Continuous-Flow Stable Sulfur Isotope Analysis of Organic and Inorganic Compounds by EA-MC-ICPMS

Elemental analysis (EA) coupled to isotope ratio mass spectrometry (IRMS) is a well-established method to derive stable isotope ratios of sulfur (34S/32S). Conversion of sulfur to SO2 by EA and measurement of SO2 isotopologues by IRMS represents the simplest and most versatile method to accomplish i...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 96; no. 21; pp. 8510 - 8517
Main Authors Horst, Axel, Gehre, Matthias, Fahle, Marcus, Kümmel, Steffen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Elemental analysis (EA) coupled to isotope ratio mass spectrometry (IRMS) is a well-established method to derive stable isotope ratios of sulfur (34S/32S). Conversion of sulfur to SO2 by EA and measurement of SO2 isotopologues by IRMS represents the simplest and most versatile method to accomplish isotope measurement of sulfur even in bulk samples. Yet, interferences by oxygen isotopes in SO2 often impair the precision and trueness of measured results. In the current study, we coupled EA to multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) to establish a method that avoids such interferences due to direct measurement of S+ ions. In addition, measurement of the 33S/32S isotope ratios is possible, thus representing the first bulk method that is suitable to study mass-independent isotope fractionation (MIF). Analytical precision (σ) of available Ag2S and BaSO4 reference materials (RMs) was, on average, 0.2 mUr for δ 33S and δ 34S, never exceeding 0.3 mUr within this study (1 mUr = 1‰ = 0.001). Measured δ 34S values of reference materials agreed within ±0.2 mUr of officially reported values. Measurement of wood samples yielded good precision (0.2 mUr) for sulfur amounts as low as 3.5 μg, but precision deteriorated for samples at lower sulfur contents due to poor peak shape. Finally, we explored cross-calibration of organic liquids separated via gas chromatography (GC) against solid RMs combusted via EA that avoids challenging offline conversion of RMs. Results indicate good precision (≤0.08 mUr) and acceptable trueness (≤0.34 mUr) for determination of δ 34S, demonstrating the future potential of such an approach.
AbstractList Elemental analysis (EA) coupled to isotope ratio mass spectrometry (IRMS) is a well-established method to derive stable isotope ratios of sulfur (34S/32S). Conversion of sulfur to SO2 by EA and measurement of SO2 isotopologues by IRMS represents the simplest and most versatile method to accomplish isotope measurement of sulfur even in bulk samples. Yet, interferences by oxygen isotopes in SO2 often impair the precision and trueness of measured results. In the current study, we coupled EA to multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) to establish a method that avoids such interferences due to direct measurement of S+ ions. In addition, measurement of the 33S/32S isotope ratios is possible, thus representing the first bulk method that is suitable to study mass-independent isotope fractionation (MIF). Analytical precision (σ) of available Ag2S and BaSO4 reference materials (RMs) was, on average, 0.2 mUr for δ33S and δ34S, never exceeding 0.3 mUr within this study (1 mUr = 1‰ = 0.001). Measured δ34S values of reference materials agreed within ±0.2 mUr of officially reported values. Measurement of wood samples yielded good precision (0.2 mUr) for sulfur amounts as low as 3.5 μg, but precision deteriorated for samples at lower sulfur contents due to poor peak shape. Finally, we explored cross-calibration of organic liquids separated via gas chromatography (GC) against solid RMs combusted via EA that avoids challenging offline conversion of RMs. Results indicate good precision (≤0.08 mUr) and acceptable trueness (≤0.34 mUr) for determination of δ34S, demonstrating the future potential of such an approach.
Elemental analysis (EA) coupled to isotope ratio mass spectrometry (IRMS) is a well-established method to derive stable isotope ratios of sulfur (34S/32S). Conversion of sulfur to SO2 by EA and measurement of SO2 isotopologues by IRMS represents the simplest and most versatile method to accomplish isotope measurement of sulfur even in bulk samples. Yet, interferences by oxygen isotopes in SO2 often impair the precision and trueness of measured results. In the current study, we coupled EA to multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) to establish a method that avoids such interferences due to direct measurement of S+ ions. In addition, measurement of the 33S/32S isotope ratios is possible, thus representing the first bulk method that is suitable to study mass-independent isotope fractionation (MIF). Analytical precision (σ) of available Ag2S and BaSO4 reference materials (RMs) was, on average, 0.2 mUr for δ 33S and δ 34S, never exceeding 0.3 mUr within this study (1 mUr = 1‰ = 0.001). Measured δ 34S values of reference materials agreed within ±0.2 mUr of officially reported values. Measurement of wood samples yielded good precision (0.2 mUr) for sulfur amounts as low as 3.5 μg, but precision deteriorated for samples at lower sulfur contents due to poor peak shape. Finally, we explored cross-calibration of organic liquids separated via gas chromatography (GC) against solid RMs combusted via EA that avoids challenging offline conversion of RMs. Results indicate good precision (≤0.08 mUr) and acceptable trueness (≤0.34 mUr) for determination of δ 34S, demonstrating the future potential of such an approach.
Elemental analysis (EA) coupled to isotope ratio mass spectrometry (IRMS) is a well-established method to derive stable isotope ratios of sulfur (34S/32S). Conversion of sulfur to SO2 by EA and measurement of SO2 isotopologues by IRMS represents the simplest and most versatile method to accomplish isotope measurement of sulfur even in bulk samples. Yet, interferences by oxygen isotopes in SO2 often impair the precision and trueness of measured results. In the current study, we coupled EA to multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) to establish a method that avoids such interferences due to direct measurement of S+ ions. In addition, measurement of the 33S/32S isotope ratios is possible, thus representing the first bulk method that is suitable to study mass-independent isotope fractionation (MIF). Analytical precision (σ) of available Ag2S and BaSO4 reference materials (RMs) was, on average, 0.2 mUr for δ33S and δ34S, never exceeding 0.3 mUr within this study (1 mUr = 1‰ = 0.001). Measured δ34S values of reference materials agreed within ±0.2 mUr of officially reported values. Measurement of wood samples yielded good precision (0.2 mUr) for sulfur amounts as low as 3.5 μg, but precision deteriorated for samples at lower sulfur contents due to poor peak shape. Finally, we explored cross-calibration of organic liquids separated via gas chromatography (GC) against solid RMs combusted via EA that avoids challenging offline conversion of RMs. Results indicate good precision (≤0.08 mUr) and acceptable trueness (≤0.34 mUr) for determination of δ34S, demonstrating the future potential of such an approach.Elemental analysis (EA) coupled to isotope ratio mass spectrometry (IRMS) is a well-established method to derive stable isotope ratios of sulfur (34S/32S). Conversion of sulfur to SO2 by EA and measurement of SO2 isotopologues by IRMS represents the simplest and most versatile method to accomplish isotope measurement of sulfur even in bulk samples. Yet, interferences by oxygen isotopes in SO2 often impair the precision and trueness of measured results. In the current study, we coupled EA to multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) to establish a method that avoids such interferences due to direct measurement of S+ ions. In addition, measurement of the 33S/32S isotope ratios is possible, thus representing the first bulk method that is suitable to study mass-independent isotope fractionation (MIF). Analytical precision (σ) of available Ag2S and BaSO4 reference materials (RMs) was, on average, 0.2 mUr for δ33S and δ34S, never exceeding 0.3 mUr within this study (1 mUr = 1‰ = 0.001). Measured δ34S values of reference materials agreed within ±0.2 mUr of officially reported values. Measurement of wood samples yielded good precision (0.2 mUr) for sulfur amounts as low as 3.5 μg, but precision deteriorated for samples at lower sulfur contents due to poor peak shape. Finally, we explored cross-calibration of organic liquids separated via gas chromatography (GC) against solid RMs combusted via EA that avoids challenging offline conversion of RMs. Results indicate good precision (≤0.08 mUr) and acceptable trueness (≤0.34 mUr) for determination of δ34S, demonstrating the future potential of such an approach.
Elemental analysis (EA) coupled to isotope ratio mass spectrometry (IRMS) is a well-established method to derive stable isotope ratios of sulfur ( S/ S). Conversion of sulfur to SO by EA and measurement of SO isotopologues by IRMS represents the simplest and most versatile method to accomplish isotope measurement of sulfur even in bulk samples. Yet, interferences by oxygen isotopes in SO often impair the precision and trueness of measured results. In the current study, we coupled EA to multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) to establish a method that avoids such interferences due to direct measurement of S ions. In addition, measurement of the S/ S isotope ratios is possible, thus representing the first bulk method that is suitable to study mass-independent isotope fractionation (MIF). Analytical precision (σ) of available Ag S and BaSO reference materials (RMs) was, on average, 0.2 mUr for S and S, never exceeding 0.3 mUr within this study (1 mUr = 1‰ = 0.001). Measured S values of reference materials agreed within ±0.2 mUr of officially reported values. Measurement of wood samples yielded good precision (0.2 mUr) for sulfur amounts as low as 3.5 μg, but precision deteriorated for samples at lower sulfur contents due to poor peak shape. Finally, we explored cross-calibration of organic liquids separated via gas chromatography (GC) against solid RMs combusted via EA that avoids challenging offline conversion of RMs. Results indicate good precision (≤0.08 mUr) and acceptable trueness (≤0.34 mUr) for determination of S, demonstrating the future potential of such an approach.
Author Fahle, Marcus
Horst, Axel
Kümmel, Steffen
Gehre, Matthias
AuthorAffiliation Research and Development Centre for Post-Mining Areas
Department Technical Biogeochemistry
AuthorAffiliation_xml – name: Research and Development Centre for Post-Mining Areas
– name: Department Technical Biogeochemistry
Author_xml – sequence: 1
  givenname: Axel
  orcidid: 0000-0002-3475-2425
  surname: Horst
  fullname: Horst, Axel
  email: axel.horst@bgr.de
  organization: Research and Development Centre for Post-Mining Areas
– sequence: 2
  givenname: Matthias
  orcidid: 0000-0001-7177-0422
  surname: Gehre
  fullname: Gehre, Matthias
  email: matthias.gehre@ufz.de
  organization: Department Technical Biogeochemistry
– sequence: 3
  givenname: Marcus
  surname: Fahle
  fullname: Fahle, Marcus
  organization: Research and Development Centre for Post-Mining Areas
– sequence: 4
  givenname: Steffen
  orcidid: 0000-0002-8114-8116
  surname: Kümmel
  fullname: Kümmel, Steffen
  organization: Department Technical Biogeochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38738665$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LxDAQxYOs6PrnG4gEvHjpOkmatDkuZdUFRWH1XNM00S5tsjYtst_ell09ePA0DPzee8y8EzRx3hmELgjMCFByo3SYKadq_WGaWawBYiYP0JRwCpFIUzpBUwBgEU0AjtFJCGsAQoCII3TM0oSlQvApesu86yrX-z5Et7X_wqtOFbXBq762fYuXwXd-Y_B8CNqGKmBv8VP7rlylsXIlXjq_3zLfbHzvyoCLLV7Mo8csWmbPj6szdGhVHcz5fp6i19vFS3YfPTzdLbP5Q6RYQrooibkqqVVpWVCAMqFaSEMSwqUoLCuETmShOTXcam0lSAlUSl2CtNykUEp2iq53vpvWf_YmdHlTBW3qWjkzHJcz4HHMaMzZgF79Qde-b4cLR0rQhAqA0TDeUbr1IbTG5pu2alS7zQnkYwP50ED-00C-b2CQXe7N-6Ix5a_o5-UDADtglP8G_-v5DRO6laI
Cites_doi 10.1016/j.chemgeo.2020.119869
10.1021/acs.analchem.7b01875
10.1130/G46323.1
10.1029/JZ070i014p03475
10.1002/rcm.2213
10.1016/j.chemgeo.2021.120242
10.1016/j.chemgeo.2003.11.010
10.1039/C8JA00451J
10.1002/rcm.2488
10.1016/j.aca.2022.340744
10.2343/geochemj.20.209
10.1016/j.chemgeo.2013.02.022
10.1016/0016-7037(77)90177-6
10.1038/s41598-018-37131-3
10.1002/rcm.7513
10.1515/pac-2013-1023
10.5194/acp-15-1843-2015
10.1002/rcm.2892
10.1080/10256016.2012.666977
10.1016/S0009-2541(02)00162-6
10.1021/acs.analchem.0c03253
10.1016/S0012-821X(03)00296-6
10.1016/j.foreco.2023.121231
10.1126/science.289.5480.756
10.1016/j.chemgeo.2012.04.003
10.1016/j.gca.2014.02.023
10.5194/acp-20-4255-2020
10.1021/cr60292a004
10.1002/9780470517222
10.1007/BF02607193
10.18637/jss.v014.i06
10.1002/rcm.651
10.1038/32080
10.1016/j.precamres.2006.06.008
10.1002/rcm.3977
10.1021/ac00090a005
10.1016/S0016-7037(01)00611-1
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
Copyright American Chemical Society May 28, 2024
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: Copyright American Chemical Society May 28, 2024
DBID NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1021/acs.analchem.4c00439
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 8517
ExternalDocumentID 10_1021_acs_analchem_4c00439
38738665
b175963258
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
ABFRP
ABHFT
ABHMW
ABJNI
ABMVS
ABOCM
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
D0L
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
P2P
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
53G
AAHBH
AGXLV
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-a371t-745ad2fa8db200d72c69e171596bf3b6c79bc52e5fccf90990299cd09f5e80d93
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Sat Aug 17 04:44:03 EDT 2024
Fri Sep 13 00:27:41 EDT 2024
Fri Aug 23 01:52:04 EDT 2024
Tue Aug 27 13:48:06 EDT 2024
Thu May 30 20:38:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-745ad2fa8db200d72c69e171596bf3b6c79bc52e5fccf90990299cd09f5e80d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3475-2425
0000-0001-7177-0422
0000-0002-8114-8116
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acs.analchem.4c00439
PMID 38738665
PQID 3062726009
PQPubID 45400
PageCount 8
ParticipantIDs proquest_miscellaneous_3054432453
proquest_journals_3062726009
crossref_primary_10_1021_acs_analchem_4c00439
pubmed_primary_38738665
acs_journals_10_1021_acs_analchem_4c00439
PublicationCentury 2000
PublicationDate 2024-May-28
PublicationDateYYYYMMDD 2024-05-28
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Emsley J. (ref1/cit1) 2011
Becker S. (ref33/cit33) 2007
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Coplen T. B. (ref12/cit12) 2002
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref9/cit9
– ident: ref32/cit32
  doi: 10.1016/j.chemgeo.2020.119869
– ident: ref24/cit24
  doi: 10.1021/acs.analchem.7b01875
– ident: ref25/cit25
– ident: ref38/cit38
  doi: 10.1130/G46323.1
– ident: ref4/cit4
  doi: 10.1029/JZ070i014p03475
– ident: ref19/cit19
  doi: 10.1002/rcm.2213
– volume-title: Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents
  year: 2002
  ident: ref12/cit12
  contributor:
    fullname: Coplen T. B.
– ident: ref18/cit18
  doi: 10.1016/j.chemgeo.2021.120242
– ident: ref5/cit5
  doi: 10.1016/j.chemgeo.2003.11.010
– ident: ref34/cit34
  doi: 10.1039/C8JA00451J
– ident: ref40/cit40
  doi: 10.1002/rcm.2488
– ident: ref21/cit21
  doi: 10.1016/j.aca.2022.340744
– ident: ref10/cit10
  doi: 10.2343/geochemj.20.209
– ident: ref22/cit22
  doi: 10.1016/j.chemgeo.2013.02.022
– ident: ref31/cit31
  doi: 10.1016/0016-7037(77)90177-6
– ident: ref6/cit6
  doi: 10.1038/s41598-018-37131-3
– ident: ref17/cit17
  doi: 10.1002/rcm.7513
– ident: ref28/cit28
  doi: 10.1515/pac-2013-1023
– volume-title: Nature’s Building Blocks: An A-Z. Guide to the Elements
  year: 2011
  ident: ref1/cit1
  contributor:
    fullname: Emsley J.
– ident: ref15/cit15
  doi: 10.5194/acp-15-1843-2015
– ident: ref8/cit8
  doi: 10.1002/rcm.2892
– ident: ref27/cit27
  doi: 10.1080/10256016.2012.666977
– ident: ref2/cit2
  doi: 10.1016/S0009-2541(02)00162-6
– ident: ref23/cit23
  doi: 10.1021/acs.analchem.0c03253
– ident: ref36/cit36
  doi: 10.1016/S0012-821X(03)00296-6
– ident: ref39/cit39
  doi: 10.1016/j.foreco.2023.121231
– ident: ref14/cit14
  doi: 10.1126/science.289.5480.756
– ident: ref20/cit20
  doi: 10.1016/j.chemgeo.2012.04.003
– ident: ref35/cit35
  doi: 10.1016/j.gca.2014.02.023
– ident: ref7/cit7
  doi: 10.5194/acp-20-4255-2020
– ident: ref41/cit41
  doi: 10.1021/cr60292a004
– volume-title: Inorganic Mass Spectrometry: Principles and Applications
  year: 2007
  ident: ref33/cit33
  doi: 10.1002/9780470517222
  contributor:
    fullname: Becker S.
– ident: ref37/cit37
  doi: 10.1007/BF02607193
– ident: ref26/cit26
  doi: 10.18637/jss.v014.i06
– ident: ref13/cit13
  doi: 10.1002/rcm.651
– ident: ref29/cit29
  doi: 10.1038/32080
– ident: ref3/cit3
  doi: 10.1016/j.precamres.2006.06.008
– ident: ref16/cit16
  doi: 10.1002/rcm.3977
– ident: ref11/cit11
  doi: 10.1021/ac00090a005
– ident: ref30/cit30
  doi: 10.1016/S0016-7037(01)00611-1
SSID ssj0011016
Score 2.4901016
Snippet Elemental analysis (EA) coupled to isotope ratio mass spectrometry (IRMS) is a well-established method to derive stable isotope ratios of sulfur (34S/32S)....
Elemental analysis (EA) coupled to isotope ratio mass spectrometry (IRMS) is a well-established method to derive stable isotope ratios of sulfur ( S/ S)....
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 8510
SubjectTerms Barite
Barium sulfate
Continuous flow
Fractionation
Gas chromatography
Inductively coupled plasma mass spectrometry
Inorganic compounds
Isotope fractionation
Isotope ratios
Isotopes
Mass spectrometry
Mass spectroscopy
Organic liquids
Oxygen isotopes
Reference materials
Scientific imaging
Stable isotopes
Sulfur
Sulfur dioxide
Sulfur isotopes
Title Continuous-Flow Stable Sulfur Isotope Analysis of Organic and Inorganic Compounds by EA-MC-ICPMS
URI http://dx.doi.org/10.1021/acs.analchem.4c00439
https://www.ncbi.nlm.nih.gov/pubmed/38738665
https://www.proquest.com/docview/3062726009/abstract/
https://www.proquest.com/docview/3054432453/abstract/
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V9gAcaCm0LG2Rkbhw8LJx7Ng5VlFX3UoLSEul3oLt2FLVbVI1iRD8ejybZMuHKugxseOPsZ151rPfALwLCDygIJ5SY42iXOiYqkRyKqwruE946jRuFOcfk9NzfnYhLu42in8y-Cz6oG091sGooQ_XY26RukofwRbDQ4QIhbLFmjXAnegQIQ8J1eGq3D2loEOy9e8O6R6UufI20234NNzZ6Q6ZXI3bxoztj78lHP-zIzvwrAee5LibKc9hw5W78Dgb4r3twtNfpAlfwFeUrbos26qt6XRZfSMBlZqlI4t26dtbMqurprpxZNA0IZUn3bVOS3RZkFlZ9U_4w8HQTTUx38nJMZ1ndJZ9ni9ewvn05Et2SvtoDFTHMmqoDANZMK9VYcLKKiSzSeoiGeBQYnxsEitTYwVzwlvrU-TbgqezxST1wqlJkcZ7sFlWpXsFxEttvZPSy8jy8JVSReLcxGERXgk3gvfBWHm_mup8RZSzKMeXgwXz3oIjoMPw5TedQMc_8h8OY3xXQYxizSjVH5LfrpOD_ZE90aULtg55UCqQcRGPYL-bG-sKY4WxUxPx-gENP4AnLAAkPInA1CFsNretOwoApzFvVrP6JzW49hQ
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigceJTXQgEjceHgZZPYsXOsoq52oVshbYt6C7FjS4glqZpEqP31zGSTbalUoR7jOH6M7cxnffY3AB8RgSMKEgk31mguZB5xHSvBpXWF8LFIXE4bxcVRPDsRX07l6RbI4S4MNqLGkuqOxL9SFwg-U1qOtsWu_B4LSwxWcg_uS4VbckJE6XJDHtCGdAiUR7zqcGPullLIL9n6X790C9jsnM70MXzfNLc7a_Jr3DZmbC9vKDneuT9P4FEPQ9n-et48hS1X7sJOOkR_24WH14QKn8EPErH6WbZVW_PpqvrDEKOalWPLduXbczavq6Y6c2xQOGGVZ-tLnpblZcHmZdU_0e-HAjnVzFywg32-SPk8_bZYPoeT6cFxOuN9bAaeRypouMJhLUKf68LgOitUaOPEBQrBUWx8ZGKrEmNl6KS31ifEvqHfs8Uk8dLpSZFEL2C7rEr3CphXufVOKa8CK_ArrYvYuYmjIryWbgSf0FhZv7bqrKPNwyCjxMGCWW_BEfBhFLOztVzHf_LvDUN9VUFE0s0k3I-vP2xeo_2JS8lLh7bGPCQcGAoZjeDleopsKow0RVKN5es7NPw97MyOF4fZ4fzo6xt4ECJ0ojMKod6D7ea8dW8R-jTmXTfR_wIrif5_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkYAeCpTX0gJG4sLB283DsXOsQlddYKtKS6WKS4hfEmJJVk2iCn49M9lkKUgVgmMcx4-xnfmsz_4G4DUicERBccq10YrHooi4SmTMhXE29kmcuoI2ivOT5Pgsfncuzq-E-sJG1FhS3ZH4tKpX1vcKA8EBpRdoX-zOt3FsiMVKb8ItQTG8CRVliw2BQJvSIVgecavDrblrSiHfZOrffdM1gLNzPNN78GnT5O68yddx2-ix-fGHmuN_9ek-7PRwlB2u588DuOHKXbiTDVHgdmH7imDhQ_hMYlZfyrZqaz5dVpcMsapeOrZol769YLO6aqqVY4PSCas8W1_2NKwoLZuVVf9EvyEK6FQz_Z0dHfJ5xmfZ6XzxCM6mRx-zY97HaOBFJIOGSxxeG_pCWY3rzcrQJKkLJIKkRPtIJ0am2ojQCW-MT4mFQ_9n7CT1wqmJTaPHsFVWpXsKzMvCeCell4GJ8SulbOLcxFERXgk3gjdorLxfY3Xe0edhkFPiYMG8t-AI-DCS-Wot2_GX_PvDcP-qICIJZxLwx9evNq_R_sSpFKVDW2MeEhAMYxGN4Ml6mmwqjBRFVE3Es39o-Eu4ffp2mn-Ynbzfg7shIig6qhCqfdhqLlr3HBFQo190c_0nTugBCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous-Flow+Stable+Sulfur+Isotope+Analysis+of+Organic+and+Inorganic+Compounds+by+EA-MC-ICPMS&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Horst%2C+Axel&rft.au=Gehre%2C+Matthias&rft.au=Fahle%2C+Marcus&rft.au=K%C3%BCmmel%2C+Steffen&rft.date=2024-05-28&rft.eissn=1520-6882&rft.volume=96&rft.issue=21&rft.spage=8510&rft_id=info:doi/10.1021%2Facs.analchem.4c00439&rft_id=info%3Apmid%2F38738665&rft.externalDocID=38738665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon