Activity-Based Concept for Transport and Partitioning of Ionizing Organics

Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care products, are widely used chemicals of commerce and have been detected in the environment in large numbers. These “ionics” are subject to a variety of processes, such as dissociation, ion trap, and electr...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 44; no. 16; pp. 6123 - 6129
Main Authors Trapp, Stefan, Franco, Antonio, Mackay, Don
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.08.2010
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/es100509x

Cover

Loading…
Abstract Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care products, are widely used chemicals of commerce and have been detected in the environment in large numbers. These “ionics” are subject to a variety of processes, such as dissociation, ion trap, and electrical interactions with organic matter and biota. Conventional chemodynamic concepts and models designed to treat neutral compounds do not necessarily address these processes. A new system of equations, based on activity and analogous to the fugacity approach, is suggested to describe the fate of organic ionics. The total concentration of all molecule species in a bulk compartment is determined from the product of activity ‘a’ and a bulk activity capacity ‘B’. The concentration ratio between compartments in equilibrium depends on the activity ratio and the capacity ratio. Changes in partitioning due to pH, ionic strength, and the ion trap effect are quantified. The calculation is illustrated for two pharmaceuticals, namely the monovalent acid ibuprofen and the monovalent base trimethoprim, in a multimedia lake system. Trimethoprim is neutral at high pH but ionized at low pH, while ibuprofen exhibits the opposite. The concentration ratios of air and biota to water are shown to depend on pH. The activity approach may be used to describe transport and partitioning of multivalent ionizable organic compounds and to build multimedia fate models.
AbstractList Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care products, are widely used chemicals of commerce and have been detected in the environment in large numbers. These "ionics" are subject to a variety of processes, such as dissociation, ion trap, and electrical interactions with organic matter and biota. Conventional chemodynamic concepts and models designed to treat neutral compounds do not necessarily address these processes. A new system of equations, based on activity and analogous to the fugacity approach, is suggested to describe the fate of organic ionics. The total concentration of all molecule species in a bulk compartment is determined from the product of activity 'a' and a bulk activity capacity 'B'. The concentration ratio between compartments in equilibrium depends on the activity ratio and the capacity ratio. Changes in partitioning due to pH, ionic strength, and the ion trap effect are quantified. The calculation is illustrated for two pharmaceuticals, namely the monovalent acid ibuprofen and the monovalent base trimethoprim, in a multimedia lake system. Trimethoprim is neutral at high pH but ionized at low pH, while ibuprofen exhibits the opposite. The concentration ratios of air and biota to water are shown to depend on pH. The activity approach may be used to describe transport and partitioning of multivalent ionizable organic compounds and to build multimedia fate models.
Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care products, are widely used chemicals of commerce and have been detected in the environment in large numbers. These "ionics" are subject to a variety of processes, such as dissociation, ion trap, and electrical interactions with organic matter and biota. Conventional chemodynamic concepts and models designed to treat neutral compounds do not necessarily address these processes. A new system of equations, based on activity and analogous to the fugacity approach, is suggested to describe the fate of organic ionics. The total concentration of all molecule species in a bulk compartment is determined from the product of activity 'a' and a bulk activity capacity 'B'. The concentration ratio between compartments in equilibrium depends on the activity ratio and the capacity ratio. Changes in partitioning due to pH, ionic strength, and the ion trap effect are quantified. The calculation is illustrated for two pharmaceuticals, namely the monovalent acid ibuprofen and the monovalent base trimethoprim, in a multimedia lake system. Trimethoprim is neutral at high pH but ionized at low pH, while ibuprofen exhibits the opposite. The concentration ratios of air and biota to water are shown to depend on pH. The activity approach may be used to describe transport and partitioning of multivalent ionizable organic compounds and to build multimedia fate models.Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care products, are widely used chemicals of commerce and have been detected in the environment in large numbers. These "ionics" are subject to a variety of processes, such as dissociation, ion trap, and electrical interactions with organic matter and biota. Conventional chemodynamic concepts and models designed to treat neutral compounds do not necessarily address these processes. A new system of equations, based on activity and analogous to the fugacity approach, is suggested to describe the fate of organic ionics. The total concentration of all molecule species in a bulk compartment is determined from the product of activity 'a' and a bulk activity capacity 'B'. The concentration ratio between compartments in equilibrium depends on the activity ratio and the capacity ratio. Changes in partitioning due to pH, ionic strength, and the ion trap effect are quantified. The calculation is illustrated for two pharmaceuticals, namely the monovalent acid ibuprofen and the monovalent base trimethoprim, in a multimedia lake system. Trimethoprim is neutral at high pH but ionized at low pH, while ibuprofen exhibits the opposite. The concentration ratios of air and biota to water are shown to depend on pH. The activity approach may be used to describe transport and partitioning of multivalent ionizable organic compounds and to build multimedia fate models.
Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care products, are widely used chemicals of commerce and have been detected in the environment in large numbers. These "ionics" are subject to a variety of processes, such as dissociation, ion trap, and electrical interactions with organic matter and biota. Conventional chemodynamic concepts and models designed to treat neutral compounds do not necessarily address these processes. A new system of equations, based on activity and analogous to the fugacity approach, is suggested to describe the fate of organic ionics. The total concentration of all molecule species in a bulk compartment is determined from the product of activity 'a' and a bulk activity capacity 'B'. The concentration ratio between compartments in equilibrium depends on the activity ratio and the capacity ratio. Changes in partitioning due to pH, ionic strength, and the ion trap effect are quantified. The calculation is illustrated for two pharmaceuticals, namely the monovalent acid ibuprofen and the monovalent base trimethoprim, in a multimedia lake system. Trimethoprim is neutral at high pH but ionized at low pH, while ibuprofen exhibits the opposite. The concentration ratios of air and biota to water are shown to depend on pH. The activity approach may be used to describe transport and partitioning of multivalent ionizable organic compounds and to build multimedia fate models. [PUBLICATION ABSTRACT]
Author Trapp, Stefan
Franco, Antonio
Mackay, Don
Author_xml – sequence: 1
  givenname: Stefan
  surname: Trapp
  fullname: Trapp, Stefan
  email: stt@env.dtu.dk
– sequence: 2
  givenname: Antonio
  surname: Franco
  fullname: Franco, Antonio
– sequence: 3
  givenname: Don
  surname: Mackay
  fullname: Mackay, Don
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23143269$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20704208$$D View this record in MEDLINE/PubMed
BookMark eNpt0U1rGzEQBmAREmLn49A_UJZCKT1sPKOPXe0xNW2TEEgOCeS2aLVao7CWXEkOTX99ZeI4kPakOTwjZt45IvvOO0PIB4QzBIozExFAQPN7j0xRUCiFFLhPpgDIyoZVDxNyFOMjAFAG8pBMKNTAKcgpuTrXyT7Z9Fx-U9H0xdw7bVapGHwo7oJyceVDKpTri1sVkk3WO-sWhR-Ky1z92dQ3YaGc1fGEHAxqjOZ0-x6T-x_f7-YX5fXNz8v5-XWpWI2p5Agce9OZqmaaUYO9kMPQD11DO2W6TvM-b8N6gbQG0ahO1igp41IA1GiQHZMvL_-ugv-1NjG1Sxu1GUfljF_Htuay4ZLXVZaf3slHvw4uD5dRUyEKwTP6uEXrbmn6dhXsUoXn9jWjDD5vgYpajUNORdv45hhyRqsmu68vTgcfYzDDjiC0mzu1uztlO3tntU1qk24Kyo7_7dhOoXR8W-Nf9xf0mJ5K
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_chemosphere_2011_06_041
crossref_primary_10_1016_j_jhazmat_2015_12_005
crossref_primary_10_1021_acs_est_6b03049
crossref_primary_10_1021_acs_est_1c07555
crossref_primary_10_1016_j_watres_2010_08_053
crossref_primary_10_1002_etc_2044
crossref_primary_10_1016_j_watres_2020_115495
crossref_primary_10_1002_etc_641
crossref_primary_10_1016_j_chemosphere_2014_05_048
crossref_primary_10_1016_j_chemosphere_2012_07_048
crossref_primary_10_1021_es3033499
crossref_primary_10_1016_j_jece_2018_01_011
crossref_primary_10_1007_s11367_011_0316_4
crossref_primary_10_1021_es500004z
crossref_primary_10_1139_er_2013_0079
crossref_primary_10_1016_j_jhazmat_2013_09_066
crossref_primary_10_3390_antibiotics2010115
crossref_primary_10_1016_j_envint_2011_02_001
crossref_primary_10_1007_s11356_023_26796_7
crossref_primary_10_1007_s44169_024_00076_y
crossref_primary_10_1016_j_chemosphere_2020_126897
crossref_primary_10_3390_pharmaceutics12030221
crossref_primary_10_1002_ps_4070
crossref_primary_10_1039_C7EM00568G
crossref_primary_10_3934_environsci_2016_1_21
crossref_primary_10_1039_D0AY02282A
crossref_primary_10_1021_es400425b
crossref_primary_10_1016_j_chemosphere_2012_07_014
crossref_primary_10_1016_j_watres_2015_06_033
crossref_primary_10_1016_j_chemosphere_2021_133394
crossref_primary_10_1016_j_jhydrol_2024_132592
crossref_primary_10_1016_j_chroma_2013_09_041
crossref_primary_10_1021_acs_est_0c06803
crossref_primary_10_1039_C3RA44286A
crossref_primary_10_1016_j_envpol_2017_08_015
crossref_primary_10_1002_ps_8556
crossref_primary_10_1016_j_envpol_2013_06_026
crossref_primary_10_31466_kfbd_1446890
crossref_primary_10_1002_ieam_1457
crossref_primary_10_1016_j_cej_2019_122828
crossref_primary_10_1016_j_scitotenv_2024_176999
crossref_primary_10_1039_D1EM00252J
crossref_primary_10_1016_j_jallcom_2022_167457
crossref_primary_10_1016_j_chemosphere_2019_125534
crossref_primary_10_1080_10643389_2013_828270
crossref_primary_10_1021_acs_est_3c02945
crossref_primary_10_1016_j_chemosphere_2019_125135
crossref_primary_10_1002_etc_5451
crossref_primary_10_1007_s11104_013_1637_9
crossref_primary_10_1016_j_scitotenv_2019_02_456
crossref_primary_10_2139_ssrn_4161695
crossref_primary_10_1002_etc_2020
crossref_primary_10_1016_j_envint_2014_03_020
crossref_primary_10_1021_acs_est_0c01503
crossref_primary_10_1016_j_jcis_2021_03_164
crossref_primary_10_1016_j_chemosphere_2012_10_036
crossref_primary_10_1002_ieam_1442
crossref_primary_10_1124_jpet_110_175679
crossref_primary_10_1039_C9RA05747A
crossref_primary_10_1016_j_envpol_2023_122368
crossref_primary_10_1016_j_chemosphere_2011_07_056
crossref_primary_10_1021_acs_est_7b04275
crossref_primary_10_1002_etc_5582
crossref_primary_10_1007_s11356_023_27660_4
crossref_primary_10_1016_j_chemosphere_2018_04_047
crossref_primary_10_1021_es4031886
crossref_primary_10_1038_srep39798
crossref_primary_10_1002_etc_3680
crossref_primary_10_1016_j_chemosphere_2012_11_036
crossref_primary_10_1021_acs_jafc_8b02221
crossref_primary_10_1016_j_chemosphere_2024_141449
Cites_doi 10.1016/S0045-6535(99)00532-9
10.1021/es035287p
10.1897/08-546.1
10.1021/es900753y
10.1021/es011055j
10.1515/zpch-1901-3816
10.1021/es60158a003
10.1016/S0048-9697(98)00337-4
10.1897/06-142R.1
10.1007/s00249-005-0472-1
10.1897/08-233.1
10.1007/978-3-642-80429-8
10.1016/0045-6535(92)90030-U
10.1016/S0169-7722(03)00004-4
10.1093/jxb/47.Special_Issue.1265
10.1007/s11367-010-0165-6
10.1097/00008571-199410000-00001
10.1023/A:1005126704309
10.1002/etc.115
10.1021/es049957i
10.1016/S0043-1354(98)00099-2
10.1016/S0045-6535(97)00354-8
10.1897/08-178.1
10.1016/j.watres.2004.07.006
10.1002/etc.5620220304
10.2307/20022322
10.1016/0045-6535(89)90027-1
10.1021/es802900n
10.1002/(SICI)1096-9063(199809)54:1<1::AID-PS792>3.0.CO;2-O
10.1023/A:1005062316518
10.1515/zpch-1889-0412
10.1007/s00249-008-0338-4
10.1016/j.chemosphere.2006.06.035
10.1021/es032433i
10.1897/07-583.1
10.1065/espr2003.08.169
10.1016/j.chemosphere.2007.07.045
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society Aug 15, 2010
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Aug 15, 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
DOI 10.1021/es100509x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Biotechnology Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 6129
ExternalDocumentID 2131054181
20704208
23143269
10_1021_es100509x
c8927711
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
ABHMW
ACKIV
ACRPL
ADNMO
AETEA
AEYZD
AGQPQ
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
ID FETCH-LOGICAL-a371t-41041debe673c32e1d58ffdfb92baebbc4d1003d5127059ab8718234850071e13
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Tue Aug 05 10:51:53 EDT 2025
Fri Jul 25 04:32:32 EDT 2025
Mon Jul 21 06:01:48 EDT 2025
Mon Jul 21 09:15:14 EDT 2025
Tue Jul 01 02:10:25 EDT 2025
Thu Apr 24 23:00:43 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Cosmetic
Fugacity
Drug
Agricultural chemical product
Radioactive pollution
Multimedia model
Pollutant behavior
Biota
Pesticides
Modeling
Radioactivity measurement
Equation system
Transport process
Chemical pollution
Ion trap
Ionic strength
Surface water
Lakes
Phase partition
Organic compounds
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-41041debe673c32e1d58ffdfb92baebbc4d1003d5127059ab8718234850071e13
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20704208
PQID 749611554
PQPubID 45412
PageCount 7
ParticipantIDs proquest_miscellaneous_748948476
proquest_journals_749611554
pubmed_primary_20704208
pascalfrancis_primary_23143269
crossref_primary_10_1021_es100509x
crossref_citationtrail_10_1021_es100509x
acs_journals_10_1021_es100509x
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-15
PublicationDateYYYYMMDD 2010-08-15
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Hsu F. C. (ref2/cit2) 1996; 47
Franco A. (ref49/cit49) 2008; 27
Franco A. (ref1/cit1) 2010; 15
Briggs G. E. (ref35/cit35) 1961
Debye P. (ref30/cit30) 1923; 24
Mayer P. (ref52/cit52) 2006; 25
Mackay D. (ref17/cit17) 1991
Sandermann H. (ref6/cit6) 1994; 4
Diamond M. (ref19/cit19) 1992; 25
Hirsch R. (ref48/cit48) 1999; 225
Trapp S. (ref37/cit37) 2005; 34
Baun A. (ref9/cit9) 2003; 65
Baun A. (ref11/cit11) 2004; 38
Trapp S. (ref38/cit38) 2004; 11
ref46/cit46
ref26/cit26a
Fu W. (ref40/cit40) 2009; 28
Armitage J. M. (ref24/cit24) 2009; 43
Mackay D. (ref16/cit16) 1979; 13
Appelo C. A. J. (ref28/cit28) 2005
Valenti W. T. (ref43/cit43) 2009; 28
Ternes T. (ref7/cit7) 1998; 32
Tinsley I. (ref12/cit12) 1979
Lewis G. N. (ref26/cit26) 1901; 38
Mackay D. (ref18/cit18) 1989; 18
Mayer P. (ref51/cit51) 2003; 37
Schwarzenbach R. P. (ref31/cit31) 2001
Cizmas L. (ref10/cit10) 2004; 38
Frohne D. (ref5/cit5) 1985
Henderson L. J. (ref32/cit32) 1908; 21
Halling-Sørensen B. (ref47/cit47) 1998; 36
ref14/cit14
Manallack D. T. (ref4/cit4) 2007; 1
Toose L. K. (ref22/cit22) 2004; 38
Ternes T. A. (ref8/cit8) 2007; 66
Trapp S. (ref13/cit13) 1998
Trapp S. (ref39/cit39) 2008; 37
Stumm W. (ref29/cit29) 1981
Zarfl C. (ref41/cit41) 2008; 70
Cahill T. M. (ref23/cit23) 2003; 22
Kolpin D. (ref44/cit44) 2002; 36
Mackay D. (ref53/cit53) 2009; 20
Armitage J. M. (ref25/cit25) 2009; 43
Diamond M. L. (ref20/cit20) 1999; 111
Franco A. (ref50/cit50) 2009; 28
Franco A. (ref34/cit34) 2010; 29
Brandes L. J. (ref42/cit42) 1996
Chamberlain K. (ref3/cit3) 1998; 54
Lewis G. N. (ref27/cit27) 1907; 43
Nernst W. (ref36/cit36) 1889; 4
ref33/cit33
(ref45/cit45) 2008
Diamond M. (ref21/cit21) 2000; 117
Trapp S. (ref15/cit15) 2000; 41
References_xml – volume: 41
  start-page: 965
  year: 2000
  ident: ref15/cit15
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00532-9
– volume: 38
  start-page: 5127
  year: 2004
  ident: ref10/cit10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035287p
– ident: ref14/cit14
– volume: 28
  start-page: 2685
  issue: 12
  year: 2009
  ident: ref43/cit43
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/08-546.1
– volume: 43
  start-page: 5830
  year: 2009
  ident: ref24/cit24
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900753y
– volume-title: Aquatic Chemistry
  year: 1981
  ident: ref29/cit29
– volume-title: Environmental Organic Chemistry
  year: 2001
  ident: ref31/cit31
– volume-title: ACD/LogD Suite version 10.02
  year: 2008
  ident: ref45/cit45
– volume: 36
  start-page: 1202
  issue: 6
  year: 2002
  ident: ref44/cit44
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011055j
– volume: 1
  start-page: 25
  year: 2007
  ident: ref4/cit4
  publication-title: Perspect. Med. Chem.
– ident: ref33/cit33
– volume: 38
  start-page: 205
  year: 1901
  ident: ref26/cit26
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1901-3816
– volume: 13
  start-page: 1218
  year: 1979
  ident: ref16/cit16
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es60158a003
– volume-title: Systematik des Pflanzenreiches unter besonderer Berücksichtigung chemischer Merkmale und pflanzlicher Drogen
  year: 1985
  ident: ref5/cit5
– volume: 225
  start-page: 109
  year: 1999
  ident: ref48/cit48
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(98)00337-4
– volume: 20
  start-page: 393
  issue: 3
  year: 2009
  ident: ref53/cit53
  publication-title: SAR/QSAR Environ. Res.
– volume: 25
  start-page: 2639
  issue: 10
  year: 2006
  ident: ref52/cit52
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/06-142R.1
– volume: 34
  start-page: 959
  year: 2005
  ident: ref37/cit37
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-005-0472-1
– volume: 28
  start-page: 1372
  issue: 7
  year: 2009
  ident: ref40/cit40
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/08-233.1
– volume-title: Chemodynamics and environmental modeling
  year: 1998
  ident: ref13/cit13
  doi: 10.1007/978-3-642-80429-8
– volume: 25
  start-page: 1907
  issue: 12
  year: 1992
  ident: ref19/cit19
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(92)90030-U
– volume: 65
  start-page: 269
  year: 2003
  ident: ref9/cit9
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(03)00004-4
– volume: 21
  start-page: 173
  year: 1908
  ident: ref32/cit32
  publication-title: J. Physiol.
– volume: 47
  start-page: 1265
  year: 1996
  ident: ref2/cit2
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/47.Special_Issue.1265
– volume: 24
  start-page: 185
  year: 1923
  ident: ref30/cit30
  publication-title: Phys. Z.
– volume: 15
  start-page: 321
  year: 2010
  ident: ref1/cit1
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-010-0165-6
– volume: 4
  start-page: 225
  year: 1994
  ident: ref6/cit6
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-199410000-00001
– volume: 117
  start-page: 133
  year: 2000
  ident: ref21/cit21
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1023/A:1005126704309
– volume-title: Botanical monographs
  year: 1961
  ident: ref35/cit35
– volume: 29
  start-page: 789
  issue: 4
  year: 2010
  ident: ref34/cit34
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.115
– volume-title: Multimedia fugacity models. The fugacity approach
  year: 1991
  ident: ref17/cit17
– volume: 38
  start-page: 4619
  year: 2004
  ident: ref22/cit22
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049957i
– ident: ref46/cit46
– volume: 32
  start-page: 3245
  year: 1998
  ident: ref7/cit7
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00099-2
– volume: 36
  start-page: 357
  year: 1998
  ident: ref47/cit47
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(97)00354-8
– volume-title: Geochemistry and groundwater pollution
  year: 2005
  ident: ref28/cit28
– volume: 28
  start-page: 458
  issue: 3
  year: 2009
  ident: ref50/cit50
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/08-178.1
– volume: 38
  start-page: 3845
  year: 2004
  ident: ref11/cit11
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.07.006
– volume: 22
  start-page: 483
  year: 2003
  ident: ref23/cit23
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620220304
– volume: 43
  start-page: 259
  year: 1907
  ident: ref27/cit27
  publication-title: P. Am. Acad. Arts Sci.
  doi: 10.2307/20022322
– volume: 18
  start-page: 1343
  issue: 7
  year: 1989
  ident: ref18/cit18
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(89)90027-1
– volume: 43
  start-page: 1134
  year: 2009
  ident: ref25/cit25
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802900n
– volume: 54
  start-page: 1
  year: 1998
  ident: ref3/cit3
  publication-title: Pestic. Sci.
  doi: 10.1002/(SICI)1096-9063(199809)54:1<1::AID-PS792>3.0.CO;2-O
– volume: 111
  start-page: 337
  year: 1999
  ident: ref20/cit20
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1023/A:1005062316518
– ident: ref26/cit26a
– volume: 4
  start-page: 129
  year: 1889
  ident: ref36/cit36
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1889-0412
– volume: 37
  start-page: 1317
  year: 2008
  ident: ref39/cit39
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-008-0338-4
– volume: 66
  start-page: 894
  year: 2007
  ident: ref8/cit8
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.06.035
– volume: 37
  start-page: 184A
  year: 2003
  ident: ref51/cit51
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es032433i
– volume: 27
  start-page: 1995
  year: 2008
  ident: ref49/cit49
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/07-583.1
– volume: 11
  start-page: 33
  year: 2004
  ident: ref38/cit38
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1065/espr2003.08.169
– volume-title: Chemical concepts in pollutant behaviour
  year: 1979
  ident: ref12/cit12
– volume: 70
  start-page: 753
  year: 2008
  ident: ref41/cit41
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.07.045
– volume-title: Simplebox 2.0: A nested multimedia fate model for evaluating the envrionmental fate of chemicals
  year: 1996
  ident: ref42/cit42
SSID ssj0002308
Score 2.2767203
Snippet Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care products, are widely used chemicals of commerce and have been...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6123
SubjectTerms Applied sciences
Environmental Processes
Exact sciences and technology
Fresh Water - chemistry
Geologic Sediments - chemistry
Hydrogen-Ion Concentration
Ibuprofen - analysis
Ions - analysis
Models, Chemical
Motion
Multimedia
Nonsteroidal anti-inflammatory drugs
Organic chemicals
Organic Chemicals - analysis
Pesticides
Pharmaceuticals
Pollution
Trimethoprim - analysis
Water Pollutants, Chemical - analysis
Title Activity-Based Concept for Transport and Partitioning of Ionizing Organics
URI http://dx.doi.org/10.1021/es100509x
https://www.ncbi.nlm.nih.gov/pubmed/20704208
https://www.proquest.com/docview/749611554
https://www.proquest.com/docview/748948476
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLYQXECIx2BQHlMEHLh0LGmbtccxhmASCAmQdpvy6gXUTXS78OtxlrYDscEtUt2qiZ34Sxx_BrjgoRKtlmz7KlXMRw9tfMkj5rcUeu-AKUa5zUZ-eOR3r2F_EA1W4HxJBJ_RK5PTGUkJAsU1xhFeW_zTfa6WW8TQcVmmIAn4oKQP-v6qdT0q_-F6Nscix1FIXfmK5fhy5mdut-GmzNZx10vemtOJbKrP3-SNf3VhB7YKnEk6zjB2YcVkNdj4xj5Yg3pvnuSGosUsz_eg31GupoR_jT5Ok65LbSSIb0lFhk5EpsmTNbziSJeMUnKPrU_bdimeKt-H19veS_fOL2ou-CJo04kf4vaMatQsbweoLkN1FKepTmXCpDBSqlBjXwId2Yh1lAiJG66YBWEcWbBiaFCH1WyUmUMgiEUt255KORehoEIIqgWTidSCxiaJPWigUobFnMmHs3A4o8NqtDy4LPU1VAVjuS2c8b5I9KwSHTuajkVCjR9KryQR46Jd8sSD49IK5r_VDhNOLerygFRPcQ7awIrIzGhqReIkRDfPPThwtjP_NC6p9gbD0X-dPYZ1dzEBN_XRCaxOPqbmFPHORDZm9v4Fb3v4tw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHAAh3oMyGBHiwKWwpG3WHscEGk8hAdJuVV69gDpEtwu_HqfpOoZAcItUN8rDrr809meAYx4q0W7Ljq8yxXz00MaXPGJ-W6H3DphilNts5Lt73n8OrwfRoKLJsbkwOIgCeyrKS_wpuwA9MwUtuUoQLy4gCGE2fK_be6y_ugil40m1giTggwmL0NdXrQdSxYwHWnkTBS5G5qpY_A4zS3dzuebqFpUDLaNMXk7HI3mqPr5xOP5vJuuwWqFO0nVqsgFzJt-E5S9chJvQuJimvKFoZfPFFlx3lasw4Z-jx9Ok5xIdCaJdUlOjE5Fr8mDVsPrBS4YZucLWh227hE9VbMPz5cVTr-9XFRh8EXToyA_xsEY17jPvBLh5huoozjKdyYRJYaRUoca5BDqy99dRIiQev2IWhHFkoYuhQQPm82FudoEgMrXceyrjXISCCiGoFkwmUgsamyT2oIWLlVYWVKTl5Tijab1aHpxMti1VFX-5LaPx-pPoUS365kg7fhJqzex9LYmIF7WUJx40J8owHVYnTDi1GMwDUj9Fi7TXLCI3w7EViZMQnT73YMep0LRr_MDaeIa9vyZ7CIv9p7vb9Pbq_qYJSy5kAY_70T7Mj97H5gCR0Ei2ShP4BLf3ASc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kgijio77ioy7iwUtqN49tcqy1xVatBRV6C_vKRUmLaS_-emeTNFVR9LaQybKPmcy3mZ1vAM6ZJ3mjIZq2jKVjo4fWtmC-Yzckem_XkQ5lJhv5fsBunr3-yB8VB0WTC4ODSLGnNAviG6ueqLhgGKCXOqUZXwlixmUTrjNX-Frtx_LLi3A6mFcsCF02mjMJfX7VeCGZfvFC6xOe4oLEeSWL36Fm5nK6m_BQDja7afJSn01FXb5_43H8_2y2YKNAn6SVq8s2LOmkCmufOAmrsNdZpL6haGH76Q70WzKvNGFfoedTpJ0nPBJEvaSkSCc8UWRo1LH40UvGMelh692088RPme7Cc7fz1L6xi0oMNnebdGp7eGijCvebNV3cRE2VH8SxikXoCK6FkJ7CubjKN3FsP-QCj2GB43qBbyCMpu4eVJJxog-AIEI1HHwyZox7nHLOqeKOCIXiNNBhYEENFywqLCmNsiC5Q6NytSy4mG9dJAsec1NO4_Un0bNSdJKTd_wkVPuy_6UkIl_UVhZacDRXiMWwml7IqMFiFpDyKVqmCbfwRI9nRiQIPXT-zIL9XI0WXeOH1txrOPxrsqewMrzuRne9we0RrOY3F_DU7x9DZfo20ycIiKaillnBBxy7A6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity-Based+Concept+for+Transport+and+Partitioning+of+Ionizing+Organics&rft.jtitle=Environmental+science+%26+technology&rft.au=TRAPP%2C+Stefan&rft.au=FRANCO%2C+Antonio&rft.au=MACKAY%2C+Don&rft.date=2010-08-15&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=44&rft.issue=16&rft.spage=6123&rft.epage=6129&rft_id=info:doi/10.1021%2Fes100509x&rft.externalDBID=n%2Fa&rft.externalDocID=23143269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon