Spatial and temporal variations of vegetation cover on the central and eastern Tibetan Plateau since the Last glacial period
Long-term changes in vegetation cover of the Tibetan Plateau (TP) are essential for understanding vegetation change under future climate. Previous studies have mainly concentrated on the Holocene and the eastern region of the TP, but here, we establish a relationship between modern pollen data (incl...
Saved in:
Published in | Global and planetary change Vol. 240; p. 104536 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Long-term changes in vegetation cover of the Tibetan Plateau (TP) are essential for understanding vegetation change under future climate. Previous studies have mainly concentrated on the Holocene and the eastern region of the TP, but here, we establish a relationship between modern pollen data (including both pollen percentage and concentration) and vegetation cover using a random forest (RF) model based on 362 soil-surface samples from the TP, as well as using it to quantitatively reconstruct the vegetation cover history of the Dagze Co (central TP, covering the last 19.5 cal. ka BP) and Koucha Lake (eastern TP, covering the last 33.8 cal. ka BP) regions. The RF results indicate that both the models based on pollen percentages or concentrations perform similarly (former: R2 = 0.538, RMSEP = 19.772%; latter: R2 = 0.540, RMSEP = 19.723%). However, when considering the reconstructed vegetation cover of Dagze Co and Koucha Lake, the results based on pollen concentrations appear to be more reliable. Before 13.4 and 16.8 cal. ka BP, Dagze Co and Koucha Lake has low vegetation cover of 25% and 30%, respectively, dominated by alpine desert or desert steppe. After that, changes in vegetation cover show different trends. At Dagze Co, the vegetation cover reaches a high level (54%) between 13.4 and 5.3 cal. ka BP, followed by a decrease until it starts increasing again at 2 cal. ka BP, in response to the change in the Indian Summer Monsoon (ISM). At Koucha Lake, the vegetation cover fluctuates at around 60%, indicating less sensitivity to climate change. Our research highlights the importance of pollen concentrations in quantitatively reconstructing past vegetation cover and the sparse vegetation status during the LGM on the TP.
•Vegetation cover history on the central and eastern Tibean Plateau was reconstructed based on pollen concentrations.•Alpine desert or desert steppe with sparse vegetation cover was widely distributed during the LGM on the Tibetan Plateau.•There are significant spatial and temporal differences in vegetation cover on the central and eastern Tibetan Plateau. |
---|---|
AbstractList | Long-term changes in vegetation cover of the Tibetan Plateau (TP) are essential for understanding vegetation change under future climate. Previous studies have mainly concentrated on the Holocene and the eastern region of the TP, but here, we establish a relationship between modern pollen data (including both pollen percentage and concentration) and vegetation cover using a random forest (RF) model based on 362 soil-surface samples from the TP, as well as using it to quantitatively reconstruct the vegetation cover history of the Dagze Co (central TP, covering the last 19.5 cal. ka BP) and Koucha Lake (eastern TP, covering the last 33.8 cal. ka BP) regions. The RF results indicate that both the models based on pollen percentages or concentrations perform similarly (former: R² = 0.538, RMSEP = 19.772%; latter: R² = 0.540, RMSEP = 19.723%). However, when considering the reconstructed vegetation cover of Dagze Co and Koucha Lake, the results based on pollen concentrations appear to be more reliable. Before 13.4 and 16.8 cal. ka BP, Dagze Co and Koucha Lake has low vegetation cover of 25% and 30%, respectively, dominated by alpine desert or desert steppe. After that, changes in vegetation cover show different trends. At Dagze Co, the vegetation cover reaches a high level (54%) between 13.4 and 5.3 cal. ka BP, followed by a decrease until it starts increasing again at 2 cal. ka BP, in response to the change in the Indian Summer Monsoon (ISM). At Koucha Lake, the vegetation cover fluctuates at around 60%, indicating less sensitivity to climate change. Our research highlights the importance of pollen concentrations in quantitatively reconstructing past vegetation cover and the sparse vegetation status during the LGM on the TP. Long-term changes in vegetation cover of the Tibetan Plateau (TP) are essential for understanding vegetation change under future climate. Previous studies have mainly concentrated on the Holocene and the eastern region of the TP, but here, we establish a relationship between modern pollen data (including both pollen percentage and concentration) and vegetation cover using a random forest (RF) model based on 362 soil-surface samples from the TP, as well as using it to quantitatively reconstruct the vegetation cover history of the Dagze Co (central TP, covering the last 19.5 cal. ka BP) and Koucha Lake (eastern TP, covering the last 33.8 cal. ka BP) regions. The RF results indicate that both the models based on pollen percentages or concentrations perform similarly (former: R2 = 0.538, RMSEP = 19.772%; latter: R2 = 0.540, RMSEP = 19.723%). However, when considering the reconstructed vegetation cover of Dagze Co and Koucha Lake, the results based on pollen concentrations appear to be more reliable. Before 13.4 and 16.8 cal. ka BP, Dagze Co and Koucha Lake has low vegetation cover of 25% and 30%, respectively, dominated by alpine desert or desert steppe. After that, changes in vegetation cover show different trends. At Dagze Co, the vegetation cover reaches a high level (54%) between 13.4 and 5.3 cal. ka BP, followed by a decrease until it starts increasing again at 2 cal. ka BP, in response to the change in the Indian Summer Monsoon (ISM). At Koucha Lake, the vegetation cover fluctuates at around 60%, indicating less sensitivity to climate change. Our research highlights the importance of pollen concentrations in quantitatively reconstructing past vegetation cover and the sparse vegetation status during the LGM on the TP. •Vegetation cover history on the central and eastern Tibean Plateau was reconstructed based on pollen concentrations.•Alpine desert or desert steppe with sparse vegetation cover was widely distributed during the LGM on the Tibetan Plateau.•There are significant spatial and temporal differences in vegetation cover on the central and eastern Tibetan Plateau. |
ArticleNumber | 104536 |
Author | Liang, Jie Cao, Xianyong Wang, Nannan Liu, Lina Zhang, Yanrong Ni, Jian |
Author_xml | – sequence: 1 givenname: Lina surname: Liu fullname: Liu, Lina email: liulina@zjnu.edu.cn organization: College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China – sequence: 2 givenname: Nannan surname: Wang fullname: Wang, Nannan organization: Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 3 givenname: Yanrong surname: Zhang fullname: Zhang, Yanrong organization: Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 4 givenname: Jie surname: Liang fullname: Liang, Jie organization: Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 5 givenname: Jian surname: Ni fullname: Ni, Jian organization: College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China – sequence: 6 givenname: Xianyong surname: Cao fullname: Cao, Xianyong email: xcao@itpcas.ac.cn organization: Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China |
BookMark | eNqNkEtPAyEUhVnUxFb9DbJ00wrMg5mFi6bxlTTRxLomDHOnpZnCCHQSE3-8tNO4cKMruJdzzuV-EzQy1gBC15TMKKH57Xa2bm3XSrWRM0ZYGrtpluQjNCYlo9OCFvQcTbzfEkI5YWyMvt46GbRssTQ1DrDrrItFL52ObWs8tg3uYQ3hWGJle3A4XsIGsAIT3MkK0gdwBq90FbUGv7YygNxjr42Co3oZFXgd_3aY1oHTtr5EZ41sPVydzgv0_nC_WjxNly-Pz4v5cioTTsM0gSJPFeNZwXlZp6TiRRYf6pzUOatKAAmUqSyv0qysZUWbKkuLRHHFs1KCqpILdDPkds5-7MEHsdNeQdtKA3bvRUJjXkLSNI_Su0GqnPXeQSOUHnaPq-pWUCIOpMVW_JAWB9JiIB39_Je_c3on3ec_nPPBCZFEr8EJrzREerV2oIKorf4z4xtk9KPY |
CitedBy_id | crossref_primary_10_1016_j_palaeo_2025_112878 crossref_primary_10_1016_j_catena_2025_108758 crossref_primary_10_1016_j_palaeo_2025_112731 |
Cites_doi | 10.5846/stxb201306071419 10.1016/S0031-0182(01)00444-8 10.1177/09596836221080763 10.1016/j.catena.2021.105500 10.1016/j.quascirev.2021.106817 10.1006/qres.1993.1037 10.1016/j.epsl.2007.10.007 10.1016/j.yqres.2006.03.001 10.1038/nature02805 10.1016/j.quascirev.2023.108292 10.1007/s10933-017-9976-9 10.1111/j.1365-2699.2009.02245.x 10.1016/j.earscirev.2020.103119 10.1007/s00334-022-00870-5 10.1177/0959683607075838 10.1007/s00334-008-0149-7 10.1016/j.palaeo.2014.02.022 10.1016/j.revpalbo.2011.09.004 10.1111/gcb.16455 10.1126/science.1217161 10.1111/bor.12201 10.1016/j.gloplacha.2012.12.014 10.1016/j.palaeo.2011.07.003 10.1360/N972014-01339 10.1007/s00334-022-00891-0 10.1016/j.jaridenv.2009.09.012 10.1016/j.ecolind.2018.07.063 10.1175/JCLI-D-16-0213.1 10.1016/j.quascirev.2010.10.001 10.1002/rog.20023 10.1088/1748-9326/11/10/105003 10.1016/j.catena.2022.106620 10.1126/sciadv.aay6193 10.5194/essd-13-3525-2021 10.1029/2023GL104164 10.1016/j.quascirev.2005.05.001 10.5194/cp-10-21-2014 10.1111/gcb.12737 10.1016/j.gloplacha.2022.103880 10.1007/s11430-021-9867-1 10.1016/j.catena.2022.106307 10.1111/j.1365-2486.2011.02419.x 10.1016/j.quascirev.2011.01.008 10.1016/j.quascirev.2020.106611 10.3390/rs15092228 10.1038/s41598-020-75845-5 10.1016/j.catena.2021.105381 10.1016/S0921-8181(02)00088-7 10.1016/j.agrformet.2022.109232 10.1038/s43247-023-00814-5 10.1016/j.gloplacha.2019.01.004 10.1007/s10933-011-9523-z 10.1126/science.aay3701 10.1038/srep00619 10.1177/0959683607075837 10.1029/2021JG006441 10.1016/j.yqres.2009.12.003 10.1016/j.quascirev.2016.02.001 10.1038/srep13318 10.1126/science.1064618 10.1002/joc.6110 10.1016/0034-6667(80)90023-8 10.1016/j.quaint.2022.05.005 10.1051/0004-6361:20041335 10.1016/j.quascirev.2022.107916 10.1007/BF00211619 10.1038/454393a 10.1016/j.epsl.2005.01.036 10.1360/TB-2019-0074 10.1038/s43017-019-0001-x 10.1016/0034-6667(81)90002-6 10.1038/s41586-021-03467-6 10.1016/j.quaint.2006.02.005 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.gloplacha.2024.104536 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
ExternalDocumentID | 10_1016_j_gloplacha_2024_104536 S0921818124001838 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFYP ABLJU ABLST ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VQA WUQ XJT Y6R ZCA ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-a371t-3e864c2758779d40b785371d60d62b9eeae12c56b459dab1fb5483c7c759aecb3 |
IEDL.DBID | .~1 |
ISSN | 0921-8181 |
IngestDate | Tue Aug 05 11:19:23 EDT 2025 Tue Jul 01 03:02:21 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Sat Aug 31 16:02:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Last Glacial Maximum Pollen concentration Tibetan Plateau Random forest Vegetation cover |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a371t-3e864c2758779d40b785371d60d62b9eeae12c56b459dab1fb5483c7c759aecb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153730446 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153730446 crossref_citationtrail_10_1016_j_gloplacha_2024_104536 crossref_primary_10_1016_j_gloplacha_2024_104536 elsevier_sciencedirect_doi_10_1016_j_gloplacha_2024_104536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Global and planetary change |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Piao, Wang, Ciais, Zhu, Wang, Liu (bb0245) 2011; 17 Tang, Mao, Shu, Li, Shen, Zhou (bb0325) 2016 Xu, Zhu, Ma, Wang, Lü, Tang (bb0405) 2021; 204 Nieberding, Wille, Ma, Wang, Maurischat, Lehnert, Sachs (bb0230) 2021; 126 An, Colman, Zhou, Li, Brown, Jull, Cai, Huang, Lu, Chang, Song, Sun, Xu, Liu, Jin, Liu, Cheng, Liu, Ai, Li, Liu, Yan, Shi, Wang, Wu, Qiang, Dong, Lu, Xu (bb0005) 2012; 2 Li, Zhang, Wang, Ma, Liu, Cheng, Zhou, Xia, Niu (bb0160) 2022; 42 Liu, Wang, Zhang, Yu, Cao (bb0200) 2023; 32 Zhu, Lü, Wang, Peng, Kasper, Daut, Haberzettl, Frenzel, Li, Yang, Schwalb, Mäusbacher (bb0450) 2015; 5 Yao, Masson-Delmotte, Gao, Yu, Yang, Risi, Sturm, Werner, Zhao, He, Ren, Tian, Shi, Hou (bb0410) 2013; 51 Herzschuh, Borkowski, Schewe, Mischke, Tian (bb0105) 2014; 402 Fu, Ouyang, Shi, Fan, Wang, Zheng, Zhao, Wu (bb0060) 2021; 36 Hu (bb0120) 2016 Huang, Yang, Guo, Zhang, Guo (bb0125) 2020; 10 Pailler, Bard (bb0240) 2002; 181 Cao, Tian, Li, Ni, Yu, Liu, Wang (bb0020) 2021; 13 Liaw, Wiener (bb0170) 2002; 2 Koutavas, Joanides (bb0135) 2012; 27 Hellman, Gaillard, Broström, Sugita (bb0085) 2008; 17 Herzschuh, Birks, Mischke, Zhang, Böhner (bb0100) 2010; 37 Liu, Liu, Li (bb0185) 2018; 95 Tian, Qin, Zhang, Herzschuh, Ni, Zhang, Mischke, Cao (bb0350) 2022; 31 Hao, Han, Liu, Cheng (bb0080) 2023; 4 Zhang, Yuan, Zhang, Li, Wang, Zhang, Ju, Jiang, Chen, Zhu (bb0425) 2020; 40 Maher (bb0220) 1981; 32 Lejeune, Seneviratne, Davin (bb0150) 2017; 30 Piao, Wang, Park, Chen, Lian, He, Bjerke, Chen, Ciais, Tommervik, Nemani, Myneni (bb0255) 2020; 1 Qin, Wang, Cao, Cai, Liang, Beck, Zeng (bb0270) 2023; 50 Li, Gaillard, Cao, Herzschuh, Sugita, Tarasov, Wagner, Xu, Ni, Wang, Zhao, An, Beusen, Chen, Feng, Klein Goldewijk, Huang, Li, Li, Liu, Sun, Yao, Zheng, Jia (bb0155) 2020; 203 Ma, Zhu, Lü, Wang, Ju, Kasper, Daut, Haberzettl (bb0215) 2019; 174 Prentice (bb0260) 1980; 31 Evans, Murphy (bb0045) 2022 Wang, Herzschuh (bb0370) 2011; 168 Telford, Birks (bb0340) 2011; 46 Trondman, Gaillard, Mazier, Sugita, Fyfe, Nielsen, Twiddle, Barratt, Birks, Bjune, Björkman, Broström, Caseldine, David, Dodson, Dörfler, Fischer, van Geel, Giesecke, Hultberg, Kalnina, Kangur, van der Knaap, Koff, Kuneš, Lagerås, Latałowa, Lechterbeck, Leroyer, Leydet, Lindbladh, Marquer, Mitchell, Odgaard, Peglar, Persson, Poska, Rösch, Seppä, Veski, Wick (bb0360) 2015; 21 Faegri, Iversen (bb0050) 1975 Wischnewski, Mischke, Wang, Herzschuh (bb0400) 2011; 30 Tierney, Poulsen, Montañez, Bhattacharya, Feng, Ford, Hönisch, Inglis, Petersen, Sagoo (bb0355) 2020; 370 Han, Liu, Zhou, Hao, Cheng (bb0075) 2020; 248 Dykoski, Edwards, Cheng, Yuan, Cai, Zhang, Lin, Qing, An, Revenaugh (bb0035) 2005; 233 Hou (bb0110) 2001 Liu, Li, Wang, Zhou, Liang, Hou, Xu, Xue (bb0190) 2021; 206 Liu, Jia, Liu, Zheng, Liu (bb0180) 2013; 33 Zhao, Tzedakis, Li, Qin, Cui, Liang, Birks, Liu, Zhang, Ge, Zhao, Felde, Deng, Cai, Li, Ren, Wei, Yang, Zhang, Yu, Guo (bb0435) 2020; 6 Tarasov, Williams, Andreev, Nakagawa, Bezrukova, Herzschuh, Igarashi, Müller, Werner, Zheng (bb0330) 2007; 264 Wang, Huang, Zhang, Luo, Zheng, Xiang, Sun, Ren, Sun, Zhang (bb0390) 2023; 318 Tian, Cao, Dallmeyer, Ni, Zhao, Wang, Herzschuh (bb0345) 2016; 137 Miehe, Hasson, Glaser, Mischke, Böhner, van der Knaap, van Leeuwen, Duo, Miehe, Haberzettl (bb0225) 2021; 256 Sugita (bb0305) 2007; 17 Grimm (bb0070) 2004 Williams (bb0395) 2002; 35 Sun, Xu, Gaillard, Zhang, Li, Li, Li, Li, Xiao (bb0315) 2022; 214 Gou, Wang, Jin, Mu, Chen (bb0065) 2019; 39 Zhang, Yang, Piao, Bao, Wang, Wang, Sun, Luo, Zhang, Shi, Liang, Shen, Wang, Gao, Zhang, Ouyang (bb0420) 2015; 60 Yu, Leng (bb0415) 2022; 327 Van Campo, Gasse (bb0365) 1993; 39 Hou, Tian, Liang, Wang, He (bb0115) 2017; 58 Zheng, Zheng, Huang, Wei, Xu, Lü, Luo, Luo, Beaudouin (bb0445) 2009; 48 Cao, Tian, Li, Ni (bb0015) 2020 Wang, Cheng, Edwards, An, Wu, Shen, Dorale (bb0380) 2001; 294 Laskar, Robutel, Joutel, Gastineau, Correia, Levrard (bb0145) 2004; 428 Schmitt, Schneider, Elsig, Leuenberger, Lourantou, Chappellaz, Köhler, Joos, Stocker, Leuenberger, Fischer (bb0280) 2012; 336 Kramer, Herzschuh, Mischke, Zhang (bb0140) 2010; 73 Herzschuh, Kürschner, Mischke (bb0090) 2006; 66 Zhao, Sun (bb0430) 2010; 74 Andersen, Azuma, Barnola, Bigler, Biscaye, Caillon, Chappellaz, Clausen, Dahl-Jensen, Fischer, Flückiger, Fritzsche, Fujii, Goto-Azuma, Grønvold, Gundestrup, Hansson, Huber, Hvidberg, Johnsen, Jonsell, Jouzel, Kipfstuhl, Landais, Leuenberger, Lorrain, Masson-Delmotte, Miller, Motoyama, Narita, Popp, Rasmussen, Raynaud, Rothlisberger, Ruth, Samyn, Schwander, Shoji, Siggard-Andersen, Steffensen, Stocker, Sveinbjörnsdóttir, Svensson, Takata, Tison, Thorsteinsson, Watanabe, Wilhelms, White, North Greenland Ice Core Project, m (bb0010) 2004; 431 Feldman, Short Gianotti, Dong, Trigo, Salvucci, Entekhabi (bb0055) 2023; 29 Piao, Zhang, Wang, Liang, Wang, Zhu, Niu (bb0250) 2019; 64 Lü, Wu, Liu, Zhu, Yang, Yao, Wang, Li, Liu, Shen (bb0205) 2011; 30 Su, Fu (bb0295) 2013; 101 Shi, Li, Xu, Li, Zhang, Sun (bb0290) 2022; 641 Telford, Birks (bb0335) 2005; 24 Qiu (bb0275) 2008; 454 Sun, Du, Chen, Gu, Liu, Yuan (bb0310) 1993; 35 Wang, Herzschuh, Shumilovskikh, Mischke, Birks, Wischnewski, Böhner, Schlutz, Lehmkuhl, Diekmann, Wünnemann, Zhang (bb0385) 2014; 10 Zhao, Liu, Wang, Gao, Feng, Wei, Hou, Xiao, Jing, Liao (bb0440) 2023; 15 Herzschuh, Winter, Wuennemann, Li (bb0095) 2006; 154 Euskirchen, Bennett, Breen, Genet, Lindgren, Kurkowski, McGuire, Rupp (bb0040) 2016; 11 Jiang, Lang, Tian, Guo (bb0130) 2011; 309 Overpeck, Anderson, Trumbore, Prell (bb0235) 1996; 12 Qin, Zhao, Cao (bb0265) 2022; 65 Sun, Zhang, Xu (bb0320) 2022; 219 Cao, Wang, Cao, Liu, Zhang, Hou, Zhao, Li, Tian (bb0025) 2023; 301 Cheng, Liu, Han, Hao (bb0030) 2022; 215 Liu, Hou, Yu, Wang, Zhang, Cao (bb0195) 2022; 32 Liang (bb0165) 2019 Wang, Qian, Zhang, Yang (bb0375) 1995 Ling (bb0175) 1999 Ma, Zhu, Lu, Wang, Guo, Wang, Ju, Peng, Tang (bb0210) 2017; 46 Sugita (bb0300) 2007; 17 Seltzer, Ng, Aeschbach, Kipfer, Kulongoski, Severinghaus, Stute (bb0285) 2021; 593 Han (10.1016/j.gloplacha.2024.104536_bb0075) 2020; 248 Liu (10.1016/j.gloplacha.2024.104536_bb0200) 2023; 32 Cao (10.1016/j.gloplacha.2024.104536_bb0025) 2023; 301 Liang (10.1016/j.gloplacha.2024.104536_bb0165) 2019 Zhang (10.1016/j.gloplacha.2024.104536_bb0425) 2020; 40 Gou (10.1016/j.gloplacha.2024.104536_bb0065) 2019; 39 Liu (10.1016/j.gloplacha.2024.104536_bb0195) 2022; 32 Sugita (10.1016/j.gloplacha.2024.104536_bb0300) 2007; 17 Su (10.1016/j.gloplacha.2024.104536_bb0295) 2013; 101 Herzschuh (10.1016/j.gloplacha.2024.104536_bb0100) 2010; 37 Herzschuh (10.1016/j.gloplacha.2024.104536_bb0105) 2014; 402 Liaw (10.1016/j.gloplacha.2024.104536_bb0170) 2002; 2 Sun (10.1016/j.gloplacha.2024.104536_bb0310) 1993; 35 Zhao (10.1016/j.gloplacha.2024.104536_bb0435) 2020; 6 Lejeune (10.1016/j.gloplacha.2024.104536_bb0150) 2017; 30 Telford (10.1016/j.gloplacha.2024.104536_bb0335) 2005; 24 Sun (10.1016/j.gloplacha.2024.104536_bb0315) 2022; 214 Sun (10.1016/j.gloplacha.2024.104536_bb0320) 2022; 219 Fu (10.1016/j.gloplacha.2024.104536_bb0060) 2021; 36 Liu (10.1016/j.gloplacha.2024.104536_bb0180) 2013; 33 Miehe (10.1016/j.gloplacha.2024.104536_bb0225) 2021; 256 Cao (10.1016/j.gloplacha.2024.104536_bb0015) 2020 Li (10.1016/j.gloplacha.2024.104536_bb0160) 2022; 42 Euskirchen (10.1016/j.gloplacha.2024.104536_bb0040) 2016; 11 Qin (10.1016/j.gloplacha.2024.104536_bb0270) 2023; 50 Piao (10.1016/j.gloplacha.2024.104536_bb0250) 2019; 64 Faegri (10.1016/j.gloplacha.2024.104536_bb0050) 1975 Yu (10.1016/j.gloplacha.2024.104536_bb0415) 2022; 327 Tian (10.1016/j.gloplacha.2024.104536_bb0350) 2022; 31 Wang (10.1016/j.gloplacha.2024.104536_bb0370) 2011; 168 Wang (10.1016/j.gloplacha.2024.104536_bb0375) 1995 Wang (10.1016/j.gloplacha.2024.104536_bb0380) 2001; 294 Herzschuh (10.1016/j.gloplacha.2024.104536_bb0095) 2006; 154 Nieberding (10.1016/j.gloplacha.2024.104536_bb0230) 2021; 126 Tarasov (10.1016/j.gloplacha.2024.104536_bb0330) 2007; 264 Piao (10.1016/j.gloplacha.2024.104536_bb0255) 2020; 1 Tang (10.1016/j.gloplacha.2024.104536_bb0325) 2016 Zheng (10.1016/j.gloplacha.2024.104536_bb0445) 2009; 48 Feldman (10.1016/j.gloplacha.2024.104536_bb0055) 2023; 29 Hou (10.1016/j.gloplacha.2024.104536_bb0115) 2017; 58 Piao (10.1016/j.gloplacha.2024.104536_bb0245) 2011; 17 Hao (10.1016/j.gloplacha.2024.104536_bb0080) 2023; 4 Ma (10.1016/j.gloplacha.2024.104536_bb0210) 2017; 46 Zhao (10.1016/j.gloplacha.2024.104536_bb0430) 2010; 74 Andersen (10.1016/j.gloplacha.2024.104536_bb0010) 2004; 431 An (10.1016/j.gloplacha.2024.104536_bb0005) 2012; 2 Pailler (10.1016/j.gloplacha.2024.104536_bb0240) 2002; 181 Jiang (10.1016/j.gloplacha.2024.104536_bb0130) 2011; 309 Overpeck (10.1016/j.gloplacha.2024.104536_bb0235) 1996; 12 Hu (10.1016/j.gloplacha.2024.104536_bb0120) 2016 Grimm (10.1016/j.gloplacha.2024.104536_bb0070) 2004 Qiu (10.1016/j.gloplacha.2024.104536_bb0275) 2008; 454 Wischnewski (10.1016/j.gloplacha.2024.104536_bb0400) 2011; 30 Tierney (10.1016/j.gloplacha.2024.104536_bb0355) 2020; 370 Seltzer (10.1016/j.gloplacha.2024.104536_bb0285) 2021; 593 Xu (10.1016/j.gloplacha.2024.104536_bb0405) 2021; 204 Zhang (10.1016/j.gloplacha.2024.104536_bb0420) 2015; 60 Cheng (10.1016/j.gloplacha.2024.104536_bb0030) 2022; 215 Herzschuh (10.1016/j.gloplacha.2024.104536_bb0090) 2006; 66 Evans (10.1016/j.gloplacha.2024.104536_bb0045) 2022 Lü (10.1016/j.gloplacha.2024.104536_bb0205) 2011; 30 Van Campo (10.1016/j.gloplacha.2024.104536_bb0365) 1993; 39 Liu (10.1016/j.gloplacha.2024.104536_bb0190) 2021; 206 Ling (10.1016/j.gloplacha.2024.104536_bb0175) 1999 Prentice (10.1016/j.gloplacha.2024.104536_bb0260) 1980; 31 Huang (10.1016/j.gloplacha.2024.104536_bb0125) 2020; 10 Ma (10.1016/j.gloplacha.2024.104536_bb0215) 2019; 174 Wang (10.1016/j.gloplacha.2024.104536_bb0385) 2014; 10 Liu (10.1016/j.gloplacha.2024.104536_bb0185) 2018; 95 Shi (10.1016/j.gloplacha.2024.104536_bb0290) 2022; 641 Maher (10.1016/j.gloplacha.2024.104536_bb0220) 1981; 32 Li (10.1016/j.gloplacha.2024.104536_bb0155) 2020; 203 Zhu (10.1016/j.gloplacha.2024.104536_bb0450) 2015; 5 Yao (10.1016/j.gloplacha.2024.104536_bb0410) 2013; 51 Wang (10.1016/j.gloplacha.2024.104536_bb0390) 2023; 318 Dykoski (10.1016/j.gloplacha.2024.104536_bb0035) 2005; 233 Hellman (10.1016/j.gloplacha.2024.104536_bb0085) 2008; 17 Laskar (10.1016/j.gloplacha.2024.104536_bb0145) 2004; 428 Telford (10.1016/j.gloplacha.2024.104536_bb0340) 2011; 46 Tian (10.1016/j.gloplacha.2024.104536_bb0345) 2016; 137 Koutavas (10.1016/j.gloplacha.2024.104536_bb0135) 2012; 27 Schmitt (10.1016/j.gloplacha.2024.104536_bb0280) 2012; 336 Sugita (10.1016/j.gloplacha.2024.104536_bb0305) 2007; 17 Zhao (10.1016/j.gloplacha.2024.104536_bb0440) 2023; 15 Cao (10.1016/j.gloplacha.2024.104536_bb0020) 2021; 13 Qin (10.1016/j.gloplacha.2024.104536_bb0265) 2022; 65 Williams (10.1016/j.gloplacha.2024.104536_bb0395) 2002; 35 Trondman (10.1016/j.gloplacha.2024.104536_bb0360) 2015; 21 Hou (10.1016/j.gloplacha.2024.104536_bb0110) 2001 Kramer (10.1016/j.gloplacha.2024.104536_bb0140) 2010; 73 |
References_xml | – volume: 36 start-page: 1298 year: 2021 end-page: 1306 ident: bb0060 article-title: Current condition and protection strategies for Qinghai-Tibetan Plateau ecological security barrier publication-title: Bull. Chin. Acad. Sci. – volume: 32 start-page: 153 year: 1981 end-page: 191 ident: bb0220 article-title: Statistics for microfossil concentration measurements employing samples spiked with marker grains publication-title: Rev. Palaeobot. Palynol. – year: 2016 ident: bb0120 article-title: Vegetation Evolution and Climate Change Documented by Hala Lake Sediments in the Northeastern Qinghai-Tibetan Plateau since the Last Glacial Maximum – year: 2016 ident: bb0325 article-title: An Illustrated Handbook of Quaternary Pollen and Spores in China – volume: 203 year: 2020 ident: bb0155 article-title: Towards quantification of Holocene anthropogenic land-cover change in temperate China: a review in the light of pollen-based REVEALS reconstructions of regional plant cover publication-title: Earth Sci. Rev. – volume: 42 start-page: 4770 year: 2022 end-page: 4783 ident: bb0160 article-title: Response of vegetation dynamics to hydrothermal conditions on the Qinghai-Tibet Plateau in the last 40 years publication-title: Acta Ecol. Sin. – volume: 31 start-page: 71 year: 1980 end-page: 104 ident: bb0260 article-title: Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods publication-title: Rev. Palaeobot. Palynol. – volume: 327 year: 2022 ident: bb0415 article-title: Global effects of different types of land use and land cover changes on near-surface air temperature publication-title: Agric. For. Meteorol. – volume: 46 start-page: 242 year: 2017 end-page: 253 ident: bb0210 article-title: Modern pollen assemblages from surface lake sediments and their environmental implications on the southwestern Tibetan Plateau publication-title: Boreas – volume: 641 start-page: 25 year: 2022 end-page: 38 ident: bb0290 article-title: Land cover reconstruction in Northwest China since 6 ka BP: preliminary application of a new strategy publication-title: Quat. Int. – year: 2022 ident: bb0045 article-title: Random Forests Model Selection and Performance Evaluation, Version 2.1-5 – volume: 40 start-page: 6269 year: 2020 end-page: 6281 ident: bb0425 article-title: Response of the NDVI of alpine grasslands on the Qinghai-Tibetan Plateau to climate change and human activities over the last 30 years publication-title: Acta Ecol. Sin. – volume: 21 start-page: 676 year: 2015 end-page: 697 ident: bb0360 article-title: Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling publication-title: Glob. Chang. Biol. – volume: 370 start-page: eaay3701 year: 2020 ident: bb0355 article-title: Past climates inform our future publication-title: Science – volume: 214 year: 2022 ident: bb0315 article-title: Pollen-based reconstruction of total land-cover change over the Holocene in the temperate steppe region of China: An attempt to quantify the cover of vegetation and bare ground in the past using a novel approach publication-title: Catena – volume: 29 start-page: 110 year: 2023 end-page: 125 ident: bb0055 article-title: Tropical surface temperature response to vegetation cover changes and the role of drylands publication-title: Glob. Chang. Biol. – volume: 6 start-page: eaay6193 year: 2020 ident: bb0435 article-title: Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years publication-title: Sci. Adv. – volume: 593 start-page: 228 year: 2021 end-page: 232 ident: bb0285 article-title: Widespread six degrees Celsius cooling on land during the Last Glacial Maximum publication-title: Nature – volume: 66 start-page: 133 year: 2006 end-page: 146 ident: bb0090 article-title: Temperature variability and vertical vegetation belt shifts during the last 50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China) publication-title: Quat. Res. – volume: 30 start-page: 947 year: 2011 end-page: 966 ident: bb0205 article-title: Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes publication-title: Quat. Sci. Rev. – volume: 309 start-page: 347 year: 2011 end-page: 357 ident: bb0130 article-title: Last glacial maximum climate over China from PMIP simulations publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 10 start-page: 21 year: 2014 end-page: 39 ident: bb0385 article-title: Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes publication-title: Clim. Past – volume: 181 start-page: 431 year: 2002 end-page: 452 ident: bb0240 article-title: High frequency palaeoceanographic changes during the past 140,000 yr recorded by the organic matter in sediments of the Iberian Margin publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 402 start-page: 44 year: 2014 end-page: 54 ident: bb0105 article-title: Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 35 start-page: 1 year: 2002 end-page: 23 ident: bb0395 article-title: Variations in tree cover in North America since the last glacial maximum publication-title: Glob. Planet. Chang. – volume: 137 start-page: 33 year: 2016 end-page: 44 ident: bb0345 article-title: Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities publication-title: Quat. Sci. Rev. – volume: 1 start-page: 14 year: 2020 end-page: 27 ident: bb0255 article-title: Characteristics, drivers and feedbacks of global greening publication-title: Nat. Rev. Earth Environ. – year: 1975 ident: bb0050 article-title: Textbook of Pollen Analysis – volume: 17 start-page: 229 year: 2007 end-page: 241 ident: bb0300 article-title: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition publication-title: The Holocene – volume: 204 year: 2021 ident: bb0405 article-title: Moisture and vegetation variations in the extremely cold-dry area of the Tibetan Plateau during the past 5000 years publication-title: Catena – volume: 32 start-page: 157 year: 2023 end-page: 169 ident: bb0200 article-title: Performance of vegetation cover reconstructions using lake and soil pollen samples from the Tibetan Plateau publication-title: Veg. Hist. Archaeobotany – volume: 336 start-page: 711 year: 2012 end-page: 714 ident: bb0280 article-title: Carbon isotope constraints on the deglacial CO publication-title: Science – volume: 24 start-page: 2173 year: 2005 end-page: 2179 ident: bb0335 article-title: The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance publication-title: Quat. Sci. Rev. – volume: 11 year: 2016 ident: bb0040 article-title: Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and Northwest Canada publication-title: Environ. Res. Lett. – volume: 17 start-page: 445 year: 2008 end-page: 459 ident: bb0085 article-title: Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model publication-title: Vegetation Hist. Archaeobot. – start-page: 88 year: 1999 ident: bb0175 article-title: Potential evapotranspiration publication-title: The National Physical Atlas of China – volume: 12 start-page: 213 year: 1996 end-page: 225 ident: bb0235 article-title: The southwest Indian Monsoon over the last 18,000 years publication-title: Clim. Dyn. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0170 article-title: Classification and Regression by randomForest. R News – year: 2001 ident: bb0110 article-title: Vegetation Atlas of China – volume: 32 start-page: 543 year: 2022 end-page: 553 ident: bb0195 article-title: Vegetation and environmental changes since the Last Glacial Maximum inferred from a lake core from Saiyong Co, central Tibetan Plateau publication-title: The Holocene – volume: 39 start-page: 4825 year: 2019 end-page: 4837 ident: bb0065 article-title: More realistic land-use and vegetation parameters in a regional climate model reduce model biases over China publication-title: Int. J. Climatol. – volume: 48 start-page: 228 year: 2009 end-page: 239 ident: bb0445 article-title: Satellite MODIS-and modern pollen-based quantitative vegetation cover simulation in China publication-title: Acta Palaeontol. Sin. – volume: 37 start-page: 752 year: 2010 end-page: 766 ident: bb0100 article-title: A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains publication-title: J. Biogeogr. – volume: 454 start-page: 393 year: 2008 end-page: 396 ident: bb0275 article-title: China: the third pole publication-title: Nature – volume: 39 start-page: 300 year: 1993 end-page: 313 ident: bb0365 article-title: Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co basin (Western Tibet) since 13,000 yr B.P publication-title: Quat. Res. – volume: 431 start-page: 147 year: 2004 end-page: 151 ident: bb0010 article-title: High-resolution record of Northern Hemisphere climate extending into the last interglacial period publication-title: Nature – volume: 33 start-page: 5785 year: 2013 end-page: 5793 ident: bb0180 article-title: The depositional environment and organic sediment component of Dagze Co, a saline lake in Tibet,China publication-title: Acta Ecol. Sin. – volume: 46 start-page: 99 year: 2011 end-page: 106 ident: bb0340 article-title: Effect of uneven sampling along an environmental gradient on transfer-function performance publication-title: J. Paleolimnol. – volume: 13 start-page: 3525 year: 2021 end-page: 3537 ident: bb0020 article-title: Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions publication-title: Earth Syst. Sci. Data – year: 2004 ident: bb0070 article-title: TGview Version 2.0.2 – year: 1995 ident: bb0375 article-title: Pollen Flora of China – volume: 248 year: 2020 ident: bb0075 article-title: Postglacial evolution of forest and grassland in southeastern Gobi (Northern China) publication-title: Quat. Sci. Rev. – volume: 51 start-page: 525 year: 2013 end-page: 548 ident: bb0410 article-title: A review of climatic controls on δ publication-title: Rev. Geophys. – volume: 174 start-page: 16 year: 2019 end-page: 25 ident: bb0215 article-title: Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau publication-title: Glob. Planet. Chang. – volume: 95 start-page: 370 year: 2018 end-page: 378 ident: bb0185 article-title: Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China publication-title: Ecol. Indic. – volume: 30 start-page: 1439 year: 2017 end-page: 1459 ident: bb0150 article-title: Historical land-cover change impacts on climate: comparative assessment of LUCID and CMIP5 multimodel experiments publication-title: J. Clim. – volume: 74 start-page: 423 year: 2010 end-page: 427 ident: bb0430 article-title: Reliability of pollen concentration as the indicator of effective moisture in arid and semi-arid regions of China publication-title: J. Arid Environ. – volume: 10 start-page: 20591 year: 2020 ident: bb0125 article-title: The pattern, change and driven factors of vegetation cover in the Qin Mountains region publication-title: Sci. Rep. – volume: 126 year: 2021 ident: bb0230 article-title: Winter daytime warming and shift in summer monsoon increase plant cover and net CO publication-title: J. Geophys. Res. Biogeosci. – volume: 101 start-page: 119 year: 2013 end-page: 128 ident: bb0295 article-title: Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes publication-title: Glob. Planet. Chang. – year: 2019 ident: bb0165 article-title: Lake Ecosystem Severely Altered by Climate Changes on the Central Tibetan Plateau Dagze co during Holocene – volume: 35 start-page: 943 year: 1993 end-page: 950 ident: bb0310 article-title: Holocene palynological records in Lake Selincuo, northern Xizang publication-title: Acta Bot. Sin. – volume: 154 start-page: 113 year: 2006 end-page: 121 ident: bb0095 article-title: A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra publication-title: Quat. Int. – volume: 219 year: 2022 ident: bb0320 article-title: Pollen-based land cover changes reveal temporal and spatial differences of human activity in north-Central China during the Holocene publication-title: Catena – volume: 294 start-page: 2345 year: 2001 end-page: 2348 ident: bb0380 article-title: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China publication-title: Science – volume: 264 start-page: 284 year: 2007 end-page: 298 ident: bb0330 article-title: Satellite-and pollen-based quantitative woody cover reconstructions for northern Asia: verification and application to late-Quaternary pollen data publication-title: Earth Planet. Sci. Lett. – volume: 168 start-page: 31 year: 2011 end-page: 40 ident: bb0370 article-title: Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model publication-title: Rev. Palaeobot. Palynol. – volume: 65 start-page: 518 year: 2022 end-page: 535 ident: bb0265 article-title: Biome reconstruction on the Tibetan Plateau since the Last Glacial Maximum using a machine learning method publication-title: Sci. China Earth Sci. – volume: 15 start-page: 2228 year: 2023 ident: bb0440 article-title: The impact of land use and landscape pattern on ecosystem services in the Dongting Lake region, China publication-title: Remote Sens. – volume: 58 start-page: 257 year: 2017 end-page: 273 ident: bb0115 article-title: Climatic implications of hydrologic changes in two lake catchments on the central Tibetan Plateau since the last glacial publication-title: J. Paleolimnol. – volume: 30 start-page: 82 year: 2011 end-page: 97 ident: bb0400 article-title: Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial – a multi-proxy, dual-site approach comparing terrestrial and aquatic signals publication-title: Quat. Sci. Rev. – year: 2020 ident: bb0015 article-title: Atlas of pollen and spores for common plants from the east Tibetan Plateau – volume: 206 year: 2021 ident: bb0190 article-title: Quantitative spatial analysis of vegetation dynamics and potential driving factors in a typical alpine region on the northeastern Tibetan Plateau using the Google Earth Engine publication-title: Catena – volume: 5 start-page: 13318 year: 2015 ident: bb0450 article-title: Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM publication-title: Sci. Rep. – volume: 17 start-page: 243 year: 2007 end-page: 257 ident: bb0305 article-title: Theory of quantitative reconstruction of vegetation II: all you need is LOVE publication-title: The Holocene – volume: 27 start-page: PA4208 year: 2012 ident: bb0135 article-title: El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum publication-title: Paleoceanogr. Paleoclimatol. – volume: 50 year: 2023 ident: bb0270 article-title: Sub-grid representation of vegetation cover in land surface schemes improves the modeling of how climate responds to deforestation publication-title: Geophys. Res. Lett. – volume: 73 start-page: 324 year: 2010 end-page: 335 ident: bb0140 article-title: Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile publication-title: Quat. Res. – volume: 318 year: 2023 ident: bb0390 article-title: Vegetation cover dynamics on the northeastern Qinghai-Tibet Plateau since late Marine Isotope Stage 3 publication-title: Quat. Sci. Rev. – volume: 2 start-page: 619 year: 2012 ident: bb0005 article-title: Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka publication-title: Sci. Rep. – volume: 428 start-page: 261 year: 2004 end-page: 285 ident: bb0145 article-title: A long-term numerical solution for the insolation quantities of the Earth publication-title: Astron. Astrophys. – volume: 233 start-page: 71 year: 2005 end-page: 86 ident: bb0035 article-title: A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China publication-title: Earth Planet. Sci. Lett. – volume: 31 start-page: 549 year: 2022 end-page: 558 ident: bb0350 article-title: Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years publication-title: Veg. Hist. Archaeobotany – volume: 215 year: 2022 ident: bb0030 article-title: Climate sustained the evolution of a stable postglacial woody cover over the Tibetan Plateau publication-title: Glob. Planet. Chang. – volume: 4 start-page: 156 year: 2023 ident: bb0080 article-title: Agricultural development has not necessarily caused forest cover decline in semi-arid northern China over the past 12,000 years publication-title: Commun. Earth Environ. – volume: 256 year: 2021 ident: bb0225 article-title: Föhn, fire and grazing in Southern Tibet? A 20,000-year multi-proxy record in an alpine ecotonal ecosystem publication-title: Quat. Sci. Rev. – volume: 17 start-page: 3228 year: 2011 end-page: 3239 ident: bb0245 article-title: Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006 publication-title: Glob. Chang. Biol. – volume: 64 start-page: 2842 year: 2019 end-page: 2855 ident: bb0250 article-title: Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change publication-title: Chin. Sci. Bull. – volume: 301 year: 2023 ident: bb0025 article-title: Hostile climate during the Last Glacial Maximum caused sparse vegetation on the north-eastern Tibetan Plateau publication-title: Quat. Sci. Rev. – volume: 60 start-page: 3048 year: 2015 end-page: 3056 ident: bb0420 article-title: Ecological change on the Tibetan Plateau publication-title: Chin. Sci. Bull. – year: 1995 ident: 10.1016/j.gloplacha.2024.104536_bb0375 – volume: 33 start-page: 5785 year: 2013 ident: 10.1016/j.gloplacha.2024.104536_bb0180 article-title: The depositional environment and organic sediment component of Dagze Co, a saline lake in Tibet,China publication-title: Acta Ecol. Sin. doi: 10.5846/stxb201306071419 – volume: 181 start-page: 431 year: 2002 ident: 10.1016/j.gloplacha.2024.104536_bb0240 article-title: High frequency palaeoceanographic changes during the past 140,000 yr recorded by the organic matter in sediments of the Iberian Margin publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. doi: 10.1016/S0031-0182(01)00444-8 – year: 2004 ident: 10.1016/j.gloplacha.2024.104536_bb0070 – year: 2019 ident: 10.1016/j.gloplacha.2024.104536_bb0165 – volume: 48 start-page: 228 year: 2009 ident: 10.1016/j.gloplacha.2024.104536_bb0445 article-title: Satellite MODIS-and modern pollen-based quantitative vegetation cover simulation in China publication-title: Acta Palaeontol. Sin. – volume: 32 start-page: 543 year: 2022 ident: 10.1016/j.gloplacha.2024.104536_bb0195 article-title: Vegetation and environmental changes since the Last Glacial Maximum inferred from a lake core from Saiyong Co, central Tibetan Plateau publication-title: The Holocene doi: 10.1177/09596836221080763 – volume: 206 year: 2021 ident: 10.1016/j.gloplacha.2024.104536_bb0190 article-title: Quantitative spatial analysis of vegetation dynamics and potential driving factors in a typical alpine region on the northeastern Tibetan Plateau using the Google Earth Engine publication-title: Catena doi: 10.1016/j.catena.2021.105500 – volume: 256 year: 2021 ident: 10.1016/j.gloplacha.2024.104536_bb0225 article-title: Föhn, fire and grazing in Southern Tibet? A 20,000-year multi-proxy record in an alpine ecotonal ecosystem publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2021.106817 – volume: 39 start-page: 300 year: 1993 ident: 10.1016/j.gloplacha.2024.104536_bb0365 article-title: Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co basin (Western Tibet) since 13,000 yr B.P publication-title: Quat. Res. doi: 10.1006/qres.1993.1037 – volume: 264 start-page: 284 year: 2007 ident: 10.1016/j.gloplacha.2024.104536_bb0330 article-title: Satellite-and pollen-based quantitative woody cover reconstructions for northern Asia: verification and application to late-Quaternary pollen data publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2007.10.007 – volume: 66 start-page: 133 year: 2006 ident: 10.1016/j.gloplacha.2024.104536_bb0090 article-title: Temperature variability and vertical vegetation belt shifts during the last 50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China) publication-title: Quat. Res. doi: 10.1016/j.yqres.2006.03.001 – volume: 431 start-page: 147 year: 2004 ident: 10.1016/j.gloplacha.2024.104536_bb0010 article-title: High-resolution record of Northern Hemisphere climate extending into the last interglacial period publication-title: Nature doi: 10.1038/nature02805 – volume: 318 year: 2023 ident: 10.1016/j.gloplacha.2024.104536_bb0390 article-title: Vegetation cover dynamics on the northeastern Qinghai-Tibet Plateau since late Marine Isotope Stage 3 publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2023.108292 – volume: 58 start-page: 257 year: 2017 ident: 10.1016/j.gloplacha.2024.104536_bb0115 article-title: Climatic implications of hydrologic changes in two lake catchments on the central Tibetan Plateau since the last glacial publication-title: J. Paleolimnol. doi: 10.1007/s10933-017-9976-9 – volume: 37 start-page: 752 year: 2010 ident: 10.1016/j.gloplacha.2024.104536_bb0100 article-title: A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2009.02245.x – year: 2020 ident: 10.1016/j.gloplacha.2024.104536_bb0015 – volume: 203 year: 2020 ident: 10.1016/j.gloplacha.2024.104536_bb0155 article-title: Towards quantification of Holocene anthropogenic land-cover change in temperate China: a review in the light of pollen-based REVEALS reconstructions of regional plant cover publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103119 – volume: 31 start-page: 549 year: 2022 ident: 10.1016/j.gloplacha.2024.104536_bb0350 article-title: Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years publication-title: Veg. Hist. Archaeobotany doi: 10.1007/s00334-022-00870-5 – volume: 17 start-page: 243 year: 2007 ident: 10.1016/j.gloplacha.2024.104536_bb0305 article-title: Theory of quantitative reconstruction of vegetation II: all you need is LOVE publication-title: The Holocene doi: 10.1177/0959683607075838 – volume: 17 start-page: 445 year: 2008 ident: 10.1016/j.gloplacha.2024.104536_bb0085 article-title: Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model publication-title: Vegetation Hist. Archaeobot. doi: 10.1007/s00334-008-0149-7 – volume: 402 start-page: 44 year: 2014 ident: 10.1016/j.gloplacha.2024.104536_bb0105 article-title: Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. doi: 10.1016/j.palaeo.2014.02.022 – volume: 168 start-page: 31 year: 2011 ident: 10.1016/j.gloplacha.2024.104536_bb0370 article-title: Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model publication-title: Rev. Palaeobot. Palynol. doi: 10.1016/j.revpalbo.2011.09.004 – volume: 29 start-page: 110 year: 2023 ident: 10.1016/j.gloplacha.2024.104536_bb0055 article-title: Tropical surface temperature response to vegetation cover changes and the role of drylands publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.16455 – volume: 336 start-page: 711 year: 2012 ident: 10.1016/j.gloplacha.2024.104536_bb0280 article-title: Carbon isotope constraints on the deglacial CO2 rise from ice cores publication-title: Science doi: 10.1126/science.1217161 – volume: 46 start-page: 242 year: 2017 ident: 10.1016/j.gloplacha.2024.104536_bb0210 article-title: Modern pollen assemblages from surface lake sediments and their environmental implications on the southwestern Tibetan Plateau publication-title: Boreas doi: 10.1111/bor.12201 – volume: 101 start-page: 119 year: 2013 ident: 10.1016/j.gloplacha.2024.104536_bb0295 article-title: Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2012.12.014 – year: 2001 ident: 10.1016/j.gloplacha.2024.104536_bb0110 – year: 1975 ident: 10.1016/j.gloplacha.2024.104536_bb0050 – volume: 309 start-page: 347 year: 2011 ident: 10.1016/j.gloplacha.2024.104536_bb0130 article-title: Last glacial maximum climate over China from PMIP simulations publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. doi: 10.1016/j.palaeo.2011.07.003 – volume: 60 start-page: 3048 year: 2015 ident: 10.1016/j.gloplacha.2024.104536_bb0420 article-title: Ecological change on the Tibetan Plateau publication-title: Chin. Sci. Bull. doi: 10.1360/N972014-01339 – volume: 32 start-page: 157 year: 2023 ident: 10.1016/j.gloplacha.2024.104536_bb0200 article-title: Performance of vegetation cover reconstructions using lake and soil pollen samples from the Tibetan Plateau publication-title: Veg. Hist. Archaeobotany doi: 10.1007/s00334-022-00891-0 – volume: 74 start-page: 423 year: 2010 ident: 10.1016/j.gloplacha.2024.104536_bb0430 article-title: Reliability of pollen concentration as the indicator of effective moisture in arid and semi-arid regions of China publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2009.09.012 – volume: 95 start-page: 370 year: 2018 ident: 10.1016/j.gloplacha.2024.104536_bb0185 article-title: Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.07.063 – volume: 30 start-page: 1439 year: 2017 ident: 10.1016/j.gloplacha.2024.104536_bb0150 article-title: Historical land-cover change impacts on climate: comparative assessment of LUCID and CMIP5 multimodel experiments publication-title: J. Clim. doi: 10.1175/JCLI-D-16-0213.1 – year: 2016 ident: 10.1016/j.gloplacha.2024.104536_bb0325 – volume: 30 start-page: 82 year: 2011 ident: 10.1016/j.gloplacha.2024.104536_bb0400 article-title: Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial – a multi-proxy, dual-site approach comparing terrestrial and aquatic signals publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2010.10.001 – volume: 51 start-page: 525 year: 2013 ident: 10.1016/j.gloplacha.2024.104536_bb0410 article-title: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations publication-title: Rev. Geophys. doi: 10.1002/rog.20023 – volume: 11 year: 2016 ident: 10.1016/j.gloplacha.2024.104536_bb0040 article-title: Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and Northwest Canada publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/11/10/105003 – volume: 219 year: 2022 ident: 10.1016/j.gloplacha.2024.104536_bb0320 article-title: Pollen-based land cover changes reveal temporal and spatial differences of human activity in north-Central China during the Holocene publication-title: Catena doi: 10.1016/j.catena.2022.106620 – volume: 40 start-page: 6269 year: 2020 ident: 10.1016/j.gloplacha.2024.104536_bb0425 article-title: Response of the NDVI of alpine grasslands on the Qinghai-Tibetan Plateau to climate change and human activities over the last 30 years publication-title: Acta Ecol. Sin. – volume: 6 start-page: eaay6193 year: 2020 ident: 10.1016/j.gloplacha.2024.104536_bb0435 article-title: Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years publication-title: Sci. Adv. doi: 10.1126/sciadv.aay6193 – volume: 13 start-page: 3525 year: 2021 ident: 10.1016/j.gloplacha.2024.104536_bb0020 article-title: Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-3525-2021 – volume: 50 year: 2023 ident: 10.1016/j.gloplacha.2024.104536_bb0270 article-title: Sub-grid representation of vegetation cover in land surface schemes improves the modeling of how climate responds to deforestation publication-title: Geophys. Res. Lett. doi: 10.1029/2023GL104164 – volume: 24 start-page: 2173 year: 2005 ident: 10.1016/j.gloplacha.2024.104536_bb0335 article-title: The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2005.05.001 – volume: 10 start-page: 21 year: 2014 ident: 10.1016/j.gloplacha.2024.104536_bb0385 article-title: Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes publication-title: Clim. Past doi: 10.5194/cp-10-21-2014 – volume: 21 start-page: 676 year: 2015 ident: 10.1016/j.gloplacha.2024.104536_bb0360 article-title: Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12737 – volume: 215 year: 2022 ident: 10.1016/j.gloplacha.2024.104536_bb0030 article-title: Climate sustained the evolution of a stable postglacial woody cover over the Tibetan Plateau publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2022.103880 – year: 2016 ident: 10.1016/j.gloplacha.2024.104536_bb0120 – volume: 65 start-page: 518 year: 2022 ident: 10.1016/j.gloplacha.2024.104536_bb0265 article-title: Biome reconstruction on the Tibetan Plateau since the Last Glacial Maximum using a machine learning method publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-021-9867-1 – volume: 214 year: 2022 ident: 10.1016/j.gloplacha.2024.104536_bb0315 article-title: Pollen-based reconstruction of total land-cover change over the Holocene in the temperate steppe region of China: An attempt to quantify the cover of vegetation and bare ground in the past using a novel approach publication-title: Catena doi: 10.1016/j.catena.2022.106307 – volume: 17 start-page: 3228 year: 2011 ident: 10.1016/j.gloplacha.2024.104536_bb0245 article-title: Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006 publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02419.x – volume: 30 start-page: 947 year: 2011 ident: 10.1016/j.gloplacha.2024.104536_bb0205 article-title: Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2011.01.008 – volume: 248 year: 2020 ident: 10.1016/j.gloplacha.2024.104536_bb0075 article-title: Postglacial evolution of forest and grassland in southeastern Gobi (Northern China) publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2020.106611 – volume: 15 start-page: 2228 year: 2023 ident: 10.1016/j.gloplacha.2024.104536_bb0440 article-title: The impact of land use and landscape pattern on ecosystem services in the Dongting Lake region, China publication-title: Remote Sens. doi: 10.3390/rs15092228 – volume: 36 start-page: 1298 year: 2021 ident: 10.1016/j.gloplacha.2024.104536_bb0060 article-title: Current condition and protection strategies for Qinghai-Tibetan Plateau ecological security barrier publication-title: Bull. Chin. Acad. Sci. – volume: 10 start-page: 20591 year: 2020 ident: 10.1016/j.gloplacha.2024.104536_bb0125 article-title: The pattern, change and driven factors of vegetation cover in the Qin Mountains region publication-title: Sci. Rep. doi: 10.1038/s41598-020-75845-5 – volume: 204 year: 2021 ident: 10.1016/j.gloplacha.2024.104536_bb0405 article-title: Moisture and vegetation variations in the extremely cold-dry area of the Tibetan Plateau during the past 5000 years publication-title: Catena doi: 10.1016/j.catena.2021.105381 – volume: 35 start-page: 1 year: 2002 ident: 10.1016/j.gloplacha.2024.104536_bb0395 article-title: Variations in tree cover in North America since the last glacial maximum publication-title: Glob. Planet. Chang. doi: 10.1016/S0921-8181(02)00088-7 – volume: 327 year: 2022 ident: 10.1016/j.gloplacha.2024.104536_bb0415 article-title: Global effects of different types of land use and land cover changes on near-surface air temperature publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2022.109232 – volume: 4 start-page: 156 year: 2023 ident: 10.1016/j.gloplacha.2024.104536_bb0080 article-title: Agricultural development has not necessarily caused forest cover decline in semi-arid northern China over the past 12,000 years publication-title: Commun. Earth Environ. doi: 10.1038/s43247-023-00814-5 – volume: 174 start-page: 16 year: 2019 ident: 10.1016/j.gloplacha.2024.104536_bb0215 article-title: Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2019.01.004 – volume: 46 start-page: 99 year: 2011 ident: 10.1016/j.gloplacha.2024.104536_bb0340 article-title: Effect of uneven sampling along an environmental gradient on transfer-function performance publication-title: J. Paleolimnol. doi: 10.1007/s10933-011-9523-z – year: 2022 ident: 10.1016/j.gloplacha.2024.104536_bb0045 – volume: 370 start-page: eaay3701 year: 2020 ident: 10.1016/j.gloplacha.2024.104536_bb0355 article-title: Past climates inform our future publication-title: Science doi: 10.1126/science.aay3701 – volume: 2 start-page: 619 year: 2012 ident: 10.1016/j.gloplacha.2024.104536_bb0005 article-title: Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka publication-title: Sci. Rep. doi: 10.1038/srep00619 – volume: 17 start-page: 229 year: 2007 ident: 10.1016/j.gloplacha.2024.104536_bb0300 article-title: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition publication-title: The Holocene doi: 10.1177/0959683607075837 – volume: 126 year: 2021 ident: 10.1016/j.gloplacha.2024.104536_bb0230 article-title: Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2021JG006441 – volume: 73 start-page: 324 year: 2010 ident: 10.1016/j.gloplacha.2024.104536_bb0140 article-title: Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile publication-title: Quat. Res. doi: 10.1016/j.yqres.2009.12.003 – volume: 27 start-page: PA4208 year: 2012 ident: 10.1016/j.gloplacha.2024.104536_bb0135 article-title: El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum publication-title: Paleoceanogr. Paleoclimatol. – volume: 137 start-page: 33 year: 2016 ident: 10.1016/j.gloplacha.2024.104536_bb0345 article-title: Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2016.02.001 – volume: 35 start-page: 943 year: 1993 ident: 10.1016/j.gloplacha.2024.104536_bb0310 article-title: Holocene palynological records in Lake Selincuo, northern Xizang publication-title: Acta Bot. Sin. – volume: 5 start-page: 13318 year: 2015 ident: 10.1016/j.gloplacha.2024.104536_bb0450 article-title: Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM publication-title: Sci. Rep. doi: 10.1038/srep13318 – volume: 294 start-page: 2345 year: 2001 ident: 10.1016/j.gloplacha.2024.104536_bb0380 article-title: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China publication-title: Science doi: 10.1126/science.1064618 – volume: 39 start-page: 4825 year: 2019 ident: 10.1016/j.gloplacha.2024.104536_bb0065 article-title: More realistic land-use and vegetation parameters in a regional climate model reduce model biases over China publication-title: Int. J. Climatol. doi: 10.1002/joc.6110 – start-page: 88 year: 1999 ident: 10.1016/j.gloplacha.2024.104536_bb0175 article-title: Potential evapotranspiration – volume: 42 start-page: 4770 year: 2022 ident: 10.1016/j.gloplacha.2024.104536_bb0160 article-title: Response of vegetation dynamics to hydrothermal conditions on the Qinghai-Tibet Plateau in the last 40 years publication-title: Acta Ecol. Sin. – volume: 31 start-page: 71 year: 1980 ident: 10.1016/j.gloplacha.2024.104536_bb0260 article-title: Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods publication-title: Rev. Palaeobot. Palynol. doi: 10.1016/0034-6667(80)90023-8 – volume: 641 start-page: 25 year: 2022 ident: 10.1016/j.gloplacha.2024.104536_bb0290 article-title: Land cover reconstruction in Northwest China since 6 ka BP: preliminary application of a new strategy publication-title: Quat. Int. doi: 10.1016/j.quaint.2022.05.005 – volume: 428 start-page: 261 year: 2004 ident: 10.1016/j.gloplacha.2024.104536_bb0145 article-title: A long-term numerical solution for the insolation quantities of the Earth publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20041335 – volume: 301 year: 2023 ident: 10.1016/j.gloplacha.2024.104536_bb0025 article-title: Hostile climate during the Last Glacial Maximum caused sparse vegetation on the north-eastern Tibetan Plateau publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2022.107916 – volume: 12 start-page: 213 year: 1996 ident: 10.1016/j.gloplacha.2024.104536_bb0235 article-title: The southwest Indian Monsoon over the last 18,000 years publication-title: Clim. Dyn. doi: 10.1007/BF00211619 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.gloplacha.2024.104536_bb0170 – volume: 454 start-page: 393 year: 2008 ident: 10.1016/j.gloplacha.2024.104536_bb0275 article-title: China: the third pole publication-title: Nature doi: 10.1038/454393a – volume: 233 start-page: 71 year: 2005 ident: 10.1016/j.gloplacha.2024.104536_bb0035 article-title: A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2005.01.036 – volume: 64 start-page: 2842 year: 2019 ident: 10.1016/j.gloplacha.2024.104536_bb0250 article-title: Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change publication-title: Chin. Sci. Bull. doi: 10.1360/TB-2019-0074 – volume: 1 start-page: 14 year: 2020 ident: 10.1016/j.gloplacha.2024.104536_bb0255 article-title: Characteristics, drivers and feedbacks of global greening publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-019-0001-x – volume: 32 start-page: 153 year: 1981 ident: 10.1016/j.gloplacha.2024.104536_bb0220 article-title: Statistics for microfossil concentration measurements employing samples spiked with marker grains publication-title: Rev. Palaeobot. Palynol. doi: 10.1016/0034-6667(81)90002-6 – volume: 593 start-page: 228 year: 2021 ident: 10.1016/j.gloplacha.2024.104536_bb0285 article-title: Widespread six degrees Celsius cooling on land during the Last Glacial Maximum publication-title: Nature doi: 10.1038/s41586-021-03467-6 – volume: 154 start-page: 113 year: 2006 ident: 10.1016/j.gloplacha.2024.104536_bb0095 article-title: A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra publication-title: Quat. Int. doi: 10.1016/j.quaint.2006.02.005 |
SSID | ssj0017022 |
Score | 2.4501085 |
Snippet | Long-term changes in vegetation cover of the Tibetan Plateau (TP) are essential for understanding vegetation change under future climate. Previous studies have... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104536 |
SubjectTerms | China climate climate change Holocene epoch lakes Last Glacial Maximum monsoon season pollen Pollen concentration Random forest steppes Tibetan Plateau Vegetation cover |
Title | Spatial and temporal variations of vegetation cover on the central and eastern Tibetan Plateau since the Last glacial period |
URI | https://dx.doi.org/10.1016/j.gloplacha.2024.104536 https://www.proquest.com/docview/3153730446 |
Volume | 240 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA5SEXwRT6wXEXxdu3dc30pR64mghb6FXFsrZbfUVhDE3-5MNltQhD74tllm9shMZibJlxlCTmQY-nmA5duNFF6sBLNjzvO1MlrkfpjbmpH3D2m3F9_0k_4S6dRnYRBW6Wx_ZdOttXZ3Wq43W-PhsPXkZ-ie0EFhZbkID_zGMUMtP_2awzwC5lc7CUDsIfUPjNdgVCL06QUTEIUx7ncmNlfznx7ql622Duhynay5yJG2q4_bIEum2CQrV7Yy78cW-cTiwqBMVBSauoRTI_oOU-FqTY6WOX03A4cupAqhmxQuIACkDqFpWbGWj5kU9HkogbagjyOIRsWMvg2hayz1HVBQiLpxsZ1iouRSb5Pe5cVzp-u50gqeiFgw9SJzlsYqhMkCY5mOfcnAbbNAp75OQ5kZI0wQqiSVcZJpIYNcwswmUkyxJBNGyWiHNIqyMLuESmbgaSwNpE2-BiGdYDk0RZjnRqdBk6R1d3Ll8o5j-YsRrwFmr3wuB45y4JUcmsSfM46r1BuLWc5refEfWsTBQSxmPq4lzGGM4caJKEw5e-MRuAWwhPB7e_95wT5ZxVaFUDsgjelkZg4hpJnKI6uzR2S5fX3bffgGIcr4Jg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA5VEX0RT7yN4OvaveP6JqJWbUWwBd9Crq2Vslu0FQTxtzuTzRYUwQff9pjZI5PMTDbfzkfIkQxDPw-Qvt1I4cVKMDvmPF8ro0Xuh7nljOzcpa1efPOYPDbIef0vDMIqne-vfLr11u5I07VmczQYNB_8DMMTBihklotOZshcDMMXaQyOP6c4j4D51VICSHso_g3k1R-WiH16wgpEYYwLnokt1vxriPrhrG0EulwmSy51pGfV062QhilWyfyVpeZ9XyMfyC4MvYmKQlNXcWpI32AuXH2Uo2VO30zfwQupQuwmhQ3IAKmDaFpVJPMxLwXtDiTIFvR-COmomNDXAbSNlW6DBIW0G7-2U6yUXOp10ru86J63PMet4ImIBWMvMidprEKYLTCW6diXDOI2C3Tq6zSUmTHCBKFKUhknmRYyyCVMbSLFFEsyYZSMNshsURZmk1DJDFyNpYG01dcgpxMsh10R5rnRabBF0ro5uXKFx5H_YshrhNkzn9qBox14ZYct4k8VR1Xtjb9VTmt78W_diEOE-Fv5sLYwh0GGKyeiMOXklUcQF8AVwutt_-cGB2Sh1e20efv67naHLOKZCq62S2bHLxOzB_nNWO7b_vsFxw75tA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+and+temporal+variations+of+vegetation+cover+on+the+central+and+eastern+Tibetan+Plateau+since+the+Last+glacial+period&rft.jtitle=Global+and+planetary+change&rft.au=Liu%2C+Lina&rft.au=Wang%2C+Nannan&rft.au=Zhang%2C+Yanrong&rft.au=Liang%2C+Jie&rft.date=2024-09-01&rft.issn=0921-8181&rft.volume=240+p.104536-&rft_id=info:doi/10.1016%2Fj.gloplacha.2024.104536&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8181&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8181&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8181&client=summon |