEgtB8MWMfWWWjXsLhJHOdYMVDZaIUGSL1F_hURsSVVnXLgr9-zk7aANm2XXPycxH623_fi-PsAPhdxIoUxPBAJUwFCahFwDANBxkWSFpLqyMt0jidsdB1_mybTjibHnYXBl7B4J-s38dfsAvSLsc6flCIWep44qUoHg44vV6suQmm-VCvIIjZdsgg9rOoikLKPItD2TFjsjKJVsfg7zPTh5vRVq1vkX9T_ZXJ7tGjkkbp_wuH4fy15DS871EmG7TB5A89MtQNbD7gId2DvZH3kDU27OW_fwvTipm5q6350b8p7o8nwV1nVZKhKTb46qolWlYmUFUEwSS78eSZlSF2QHyXG2J_iDotEpclZY7HG3Oup3Rm7C9enJ1fHo6DTYwhElNImSDNMOQdyIBFjCeouCZcMi3CNkNzoLI40lSaODOKalClehIxrLmkoGEffR3uwUdWVeQdEp1pFkYozmZk4dCxrMlUJLr4s1IUJBz3oY9fl3Xyyud8qH9B81Xc9OFw6MZ-1vBx_Muo_cu_K0uVZmMjxHhws_b1-lqP4x7w9i3tAVqU46dxOiqhMvXAmWB9TYzTZb0fJ-taIDx376ft_teATvBhdjc_z87PJ9wPYbL9Vs4AmH2CjmS_MRwQ7jez7Uf4bflv2GA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9NTJo2ocFgsPLRWROvYXGTOM5jBVSwD1ZtIPUt8ldEtC2pcNqH_vWckzQFBNpe8uKzE_vOvt_F9u8AjrIwksIY7omIKQ8htfA4ugEv4SKKM0l1UKfp_H7Jzq_DL5No0gaK7i4MfoTFlmy9ie9m9VRnLcMA_Wys0ymliIdeRrjKuiNcw5Nf3cqLcJovMxYkAZssmYTuV3VeSNkHXmh9KiwOSNZksngeatYuZ7QBP7qPrU-a_D6eVfJYLR7xOP5_bzbhbYs-ybAxl3fwwhRb8OYeJ-EW7Jytrr6haDv37TZMxjdlVVp34L3KF0aT4d-8KMlQ5ZqcOsqJJjsTyQuCoJKM63tNypAyIz9z9LV_xByLRKHJRWWxxm2dV21u7Hu4Hp1dnZx7bV4GTwQxrbw4wdBzIAcSsZag7hFxybAI1wrJjU7CQFNpwsAgvomZ4pnPuOaS-oJxtIFgB9aKsjAfgOhYqyBQYSITE_qObU3GKsJFmPk6M_6gB30cvrSdVzatt8wHNO3GrgeflopMpw0_x1NC_Qcq7iRdvIUBHe_B_lLnq3c5qn-M35OwB6QrxcnndlREYcqZE8H6GCKjyG5jKaumESc6FtS9f_XgI7wan47SbxeXX_fhdfPLmnk0OoC16nZmDhHzVLJfG_odnNz4mw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photosensitized+Amino+Acid+Degradation+in+the+Presence+of+Riboflavin+and+Its+Derivatives&rft.jtitle=Environmental+science+%26+technology&rft.au=Remucal%2C+Christina+K&rft.au=McNeill%2C+Kristopher&rft.date=2011-06-15&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=45&rft.issue=12&rft.spage=5230&rft_id=info:doi/10.1021%2Fes200411a&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2395668201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |