Protein Microgel-Stabilized Pickering Liquid Crystal Emulsions Undergo Analyte-Triggered Configurational Transition
Herein, we report a novel approach that involves Pickering stabilization of micometer-sized liquid crystal (LC) droplets with biocompatible soft materials such as a whey protein microgel (WPM) to facilitate the analysis of analyte-induced configurational transition of the LC droplets. The WPM partic...
Saved in:
Published in | Langmuir Vol. 36; no. 34; pp. 10091 - 10102 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
01.09.2020
|
Online Access | Get full text |
Cover
Loading…
Summary: | Herein, we report a novel approach that involves Pickering stabilization of micometer-sized liquid crystal (LC) droplets with biocompatible soft materials such as a whey protein microgel (WPM) to facilitate the analysis of analyte-induced configurational transition of the LC droplets. The WPM particles were able to irreversibly adsorb at the LC–water interface, and the resulting WPM-stabilized LC droplets possessed a remarkable stability against coalescence over time. Although the LC droplets were successfully protected by a continuous network of the WPM layer, the LC–water interface was still accessible for small molecules such as sodium dodecyl sulfate (SDS) that could diffuse through the meshes of the adsorbed WPM network or through the interfacial pores and induce an LC response. This approach was exploited to investigate the dynamic range of the WPM-stabilized LC droplet response to SDS. Nevertheless, the presence of the unadsorbed WPM in the aqueous medium reduced the access of SDS molecules to the LC droplets, thus suppressing the configuration transition. An improved LC response to SDS with a lower detection limit was achieved after washing off the unadsorbed WPM. Interestingly, the LC exhibited a detection limit as low as ∼0.85 mM for SDS within the initial WPM concentration ranging from 0.005 to 0.1 wt %. Furthermore, we demonstrate that the dose–response behavior was strongly influenced by the number of droplets exposed to the aqueous analytes and the type of surfactants such as anionic SDS, cationic dodecyltrimethylammonium bromide (DTAB), and nonionic tetra(ethylene glycol)monododecyl ether (C12E4). Thus, our results address key issues associated with the quantification of aqueous analytes and provide a promising colloidal platform toward the development of new classes of biocompatible LC droplet-based optical sensors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.0c01345 |