Evolution of groundwater salinity and fluoride in the deep confined aquifers of Cangzhou in the North China plain after the South-to-North Water Diversion Project

The South-to-North Water Diversion Project (SNWDP) has greatly improved the water shortage in the North China Plain. However, the impact of the SNWDP on the evolution of groundwater chemistry, especially fluoride and salinity, was still unknown. Cangzhou, one of the recipient cities of SNWDP and suf...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 147; p. 105485
Main Authors Sun, Danyang, Li, Junxia, Li, Hexue, Liu, Qiang, Zhao, Shilin, Huang, Yihong, Wu, Qianyi, Xie, Xianjun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The South-to-North Water Diversion Project (SNWDP) has greatly improved the water shortage in the North China Plain. However, the impact of the SNWDP on the evolution of groundwater chemistry, especially fluoride and salinity, was still unknown. Cangzhou, one of the recipient cities of SNWDP and suffered from severe land subsidence, was selected to collect the deep confined groundwater samples before and after the SNWDP. The results showed that groundwater fluoride concentration decreased after the SNWDP, with a median value of 4.39 mg/L in 2017 and 3.00 mg/L in 2021, respectively. This trend was more clearly observed in the land subsidence area, which could be related to the reduction of land subsidence, due to the stopping pumping of deep groundwater. The pore water in clayey sediments contains fluoride up to 7.02 mg/L, which can be released into groundwater due to the sediment compaction before the SNWDP. The extensive exploitation during last decades changed the groundwater recharge patterns, resulting in over 60% deep groundwater being recharged by the pore water released from clayey sediment. The results of the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) suggested that land subsidence has slowed down after the SNWDP, especially in the central area of land subsidence, thereby restricting the release of fluoride-rich pore water. However, groundwater salinity increased after the SNWDP, and the number of samples exceeding the drinking standard (TDS <1000 mg/L) increased by 26.4%. The rising groundwater level favors the water-rock interaction, promoting the dissolution of soluble minerals, for instance, halite, which was reflected by the results of inverse and forward modeling using the PHREEQC. Groundwater salinization after the SNWDP potentially induces the fluorite dissolution and causes the elevation of groundwater fluoride concentration. However, the calculated results indicate that the amount of F elevation related to groundwater salinization is significantly lower than the contribution of fluoride-rich pore water from clay sediment compaction. The findings of this study provide a comprehensive assessment of the influence of the SNWDP on the groundwater quality and some new insights for the management of groundwater resources. [Display omitted] •Groundwater F decreased and salinity increased in the Cangzhou after the SNWDP.•F concentration of pore water trapped in sediment was up to 7.02 mg/L.•The SNWDP restricts the release of pore-water preserved in the clayey sediment.•The elevation of groundwater F caused by salinization is less than caused by the release of F-rich pore water.
AbstractList The South-to-North Water Diversion Project (SNWDP) has greatly improved the water shortage in the North China Plain. However, the impact of the SNWDP on the evolution of groundwater chemistry, especially fluoride and salinity, was still unknown. Cangzhou, one of the recipient cities of SNWDP and suffered from severe land subsidence, was selected to collect the deep confined groundwater samples before and after the SNWDP. The results showed that groundwater fluoride concentration decreased after the SNWDP, with a median value of 4.39 mg/L in 2017 and 3.00 mg/L in 2021, respectively. This trend was more clearly observed in the land subsidence area, which could be related to the reduction of land subsidence, due to the stopping pumping of deep groundwater. The pore water in clayey sediments contains fluoride up to 7.02 mg/L, which can be released into groundwater due to the sediment compaction before the SNWDP. The extensive exploitation during last decades changed the groundwater recharge patterns, resulting in over 60% deep groundwater being recharged by the pore water released from clayey sediment. The results of the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) suggested that land subsidence has slowed down after the SNWDP, especially in the central area of land subsidence, thereby restricting the release of fluoride-rich pore water. However, groundwater salinity increased after the SNWDP, and the number of samples exceeding the drinking standard (TDS <1000 mg/L) increased by 26.4%. The rising groundwater level favors the water-rock interaction, promoting the dissolution of soluble minerals, for instance, halite, which was reflected by the results of inverse and forward modeling using the PHREEQC. Groundwater salinization after the SNWDP potentially induces the fluorite dissolution and causes the elevation of groundwater fluoride concentration. However, the calculated results indicate that the amount of F elevation related to groundwater salinization is significantly lower than the contribution of fluoride-rich pore water from clay sediment compaction. The findings of this study provide a comprehensive assessment of the influence of the SNWDP on the groundwater quality and some new insights for the management of groundwater resources.
The South-to-North Water Diversion Project (SNWDP) has greatly improved the water shortage in the North China Plain. However, the impact of the SNWDP on the evolution of groundwater chemistry, especially fluoride and salinity, was still unknown. Cangzhou, one of the recipient cities of SNWDP and suffered from severe land subsidence, was selected to collect the deep confined groundwater samples before and after the SNWDP. The results showed that groundwater fluoride concentration decreased after the SNWDP, with a median value of 4.39 mg/L in 2017 and 3.00 mg/L in 2021, respectively. This trend was more clearly observed in the land subsidence area, which could be related to the reduction of land subsidence, due to the stopping pumping of deep groundwater. The pore water in clayey sediments contains fluoride up to 7.02 mg/L, which can be released into groundwater due to the sediment compaction before the SNWDP. The extensive exploitation during last decades changed the groundwater recharge patterns, resulting in over 60% deep groundwater being recharged by the pore water released from clayey sediment. The results of the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) suggested that land subsidence has slowed down after the SNWDP, especially in the central area of land subsidence, thereby restricting the release of fluoride-rich pore water. However, groundwater salinity increased after the SNWDP, and the number of samples exceeding the drinking standard (TDS <1000 mg/L) increased by 26.4%. The rising groundwater level favors the water-rock interaction, promoting the dissolution of soluble minerals, for instance, halite, which was reflected by the results of inverse and forward modeling using the PHREEQC. Groundwater salinization after the SNWDP potentially induces the fluorite dissolution and causes the elevation of groundwater fluoride concentration. However, the calculated results indicate that the amount of F elevation related to groundwater salinization is significantly lower than the contribution of fluoride-rich pore water from clay sediment compaction. The findings of this study provide a comprehensive assessment of the influence of the SNWDP on the groundwater quality and some new insights for the management of groundwater resources. [Display omitted] •Groundwater F decreased and salinity increased in the Cangzhou after the SNWDP.•F concentration of pore water trapped in sediment was up to 7.02 mg/L.•The SNWDP restricts the release of pore-water preserved in the clayey sediment.•The elevation of groundwater F caused by salinization is less than caused by the release of F-rich pore water.
ArticleNumber 105485
Author Xie, Xianjun
Wu, Qianyi
Li, Hexue
Sun, Danyang
Zhao, Shilin
Liu, Qiang
Li, Junxia
Huang, Yihong
Author_xml – sequence: 1
  givenname: Danyang
  surname: Sun
  fullname: Sun, Danyang
  organization: School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
– sequence: 2
  givenname: Junxia
  surname: Li
  fullname: Li, Junxia
  email: jxli@cug.edu.cn
  organization: School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
– sequence: 3
  givenname: Hexue
  surname: Li
  fullname: Li, Hexue
  organization: The Fourth Team of Hydrogeological and Engineering Geology, Hebei Bureau of Geo-exploration, Hebei, 061000, China
– sequence: 4
  givenname: Qiang
  surname: Liu
  fullname: Liu, Qiang
  organization: The Fourth Team of Hydrogeological and Engineering Geology, Hebei Bureau of Geo-exploration, Hebei, 061000, China
– sequence: 5
  givenname: Shilin
  surname: Zhao
  fullname: Zhao, Shilin
  organization: School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
– sequence: 6
  givenname: Yihong
  surname: Huang
  fullname: Huang, Yihong
  organization: School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
– sequence: 7
  givenname: Qianyi
  surname: Wu
  fullname: Wu, Qianyi
  organization: School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
– sequence: 8
  givenname: Xianjun
  surname: Xie
  fullname: Xie, Xianjun
  organization: School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
BookMark eNqNkc2OFCEUhYkZE3tGn0GWbqoF6g8WLibt-JNM1MRJXJLb1KWLTjXUANVmfByf1CpLXbjRFeRyznfJOZfkwgePhDznbMsZb14etzAeMJgeT1vBhJindSXrR2TDZSsKxcvqgmyYlGUhlGifkMuUjoyxumViQ77fnMMwZRc8DZYeYph89xUyRppgcN7lBwq-o3aYQnQdUudp7pF2iCM1wVvnsaNwPzmLMS2IHfjDtz5Mv5UfQsw93fXOAx0HmKdgF_zy9jlMuS9yKFbRl597X7vzjFo-9CmGI5r8lDy2MCR89uu8Indvbu5274rbj2_f765vCyhbnosSZFWp1lqjrGoRBQqoO9HUylSylBwq1Yj5WgkwzX7f7JncI9pGKtnVXJZX5MWKHWO4nzBlfXLJ4DCAxzAlXfK6lELJupml7So1MaQU0eoxuhPEB82ZXkrRR_2nFL2UotdSZuerv5zGZVjizxHc8B_-69WPcxBnh1En49Ab7Fyco9JdcP9k_ADe-bOJ
CitedBy_id crossref_primary_10_1007_s10040_024_02783_1
crossref_primary_10_3390_w16020358
crossref_primary_10_1016_j_apgeochem_2024_106176
crossref_primary_10_3390_rs16010162
crossref_primary_10_1007_s10040_024_02771_5
crossref_primary_10_1016_j_jhydrol_2022_128952
crossref_primary_10_1007_s12665_025_12127_1
crossref_primary_10_1002_wwp2_12202
crossref_primary_10_1016_j_chemer_2023_125985
crossref_primary_10_1016_j_uclim_2023_101611
crossref_primary_10_1016_j_watres_2024_121848
crossref_primary_10_1016_j_ejrh_2025_102210
crossref_primary_10_1016_j_jseaes_2023_105929
crossref_primary_10_1016_j_gexplo_2023_107356
crossref_primary_10_1007_s11053_025_10474_1
crossref_primary_10_1002_wer_11088
Cites_doi 10.1016/j.scitotenv.2018.06.201
10.1016/j.epsl.2018.04.042
10.1007/s10311-021-01371-z
10.1007/s12403-020-00347-8
10.1007/s10040-006-0107-3
10.1016/j.petrol.2012.04.009
10.1029/2017WR022126
10.1007/s00244-020-00794-z
10.1016/j.scitotenv.2020.139111
10.1007/s12665-015-4225-x
10.1016/j.palaeo.2016.03.012
10.1016/j.jhydrol.2013.10.040
10.1038/s41467-020-17428-6
10.1080/10643389.2020.1807452
10.1007/BF02877536
10.1016/j.watres.2019.05.036
10.1007/s10653-008-9167-8
10.1016/j.scitotenv.2019.05.391
10.1016/j.scitotenv.2016.08.087
10.1007/s10040-018-1795-1
10.1016/j.gexplo.2014.07.006
10.1016/j.apgeochem.2012.01.016
10.1016/j.jhydrol.2021.126828
10.1007/s10653-020-00622-2
10.1002/eco.6
10.1016/j.jhydrol.2020.124617
10.1007/s11356-020-09784-z
10.1016/j.apgeochem.2018.10.016
10.1016/j.scitotenv.2018.12.185
10.1016/j.jhydrol.2013.06.056
10.1016/j.scitotenv.2020.138877
10.1016/j.gloenvcha.2013.02.002
10.1007/s12665-015-4131-2
10.3390/rs12213579
10.1016/j.jhydrol.2021.126372
10.1007/s00254-007-0692-z
10.1016/j.apgeochem.2008.12.015
10.1007/s10040-004-0395-4
10.1007/s12665-016-6311-0
10.1016/j.jafrearsci.2009.12.005
10.1016/j.scitotenv.2016.06.002
10.1016/j.apgeochem.2018.08.030
10.1016/j.chemgeo.2005.12.009
10.1016/j.gexplo.2006.07.001
10.1080/0790062022000006934
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apgeochem.2022.105485
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9134
ExternalDocumentID 10_1016_j_apgeochem_2022_105485
S088329272200289X
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a371t-3a84497ffc9f97ee2e2a5d2659c48381a4962c4842ac6bb6b08beef6898d5183
IEDL.DBID .~1
ISSN 0883-2927
IngestDate Thu Jul 10 23:19:46 EDT 2025
Tue Jul 01 01:59:44 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Fri Feb 23 02:38:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fluoride
Groundwater
South-to-North water diversion project
PHREEQC
North China Plain
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-3a84497ffc9f97ee2e2a5d2659c48381a4962c4842ac6bb6b08beef6898d5183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153829856
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153829856
crossref_primary_10_1016_j_apgeochem_2022_105485
crossref_citationtrail_10_1016_j_apgeochem_2022_105485
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2022_105485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Applied geochemistry
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu, Guo, Li, Tian (bib50) 2014; 12
Liu, Zheng (bib25) 2002; 18
Berger, Mathurin, Drake, Astrom (bib3) 2016; 569–570
Rango, Bianchini, Beccaluva, Tassinari (bib34) 2010; 57
Esteller, Andreu (bib7) 2005; 13
Chen, Ma, Du, Yang, Liu, Shan, Liu, Cai (bib6) 2014; 145
He, Li, Ji, Wang, Su, Elumalai (bib16) 2020; 12
Santoni, Huneau, Garel, Aquilina, Vergnaud-Ayraud, Labasque, Celle-Jeanton (bib35) 2016; 573
Liu, Zang, Tian, Liu, Yang, Jia, You, Liu, Zhang (bib28) 2013; 23
Yuan, Wang, Wang, Song (bib46) 2020; 583
Jolly, McEwan, Holland (bib21) 2008; 1
Parkhurst (bib33) 2013
Bai, Reinicke, Teodoriu, Fichter (bib2) 2012; 90–91
Wu, Wu, Qian, Zhu (bib42) 2018; 98
Jiang, Bai, Zhao, Cao, Wang, Sun (bib19) 2018; 54
Chen, Gong, Chen, Li, Zhou, Lei, Zhu, Duan, Zhao (bib5) 2020; 735
Guo, Zhang, Cheng, Li, Li, Jiao (bib12) 2015; 74
Jiang, Sheng, Wang, Shi, Liu, Zhang, Chen (bib20) 2022
Guo, Wang, Ma, Ma (bib13) 2007; 93
Ilich, Kerstetter (bib17) 2000; 19
Liu, Wang, Wang, Qiu, Saito, Lu, Zhou, Xu, Du, Chen (bib27) 2016; 451
Wang, Guo, Xing, Liu (bib41) 2021; 598
Shi, Gong, Gao, Chen, Zhang, Zhou (bib36) 2020; 12
Xue, Li, Xie, Wang, Tian, Chi, Wang (bib44) 2019; 686
Han, Currell, Guo (bib14) 2021; 603
Jia, Xi, Jiang, Guo, Yang, Lian, Han (bib18) 2018; 643
Wang, Zheng, Ma (bib39) 2018; 26
Yuan, Song, Han, Zhang, Wang (bib47) 2013; 500
Han, Song, Currell, Yang, Xiao (bib15) 2014; 508
Zhang, Ge, Guo, Wang, Li (bib48) 2014; 35
Matsumoto, Chen, Wei, Yang, Hu, Zhang (bib32) 2018; 493
Wang, Li, Ma, Xie, Deng, Gan (bib40) 2021; 51
Cartwright, Weaver, Fifield (bib4) 2006; 231
Xue, Li, Xie, Qian, Wang (bib43) 2019; 159
Liu, Wang, Yan (bib29) 2016; 76
Liu, Guo, Yang, Wu, Li, Li, Ni, Liang (bib26) 2015; 74
Long, Yang, Scanlon, Zhao, Liu, Burek, Pan, You, Wada (bib31) 2020; 11
Armienta, Segovia (bib1) 2008; 30
Liu (bib30) 2020; 13
Zhang, Shi, Ren, Yin, Sun, Zhang (bib49) 1997; 40
Guo, Zhang, Xing, Jia (bib11) 2012; 27
Tirumalesh, Shivanna, Jalihal (bib37) 2007; 15
Keesari, Pant, Roy (bib23) 2021; 80
Fu, Li, Ma, Liu, Gao, Bai (bib9) 2018; 98
Keesari, Dauji (bib22) 2021; 43
Feng, Jia, Yang, Huan, Lian, Xu, Xia, Han, Jiang (bib8) 2020; 27
Gao, Wang, Li, Guo (bib10) 2007; 53
Yao, Zheng, Andrews, He, Zhang, Liu (bib45) 2019; 658
Li, Wang, Zhu, Xue, Qian, Xie, Wang (bib24) 2020; 730
Wang, Shvartsev, Su (bib38) 2009; 24
Guo (10.1016/j.apgeochem.2022.105485_bib12) 2015; 74
Liu (10.1016/j.apgeochem.2022.105485_bib29) 2016; 76
Chen (10.1016/j.apgeochem.2022.105485_bib5) 2020; 735
Liu (10.1016/j.apgeochem.2022.105485_bib26) 2015; 74
Wang (10.1016/j.apgeochem.2022.105485_bib39) 2018; 26
Cartwright (10.1016/j.apgeochem.2022.105485_bib4) 2006; 231
Tirumalesh (10.1016/j.apgeochem.2022.105485_bib37) 2007; 15
Han (10.1016/j.apgeochem.2022.105485_bib14) 2021; 603
Santoni (10.1016/j.apgeochem.2022.105485_bib35) 2016; 573
Zhang (10.1016/j.apgeochem.2022.105485_bib48) 2014; 35
Guo (10.1016/j.apgeochem.2022.105485_bib13) 2007; 93
Xue (10.1016/j.apgeochem.2022.105485_bib43) 2019; 159
Yao (10.1016/j.apgeochem.2022.105485_bib45) 2019; 658
Jiang (10.1016/j.apgeochem.2022.105485_bib19) 2018; 54
Keesari (10.1016/j.apgeochem.2022.105485_bib22) 2021; 43
Liu (10.1016/j.apgeochem.2022.105485_bib25) 2002; 18
Rango (10.1016/j.apgeochem.2022.105485_bib34) 2010; 57
Liu (10.1016/j.apgeochem.2022.105485_bib27) 2016; 451
Guo (10.1016/j.apgeochem.2022.105485_bib11) 2012; 27
Wu (10.1016/j.apgeochem.2022.105485_bib42) 2018; 98
Shi (10.1016/j.apgeochem.2022.105485_bib36) 2020; 12
Keesari (10.1016/j.apgeochem.2022.105485_bib23) 2021; 80
Yuan (10.1016/j.apgeochem.2022.105485_bib47) 2013; 500
Berger (10.1016/j.apgeochem.2022.105485_bib3) 2016; 569–570
Wang (10.1016/j.apgeochem.2022.105485_bib38) 2009; 24
Parkhurst (10.1016/j.apgeochem.2022.105485_bib33)
Fu (10.1016/j.apgeochem.2022.105485_bib9) 2018; 98
Zhu (10.1016/j.apgeochem.2022.105485_bib50) 2014; 12
Han (10.1016/j.apgeochem.2022.105485_bib15) 2014; 508
Jia (10.1016/j.apgeochem.2022.105485_bib18) 2018; 643
Liu (10.1016/j.apgeochem.2022.105485_bib28) 2013; 23
Matsumoto (10.1016/j.apgeochem.2022.105485_bib32) 2018; 493
Wang (10.1016/j.apgeochem.2022.105485_bib41) 2021; 598
Li (10.1016/j.apgeochem.2022.105485_bib24) 2020; 730
Jolly (10.1016/j.apgeochem.2022.105485_bib21) 2008; 1
Xue (10.1016/j.apgeochem.2022.105485_bib44) 2019; 686
Zhang (10.1016/j.apgeochem.2022.105485_bib49) 1997; 40
Long (10.1016/j.apgeochem.2022.105485_bib31) 2020; 11
Armienta (10.1016/j.apgeochem.2022.105485_bib1) 2008; 30
Yuan (10.1016/j.apgeochem.2022.105485_bib46) 2020; 583
Liu (10.1016/j.apgeochem.2022.105485_bib30) 2020; 13
Chen (10.1016/j.apgeochem.2022.105485_bib6) 2014; 145
Gao (10.1016/j.apgeochem.2022.105485_bib10) 2007; 53
He (10.1016/j.apgeochem.2022.105485_bib16) 2020; 12
Wang (10.1016/j.apgeochem.2022.105485_bib40) 2021; 51
Bai (10.1016/j.apgeochem.2022.105485_bib2) 2012; 90–91
Ilich (10.1016/j.apgeochem.2022.105485_bib17) 2000; 19
Feng (10.1016/j.apgeochem.2022.105485_bib8) 2020; 27
Esteller (10.1016/j.apgeochem.2022.105485_bib7) 2005; 13
Jiang (10.1016/j.apgeochem.2022.105485_bib20) 2022
References_xml – volume: 493
  start-page: 208
  year: 2018
  end-page: 217
  ident: bib32
  article-title: Application of combined 81Kr and 4He chronometers to the dating of old groundwater in a tectonically active region of the North China Plain
  publication-title: Earth Planet Sci. Lett.
– volume: 98
  start-page: 82
  year: 2018
  end-page: 93
  ident: bib9
  article-title: A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin
  publication-title: Appl. Geochem.
– volume: 26
  start-page: 1301
  year: 2018
  end-page: 1324
  ident: bib39
  article-title: Review: safe and sustainable groundwater supply in China
  publication-title: Hydrogeol. J.
– volume: 53
  start-page: 795
  year: 2007
  end-page: 803
  ident: bib10
  article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China
  publication-title: Environ. Geol.
– volume: 19
  start-page: 715
  year: 2000
  end-page: 737
  ident: bib17
  publication-title: Nutrition in bone health revisited: a story beyond calcium
– volume: 13
  year: 2020
  ident: bib30
  article-title: Role of middle route scheme of south to north water diversion to control overexploitation of groundwater in north China
  publication-title: China Water Resources
– volume: 80
  start-page: 294
  year: 2021
  end-page: 307
  ident: bib23
  article-title: Fluoride geochemistry and exposure risk through groundwater sources in northeastern parts of Rajasthan, India
  publication-title: Arch. Environ. Contam. Toxicol.
– volume: 730
  year: 2020
  ident: bib24
  article-title: Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain
  publication-title: Sci. Total Environ.
– volume: 27
  start-page: 2187
  year: 2012
  end-page: 2196
  ident: bib11
  article-title: Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia
  publication-title: Appl. Geochem.
– volume: 98
  start-page: 404
  year: 2018
  end-page: 417
  ident: bib42
  article-title: Hydrogeochemistry and groundwater quality assessment of high fluoride levels in the Yanchi endorheic region, northwest China
  publication-title: Appl. Geochem.
– volume: 658
  start-page: 550
  year: 2019
  end-page: 557
  ident: bib45
  article-title: Integration of groundwater into China's south-north water transfer strategy
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 378
  year: 2005
  end-page: 390
  ident: bib7
  article-title: Anthropic effects on hydrochemical characteristics of the Valle de Toluca aquifer (central Mexico)
  publication-title: Hydrogeol. J.
– volume: 1
  start-page: 43
  year: 2008
  end-page: 58
  ident: bib21
  article-title: A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology
  publication-title: Ecohydrology
– volume: 159
  start-page: 480
  year: 2019
  end-page: 489
  ident: bib43
  article-title: Impacts of sediment compaction on iodine enrichment in deep aquifers of the North China Plain
  publication-title: Water Res.
– volume: 686
  start-page: 50
  year: 2019
  end-page: 62
  ident: bib44
  article-title: Effects of depositional environment and organic matter degradation on the enrichment and mobilization of iodine in the groundwater of the North China Plain
  publication-title: Sci. Total Environ.
– volume: 231
  start-page: 38
  year: 2006
  end-page: 56
  ident: bib4
  article-title: Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia
  publication-title: Chem. Geol.
– volume: 74
  start-page: 2329
  year: 2015
  end-page: 2340
  ident: bib26
  article-title: Occurrence and formation of high fluoride groundwater in the Hengshui area of the North China Plain
  publication-title: Environ. Earth Sci.
– volume: 12
  year: 2020
  ident: bib36
  article-title: Recent ground subsidence in the north China plain, China, revealed by sentinel-1A datasets
  publication-title: Rem. Sens.
– volume: 500
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib47
  article-title: Upward recharge through groundwater depression cone in piedmont plain of North China Plain
  publication-title: J. Hydrol.
– volume: 93
  start-page: 1
  year: 2007
  end-page: 12
  ident: bib13
  article-title: Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan basin, Northern China
  publication-title: J. Geochem. Explor.
– volume: 76
  year: 2016
  ident: bib29
  article-title: Ground deformation associated with exploitation of deep groundwater in Cangzhou City measured by multi-sensor synthetic aperture radar images
  publication-title: Environ. Earth Sci.
– volume: 54
  start-page: 8234
  year: 2018
  end-page: 8252
  ident: bib19
  article-title: Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer system in Cangzhou, north China plain
  publication-title: Water Resour. Res.
– volume: 15
  start-page: 589
  year: 2007
  end-page: 598
  ident: bib37
  article-title: Isotope hydrochemical approach to understand fluoride release into groundwaters of Ilkal area, Bagalkot District, Karnataka, India
  publication-title: Hydrogeol. J.
– volume: 145
  start-page: 250
  year: 2014
  end-page: 259
  ident: bib6
  article-title: Origin and evolution of formation water in North China Plain based on hydrochemistry and stable isotopes (2H, 18O, 37Cl and 81Br)
  publication-title: J. Geochem. Explor.
– volume: 30
  start-page: 345
  year: 2008
  end-page: 353
  ident: bib1
  article-title: Arsenic and fluoride in the groundwater of Mexico
  publication-title: Environ. Geochem. Health
– volume: 43
  start-page: 949
  year: 2021
  end-page: 969
  ident: bib22
  article-title: Groundwater salinization processes: pitfalls of inferences from Na+/Cl(-)versus Cl(-)correlation plots
  publication-title: Environ. Geochem. Health
– volume: 508
  start-page: 12
  year: 2014
  end-page: 27
  ident: bib15
  article-title: Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China
  publication-title: J. Hydrol.
– year: 2013
  ident: bib33
  article-title: Description of input and examples for PHREEQC Version 3--A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations
– volume: 735
  year: 2020
  ident: bib5
  article-title: Land subsidence and its relation with groundwater aquifers in Beijing Plain of China
  publication-title: Sci. Total Environ.
– volume: 598
  year: 2021
  ident: bib41
  article-title: Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater
  publication-title: J. Hydrol.
– volume: 90–91
  start-page: 26
  year: 2012
  end-page: 30
  ident: bib2
  article-title: Investigation on water-rock interaction under geothermal hot dry rock conditions with a novel testing method
  publication-title: J. Petrol. Sci. Eng.
– volume: 24
  start-page: 641
  year: 2009
  end-page: 649
  ident: bib38
  article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China
  publication-title: Appl. Geochem.
– volume: 603
  year: 2021
  ident: bib14
  article-title: Controls on distributions of sulphate, fluoride, and salinity in aquitard porewater from the North China Plain: long-term implications for groundwater quality
  publication-title: J. Hydrol.
– volume: 573
  start-page: 233
  year: 2016
  end-page: 246
  ident: bib35
  article-title: Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France)
  publication-title: Sci. Total Environ.
– volume: 27
  start-page: 34840
  year: 2020
  end-page: 34861
  ident: bib8
  article-title: Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 40
  start-page: 276
  year: 1997
  end-page: 283
  ident: bib49
  article-title: Evolution of quaternary groundwater system in north China plain
  publication-title: Sci. China Earth Sci.
– volume: 451
  start-page: 84
  year: 2016
  end-page: 96
  ident: bib27
  article-title: Sedimentary evolution during the last ∼ 1.9 Ma near the western margin of the modern Bohai Sea
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 18
  start-page: 453
  year: 2002
  end-page: 471
  ident: bib25
  article-title: South-to-north water transfer schemes for China
  publication-title: Int. J. Water Resour. Dev.
– volume: 583
  year: 2020
  ident: bib46
  article-title: Water transfer imposes hydrochemical impacts on groundwater by altering the interaction of groundwater and surface water
  publication-title: J. Hydrol.
– volume: 12
  year: 2014
  ident: bib50
  article-title: Relationship between land subsidence and deep groundwater yield in the north China plain
  publication-title: South-to-North Water Transfer and Water Science & Technology
– year: 2022
  ident: bib20
  article-title: Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: a review
  publication-title: Environ. Chem. Lett.
– volume: 11
  year: 2020
  ident: bib31
  article-title: South-to-North Water Diversion stabilizing Beijing's groundwater levels
  publication-title: Nat. Commun.
– volume: 35
  year: 2014
  ident: bib48
  article-title: Land susidence in Cangzhou over the last decade based on interferometric time series analysis
  publication-title: Shanghai Land & Resources
– volume: 57
  start-page: 479
  year: 2010
  end-page: 491
  ident: bib34
  article-title: Geochemistry and water quality assessment of central Main Ethiopian Rift natural waters with emphasis on source and occurrence of fluoride and arsenic
  publication-title: J. Afr. Earth Sci.
– volume: 12
  start-page: 355
  year: 2020
  end-page: 368
  ident: bib16
  article-title: Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: occurrence, distribution and management
  publication-title: Exposure and Health
– volume: 23
  start-page: 633
  year: 2013
  end-page: 643
  ident: bib28
  article-title: Water conservancy projects in China: achievements, challenges and way forward
  publication-title: Global Environ. Change
– volume: 569–570
  start-page: 948
  year: 2016
  end-page: 960
  ident: bib3
  article-title: Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks
  publication-title: Sci. Total Environ.
– volume: 643
  start-page: 967
  year: 2018
  end-page: 993
  ident: bib18
  article-title: Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: a review
  publication-title: Sci. Total Environ.
– volume: 51
  start-page: 2895
  year: 2021
  end-page: 2933
  ident: bib40
  article-title: Genesis of geogenic contaminated groundwater: as, F and I
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 74
  start-page: 1415
  year: 2015
  end-page: 1427
  ident: bib12
  article-title: Groundwater-derived land subsidence in the north China plain
  publication-title: Environ. Earth Sci.
– volume: 643
  start-page: 967
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105485_bib18
  article-title: Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.201
– volume: 493
  start-page: 208
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105485_bib32
  article-title: Application of combined 81Kr and 4He chronometers to the dating of old groundwater in a tectonically active region of the North China Plain
  publication-title: Earth Planet Sci. Lett.
  doi: 10.1016/j.epsl.2018.04.042
– year: 2022
  ident: 10.1016/j.apgeochem.2022.105485_bib20
  article-title: Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-021-01371-z
– volume: 12
  issue: 3
  year: 2014
  ident: 10.1016/j.apgeochem.2022.105485_bib50
  article-title: Relationship between land subsidence and deep groundwater yield in the north China plain
  publication-title: South-to-North Water Transfer and Water Science & Technology
– volume: 12
  start-page: 355
  issue: 3
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105485_bib16
  article-title: Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: occurrence, distribution and management
  publication-title: Exposure and Health
  doi: 10.1007/s12403-020-00347-8
– volume: 15
  start-page: 589
  year: 2007
  ident: 10.1016/j.apgeochem.2022.105485_bib37
  article-title: Isotope hydrochemical approach to understand fluoride release into groundwaters of Ilkal area, Bagalkot District, Karnataka, India
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-006-0107-3
– volume: 90–91
  start-page: 26
  year: 2012
  ident: 10.1016/j.apgeochem.2022.105485_bib2
  article-title: Investigation on water-rock interaction under geothermal hot dry rock conditions with a novel testing method
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2012.04.009
– volume: 54
  start-page: 8234
  issue: 10
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105485_bib19
  article-title: Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer system in Cangzhou, north China plain
  publication-title: Water Resour. Res.
  doi: 10.1029/2017WR022126
– volume: 80
  start-page: 294
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105485_bib23
  article-title: Fluoride geochemistry and exposure risk through groundwater sources in northeastern parts of Rajasthan, India
  publication-title: Arch. Environ. Contam. Toxicol.
  doi: 10.1007/s00244-020-00794-z
– volume: 735
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105485_bib5
  article-title: Land subsidence and its relation with groundwater aquifers in Beijing Plain of China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139111
– volume: 74
  start-page: 2329
  issue: 3
  year: 2015
  ident: 10.1016/j.apgeochem.2022.105485_bib26
  article-title: Occurrence and formation of high fluoride groundwater in the Hengshui area of the North China Plain
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4225-x
– volume: 451
  start-page: 84
  year: 2016
  ident: 10.1016/j.apgeochem.2022.105485_bib27
  article-title: Sedimentary evolution during the last ∼ 1.9 Ma near the western margin of the modern Bohai Sea
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/j.palaeo.2016.03.012
– ident: 10.1016/j.apgeochem.2022.105485_bib33
– volume: 508
  start-page: 12
  year: 2014
  ident: 10.1016/j.apgeochem.2022.105485_bib15
  article-title: Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.10.040
– volume: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105485_bib31
  article-title: South-to-North Water Diversion stabilizing Beijing's groundwater levels
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17428-6
– volume: 51
  start-page: 2895
  issue: 24
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105485_bib40
  article-title: Genesis of geogenic contaminated groundwater: as, F and I
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2020.1807452
– volume: 40
  start-page: 276
  issue: 3
  year: 1997
  ident: 10.1016/j.apgeochem.2022.105485_bib49
  article-title: Evolution of quaternary groundwater system in north China plain
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/BF02877536
– volume: 159
  start-page: 480
  year: 2019
  ident: 10.1016/j.apgeochem.2022.105485_bib43
  article-title: Impacts of sediment compaction on iodine enrichment in deep aquifers of the North China Plain
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.05.036
– volume: 30
  start-page: 345
  issue: 4
  year: 2008
  ident: 10.1016/j.apgeochem.2022.105485_bib1
  article-title: Arsenic and fluoride in the groundwater of Mexico
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-008-9167-8
– volume: 686
  start-page: 50
  year: 2019
  ident: 10.1016/j.apgeochem.2022.105485_bib44
  article-title: Effects of depositional environment and organic matter degradation on the enrichment and mobilization of iodine in the groundwater of the North China Plain
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.391
– volume: 35
  issue: 4
  year: 2014
  ident: 10.1016/j.apgeochem.2022.105485_bib48
  article-title: Land susidence in Cangzhou over the last decade based on interferometric time series analysis
  publication-title: Shanghai Land & Resources
– volume: 573
  start-page: 233
  year: 2016
  ident: 10.1016/j.apgeochem.2022.105485_bib35
  article-title: Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.08.087
– volume: 26
  start-page: 1301
  issue: 5
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105485_bib39
  article-title: Review: safe and sustainable groundwater supply in China
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-018-1795-1
– volume: 145
  start-page: 250
  year: 2014
  ident: 10.1016/j.apgeochem.2022.105485_bib6
  article-title: Origin and evolution of formation water in North China Plain based on hydrochemistry and stable isotopes (2H, 18O, 37Cl and 81Br)
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.07.006
– volume: 27
  start-page: 2187
  issue: 11
  year: 2012
  ident: 10.1016/j.apgeochem.2022.105485_bib11
  article-title: Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2012.01.016
– volume: 603
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105485_bib14
  article-title: Controls on distributions of sulphate, fluoride, and salinity in aquitard porewater from the North China Plain: long-term implications for groundwater quality
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126828
– volume: 43
  start-page: 949
  issue: 2
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105485_bib22
  article-title: Groundwater salinization processes: pitfalls of inferences from Na+/Cl(-)versus Cl(-)correlation plots
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-020-00622-2
– volume: 1
  start-page: 43
  issue: 1
  year: 2008
  ident: 10.1016/j.apgeochem.2022.105485_bib21
  article-title: A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology
  publication-title: Ecohydrology
  doi: 10.1002/eco.6
– volume: 583
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105485_bib46
  article-title: Water transfer imposes hydrochemical impacts on groundwater by altering the interaction of groundwater and surface water
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124617
– volume: 27
  start-page: 34840
  issue: 28
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105485_bib8
  article-title: Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-020-09784-z
– volume: 98
  start-page: 404
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105485_bib42
  article-title: Hydrogeochemistry and groundwater quality assessment of high fluoride levels in the Yanchi endorheic region, northwest China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2018.10.016
– volume: 658
  start-page: 550
  year: 2019
  ident: 10.1016/j.apgeochem.2022.105485_bib45
  article-title: Integration of groundwater into China's south-north water transfer strategy
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.185
– volume: 500
  start-page: 1
  year: 2013
  ident: 10.1016/j.apgeochem.2022.105485_bib47
  article-title: Upward recharge through groundwater depression cone in piedmont plain of North China Plain
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.06.056
– volume: 730
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105485_bib24
  article-title: Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138877
– volume: 23
  start-page: 633
  issue: 3
  year: 2013
  ident: 10.1016/j.apgeochem.2022.105485_bib28
  article-title: Water conservancy projects in China: achievements, challenges and way forward
  publication-title: Global Environ. Change
  doi: 10.1016/j.gloenvcha.2013.02.002
– volume: 19
  start-page: 715
  issue: 6
  year: 2000
  ident: 10.1016/j.apgeochem.2022.105485_bib17
  publication-title: Nutrition in bone health revisited: a story beyond calcium
– volume: 74
  start-page: 1415
  issue: 2
  year: 2015
  ident: 10.1016/j.apgeochem.2022.105485_bib12
  article-title: Groundwater-derived land subsidence in the north China plain
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4131-2
– volume: 12
  issue: 21
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105485_bib36
  article-title: Recent ground subsidence in the north China plain, China, revealed by sentinel-1A datasets
  publication-title: Rem. Sens.
  doi: 10.3390/rs12213579
– volume: 598
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105485_bib41
  article-title: Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126372
– volume: 53
  start-page: 795
  issue: 4
  year: 2007
  ident: 10.1016/j.apgeochem.2022.105485_bib10
  article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0692-z
– volume: 13
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105485_bib30
  article-title: Role of middle route scheme of south to north water diversion to control overexploitation of groundwater in north China
  publication-title: China Water Resources
– volume: 24
  start-page: 641
  issue: 4
  year: 2009
  ident: 10.1016/j.apgeochem.2022.105485_bib38
  article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.12.015
– volume: 13
  start-page: 378
  issue: 2
  year: 2005
  ident: 10.1016/j.apgeochem.2022.105485_bib7
  article-title: Anthropic effects on hydrochemical characteristics of the Valle de Toluca aquifer (central Mexico)
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-004-0395-4
– volume: 76
  issue: 1
  year: 2016
  ident: 10.1016/j.apgeochem.2022.105485_bib29
  article-title: Ground deformation associated with exploitation of deep groundwater in Cangzhou City measured by multi-sensor synthetic aperture radar images
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-6311-0
– volume: 57
  start-page: 479
  issue: 5
  year: 2010
  ident: 10.1016/j.apgeochem.2022.105485_bib34
  article-title: Geochemistry and water quality assessment of central Main Ethiopian Rift natural waters with emphasis on source and occurrence of fluoride and arsenic
  publication-title: J. Afr. Earth Sci.
  doi: 10.1016/j.jafrearsci.2009.12.005
– volume: 569–570
  start-page: 948
  year: 2016
  ident: 10.1016/j.apgeochem.2022.105485_bib3
  article-title: Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.06.002
– volume: 98
  start-page: 82
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105485_bib9
  article-title: A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2018.08.030
– volume: 231
  start-page: 38
  issue: 1–2
  year: 2006
  ident: 10.1016/j.apgeochem.2022.105485_bib4
  article-title: Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2005.12.009
– volume: 93
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.apgeochem.2022.105485_bib13
  article-title: Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan basin, Northern China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2006.07.001
– volume: 18
  start-page: 453
  issue: 3
  year: 2002
  ident: 10.1016/j.apgeochem.2022.105485_bib25
  article-title: South-to-north water transfer schemes for China
  publication-title: Int. J. Water Resour. Dev.
  doi: 10.1080/0790062022000006934
SSID ssj0005702
Score 2.460418
Snippet The South-to-North Water Diversion Project (SNWDP) has greatly improved the water shortage in the North China Plain. However, the impact of the SNWDP on the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105485
SubjectTerms China
clay
Fluoride
fluorides
geochemistry
Groundwater
groundwater recharge
interferometry
North China Plain
PHREEQC
sediments
South-to-North water diversion project
subsidence
synthetic aperture radar
water quality
water salinity
water salinization
water shortages
water table
Title Evolution of groundwater salinity and fluoride in the deep confined aquifers of Cangzhou in the North China plain after the South-to-North Water Diversion Project
URI https://dx.doi.org/10.1016/j.apgeochem.2022.105485
https://www.proquest.com/docview/3153829856
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiQuiKco0MpIXM1uHT-5VUvLAqJCooi9WXZsl0WrJOwmoPbQH9NfisdJKoqQeuCUxLFjKzOemcTf-EPopdJTzu2UE-50QZKHskRp5tJ09_tBhjI6DvnOH4_F_At7v-CLLTQbc2EAVjnY_t6mZ2s9lEyGtzlplsvJ5zQ_CqqppDQvly0gg51J0PJXF3_APGTGHUJlArWvYbxscxqAmApS0ikFzlsGpMr_9lB_2ersgI7uobtD5IgP-sHdR1uheoBuv83MvGcP0eXhz0GLcB0xJGtU_lcKJNd4YyH7sT3DtvI4rrp6vfQBLyucYj_sQ2hw-iaOKdr02P7oAOqygUfMbHV6_q3uxpp5hQdnvm3crGwqzfzi-V4m4iNtTfpKX3O_b3rIRxrQp_53zyN0cnR4MpuTgYCB2ELut6SwijEtYyx11DIEGqjlngquS6aSq7dMC5pOGbWlcE64qXIhRKG08jzZisdou6qr8AThoL31TMoUDcCh0J5rFlXhFGyB58UOEuM7N-WwOTlwZKzMiEL7bq6EZUBYphfWDppeNWz6_TlubvJ6FKq5pmomeZGbG78Y1cCkiQirK7YKdbcxBfgOqhUXT_-ng2foDlz1iJnnaLtdd2E3xT2t28uKvYduHbz7MD_-DXCnBW4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qkWChgJjmG3jp3YlTigPtjSh5BYxN4sJ7bLolUSdhOq5dAf05_AL2TGSSqKkHpAPSWKn_J4POP4G3-EvJJqKIQZikhkKo7AQplIKp6ButtNl7rcZwLjnY-Ok9Fn_mEiJivkVx8Lg7DKbu1v1_SwWndfBt1oDqrpdPAJ9CNmiqWMheOySYesPHDLU9i3Ld7u74CQXzO2tzveHkUdtUBk4nSzjmIjOVep97nyKnWOOWaEZYlQOZdgxAxXCYNXzkyeZFmSDWXmnE-kklaAFkC1N8hNDqsFsia8OfsDVpIGnCN2LsLeXcKUmerEIREWhsAzhhy7HEmc_20R_7INweDt3SN3O0-VvmsH4z5ZccUDcut9YAJePiTnuz-6WUtLTzE4pLCn4LjO6cJgtGW9pKaw1M-acj61jk4LCr4mtc5VFPbgHrxbS833BqE1C6xi2xQnP7-WTZ8znCjRwO9Nq5mBr4HPPKQF4r-oLqM205fQ7k4LMYEOfWx_Lz0i4-uQymOyWpSFWyPUKWssT1PwPvARKysU9zLOJF65Z5N1kvRjrvPuMnTk5JjpHvX2TV8IS6OwdCusdTK8KFi194FcXWSrF6q-NLU1WK2rC7_sp4EGxcfTHFO4slnoGG0VU1IkT_6ngRfk9mh8dKgP948PnpI7mNKidTbIaj1v3DPwuerseZjklOhrVqrflOhAWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+groundwater+salinity+and+fluoride+in+the+deep+confined+aquifers+of+Cangzhou+in+the+North+China+plain+after+the+South-to-North+Water+Diversion+Project&rft.jtitle=Applied+geochemistry&rft.au=Sun%2C+Danyang&rft.au=Li%2C+Junxia&rft.au=Li%2C+Hexue&rft.au=Liu%2C+Qiang&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=0883-2927&rft.eissn=1872-9134&rft.volume=147&rft_id=info:doi/10.1016%2Fj.apgeochem.2022.105485&rft.externalDocID=S088329272200289X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon