Protein Microgel-Stabilized Pickering Liquid Crystal Emulsions Undergo Analyte-Triggered Configurational Transition
Herein, we report a novel approach that involves Pickering stabilization of micometer-sized liquid crystal (LC) droplets with biocompatible soft materials such as a whey protein microgel (WPM) to facilitate the analysis of analyte-induced configurational transition of the LC droplets. The WPM partic...
Saved in:
Published in | Langmuir Vol. 36; no. 34; pp. 10091 - 10102 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
01.09.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, we report a novel approach that involves Pickering stabilization of micometer-sized liquid crystal (LC) droplets with biocompatible soft materials such as a whey protein microgel (WPM) to facilitate the analysis of analyte-induced configurational transition of the LC droplets. The WPM particles were able to irreversibly adsorb at the LC–water interface, and the resulting WPM-stabilized LC droplets possessed a remarkable stability against coalescence over time. Although the LC droplets were successfully protected by a continuous network of the WPM layer, the LC–water interface was still accessible for small molecules such as sodium dodecyl sulfate (SDS) that could diffuse through the meshes of the adsorbed WPM network or through the interfacial pores and induce an LC response. This approach was exploited to investigate the dynamic range of the WPM-stabilized LC droplet response to SDS. Nevertheless, the presence of the unadsorbed WPM in the aqueous medium reduced the access of SDS molecules to the LC droplets, thus suppressing the configuration transition. An improved LC response to SDS with a lower detection limit was achieved after washing off the unadsorbed WPM. Interestingly, the LC exhibited a detection limit as low as ∼0.85 mM for SDS within the initial WPM concentration ranging from 0.005 to 0.1 wt %. Furthermore, we demonstrate that the dose–response behavior was strongly influenced by the number of droplets exposed to the aqueous analytes and the type of surfactants such as anionic SDS, cationic dodecyltrimethylammonium bromide (DTAB), and nonionic tetra(ethylene glycol)monododecyl ether (C12E4). Thus, our results address key issues associated with the quantification of aqueous analytes and provide a promising colloidal platform toward the development of new classes of biocompatible LC droplet-based optical sensors. |
---|---|
AbstractList | Herein, we report a novel approach that involves Pickering stabilization of micometer-sized liquid crystal (LC) droplets with biocompatible soft materials such as a whey protein microgel (WPM) to facilitate the analysis of analyte-induced configurational transition of the LC droplets. The WPM particles were able to irreversibly adsorb at the LC–water interface, and the resulting WPM-stabilized LC droplets possessed a remarkable stability against coalescence over time. Although the LC droplets were successfully protected by a continuous network of the WPM layer, the LC–water interface was still accessible for small molecules such as sodium dodecyl sulfate (SDS) that could diffuse through the meshes of the adsorbed WPM network or through the interfacial pores and induce an LC response. This approach was exploited to investigate the dynamic range of the WPM-stabilized LC droplet response to SDS. Nevertheless, the presence of the unadsorbed WPM in the aqueous medium reduced the access of SDS molecules to the LC droplets, thus suppressing the configuration transition. An improved LC response to SDS with a lower detection limit was achieved after washing off the unadsorbed WPM. Interestingly, the LC exhibited a detection limit as low as ∼0.85 mM for SDS within the initial WPM concentration ranging from 0.005 to 0.1 wt %. Furthermore, we demonstrate that the dose–response behavior was strongly influenced by the number of droplets exposed to the aqueous analytes and the type of surfactants such as anionic SDS, cationic dodecyltrimethylammonium bromide (DTAB), and nonionic tetra(ethylene glycol)monododecyl ether (C12E4). Thus, our results address key issues associated with the quantification of aqueous analytes and provide a promising colloidal platform toward the development of new classes of biocompatible LC droplet-based optical sensors. |
Author | Zhang, Shuning Baker, Daniel L Sarkar, Anwesha Gleeson, Helen F Aery, Shikha Dan, Abhijit |
AuthorAffiliation | University of Leeds Soft Matter Physics Group, School of Physics and Astronomy Department of Chemistry and Centre for Advanced Studies in Chemistry Food Colloids and Bioprocessing Group, School of Food Science and Nutrition Panjab University − Chandigarh |
AuthorAffiliation_xml | – name: Soft Matter Physics Group, School of Physics and Astronomy – name: Panjab University − Chandigarh – name: Food Colloids and Bioprocessing Group, School of Food Science and Nutrition – name: University of Leeds – name: Department of Chemistry and Centre for Advanced Studies in Chemistry |
Author_xml | – sequence: 1 givenname: Abhijit orcidid: 0000-0002-7656-3956 surname: Dan fullname: Dan, Abhijit email: abhijit@pu.ac.in organization: Panjab University − Chandigarh – sequence: 2 givenname: Shikha surname: Aery fullname: Aery, Shikha organization: Panjab University − Chandigarh – sequence: 3 givenname: Shuning surname: Zhang fullname: Zhang, Shuning organization: Food Colloids and Bioprocessing Group, School of Food Science and Nutrition – sequence: 4 givenname: Daniel L orcidid: 0000-0002-5145-3320 surname: Baker fullname: Baker, Daniel L organization: University of Leeds – sequence: 5 givenname: Helen F orcidid: 0000-0002-7494-2100 surname: Gleeson fullname: Gleeson, Helen F organization: University of Leeds – sequence: 6 givenname: Anwesha orcidid: 0000-0003-1742-2122 surname: Sarkar fullname: Sarkar, Anwesha email: A.Sarkar@leeds.ac.uk organization: Food Colloids and Bioprocessing Group, School of Food Science and Nutrition |
BookMark | eNp9kD1vwjAQQK2KSgXaf9AhY5fQc2wnZESIfkhURSrMkZNcIlPHBjsZ6K-vEXTtZJ383kn3JmRkrEFCHinMKCT0WVZ-pqVpu0G5GVRAGRc3ZExFArGYJ9mIjCHjLM54yu7IxPs9AOSM52PiN872qEz0oSpnW9TxVy9LpdUP1tFGVd_olGmjtToOqo6W7uR7qaNVN2ivrPHRztToWhstjNSnHuOtU22LLshLaxrVDk72AQzO1knj1Xm4J7eN1B4fru-U7F5W2-VbvP58fV8u1rFkGe1jznhSyyyDGvISOC1ZwxpRVkzwkkOes5TNBatSUWU5LakATBLOACUg8lQ0bEqeLnsPzh4H9H3RKV-hDqnQDr4INAeRZjwJKL-gIYL3Dpvi4FQn3amgUJwbF6Fx8de4uDYOGly08-_eDi4c6v9XfgEIWIcs |
CitedBy_id | crossref_primary_10_1039_D3TC00598D crossref_primary_10_1002_smll_202309053 crossref_primary_10_1016_j_colsurfa_2022_130122 crossref_primary_10_1021_acsami_1c12667 crossref_primary_10_1016_j_colsurfa_2021_126952 crossref_primary_10_1021_acs_nanolett_0c05139 crossref_primary_10_3390_cryst13081237 crossref_primary_10_1021_acs_analchem_3c04555 crossref_primary_10_1021_acs_langmuir_2c02461 crossref_primary_10_1016_j_colsurfa_2024_134574 crossref_primary_10_1016_j_foodhyd_2024_110370 crossref_primary_10_1021_acs_langmuir_3c03940 crossref_primary_10_1021_acs_langmuir_1c02278 crossref_primary_10_1039_D2TB00098A crossref_primary_10_1002_jsfa_13264 crossref_primary_10_1021_acs_langmuir_2c01005 crossref_primary_10_1016_j_foodhyd_2023_108979 |
Cites_doi | 10.1016/j.foostr.2019.100113 10.1039/c5sm02998h 10.1039/c4ra02734e 10.1021/la303771t 10.1039/c0sm00220h 10.1021/acs.jpcc.9b01934 10.1021/acs.jpcb.7b00551 10.1021/acsomega.7b01175 10.1039/c0cp01022g 10.1002/adfm.200900399 10.1021/ac4021193 10.1039/c2jm00038e 10.1002/adfm.201700803 10.1021/acs.langmuir.9b01966 10.1021/la2022215 10.1039/b715933c 10.1021/acsami.5b11076 10.1016/s1359-0294(02)00008-0 10.1021/acs.langmuir.7b03627 10.1021/ac900793w 10.1021/la203357p 10.1021/la062203s 10.1039/c2sm26811f 10.1039/c1lc20402e 10.1002/adma.200502013 10.1021/la100376u 10.1021/la3028463 10.1021/la304679f 10.1016/j.foodhyd.2015.11.032 10.1039/c4cc04651j 10.1140/epje/i2003-10018-6 10.1021/la502032k 10.1039/c9cc03237a 10.1021/cm202632m 10.1002/anie.200804500 10.1021/acsami.8b09639 10.1021/la9912444 10.1039/c5sm01743b 10.1021/la103301d 10.1016/j.foodhyd.2016.06.024 10.1021/am404174n 10.1021/acsami.5b09595 10.1002/bip.21318 10.1016/j.foodhyd.2018.11.010 10.1039/c9sm01802f 10.1126/science.1195639 10.1017/s0022112088001211 10.1021/la303213h 10.1039/b517768e 10.1016/j.cis.2018.10.002 10.1126/science.1091749 10.1039/c4sm00179f 10.1021/acs.jafc.5b03700 10.1021/nl061604p |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.langmuir.0c01345 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 10102 |
ExternalDocumentID | 10_1021_acs_langmuir_0c01345 a495717213 |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X 4.4 AAHBH AAYXX ABJNI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK YQT ~02 7X8 |
ID | FETCH-LOGICAL-a371t-4342da770d09b041b3f3f5bc354b4099363853c65c791b150e22430ea0ee465f3 |
IEDL.DBID | ACS |
ISSN | 0743-7463 |
IngestDate | Fri Aug 16 01:25:33 EDT 2024 Wed Dec 18 14:25:23 EST 2024 Thu Sep 03 06:07:20 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a371t-4342da770d09b041b3f3f5bc354b4099363853c65c791b150e22430ea0ee465f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7494-2100 0000-0002-5145-3320 0000-0003-1742-2122 0000-0002-7656-3956 |
OpenAccessLink | https://eprints.whiterose.ac.uk/164229/3/Unmarked%20Manuscript.pdf |
PQID | 2434056742 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2434056742 crossref_primary_10_1021_acs_langmuir_0c01345 acs_journals_10_1021_acs_langmuir_0c01345 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20200901 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 20200901 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref36/cit36 doi: 10.1016/j.foostr.2019.100113 – ident: ref35/cit35 doi: 10.1039/c5sm02998h – ident: ref27/cit27 doi: 10.1039/c4ra02734e – ident: ref15/cit15 doi: 10.1021/la303771t – ident: ref33/cit33 doi: 10.1039/c0sm00220h – ident: ref24/cit24 doi: 10.1021/acs.jpcc.9b01934 – ident: ref26/cit26 doi: 10.1021/acs.jpcb.7b00551 – ident: ref25/cit25 doi: 10.1021/acsomega.7b01175 – ident: ref51/cit51 doi: 10.1039/c0cp01022g – ident: ref17/cit17 doi: 10.1002/adfm.200900399 – ident: ref3/cit3 doi: 10.1021/ac4021193 – ident: ref16/cit16 doi: 10.1039/c2jm00038e – ident: ref30/cit30 doi: 10.1002/adfm.201700803 – ident: ref39/cit39 doi: 10.1021/acs.langmuir.9b01966 – ident: ref11/cit11 doi: 10.1021/la2022215 – ident: ref49/cit49 doi: 10.1039/b715933c – ident: ref29/cit29 doi: 10.1021/acsami.5b11076 – ident: ref31/cit31 doi: 10.1016/s1359-0294(02)00008-0 – ident: ref34/cit34 doi: 10.1021/acs.langmuir.7b03627 – ident: ref14/cit14 doi: 10.1021/ac900793w – ident: ref48/cit48 doi: 10.1021/la203357p – ident: ref50/cit50 doi: 10.1021/la062203s – ident: ref2/cit2 doi: 10.1039/c2sm26811f – ident: ref20/cit20 doi: 10.1039/c1lc20402e – ident: ref52/cit52 doi: 10.1002/adma.200502013 – ident: ref18/cit18 doi: 10.1021/la100376u – ident: ref13/cit13 doi: 10.1021/la3028463 – ident: ref19/cit19 doi: 10.1021/la304679f – ident: ref44/cit44 doi: 10.1016/j.foodhyd.2015.11.032 – ident: ref22/cit22 doi: 10.1039/c4cc04651j – ident: ref45/cit45 doi: 10.1140/epje/i2003-10018-6 – ident: ref23/cit23 doi: 10.1021/la502032k – ident: ref32/cit32 doi: 10.1039/c9cc03237a – ident: ref5/cit5 doi: 10.1021/cm202632m – ident: ref7/cit7 doi: 10.1002/anie.200804500 – ident: ref8/cit8 doi: 10.1021/acsami.8b09639 – ident: ref54/cit54 doi: 10.1021/la9912444 – ident: ref43/cit43 doi: 10.1039/c5sm01743b – ident: ref4/cit4 doi: 10.1021/la103301d – ident: ref42/cit42 doi: 10.1016/j.foodhyd.2016.06.024 – ident: ref21/cit21 doi: 10.1021/am404174n – ident: ref28/cit28 doi: 10.1021/acsami.5b09595 – ident: ref53/cit53 doi: 10.1002/bip.21318 – ident: ref38/cit38 doi: 10.1016/j.foodhyd.2018.11.010 – ident: ref37/cit37 doi: 10.1039/c9sm01802f – ident: ref1/cit1 doi: 10.1126/science.1195639 – ident: ref46/cit46 doi: 10.1017/s0022112088001211 – ident: ref12/cit12 doi: 10.1021/la303213h – ident: ref10/cit10 doi: 10.1039/b517768e – ident: ref41/cit41 doi: 10.1016/j.cis.2018.10.002 – ident: ref9/cit9 doi: 10.1126/science.1091749 – ident: ref40/cit40 doi: 10.1039/c4sm00179f – ident: ref47/cit47 doi: 10.1021/acs.jafc.5b03700 – ident: ref6/cit6 doi: 10.1021/nl061604p |
SSID | ssj0009349 |
Score | 2.479427 |
Snippet | Herein, we report a novel approach that involves Pickering stabilization of micometer-sized liquid crystal (LC) droplets with biocompatible soft materials such... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 10091 |
Title | Protein Microgel-Stabilized Pickering Liquid Crystal Emulsions Undergo Analyte-Triggered Configurational Transition |
URI | http://dx.doi.org/10.1021/acs.langmuir.0c01345 https://search.proquest.com/docview/2434056742 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58HPTiW3yzghcPW5PsbrY5SqkUsSrYQm9hXynBmmqTHPTXO5smiIqo1xCSZfYx38x-8w1CZ9T6oQBcS6SVnMApyYgMbZtwKjSzfiKNdAn9_m3YG7LrER99BIpfb_AD_0LqvOVyd09lOmt5GiAL44toORAQgTso1Hn4ENmlc7jrZDcFC2lTKvfDV5xD0vlnh_T5PK6czNU6umtKdebcksdWWaiWfvuu3PjH8W-gtRpv4sv5AtlECzbbQiudps3bNsrvnVJDmuG-o-aN7YQA_nSM2Tdr8H3qWBfg3fBN-lKmBndmrwAnJ7j7VE5cni3HVeOk8RRX6iaFJQMI98euASh2xYTpuJzV6UZcucWKIbaDhlfdQadH6k4MRFLhF4RRFhgphGe8SHnMVzShCVeacqYgQIwo7GJOdci1iHwFGNMCMqCelZ61LOQJ3UVL2TSzewhrrU3oRR7niWFGUNmOmNOsM20llOB8H52DxeJ6J-VxdUke-LF72Jgxrs24j0gzdfHzXJzjl_dPm_mNwcruakRmdlrmMYwWkGsoWHDwj_8fotXAhd8V5ewILRWz0h4DRinUSbUw3wH0EOUF |
link.rule.ids | 314,780,784,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigX3ojyNBIXDl6StR1vjmjVaoHdqhJb1FvkV1ZRt1nYJAf665nxJlRFQqhXK7In48d8Mx5_A_BehDTTiGu5CUZxPCUlN1mYcCW0kyEtjTcU0F-cZLMz-eVcne-BGt7CoBAN9tTES_xrdoH0I7VRCO-yq7ajxCFykeoO3FVUtZIQ0fTbNdeu2KFeYt_UMhPDi7l_9EJ2yTU37dLNYznamuMH8P2PlDHF5GLUtXbkrv4icLz1bzyE-z36ZJ92y-UR7IX6MRxMh6JvT6A5Jd6GqmYLStRbhTVHNEr5s1fBs9OKcjDQ1rF59bOrPJtufyG4XLOjy25NUbeGxTJKqw2LXCdt4Et0_ldUDpTR08Jq1W374COLRjLmiz2Fs-Oj5XTG-7oM3AidtlwKOfZG68QnuU1kakUpSmWdUNKiu5gL3NNKuEw5nacWEWdAnCCSYJIQZKZK8Qz2600dngNzzvksyROlSi-9FmaSS2Kw8xOrrVbqED6gxop-XzVFvDIfpwU1DmosejUeAh9msPixo-r4z_fvhmkuUMt0UWLqsOmaAqVFHJtpOX5xi_HfwsFsuZgX888nX1_CvTE55jEZ7RXst9suvEb00to3ca3-Bt4f7XI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKKwGXUh4VLVCMxIWDl2Rtx5tjtXTVlrZaiVaquER-JYrYZkseB_rrmfEmQCuhCq5WZDvjx3wef_6GkPfcx4kCXMu015LBLimYTvyESa6s8HGuncaA_ulZcnghji_l5R-pvqATDdTUhEt8XNXXLu8VBuKPWI5hvKuurEeRBfQi5AOyIWHDRTbX_vTLb71dvkK-qMCpRMKHV3N_qQV9k21u-6bbW3PwN7Mn5OuvngaaybdR15qRvbkj4vhfv7JFNnsUSvdX0-YpWfPVM_JoOiR_e06aOeo3lBU9RcJe4RcMUCnyaG-8o_MSuRjg8-hJ-b0rHZ3WPwBkLujBVbfA6FtDQzqlYkmD5knr2XldFgWmBaX4xLAsuroPQtLgLANv7AW5mB2cTw9Zn5-Baa7ilgkuxk4rFbkoNZGIDc95Lo3lUhg4NqYc1rbkNpFWpbEB5OkBL_DI68h7kcicb5P1aln5l4Raa10SpZGUuRNOcT1JBSrZuYlRRkm5Qz6AxbJ-fTVZuDofxxkWDmbMejPuEDaMYna9kuy45_t3w1BnYGW8MNGVX3ZNBr0FPJsoMd79h_bfkofzT7Ps5Ojs8yvyeIzn88BJe03W27rzbwDEtGYvTNefgvvv9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+Microgel-Stabilized+Pickering+Liquid+Crystal+Emulsions+Undergo+Analyte-Triggered+Configurational+Transition&rft.jtitle=Langmuir&rft.au=Dan%2C+Abhijit&rft.au=Aery%2C+Shikha&rft.au=Zhang%2C+Shuning&rft.au=Baker%2C+Daniel+L&rft.date=2020-09-01&rft.eissn=1520-5827&rft.volume=36&rft.issue=34&rft.spage=10091&rft.epage=10102&rft_id=info:doi/10.1021%2Facs.langmuir.0c01345&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |