Spatial and temporal variations of vegetation cover on the central and eastern Tibetan Plateau since the Last glacial period

Long-term changes in vegetation cover of the Tibetan Plateau (TP) are essential for understanding vegetation change under future climate. Previous studies have mainly concentrated on the Holocene and the eastern region of the TP, but here, we establish a relationship between modern pollen data (incl...

Full description

Saved in:
Bibliographic Details
Published inGlobal and planetary change Vol. 240; p. 104536
Main Authors Liu, Lina, Wang, Nannan, Zhang, Yanrong, Liang, Jie, Ni, Jian, Cao, Xianyong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Long-term changes in vegetation cover of the Tibetan Plateau (TP) are essential for understanding vegetation change under future climate. Previous studies have mainly concentrated on the Holocene and the eastern region of the TP, but here, we establish a relationship between modern pollen data (including both pollen percentage and concentration) and vegetation cover using a random forest (RF) model based on 362 soil-surface samples from the TP, as well as using it to quantitatively reconstruct the vegetation cover history of the Dagze Co (central TP, covering the last 19.5 cal. ka BP) and Koucha Lake (eastern TP, covering the last 33.8 cal. ka BP) regions. The RF results indicate that both the models based on pollen percentages or concentrations perform similarly (former: R2 = 0.538, RMSEP = 19.772%; latter: R2 = 0.540, RMSEP = 19.723%). However, when considering the reconstructed vegetation cover of Dagze Co and Koucha Lake, the results based on pollen concentrations appear to be more reliable. Before 13.4 and 16.8 cal. ka BP, Dagze Co and Koucha Lake has low vegetation cover of 25% and 30%, respectively, dominated by alpine desert or desert steppe. After that, changes in vegetation cover show different trends. At Dagze Co, the vegetation cover reaches a high level (54%) between 13.4 and 5.3 cal. ka BP, followed by a decrease until it starts increasing again at 2 cal. ka BP, in response to the change in the Indian Summer Monsoon (ISM). At Koucha Lake, the vegetation cover fluctuates at around 60%, indicating less sensitivity to climate change. Our research highlights the importance of pollen concentrations in quantitatively reconstructing past vegetation cover and the sparse vegetation status during the LGM on the TP. •Vegetation cover history on the central and eastern Tibean Plateau was reconstructed based on pollen concentrations.•Alpine desert or desert steppe with sparse vegetation cover was widely distributed during the LGM on the Tibetan Plateau.•There are significant spatial and temporal differences in vegetation cover on the central and eastern Tibetan Plateau.
AbstractList Long-term changes in vegetation cover of the Tibetan Plateau (TP) are essential for understanding vegetation change under future climate. Previous studies have mainly concentrated on the Holocene and the eastern region of the TP, but here, we establish a relationship between modern pollen data (including both pollen percentage and concentration) and vegetation cover using a random forest (RF) model based on 362 soil-surface samples from the TP, as well as using it to quantitatively reconstruct the vegetation cover history of the Dagze Co (central TP, covering the last 19.5 cal. ka BP) and Koucha Lake (eastern TP, covering the last 33.8 cal. ka BP) regions. The RF results indicate that both the models based on pollen percentages or concentrations perform similarly (former: R² = 0.538, RMSEP = 19.772%; latter: R² = 0.540, RMSEP = 19.723%). However, when considering the reconstructed vegetation cover of Dagze Co and Koucha Lake, the results based on pollen concentrations appear to be more reliable. Before 13.4 and 16.8 cal. ka BP, Dagze Co and Koucha Lake has low vegetation cover of 25% and 30%, respectively, dominated by alpine desert or desert steppe. After that, changes in vegetation cover show different trends. At Dagze Co, the vegetation cover reaches a high level (54%) between 13.4 and 5.3 cal. ka BP, followed by a decrease until it starts increasing again at 2 cal. ka BP, in response to the change in the Indian Summer Monsoon (ISM). At Koucha Lake, the vegetation cover fluctuates at around 60%, indicating less sensitivity to climate change. Our research highlights the importance of pollen concentrations in quantitatively reconstructing past vegetation cover and the sparse vegetation status during the LGM on the TP.
Long-term changes in vegetation cover of the Tibetan Plateau (TP) are essential for understanding vegetation change under future climate. Previous studies have mainly concentrated on the Holocene and the eastern region of the TP, but here, we establish a relationship between modern pollen data (including both pollen percentage and concentration) and vegetation cover using a random forest (RF) model based on 362 soil-surface samples from the TP, as well as using it to quantitatively reconstruct the vegetation cover history of the Dagze Co (central TP, covering the last 19.5 cal. ka BP) and Koucha Lake (eastern TP, covering the last 33.8 cal. ka BP) regions. The RF results indicate that both the models based on pollen percentages or concentrations perform similarly (former: R2 = 0.538, RMSEP = 19.772%; latter: R2 = 0.540, RMSEP = 19.723%). However, when considering the reconstructed vegetation cover of Dagze Co and Koucha Lake, the results based on pollen concentrations appear to be more reliable. Before 13.4 and 16.8 cal. ka BP, Dagze Co and Koucha Lake has low vegetation cover of 25% and 30%, respectively, dominated by alpine desert or desert steppe. After that, changes in vegetation cover show different trends. At Dagze Co, the vegetation cover reaches a high level (54%) between 13.4 and 5.3 cal. ka BP, followed by a decrease until it starts increasing again at 2 cal. ka BP, in response to the change in the Indian Summer Monsoon (ISM). At Koucha Lake, the vegetation cover fluctuates at around 60%, indicating less sensitivity to climate change. Our research highlights the importance of pollen concentrations in quantitatively reconstructing past vegetation cover and the sparse vegetation status during the LGM on the TP. •Vegetation cover history on the central and eastern Tibean Plateau was reconstructed based on pollen concentrations.•Alpine desert or desert steppe with sparse vegetation cover was widely distributed during the LGM on the Tibetan Plateau.•There are significant spatial and temporal differences in vegetation cover on the central and eastern Tibetan Plateau.
ArticleNumber 104536
Author Liang, Jie
Cao, Xianyong
Wang, Nannan
Liu, Lina
Zhang, Yanrong
Ni, Jian
Author_xml – sequence: 1
  givenname: Lina
  surname: Liu
  fullname: Liu, Lina
  email: liulina@zjnu.edu.cn
  organization: College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
– sequence: 2
  givenname: Nannan
  surname: Wang
  fullname: Wang, Nannan
  organization: Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 3
  givenname: Yanrong
  surname: Zhang
  fullname: Zhang, Yanrong
  organization: Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 4
  givenname: Jie
  surname: Liang
  fullname: Liang, Jie
  organization: Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 5
  givenname: Jian
  surname: Ni
  fullname: Ni, Jian
  organization: College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
– sequence: 6
  givenname: Xianyong
  surname: Cao
  fullname: Cao, Xianyong
  email: xcao@itpcas.ac.cn
  organization: Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
BookMark eNqNkEtPAyEUhVnUxFb9DbJ00wrMg5mFi6bxlTTRxLomDHOnpZnCCHQSE3-8tNO4cKMruJdzzuV-EzQy1gBC15TMKKH57Xa2bm3XSrWRM0ZYGrtpluQjNCYlo9OCFvQcTbzfEkI5YWyMvt46GbRssTQ1DrDrrItFL52ObWs8tg3uYQ3hWGJle3A4XsIGsAIT3MkK0gdwBq90FbUGv7YygNxjr42Co3oZFXgd_3aY1oHTtr5EZ41sPVydzgv0_nC_WjxNly-Pz4v5cioTTsM0gSJPFeNZwXlZp6TiRRYf6pzUOatKAAmUqSyv0qysZUWbKkuLRHHFs1KCqpILdDPkds5-7MEHsdNeQdtKA3bvRUJjXkLSNI_Su0GqnPXeQSOUHnaPq-pWUCIOpMVW_JAWB9JiIB39_Je_c3on3ec_nPPBCZFEr8EJrzREerV2oIKorf4z4xtk9KPY
CitedBy_id crossref_primary_10_1016_j_palaeo_2025_112878
crossref_primary_10_1016_j_catena_2025_108758
crossref_primary_10_1016_j_palaeo_2025_112731
Cites_doi 10.5846/stxb201306071419
10.1016/S0031-0182(01)00444-8
10.1177/09596836221080763
10.1016/j.catena.2021.105500
10.1016/j.quascirev.2021.106817
10.1006/qres.1993.1037
10.1016/j.epsl.2007.10.007
10.1016/j.yqres.2006.03.001
10.1038/nature02805
10.1016/j.quascirev.2023.108292
10.1007/s10933-017-9976-9
10.1111/j.1365-2699.2009.02245.x
10.1016/j.earscirev.2020.103119
10.1007/s00334-022-00870-5
10.1177/0959683607075838
10.1007/s00334-008-0149-7
10.1016/j.palaeo.2014.02.022
10.1016/j.revpalbo.2011.09.004
10.1111/gcb.16455
10.1126/science.1217161
10.1111/bor.12201
10.1016/j.gloplacha.2012.12.014
10.1016/j.palaeo.2011.07.003
10.1360/N972014-01339
10.1007/s00334-022-00891-0
10.1016/j.jaridenv.2009.09.012
10.1016/j.ecolind.2018.07.063
10.1175/JCLI-D-16-0213.1
10.1016/j.quascirev.2010.10.001
10.1002/rog.20023
10.1088/1748-9326/11/10/105003
10.1016/j.catena.2022.106620
10.1126/sciadv.aay6193
10.5194/essd-13-3525-2021
10.1029/2023GL104164
10.1016/j.quascirev.2005.05.001
10.5194/cp-10-21-2014
10.1111/gcb.12737
10.1016/j.gloplacha.2022.103880
10.1007/s11430-021-9867-1
10.1016/j.catena.2022.106307
10.1111/j.1365-2486.2011.02419.x
10.1016/j.quascirev.2011.01.008
10.1016/j.quascirev.2020.106611
10.3390/rs15092228
10.1038/s41598-020-75845-5
10.1016/j.catena.2021.105381
10.1016/S0921-8181(02)00088-7
10.1016/j.agrformet.2022.109232
10.1038/s43247-023-00814-5
10.1016/j.gloplacha.2019.01.004
10.1007/s10933-011-9523-z
10.1126/science.aay3701
10.1038/srep00619
10.1177/0959683607075837
10.1029/2021JG006441
10.1016/j.yqres.2009.12.003
10.1016/j.quascirev.2016.02.001
10.1038/srep13318
10.1126/science.1064618
10.1002/joc.6110
10.1016/0034-6667(80)90023-8
10.1016/j.quaint.2022.05.005
10.1051/0004-6361:20041335
10.1016/j.quascirev.2022.107916
10.1007/BF00211619
10.1038/454393a
10.1016/j.epsl.2005.01.036
10.1360/TB-2019-0074
10.1038/s43017-019-0001-x
10.1016/0034-6667(81)90002-6
10.1038/s41586-021-03467-6
10.1016/j.quaint.2006.02.005
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.gloplacha.2024.104536
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
ExternalDocumentID 10_1016_j_gloplacha_2024_104536
S0921818124001838
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VQA
WUQ
XJT
Y6R
ZCA
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-a371t-3e864c2758779d40b785371d60d62b9eeae12c56b459dab1fb5483c7c759aecb3
IEDL.DBID .~1
ISSN 0921-8181
IngestDate Tue Aug 05 11:19:23 EDT 2025
Tue Jul 01 03:02:21 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Sat Aug 31 16:02:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Last Glacial Maximum
Pollen concentration
Tibetan Plateau
Random forest
Vegetation cover
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-3e864c2758779d40b785371d60d62b9eeae12c56b459dab1fb5483c7c759aecb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153730446
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153730446
crossref_citationtrail_10_1016_j_gloplacha_2024_104536
crossref_primary_10_1016_j_gloplacha_2024_104536
elsevier_sciencedirect_doi_10_1016_j_gloplacha_2024_104536
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Global and planetary change
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Piao, Wang, Ciais, Zhu, Wang, Liu (bb0245) 2011; 17
Tang, Mao, Shu, Li, Shen, Zhou (bb0325) 2016
Xu, Zhu, Ma, Wang, Lü, Tang (bb0405) 2021; 204
Nieberding, Wille, Ma, Wang, Maurischat, Lehnert, Sachs (bb0230) 2021; 126
An, Colman, Zhou, Li, Brown, Jull, Cai, Huang, Lu, Chang, Song, Sun, Xu, Liu, Jin, Liu, Cheng, Liu, Ai, Li, Liu, Yan, Shi, Wang, Wu, Qiang, Dong, Lu, Xu (bb0005) 2012; 2
Li, Zhang, Wang, Ma, Liu, Cheng, Zhou, Xia, Niu (bb0160) 2022; 42
Liu, Wang, Zhang, Yu, Cao (bb0200) 2023; 32
Zhu, Lü, Wang, Peng, Kasper, Daut, Haberzettl, Frenzel, Li, Yang, Schwalb, Mäusbacher (bb0450) 2015; 5
Yao, Masson-Delmotte, Gao, Yu, Yang, Risi, Sturm, Werner, Zhao, He, Ren, Tian, Shi, Hou (bb0410) 2013; 51
Herzschuh, Borkowski, Schewe, Mischke, Tian (bb0105) 2014; 402
Fu, Ouyang, Shi, Fan, Wang, Zheng, Zhao, Wu (bb0060) 2021; 36
Hu (bb0120) 2016
Huang, Yang, Guo, Zhang, Guo (bb0125) 2020; 10
Pailler, Bard (bb0240) 2002; 181
Cao, Tian, Li, Ni, Yu, Liu, Wang (bb0020) 2021; 13
Liaw, Wiener (bb0170) 2002; 2
Koutavas, Joanides (bb0135) 2012; 27
Hellman, Gaillard, Broström, Sugita (bb0085) 2008; 17
Herzschuh, Birks, Mischke, Zhang, Böhner (bb0100) 2010; 37
Liu, Liu, Li (bb0185) 2018; 95
Tian, Qin, Zhang, Herzschuh, Ni, Zhang, Mischke, Cao (bb0350) 2022; 31
Hao, Han, Liu, Cheng (bb0080) 2023; 4
Zhang, Yuan, Zhang, Li, Wang, Zhang, Ju, Jiang, Chen, Zhu (bb0425) 2020; 40
Maher (bb0220) 1981; 32
Lejeune, Seneviratne, Davin (bb0150) 2017; 30
Piao, Wang, Park, Chen, Lian, He, Bjerke, Chen, Ciais, Tommervik, Nemani, Myneni (bb0255) 2020; 1
Qin, Wang, Cao, Cai, Liang, Beck, Zeng (bb0270) 2023; 50
Li, Gaillard, Cao, Herzschuh, Sugita, Tarasov, Wagner, Xu, Ni, Wang, Zhao, An, Beusen, Chen, Feng, Klein Goldewijk, Huang, Li, Li, Liu, Sun, Yao, Zheng, Jia (bb0155) 2020; 203
Ma, Zhu, Lü, Wang, Ju, Kasper, Daut, Haberzettl (bb0215) 2019; 174
Prentice (bb0260) 1980; 31
Evans, Murphy (bb0045) 2022
Wang, Herzschuh (bb0370) 2011; 168
Telford, Birks (bb0340) 2011; 46
Trondman, Gaillard, Mazier, Sugita, Fyfe, Nielsen, Twiddle, Barratt, Birks, Bjune, Björkman, Broström, Caseldine, David, Dodson, Dörfler, Fischer, van Geel, Giesecke, Hultberg, Kalnina, Kangur, van der Knaap, Koff, Kuneš, Lagerås, Latałowa, Lechterbeck, Leroyer, Leydet, Lindbladh, Marquer, Mitchell, Odgaard, Peglar, Persson, Poska, Rösch, Seppä, Veski, Wick (bb0360) 2015; 21
Faegri, Iversen (bb0050) 1975
Wischnewski, Mischke, Wang, Herzschuh (bb0400) 2011; 30
Tierney, Poulsen, Montañez, Bhattacharya, Feng, Ford, Hönisch, Inglis, Petersen, Sagoo (bb0355) 2020; 370
Han, Liu, Zhou, Hao, Cheng (bb0075) 2020; 248
Dykoski, Edwards, Cheng, Yuan, Cai, Zhang, Lin, Qing, An, Revenaugh (bb0035) 2005; 233
Hou (bb0110) 2001
Liu, Li, Wang, Zhou, Liang, Hou, Xu, Xue (bb0190) 2021; 206
Liu, Jia, Liu, Zheng, Liu (bb0180) 2013; 33
Zhao, Tzedakis, Li, Qin, Cui, Liang, Birks, Liu, Zhang, Ge, Zhao, Felde, Deng, Cai, Li, Ren, Wei, Yang, Zhang, Yu, Guo (bb0435) 2020; 6
Tarasov, Williams, Andreev, Nakagawa, Bezrukova, Herzschuh, Igarashi, Müller, Werner, Zheng (bb0330) 2007; 264
Wang, Huang, Zhang, Luo, Zheng, Xiang, Sun, Ren, Sun, Zhang (bb0390) 2023; 318
Tian, Cao, Dallmeyer, Ni, Zhao, Wang, Herzschuh (bb0345) 2016; 137
Miehe, Hasson, Glaser, Mischke, Böhner, van der Knaap, van Leeuwen, Duo, Miehe, Haberzettl (bb0225) 2021; 256
Sugita (bb0305) 2007; 17
Grimm (bb0070) 2004
Williams (bb0395) 2002; 35
Sun, Xu, Gaillard, Zhang, Li, Li, Li, Li, Xiao (bb0315) 2022; 214
Gou, Wang, Jin, Mu, Chen (bb0065) 2019; 39
Zhang, Yang, Piao, Bao, Wang, Wang, Sun, Luo, Zhang, Shi, Liang, Shen, Wang, Gao, Zhang, Ouyang (bb0420) 2015; 60
Yu, Leng (bb0415) 2022; 327
Van Campo, Gasse (bb0365) 1993; 39
Hou, Tian, Liang, Wang, He (bb0115) 2017; 58
Zheng, Zheng, Huang, Wei, Xu, Lü, Luo, Luo, Beaudouin (bb0445) 2009; 48
Cao, Tian, Li, Ni (bb0015) 2020
Wang, Cheng, Edwards, An, Wu, Shen, Dorale (bb0380) 2001; 294
Laskar, Robutel, Joutel, Gastineau, Correia, Levrard (bb0145) 2004; 428
Schmitt, Schneider, Elsig, Leuenberger, Lourantou, Chappellaz, Köhler, Joos, Stocker, Leuenberger, Fischer (bb0280) 2012; 336
Kramer, Herzschuh, Mischke, Zhang (bb0140) 2010; 73
Herzschuh, Kürschner, Mischke (bb0090) 2006; 66
Zhao, Sun (bb0430) 2010; 74
Andersen, Azuma, Barnola, Bigler, Biscaye, Caillon, Chappellaz, Clausen, Dahl-Jensen, Fischer, Flückiger, Fritzsche, Fujii, Goto-Azuma, Grønvold, Gundestrup, Hansson, Huber, Hvidberg, Johnsen, Jonsell, Jouzel, Kipfstuhl, Landais, Leuenberger, Lorrain, Masson-Delmotte, Miller, Motoyama, Narita, Popp, Rasmussen, Raynaud, Rothlisberger, Ruth, Samyn, Schwander, Shoji, Siggard-Andersen, Steffensen, Stocker, Sveinbjörnsdóttir, Svensson, Takata, Tison, Thorsteinsson, Watanabe, Wilhelms, White, North Greenland Ice Core Project, m (bb0010) 2004; 431
Feldman, Short Gianotti, Dong, Trigo, Salvucci, Entekhabi (bb0055) 2023; 29
Piao, Zhang, Wang, Liang, Wang, Zhu, Niu (bb0250) 2019; 64
Lü, Wu, Liu, Zhu, Yang, Yao, Wang, Li, Liu, Shen (bb0205) 2011; 30
Su, Fu (bb0295) 2013; 101
Shi, Li, Xu, Li, Zhang, Sun (bb0290) 2022; 641
Telford, Birks (bb0335) 2005; 24
Qiu (bb0275) 2008; 454
Sun, Du, Chen, Gu, Liu, Yuan (bb0310) 1993; 35
Wang, Herzschuh, Shumilovskikh, Mischke, Birks, Wischnewski, Böhner, Schlutz, Lehmkuhl, Diekmann, Wünnemann, Zhang (bb0385) 2014; 10
Zhao, Liu, Wang, Gao, Feng, Wei, Hou, Xiao, Jing, Liao (bb0440) 2023; 15
Herzschuh, Winter, Wuennemann, Li (bb0095) 2006; 154
Euskirchen, Bennett, Breen, Genet, Lindgren, Kurkowski, McGuire, Rupp (bb0040) 2016; 11
Jiang, Lang, Tian, Guo (bb0130) 2011; 309
Overpeck, Anderson, Trumbore, Prell (bb0235) 1996; 12
Qin, Zhao, Cao (bb0265) 2022; 65
Sun, Zhang, Xu (bb0320) 2022; 219
Cao, Wang, Cao, Liu, Zhang, Hou, Zhao, Li, Tian (bb0025) 2023; 301
Cheng, Liu, Han, Hao (bb0030) 2022; 215
Liu, Hou, Yu, Wang, Zhang, Cao (bb0195) 2022; 32
Liang (bb0165) 2019
Wang, Qian, Zhang, Yang (bb0375) 1995
Ling (bb0175) 1999
Ma, Zhu, Lu, Wang, Guo, Wang, Ju, Peng, Tang (bb0210) 2017; 46
Sugita (bb0300) 2007; 17
Seltzer, Ng, Aeschbach, Kipfer, Kulongoski, Severinghaus, Stute (bb0285) 2021; 593
Han (10.1016/j.gloplacha.2024.104536_bb0075) 2020; 248
Liu (10.1016/j.gloplacha.2024.104536_bb0200) 2023; 32
Cao (10.1016/j.gloplacha.2024.104536_bb0025) 2023; 301
Liang (10.1016/j.gloplacha.2024.104536_bb0165) 2019
Zhang (10.1016/j.gloplacha.2024.104536_bb0425) 2020; 40
Gou (10.1016/j.gloplacha.2024.104536_bb0065) 2019; 39
Liu (10.1016/j.gloplacha.2024.104536_bb0195) 2022; 32
Sugita (10.1016/j.gloplacha.2024.104536_bb0300) 2007; 17
Su (10.1016/j.gloplacha.2024.104536_bb0295) 2013; 101
Herzschuh (10.1016/j.gloplacha.2024.104536_bb0100) 2010; 37
Herzschuh (10.1016/j.gloplacha.2024.104536_bb0105) 2014; 402
Liaw (10.1016/j.gloplacha.2024.104536_bb0170) 2002; 2
Sun (10.1016/j.gloplacha.2024.104536_bb0310) 1993; 35
Zhao (10.1016/j.gloplacha.2024.104536_bb0435) 2020; 6
Lejeune (10.1016/j.gloplacha.2024.104536_bb0150) 2017; 30
Telford (10.1016/j.gloplacha.2024.104536_bb0335) 2005; 24
Sun (10.1016/j.gloplacha.2024.104536_bb0315) 2022; 214
Sun (10.1016/j.gloplacha.2024.104536_bb0320) 2022; 219
Fu (10.1016/j.gloplacha.2024.104536_bb0060) 2021; 36
Liu (10.1016/j.gloplacha.2024.104536_bb0180) 2013; 33
Miehe (10.1016/j.gloplacha.2024.104536_bb0225) 2021; 256
Cao (10.1016/j.gloplacha.2024.104536_bb0015) 2020
Li (10.1016/j.gloplacha.2024.104536_bb0160) 2022; 42
Euskirchen (10.1016/j.gloplacha.2024.104536_bb0040) 2016; 11
Qin (10.1016/j.gloplacha.2024.104536_bb0270) 2023; 50
Piao (10.1016/j.gloplacha.2024.104536_bb0250) 2019; 64
Faegri (10.1016/j.gloplacha.2024.104536_bb0050) 1975
Yu (10.1016/j.gloplacha.2024.104536_bb0415) 2022; 327
Tian (10.1016/j.gloplacha.2024.104536_bb0350) 2022; 31
Wang (10.1016/j.gloplacha.2024.104536_bb0370) 2011; 168
Wang (10.1016/j.gloplacha.2024.104536_bb0375) 1995
Wang (10.1016/j.gloplacha.2024.104536_bb0380) 2001; 294
Herzschuh (10.1016/j.gloplacha.2024.104536_bb0095) 2006; 154
Nieberding (10.1016/j.gloplacha.2024.104536_bb0230) 2021; 126
Tarasov (10.1016/j.gloplacha.2024.104536_bb0330) 2007; 264
Piao (10.1016/j.gloplacha.2024.104536_bb0255) 2020; 1
Tang (10.1016/j.gloplacha.2024.104536_bb0325) 2016
Zheng (10.1016/j.gloplacha.2024.104536_bb0445) 2009; 48
Feldman (10.1016/j.gloplacha.2024.104536_bb0055) 2023; 29
Hou (10.1016/j.gloplacha.2024.104536_bb0115) 2017; 58
Piao (10.1016/j.gloplacha.2024.104536_bb0245) 2011; 17
Hao (10.1016/j.gloplacha.2024.104536_bb0080) 2023; 4
Ma (10.1016/j.gloplacha.2024.104536_bb0210) 2017; 46
Zhao (10.1016/j.gloplacha.2024.104536_bb0430) 2010; 74
Andersen (10.1016/j.gloplacha.2024.104536_bb0010) 2004; 431
An (10.1016/j.gloplacha.2024.104536_bb0005) 2012; 2
Pailler (10.1016/j.gloplacha.2024.104536_bb0240) 2002; 181
Jiang (10.1016/j.gloplacha.2024.104536_bb0130) 2011; 309
Overpeck (10.1016/j.gloplacha.2024.104536_bb0235) 1996; 12
Hu (10.1016/j.gloplacha.2024.104536_bb0120) 2016
Grimm (10.1016/j.gloplacha.2024.104536_bb0070) 2004
Qiu (10.1016/j.gloplacha.2024.104536_bb0275) 2008; 454
Wischnewski (10.1016/j.gloplacha.2024.104536_bb0400) 2011; 30
Tierney (10.1016/j.gloplacha.2024.104536_bb0355) 2020; 370
Seltzer (10.1016/j.gloplacha.2024.104536_bb0285) 2021; 593
Xu (10.1016/j.gloplacha.2024.104536_bb0405) 2021; 204
Zhang (10.1016/j.gloplacha.2024.104536_bb0420) 2015; 60
Cheng (10.1016/j.gloplacha.2024.104536_bb0030) 2022; 215
Herzschuh (10.1016/j.gloplacha.2024.104536_bb0090) 2006; 66
Evans (10.1016/j.gloplacha.2024.104536_bb0045) 2022
Lü (10.1016/j.gloplacha.2024.104536_bb0205) 2011; 30
Van Campo (10.1016/j.gloplacha.2024.104536_bb0365) 1993; 39
Liu (10.1016/j.gloplacha.2024.104536_bb0190) 2021; 206
Ling (10.1016/j.gloplacha.2024.104536_bb0175) 1999
Prentice (10.1016/j.gloplacha.2024.104536_bb0260) 1980; 31
Huang (10.1016/j.gloplacha.2024.104536_bb0125) 2020; 10
Ma (10.1016/j.gloplacha.2024.104536_bb0215) 2019; 174
Wang (10.1016/j.gloplacha.2024.104536_bb0385) 2014; 10
Liu (10.1016/j.gloplacha.2024.104536_bb0185) 2018; 95
Shi (10.1016/j.gloplacha.2024.104536_bb0290) 2022; 641
Maher (10.1016/j.gloplacha.2024.104536_bb0220) 1981; 32
Li (10.1016/j.gloplacha.2024.104536_bb0155) 2020; 203
Zhu (10.1016/j.gloplacha.2024.104536_bb0450) 2015; 5
Yao (10.1016/j.gloplacha.2024.104536_bb0410) 2013; 51
Wang (10.1016/j.gloplacha.2024.104536_bb0390) 2023; 318
Dykoski (10.1016/j.gloplacha.2024.104536_bb0035) 2005; 233
Hellman (10.1016/j.gloplacha.2024.104536_bb0085) 2008; 17
Laskar (10.1016/j.gloplacha.2024.104536_bb0145) 2004; 428
Telford (10.1016/j.gloplacha.2024.104536_bb0340) 2011; 46
Tian (10.1016/j.gloplacha.2024.104536_bb0345) 2016; 137
Koutavas (10.1016/j.gloplacha.2024.104536_bb0135) 2012; 27
Schmitt (10.1016/j.gloplacha.2024.104536_bb0280) 2012; 336
Sugita (10.1016/j.gloplacha.2024.104536_bb0305) 2007; 17
Zhao (10.1016/j.gloplacha.2024.104536_bb0440) 2023; 15
Cao (10.1016/j.gloplacha.2024.104536_bb0020) 2021; 13
Qin (10.1016/j.gloplacha.2024.104536_bb0265) 2022; 65
Williams (10.1016/j.gloplacha.2024.104536_bb0395) 2002; 35
Trondman (10.1016/j.gloplacha.2024.104536_bb0360) 2015; 21
Hou (10.1016/j.gloplacha.2024.104536_bb0110) 2001
Kramer (10.1016/j.gloplacha.2024.104536_bb0140) 2010; 73
References_xml – volume: 36
  start-page: 1298
  year: 2021
  end-page: 1306
  ident: bb0060
  article-title: Current condition and protection strategies for Qinghai-Tibetan Plateau ecological security barrier
  publication-title: Bull. Chin. Acad. Sci.
– volume: 32
  start-page: 153
  year: 1981
  end-page: 191
  ident: bb0220
  article-title: Statistics for microfossil concentration measurements employing samples spiked with marker grains
  publication-title: Rev. Palaeobot. Palynol.
– year: 2016
  ident: bb0120
  article-title: Vegetation Evolution and Climate Change Documented by Hala Lake Sediments in the Northeastern Qinghai-Tibetan Plateau since the Last Glacial Maximum
– year: 2016
  ident: bb0325
  article-title: An Illustrated Handbook of Quaternary Pollen and Spores in China
– volume: 203
  year: 2020
  ident: bb0155
  article-title: Towards quantification of Holocene anthropogenic land-cover change in temperate China: a review in the light of pollen-based REVEALS reconstructions of regional plant cover
  publication-title: Earth Sci. Rev.
– volume: 42
  start-page: 4770
  year: 2022
  end-page: 4783
  ident: bb0160
  article-title: Response of vegetation dynamics to hydrothermal conditions on the Qinghai-Tibet Plateau in the last 40 years
  publication-title: Acta Ecol. Sin.
– volume: 31
  start-page: 71
  year: 1980
  end-page: 104
  ident: bb0260
  article-title: Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods
  publication-title: Rev. Palaeobot. Palynol.
– volume: 327
  year: 2022
  ident: bb0415
  article-title: Global effects of different types of land use and land cover changes on near-surface air temperature
  publication-title: Agric. For. Meteorol.
– volume: 46
  start-page: 242
  year: 2017
  end-page: 253
  ident: bb0210
  article-title: Modern pollen assemblages from surface lake sediments and their environmental implications on the southwestern Tibetan Plateau
  publication-title: Boreas
– volume: 641
  start-page: 25
  year: 2022
  end-page: 38
  ident: bb0290
  article-title: Land cover reconstruction in Northwest China since 6 ka BP: preliminary application of a new strategy
  publication-title: Quat. Int.
– year: 2022
  ident: bb0045
  article-title: Random Forests Model Selection and Performance Evaluation, Version 2.1-5
– volume: 40
  start-page: 6269
  year: 2020
  end-page: 6281
  ident: bb0425
  article-title: Response of the NDVI of alpine grasslands on the Qinghai-Tibetan Plateau to climate change and human activities over the last 30 years
  publication-title: Acta Ecol. Sin.
– volume: 21
  start-page: 676
  year: 2015
  end-page: 697
  ident: bb0360
  article-title: Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling
  publication-title: Glob. Chang. Biol.
– volume: 370
  start-page: eaay3701
  year: 2020
  ident: bb0355
  article-title: Past climates inform our future
  publication-title: Science
– volume: 214
  year: 2022
  ident: bb0315
  article-title: Pollen-based reconstruction of total land-cover change over the Holocene in the temperate steppe region of China: An attempt to quantify the cover of vegetation and bare ground in the past using a novel approach
  publication-title: Catena
– volume: 29
  start-page: 110
  year: 2023
  end-page: 125
  ident: bb0055
  article-title: Tropical surface temperature response to vegetation cover changes and the role of drylands
  publication-title: Glob. Chang. Biol.
– volume: 6
  start-page: eaay6193
  year: 2020
  ident: bb0435
  article-title: Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years
  publication-title: Sci. Adv.
– volume: 593
  start-page: 228
  year: 2021
  end-page: 232
  ident: bb0285
  article-title: Widespread six degrees Celsius cooling on land during the Last Glacial Maximum
  publication-title: Nature
– volume: 66
  start-page: 133
  year: 2006
  end-page: 146
  ident: bb0090
  article-title: Temperature variability and vertical vegetation belt shifts during the last 50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China)
  publication-title: Quat. Res.
– volume: 30
  start-page: 947
  year: 2011
  end-page: 966
  ident: bb0205
  article-title: Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes
  publication-title: Quat. Sci. Rev.
– volume: 309
  start-page: 347
  year: 2011
  end-page: 357
  ident: bb0130
  article-title: Last glacial maximum climate over China from PMIP simulations
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 10
  start-page: 21
  year: 2014
  end-page: 39
  ident: bb0385
  article-title: Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes
  publication-title: Clim. Past
– volume: 181
  start-page: 431
  year: 2002
  end-page: 452
  ident: bb0240
  article-title: High frequency palaeoceanographic changes during the past 140,000 yr recorded by the organic matter in sediments of the Iberian Margin
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 402
  start-page: 44
  year: 2014
  end-page: 54
  ident: bb0105
  article-title: Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 35
  start-page: 1
  year: 2002
  end-page: 23
  ident: bb0395
  article-title: Variations in tree cover in North America since the last glacial maximum
  publication-title: Glob. Planet. Chang.
– volume: 137
  start-page: 33
  year: 2016
  end-page: 44
  ident: bb0345
  article-title: Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities
  publication-title: Quat. Sci. Rev.
– volume: 1
  start-page: 14
  year: 2020
  end-page: 27
  ident: bb0255
  article-title: Characteristics, drivers and feedbacks of global greening
  publication-title: Nat. Rev. Earth Environ.
– year: 1975
  ident: bb0050
  article-title: Textbook of Pollen Analysis
– volume: 17
  start-page: 229
  year: 2007
  end-page: 241
  ident: bb0300
  article-title: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition
  publication-title: The Holocene
– volume: 204
  year: 2021
  ident: bb0405
  article-title: Moisture and vegetation variations in the extremely cold-dry area of the Tibetan Plateau during the past 5000 years
  publication-title: Catena
– volume: 32
  start-page: 157
  year: 2023
  end-page: 169
  ident: bb0200
  article-title: Performance of vegetation cover reconstructions using lake and soil pollen samples from the Tibetan Plateau
  publication-title: Veg. Hist. Archaeobotany
– volume: 336
  start-page: 711
  year: 2012
  end-page: 714
  ident: bb0280
  article-title: Carbon isotope constraints on the deglacial CO
  publication-title: Science
– volume: 24
  start-page: 2173
  year: 2005
  end-page: 2179
  ident: bb0335
  article-title: The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance
  publication-title: Quat. Sci. Rev.
– volume: 11
  year: 2016
  ident: bb0040
  article-title: Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and Northwest Canada
  publication-title: Environ. Res. Lett.
– volume: 17
  start-page: 445
  year: 2008
  end-page: 459
  ident: bb0085
  article-title: Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model
  publication-title: Vegetation Hist. Archaeobot.
– start-page: 88
  year: 1999
  ident: bb0175
  article-title: Potential evapotranspiration
  publication-title: The National Physical Atlas of China
– volume: 12
  start-page: 213
  year: 1996
  end-page: 225
  ident: bb0235
  article-title: The southwest Indian Monsoon over the last 18,000 years
  publication-title: Clim. Dyn.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0170
  article-title: Classification and Regression by randomForest. R News
– year: 2001
  ident: bb0110
  article-title: Vegetation Atlas of China
– volume: 32
  start-page: 543
  year: 2022
  end-page: 553
  ident: bb0195
  article-title: Vegetation and environmental changes since the Last Glacial Maximum inferred from a lake core from Saiyong Co, central Tibetan Plateau
  publication-title: The Holocene
– volume: 39
  start-page: 4825
  year: 2019
  end-page: 4837
  ident: bb0065
  article-title: More realistic land-use and vegetation parameters in a regional climate model reduce model biases over China
  publication-title: Int. J. Climatol.
– volume: 48
  start-page: 228
  year: 2009
  end-page: 239
  ident: bb0445
  article-title: Satellite MODIS-and modern pollen-based quantitative vegetation cover simulation in China
  publication-title: Acta Palaeontol. Sin.
– volume: 37
  start-page: 752
  year: 2010
  end-page: 766
  ident: bb0100
  article-title: A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains
  publication-title: J. Biogeogr.
– volume: 454
  start-page: 393
  year: 2008
  end-page: 396
  ident: bb0275
  article-title: China: the third pole
  publication-title: Nature
– volume: 39
  start-page: 300
  year: 1993
  end-page: 313
  ident: bb0365
  article-title: Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co basin (Western Tibet) since 13,000 yr B.P
  publication-title: Quat. Res.
– volume: 431
  start-page: 147
  year: 2004
  end-page: 151
  ident: bb0010
  article-title: High-resolution record of Northern Hemisphere climate extending into the last interglacial period
  publication-title: Nature
– volume: 33
  start-page: 5785
  year: 2013
  end-page: 5793
  ident: bb0180
  article-title: The depositional environment and organic sediment component of Dagze Co, a saline lake in Tibet,China
  publication-title: Acta Ecol. Sin.
– volume: 46
  start-page: 99
  year: 2011
  end-page: 106
  ident: bb0340
  article-title: Effect of uneven sampling along an environmental gradient on transfer-function performance
  publication-title: J. Paleolimnol.
– volume: 13
  start-page: 3525
  year: 2021
  end-page: 3537
  ident: bb0020
  article-title: Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions
  publication-title: Earth Syst. Sci. Data
– year: 2004
  ident: bb0070
  article-title: TGview Version 2.0.2
– year: 1995
  ident: bb0375
  article-title: Pollen Flora of China
– volume: 248
  year: 2020
  ident: bb0075
  article-title: Postglacial evolution of forest and grassland in southeastern Gobi (Northern China)
  publication-title: Quat. Sci. Rev.
– volume: 51
  start-page: 525
  year: 2013
  end-page: 548
  ident: bb0410
  article-title: A review of climatic controls on δ
  publication-title: Rev. Geophys.
– volume: 174
  start-page: 16
  year: 2019
  end-page: 25
  ident: bb0215
  article-title: Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau
  publication-title: Glob. Planet. Chang.
– volume: 95
  start-page: 370
  year: 2018
  end-page: 378
  ident: bb0185
  article-title: Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China
  publication-title: Ecol. Indic.
– volume: 30
  start-page: 1439
  year: 2017
  end-page: 1459
  ident: bb0150
  article-title: Historical land-cover change impacts on climate: comparative assessment of LUCID and CMIP5 multimodel experiments
  publication-title: J. Clim.
– volume: 74
  start-page: 423
  year: 2010
  end-page: 427
  ident: bb0430
  article-title: Reliability of pollen concentration as the indicator of effective moisture in arid and semi-arid regions of China
  publication-title: J. Arid Environ.
– volume: 10
  start-page: 20591
  year: 2020
  ident: bb0125
  article-title: The pattern, change and driven factors of vegetation cover in the Qin Mountains region
  publication-title: Sci. Rep.
– volume: 126
  year: 2021
  ident: bb0230
  article-title: Winter daytime warming and shift in summer monsoon increase plant cover and net CO
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 101
  start-page: 119
  year: 2013
  end-page: 128
  ident: bb0295
  article-title: Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes
  publication-title: Glob. Planet. Chang.
– year: 2019
  ident: bb0165
  article-title: Lake Ecosystem Severely Altered by Climate Changes on the Central Tibetan Plateau Dagze co during Holocene
– volume: 35
  start-page: 943
  year: 1993
  end-page: 950
  ident: bb0310
  article-title: Holocene palynological records in Lake Selincuo, northern Xizang
  publication-title: Acta Bot. Sin.
– volume: 154
  start-page: 113
  year: 2006
  end-page: 121
  ident: bb0095
  article-title: A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra
  publication-title: Quat. Int.
– volume: 219
  year: 2022
  ident: bb0320
  article-title: Pollen-based land cover changes reveal temporal and spatial differences of human activity in north-Central China during the Holocene
  publication-title: Catena
– volume: 294
  start-page: 2345
  year: 2001
  end-page: 2348
  ident: bb0380
  article-title: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China
  publication-title: Science
– volume: 264
  start-page: 284
  year: 2007
  end-page: 298
  ident: bb0330
  article-title: Satellite-and pollen-based quantitative woody cover reconstructions for northern Asia: verification and application to late-Quaternary pollen data
  publication-title: Earth Planet. Sci. Lett.
– volume: 168
  start-page: 31
  year: 2011
  end-page: 40
  ident: bb0370
  article-title: Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model
  publication-title: Rev. Palaeobot. Palynol.
– volume: 65
  start-page: 518
  year: 2022
  end-page: 535
  ident: bb0265
  article-title: Biome reconstruction on the Tibetan Plateau since the Last Glacial Maximum using a machine learning method
  publication-title: Sci. China Earth Sci.
– volume: 15
  start-page: 2228
  year: 2023
  ident: bb0440
  article-title: The impact of land use and landscape pattern on ecosystem services in the Dongting Lake region, China
  publication-title: Remote Sens.
– volume: 58
  start-page: 257
  year: 2017
  end-page: 273
  ident: bb0115
  article-title: Climatic implications of hydrologic changes in two lake catchments on the central Tibetan Plateau since the last glacial
  publication-title: J. Paleolimnol.
– volume: 30
  start-page: 82
  year: 2011
  end-page: 97
  ident: bb0400
  article-title: Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial – a multi-proxy, dual-site approach comparing terrestrial and aquatic signals
  publication-title: Quat. Sci. Rev.
– year: 2020
  ident: bb0015
  article-title: Atlas of pollen and spores for common plants from the east Tibetan Plateau
– volume: 206
  year: 2021
  ident: bb0190
  article-title: Quantitative spatial analysis of vegetation dynamics and potential driving factors in a typical alpine region on the northeastern Tibetan Plateau using the Google Earth Engine
  publication-title: Catena
– volume: 5
  start-page: 13318
  year: 2015
  ident: bb0450
  article-title: Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM
  publication-title: Sci. Rep.
– volume: 17
  start-page: 243
  year: 2007
  end-page: 257
  ident: bb0305
  article-title: Theory of quantitative reconstruction of vegetation II: all you need is LOVE
  publication-title: The Holocene
– volume: 27
  start-page: PA4208
  year: 2012
  ident: bb0135
  article-title: El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum
  publication-title: Paleoceanogr. Paleoclimatol.
– volume: 50
  year: 2023
  ident: bb0270
  article-title: Sub-grid representation of vegetation cover in land surface schemes improves the modeling of how climate responds to deforestation
  publication-title: Geophys. Res. Lett.
– volume: 73
  start-page: 324
  year: 2010
  end-page: 335
  ident: bb0140
  article-title: Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile
  publication-title: Quat. Res.
– volume: 318
  year: 2023
  ident: bb0390
  article-title: Vegetation cover dynamics on the northeastern Qinghai-Tibet Plateau since late Marine Isotope Stage 3
  publication-title: Quat. Sci. Rev.
– volume: 2
  start-page: 619
  year: 2012
  ident: bb0005
  article-title: Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka
  publication-title: Sci. Rep.
– volume: 428
  start-page: 261
  year: 2004
  end-page: 285
  ident: bb0145
  article-title: A long-term numerical solution for the insolation quantities of the Earth
  publication-title: Astron. Astrophys.
– volume: 233
  start-page: 71
  year: 2005
  end-page: 86
  ident: bb0035
  article-title: A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China
  publication-title: Earth Planet. Sci. Lett.
– volume: 31
  start-page: 549
  year: 2022
  end-page: 558
  ident: bb0350
  article-title: Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years
  publication-title: Veg. Hist. Archaeobotany
– volume: 215
  year: 2022
  ident: bb0030
  article-title: Climate sustained the evolution of a stable postglacial woody cover over the Tibetan Plateau
  publication-title: Glob. Planet. Chang.
– volume: 4
  start-page: 156
  year: 2023
  ident: bb0080
  article-title: Agricultural development has not necessarily caused forest cover decline in semi-arid northern China over the past 12,000 years
  publication-title: Commun. Earth Environ.
– volume: 256
  year: 2021
  ident: bb0225
  article-title: Föhn, fire and grazing in Southern Tibet? A 20,000-year multi-proxy record in an alpine ecotonal ecosystem
  publication-title: Quat. Sci. Rev.
– volume: 17
  start-page: 3228
  year: 2011
  end-page: 3239
  ident: bb0245
  article-title: Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006
  publication-title: Glob. Chang. Biol.
– volume: 64
  start-page: 2842
  year: 2019
  end-page: 2855
  ident: bb0250
  article-title: Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change
  publication-title: Chin. Sci. Bull.
– volume: 301
  year: 2023
  ident: bb0025
  article-title: Hostile climate during the Last Glacial Maximum caused sparse vegetation on the north-eastern Tibetan Plateau
  publication-title: Quat. Sci. Rev.
– volume: 60
  start-page: 3048
  year: 2015
  end-page: 3056
  ident: bb0420
  article-title: Ecological change on the Tibetan Plateau
  publication-title: Chin. Sci. Bull.
– year: 1995
  ident: 10.1016/j.gloplacha.2024.104536_bb0375
– volume: 33
  start-page: 5785
  year: 2013
  ident: 10.1016/j.gloplacha.2024.104536_bb0180
  article-title: The depositional environment and organic sediment component of Dagze Co, a saline lake in Tibet,China
  publication-title: Acta Ecol. Sin.
  doi: 10.5846/stxb201306071419
– volume: 181
  start-page: 431
  year: 2002
  ident: 10.1016/j.gloplacha.2024.104536_bb0240
  article-title: High frequency palaeoceanographic changes during the past 140,000 yr recorded by the organic matter in sediments of the Iberian Margin
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/S0031-0182(01)00444-8
– year: 2004
  ident: 10.1016/j.gloplacha.2024.104536_bb0070
– year: 2019
  ident: 10.1016/j.gloplacha.2024.104536_bb0165
– volume: 48
  start-page: 228
  year: 2009
  ident: 10.1016/j.gloplacha.2024.104536_bb0445
  article-title: Satellite MODIS-and modern pollen-based quantitative vegetation cover simulation in China
  publication-title: Acta Palaeontol. Sin.
– volume: 32
  start-page: 543
  year: 2022
  ident: 10.1016/j.gloplacha.2024.104536_bb0195
  article-title: Vegetation and environmental changes since the Last Glacial Maximum inferred from a lake core from Saiyong Co, central Tibetan Plateau
  publication-title: The Holocene
  doi: 10.1177/09596836221080763
– volume: 206
  year: 2021
  ident: 10.1016/j.gloplacha.2024.104536_bb0190
  article-title: Quantitative spatial analysis of vegetation dynamics and potential driving factors in a typical alpine region on the northeastern Tibetan Plateau using the Google Earth Engine
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105500
– volume: 256
  year: 2021
  ident: 10.1016/j.gloplacha.2024.104536_bb0225
  article-title: Föhn, fire and grazing in Southern Tibet? A 20,000-year multi-proxy record in an alpine ecotonal ecosystem
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2021.106817
– volume: 39
  start-page: 300
  year: 1993
  ident: 10.1016/j.gloplacha.2024.104536_bb0365
  article-title: Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co basin (Western Tibet) since 13,000 yr B.P
  publication-title: Quat. Res.
  doi: 10.1006/qres.1993.1037
– volume: 264
  start-page: 284
  year: 2007
  ident: 10.1016/j.gloplacha.2024.104536_bb0330
  article-title: Satellite-and pollen-based quantitative woody cover reconstructions for northern Asia: verification and application to late-Quaternary pollen data
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2007.10.007
– volume: 66
  start-page: 133
  year: 2006
  ident: 10.1016/j.gloplacha.2024.104536_bb0090
  article-title: Temperature variability and vertical vegetation belt shifts during the last 50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China)
  publication-title: Quat. Res.
  doi: 10.1016/j.yqres.2006.03.001
– volume: 431
  start-page: 147
  year: 2004
  ident: 10.1016/j.gloplacha.2024.104536_bb0010
  article-title: High-resolution record of Northern Hemisphere climate extending into the last interglacial period
  publication-title: Nature
  doi: 10.1038/nature02805
– volume: 318
  year: 2023
  ident: 10.1016/j.gloplacha.2024.104536_bb0390
  article-title: Vegetation cover dynamics on the northeastern Qinghai-Tibet Plateau since late Marine Isotope Stage 3
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2023.108292
– volume: 58
  start-page: 257
  year: 2017
  ident: 10.1016/j.gloplacha.2024.104536_bb0115
  article-title: Climatic implications of hydrologic changes in two lake catchments on the central Tibetan Plateau since the last glacial
  publication-title: J. Paleolimnol.
  doi: 10.1007/s10933-017-9976-9
– volume: 37
  start-page: 752
  year: 2010
  ident: 10.1016/j.gloplacha.2024.104536_bb0100
  article-title: A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2009.02245.x
– year: 2020
  ident: 10.1016/j.gloplacha.2024.104536_bb0015
– volume: 203
  year: 2020
  ident: 10.1016/j.gloplacha.2024.104536_bb0155
  article-title: Towards quantification of Holocene anthropogenic land-cover change in temperate China: a review in the light of pollen-based REVEALS reconstructions of regional plant cover
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103119
– volume: 31
  start-page: 549
  year: 2022
  ident: 10.1016/j.gloplacha.2024.104536_bb0350
  article-title: Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years
  publication-title: Veg. Hist. Archaeobotany
  doi: 10.1007/s00334-022-00870-5
– volume: 17
  start-page: 243
  year: 2007
  ident: 10.1016/j.gloplacha.2024.104536_bb0305
  article-title: Theory of quantitative reconstruction of vegetation II: all you need is LOVE
  publication-title: The Holocene
  doi: 10.1177/0959683607075838
– volume: 17
  start-page: 445
  year: 2008
  ident: 10.1016/j.gloplacha.2024.104536_bb0085
  article-title: Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model
  publication-title: Vegetation Hist. Archaeobot.
  doi: 10.1007/s00334-008-0149-7
– volume: 402
  start-page: 44
  year: 2014
  ident: 10.1016/j.gloplacha.2024.104536_bb0105
  article-title: Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/j.palaeo.2014.02.022
– volume: 168
  start-page: 31
  year: 2011
  ident: 10.1016/j.gloplacha.2024.104536_bb0370
  article-title: Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model
  publication-title: Rev. Palaeobot. Palynol.
  doi: 10.1016/j.revpalbo.2011.09.004
– volume: 29
  start-page: 110
  year: 2023
  ident: 10.1016/j.gloplacha.2024.104536_bb0055
  article-title: Tropical surface temperature response to vegetation cover changes and the role of drylands
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.16455
– volume: 336
  start-page: 711
  year: 2012
  ident: 10.1016/j.gloplacha.2024.104536_bb0280
  article-title: Carbon isotope constraints on the deglacial CO2 rise from ice cores
  publication-title: Science
  doi: 10.1126/science.1217161
– volume: 46
  start-page: 242
  year: 2017
  ident: 10.1016/j.gloplacha.2024.104536_bb0210
  article-title: Modern pollen assemblages from surface lake sediments and their environmental implications on the southwestern Tibetan Plateau
  publication-title: Boreas
  doi: 10.1111/bor.12201
– volume: 101
  start-page: 119
  year: 2013
  ident: 10.1016/j.gloplacha.2024.104536_bb0295
  article-title: Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2012.12.014
– year: 2001
  ident: 10.1016/j.gloplacha.2024.104536_bb0110
– year: 1975
  ident: 10.1016/j.gloplacha.2024.104536_bb0050
– volume: 309
  start-page: 347
  year: 2011
  ident: 10.1016/j.gloplacha.2024.104536_bb0130
  article-title: Last glacial maximum climate over China from PMIP simulations
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/j.palaeo.2011.07.003
– volume: 60
  start-page: 3048
  year: 2015
  ident: 10.1016/j.gloplacha.2024.104536_bb0420
  article-title: Ecological change on the Tibetan Plateau
  publication-title: Chin. Sci. Bull.
  doi: 10.1360/N972014-01339
– volume: 32
  start-page: 157
  year: 2023
  ident: 10.1016/j.gloplacha.2024.104536_bb0200
  article-title: Performance of vegetation cover reconstructions using lake and soil pollen samples from the Tibetan Plateau
  publication-title: Veg. Hist. Archaeobotany
  doi: 10.1007/s00334-022-00891-0
– volume: 74
  start-page: 423
  year: 2010
  ident: 10.1016/j.gloplacha.2024.104536_bb0430
  article-title: Reliability of pollen concentration as the indicator of effective moisture in arid and semi-arid regions of China
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2009.09.012
– volume: 95
  start-page: 370
  year: 2018
  ident: 10.1016/j.gloplacha.2024.104536_bb0185
  article-title: Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.07.063
– volume: 30
  start-page: 1439
  year: 2017
  ident: 10.1016/j.gloplacha.2024.104536_bb0150
  article-title: Historical land-cover change impacts on climate: comparative assessment of LUCID and CMIP5 multimodel experiments
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0213.1
– year: 2016
  ident: 10.1016/j.gloplacha.2024.104536_bb0325
– volume: 30
  start-page: 82
  year: 2011
  ident: 10.1016/j.gloplacha.2024.104536_bb0400
  article-title: Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial – a multi-proxy, dual-site approach comparing terrestrial and aquatic signals
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2010.10.001
– volume: 51
  start-page: 525
  year: 2013
  ident: 10.1016/j.gloplacha.2024.104536_bb0410
  article-title: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations
  publication-title: Rev. Geophys.
  doi: 10.1002/rog.20023
– volume: 11
  year: 2016
  ident: 10.1016/j.gloplacha.2024.104536_bb0040
  article-title: Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and Northwest Canada
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/11/10/105003
– volume: 219
  year: 2022
  ident: 10.1016/j.gloplacha.2024.104536_bb0320
  article-title: Pollen-based land cover changes reveal temporal and spatial differences of human activity in north-Central China during the Holocene
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106620
– volume: 40
  start-page: 6269
  year: 2020
  ident: 10.1016/j.gloplacha.2024.104536_bb0425
  article-title: Response of the NDVI of alpine grasslands on the Qinghai-Tibetan Plateau to climate change and human activities over the last 30 years
  publication-title: Acta Ecol. Sin.
– volume: 6
  start-page: eaay6193
  year: 2020
  ident: 10.1016/j.gloplacha.2024.104536_bb0435
  article-title: Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay6193
– volume: 13
  start-page: 3525
  year: 2021
  ident: 10.1016/j.gloplacha.2024.104536_bb0020
  article-title: Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-3525-2021
– volume: 50
  year: 2023
  ident: 10.1016/j.gloplacha.2024.104536_bb0270
  article-title: Sub-grid representation of vegetation cover in land surface schemes improves the modeling of how climate responds to deforestation
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2023GL104164
– volume: 24
  start-page: 2173
  year: 2005
  ident: 10.1016/j.gloplacha.2024.104536_bb0335
  article-title: The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2005.05.001
– volume: 10
  start-page: 21
  year: 2014
  ident: 10.1016/j.gloplacha.2024.104536_bb0385
  article-title: Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes
  publication-title: Clim. Past
  doi: 10.5194/cp-10-21-2014
– volume: 21
  start-page: 676
  year: 2015
  ident: 10.1016/j.gloplacha.2024.104536_bb0360
  article-title: Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12737
– volume: 215
  year: 2022
  ident: 10.1016/j.gloplacha.2024.104536_bb0030
  article-title: Climate sustained the evolution of a stable postglacial woody cover over the Tibetan Plateau
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2022.103880
– year: 2016
  ident: 10.1016/j.gloplacha.2024.104536_bb0120
– volume: 65
  start-page: 518
  year: 2022
  ident: 10.1016/j.gloplacha.2024.104536_bb0265
  article-title: Biome reconstruction on the Tibetan Plateau since the Last Glacial Maximum using a machine learning method
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-021-9867-1
– volume: 214
  year: 2022
  ident: 10.1016/j.gloplacha.2024.104536_bb0315
  article-title: Pollen-based reconstruction of total land-cover change over the Holocene in the temperate steppe region of China: An attempt to quantify the cover of vegetation and bare ground in the past using a novel approach
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106307
– volume: 17
  start-page: 3228
  year: 2011
  ident: 10.1016/j.gloplacha.2024.104536_bb0245
  article-title: Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02419.x
– volume: 30
  start-page: 947
  year: 2011
  ident: 10.1016/j.gloplacha.2024.104536_bb0205
  article-title: Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2011.01.008
– volume: 248
  year: 2020
  ident: 10.1016/j.gloplacha.2024.104536_bb0075
  article-title: Postglacial evolution of forest and grassland in southeastern Gobi (Northern China)
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2020.106611
– volume: 15
  start-page: 2228
  year: 2023
  ident: 10.1016/j.gloplacha.2024.104536_bb0440
  article-title: The impact of land use and landscape pattern on ecosystem services in the Dongting Lake region, China
  publication-title: Remote Sens.
  doi: 10.3390/rs15092228
– volume: 36
  start-page: 1298
  year: 2021
  ident: 10.1016/j.gloplacha.2024.104536_bb0060
  article-title: Current condition and protection strategies for Qinghai-Tibetan Plateau ecological security barrier
  publication-title: Bull. Chin. Acad. Sci.
– volume: 10
  start-page: 20591
  year: 2020
  ident: 10.1016/j.gloplacha.2024.104536_bb0125
  article-title: The pattern, change and driven factors of vegetation cover in the Qin Mountains region
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-75845-5
– volume: 204
  year: 2021
  ident: 10.1016/j.gloplacha.2024.104536_bb0405
  article-title: Moisture and vegetation variations in the extremely cold-dry area of the Tibetan Plateau during the past 5000 years
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105381
– volume: 35
  start-page: 1
  year: 2002
  ident: 10.1016/j.gloplacha.2024.104536_bb0395
  article-title: Variations in tree cover in North America since the last glacial maximum
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/S0921-8181(02)00088-7
– volume: 327
  year: 2022
  ident: 10.1016/j.gloplacha.2024.104536_bb0415
  article-title: Global effects of different types of land use and land cover changes on near-surface air temperature
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2022.109232
– volume: 4
  start-page: 156
  year: 2023
  ident: 10.1016/j.gloplacha.2024.104536_bb0080
  article-title: Agricultural development has not necessarily caused forest cover decline in semi-arid northern China over the past 12,000 years
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-023-00814-5
– volume: 174
  start-page: 16
  year: 2019
  ident: 10.1016/j.gloplacha.2024.104536_bb0215
  article-title: Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2019.01.004
– volume: 46
  start-page: 99
  year: 2011
  ident: 10.1016/j.gloplacha.2024.104536_bb0340
  article-title: Effect of uneven sampling along an environmental gradient on transfer-function performance
  publication-title: J. Paleolimnol.
  doi: 10.1007/s10933-011-9523-z
– year: 2022
  ident: 10.1016/j.gloplacha.2024.104536_bb0045
– volume: 370
  start-page: eaay3701
  year: 2020
  ident: 10.1016/j.gloplacha.2024.104536_bb0355
  article-title: Past climates inform our future
  publication-title: Science
  doi: 10.1126/science.aay3701
– volume: 2
  start-page: 619
  year: 2012
  ident: 10.1016/j.gloplacha.2024.104536_bb0005
  article-title: Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka
  publication-title: Sci. Rep.
  doi: 10.1038/srep00619
– volume: 17
  start-page: 229
  year: 2007
  ident: 10.1016/j.gloplacha.2024.104536_bb0300
  article-title: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition
  publication-title: The Holocene
  doi: 10.1177/0959683607075837
– volume: 126
  year: 2021
  ident: 10.1016/j.gloplacha.2024.104536_bb0230
  article-title: Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2021JG006441
– volume: 73
  start-page: 324
  year: 2010
  ident: 10.1016/j.gloplacha.2024.104536_bb0140
  article-title: Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile
  publication-title: Quat. Res.
  doi: 10.1016/j.yqres.2009.12.003
– volume: 27
  start-page: PA4208
  year: 2012
  ident: 10.1016/j.gloplacha.2024.104536_bb0135
  article-title: El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum
  publication-title: Paleoceanogr. Paleoclimatol.
– volume: 137
  start-page: 33
  year: 2016
  ident: 10.1016/j.gloplacha.2024.104536_bb0345
  article-title: Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2016.02.001
– volume: 35
  start-page: 943
  year: 1993
  ident: 10.1016/j.gloplacha.2024.104536_bb0310
  article-title: Holocene palynological records in Lake Selincuo, northern Xizang
  publication-title: Acta Bot. Sin.
– volume: 5
  start-page: 13318
  year: 2015
  ident: 10.1016/j.gloplacha.2024.104536_bb0450
  article-title: Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM
  publication-title: Sci. Rep.
  doi: 10.1038/srep13318
– volume: 294
  start-page: 2345
  year: 2001
  ident: 10.1016/j.gloplacha.2024.104536_bb0380
  article-title: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China
  publication-title: Science
  doi: 10.1126/science.1064618
– volume: 39
  start-page: 4825
  year: 2019
  ident: 10.1016/j.gloplacha.2024.104536_bb0065
  article-title: More realistic land-use and vegetation parameters in a regional climate model reduce model biases over China
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6110
– start-page: 88
  year: 1999
  ident: 10.1016/j.gloplacha.2024.104536_bb0175
  article-title: Potential evapotranspiration
– volume: 42
  start-page: 4770
  year: 2022
  ident: 10.1016/j.gloplacha.2024.104536_bb0160
  article-title: Response of vegetation dynamics to hydrothermal conditions on the Qinghai-Tibet Plateau in the last 40 years
  publication-title: Acta Ecol. Sin.
– volume: 31
  start-page: 71
  year: 1980
  ident: 10.1016/j.gloplacha.2024.104536_bb0260
  article-title: Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods
  publication-title: Rev. Palaeobot. Palynol.
  doi: 10.1016/0034-6667(80)90023-8
– volume: 641
  start-page: 25
  year: 2022
  ident: 10.1016/j.gloplacha.2024.104536_bb0290
  article-title: Land cover reconstruction in Northwest China since 6 ka BP: preliminary application of a new strategy
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2022.05.005
– volume: 428
  start-page: 261
  year: 2004
  ident: 10.1016/j.gloplacha.2024.104536_bb0145
  article-title: A long-term numerical solution for the insolation quantities of the Earth
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20041335
– volume: 301
  year: 2023
  ident: 10.1016/j.gloplacha.2024.104536_bb0025
  article-title: Hostile climate during the Last Glacial Maximum caused sparse vegetation on the north-eastern Tibetan Plateau
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2022.107916
– volume: 12
  start-page: 213
  year: 1996
  ident: 10.1016/j.gloplacha.2024.104536_bb0235
  article-title: The southwest Indian Monsoon over the last 18,000 years
  publication-title: Clim. Dyn.
  doi: 10.1007/BF00211619
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.gloplacha.2024.104536_bb0170
– volume: 454
  start-page: 393
  year: 2008
  ident: 10.1016/j.gloplacha.2024.104536_bb0275
  article-title: China: the third pole
  publication-title: Nature
  doi: 10.1038/454393a
– volume: 233
  start-page: 71
  year: 2005
  ident: 10.1016/j.gloplacha.2024.104536_bb0035
  article-title: A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2005.01.036
– volume: 64
  start-page: 2842
  year: 2019
  ident: 10.1016/j.gloplacha.2024.104536_bb0250
  article-title: Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change
  publication-title: Chin. Sci. Bull.
  doi: 10.1360/TB-2019-0074
– volume: 1
  start-page: 14
  year: 2020
  ident: 10.1016/j.gloplacha.2024.104536_bb0255
  article-title: Characteristics, drivers and feedbacks of global greening
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-019-0001-x
– volume: 32
  start-page: 153
  year: 1981
  ident: 10.1016/j.gloplacha.2024.104536_bb0220
  article-title: Statistics for microfossil concentration measurements employing samples spiked with marker grains
  publication-title: Rev. Palaeobot. Palynol.
  doi: 10.1016/0034-6667(81)90002-6
– volume: 593
  start-page: 228
  year: 2021
  ident: 10.1016/j.gloplacha.2024.104536_bb0285
  article-title: Widespread six degrees Celsius cooling on land during the Last Glacial Maximum
  publication-title: Nature
  doi: 10.1038/s41586-021-03467-6
– volume: 154
  start-page: 113
  year: 2006
  ident: 10.1016/j.gloplacha.2024.104536_bb0095
  article-title: A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2006.02.005
SSID ssj0017022
Score 2.4501085
Snippet Long-term changes in vegetation cover of the Tibetan Plateau (TP) are essential for understanding vegetation change under future climate. Previous studies have...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104536
SubjectTerms China
climate
climate change
Holocene epoch
lakes
Last Glacial Maximum
monsoon season
pollen
Pollen concentration
Random forest
steppes
Tibetan Plateau
Vegetation cover
Title Spatial and temporal variations of vegetation cover on the central and eastern Tibetan Plateau since the Last glacial period
URI https://dx.doi.org/10.1016/j.gloplacha.2024.104536
https://www.proquest.com/docview/3153730446
Volume 240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA5SEXwRT6wXEXxdu3dc30pR64mghb6FXFsrZbfUVhDE3-5MNltQhD74tllm9shMZibJlxlCTmQY-nmA5duNFF6sBLNjzvO1MlrkfpjbmpH3D2m3F9_0k_4S6dRnYRBW6Wx_ZdOttXZ3Wq43W-PhsPXkZ-ie0EFhZbkID_zGMUMtP_2awzwC5lc7CUDsIfUPjNdgVCL06QUTEIUx7ncmNlfznx7ql622Duhynay5yJG2q4_bIEum2CQrV7Yy78cW-cTiwqBMVBSauoRTI_oOU-FqTY6WOX03A4cupAqhmxQuIACkDqFpWbGWj5kU9HkogbagjyOIRsWMvg2hayz1HVBQiLpxsZ1iouRSb5Pe5cVzp-u50gqeiFgw9SJzlsYqhMkCY5mOfcnAbbNAp75OQ5kZI0wQqiSVcZJpIYNcwswmUkyxJBNGyWiHNIqyMLuESmbgaSwNpE2-BiGdYDk0RZjnRqdBk6R1d3Ll8o5j-YsRrwFmr3wuB45y4JUcmsSfM46r1BuLWc5refEfWsTBQSxmPq4lzGGM4caJKEw5e-MRuAWwhPB7e_95wT5ZxVaFUDsgjelkZg4hpJnKI6uzR2S5fX3bffgGIcr4Jg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA5VEX0RT7yN4OvaveP6JqJWbUWwBd9Crq2Vslu0FQTxtzuTzRYUwQff9pjZI5PMTDbfzkfIkQxDPw-Qvt1I4cVKMDvmPF8ro0Xuh7nljOzcpa1efPOYPDbIef0vDMIqne-vfLr11u5I07VmczQYNB_8DMMTBihklotOZshcDMMXaQyOP6c4j4D51VICSHso_g3k1R-WiH16wgpEYYwLnokt1vxriPrhrG0EulwmSy51pGfV062QhilWyfyVpeZ9XyMfyC4MvYmKQlNXcWpI32AuXH2Uo2VO30zfwQupQuwmhQ3IAKmDaFpVJPMxLwXtDiTIFvR-COmomNDXAbSNlW6DBIW0G7-2U6yUXOp10ru86J63PMet4ImIBWMvMidprEKYLTCW6diXDOI2C3Tq6zSUmTHCBKFKUhknmRYyyCVMbSLFFEsyYZSMNshsURZmk1DJDFyNpYG01dcgpxMsh10R5rnRabBF0ro5uXKFx5H_YshrhNkzn9qBox14ZYct4k8VR1Xtjb9VTmt78W_diEOE-Fv5sLYwh0GGKyeiMOXklUcQF8AVwutt_-cGB2Sh1e20efv67naHLOKZCq62S2bHLxOzB_nNWO7b_vsFxw75tA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+and+temporal+variations+of+vegetation+cover+on+the+central+and+eastern+Tibetan+Plateau+since+the+Last+glacial+period&rft.jtitle=Global+and+planetary+change&rft.au=Liu%2C+Lina&rft.au=Wang%2C+Nannan&rft.au=Zhang%2C+Yanrong&rft.au=Liang%2C+Jie&rft.date=2024-09-01&rft.issn=0921-8181&rft.volume=240+p.104536-&rft_id=info:doi/10.1016%2Fj.gloplacha.2024.104536&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8181&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8181&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8181&client=summon