Detecting high-temperature anomalies from Sentinel-2 MSI images
•Two spectral characteristics of high-temperature anomalies (HTAs) were found.•A tri-spectral thermal-anomaly index (TAI) for Sentinel-2 MSI is proposed.•The TAI-based HTA detection approach performs well at scene/regional scales.•The TAI-based approach shows a transferability to Landsat family imag...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 177; pp. 174 - 193 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Two spectral characteristics of high-temperature anomalies (HTAs) were found.•A tri-spectral thermal-anomaly index (TAI) for Sentinel-2 MSI is proposed.•The TAI-based HTA detection approach performs well at scene/regional scales.•The TAI-based approach shows a transferability to Landsat family images.
High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's system. Sentinel-2 Multispectral Instrument (MSI) provides spatially-specific information for precisely measuring the location and extent of HTAs at a fine scale. However, detecting HTAs from MSI images remains challenging because the emitted radiance of an HTA in the short-wave infrared (SWIR) bands can be easily mixed with the reflected solar radiance background in the daytime; and an increasing number of atypical cases in MSI images need to be treated with the enhanced spatial resolution. A generic HTA detection approach that handles both anthropogenic and natural HTAs will broaden the scope of MSI applications. In this study, (i) we highlight two spectral characteristics of HTAs in the far-SWIR, near-SWIR, and NIR bands (i.e., (ρfar-SWIR - ρnear-SWIR)/ρNIR ≥ 0.45 and (ρfar-SWIR -ρnear-SWIR) ≥ ρnear-SWIR - ρNIR) that can effectively enhance HTAs from background geo-features, based on the reflectance spectra in airborne imaging spectrometer data. (ii) We propose a tri-spectral thermal anomaly index (TAI) that jointly uses the two high-temperature-sensitive SWIR bands and the high-temperature-insensitive NIR band to enhance HTAs, based on the above characteristics and a comprehensive sampling of different types of HTAs from 1,974 MSI images. (iii) We develop a TAI-based approach for MSI images to detect HTAs in general. The proposed approach was applied to detect different types of HTAs, including different biomass burnings, active volcanoes, and industrial HTAs, over a wide range of land-cover scenarios. Validations and comparisons demonstrate the proposed approach is reliable and performs better than the existing state-of-the-art HTA detection approaches. Evaluations on two types of small industrial HTAs, including operating kilns and enclosed landfill gas flares, show that the HTA detection probability of the TAI-based approach from time-series MSI images is ~ 84.91% and 88.23%, respectively. Further investigations show that the TAI-based approach also has good transferability in detecting HTAs from multispectral images acquired by Landsat-family satellites. |
---|---|
AbstractList | High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's system. Sentinel-2 Multispectral Instrument (MSI) provides spatially-specific information for precisely measuring the location and extent of HTAs at a fine scale. However, detecting HTAs from MSI images remains challenging because the emitted radiance of an HTA in the short-wave infrared (SWIR) bands can be easily mixed with the reflected solar radiance background in the daytime; and an increasing number of atypical cases in MSI images need to be treated with the enhanced spatial resolution. A generic HTA detection approach that handles both anthropogenic and natural HTAs will broaden the scope of MSI applications. In this study, (i) we highlight two spectral characteristics of HTAs in the far-SWIR, near-SWIR, and NIR bands (i.e., (ρfₐᵣ₋SWIR - ρₙₑₐᵣ₋SWIR)/ρNIR ≥ 0.45 and (ρfₐᵣ₋SWIR -ρₙₑₐᵣ₋SWIR) ≥ ρₙₑₐᵣ₋SWIR - ρNIR) that can effectively enhance HTAs from background geo-features, based on the reflectance spectra in airborne imaging spectrometer data. (ii) We propose a tri-spectral thermal anomaly index (TAI) that jointly uses the two high-temperature-sensitive SWIR bands and the high-temperature-insensitive NIR band to enhance HTAs, based on the above characteristics and a comprehensive sampling of different types of HTAs from 1,974 MSI images. (iii) We develop a TAI-based approach for MSI images to detect HTAs in general. The proposed approach was applied to detect different types of HTAs, including different biomass burnings, active volcanoes, and industrial HTAs, over a wide range of land-cover scenarios. Validations and comparisons demonstrate the proposed approach is reliable and performs better than the existing state-of-the-art HTA detection approaches. Evaluations on two types of small industrial HTAs, including operating kilns and enclosed landfill gas flares, show that the HTA detection probability of the TAI-based approach from time-series MSI images is ~ 84.91% and 88.23%, respectively. Further investigations show that the TAI-based approach also has good transferability in detecting HTAs from multispectral images acquired by Landsat-family satellites. •Two spectral characteristics of high-temperature anomalies (HTAs) were found.•A tri-spectral thermal-anomaly index (TAI) for Sentinel-2 MSI is proposed.•The TAI-based HTA detection approach performs well at scene/regional scales.•The TAI-based approach shows a transferability to Landsat family images. High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's system. Sentinel-2 Multispectral Instrument (MSI) provides spatially-specific information for precisely measuring the location and extent of HTAs at a fine scale. However, detecting HTAs from MSI images remains challenging because the emitted radiance of an HTA in the short-wave infrared (SWIR) bands can be easily mixed with the reflected solar radiance background in the daytime; and an increasing number of atypical cases in MSI images need to be treated with the enhanced spatial resolution. A generic HTA detection approach that handles both anthropogenic and natural HTAs will broaden the scope of MSI applications. In this study, (i) we highlight two spectral characteristics of HTAs in the far-SWIR, near-SWIR, and NIR bands (i.e., (ρfar-SWIR - ρnear-SWIR)/ρNIR ≥ 0.45 and (ρfar-SWIR -ρnear-SWIR) ≥ ρnear-SWIR - ρNIR) that can effectively enhance HTAs from background geo-features, based on the reflectance spectra in airborne imaging spectrometer data. (ii) We propose a tri-spectral thermal anomaly index (TAI) that jointly uses the two high-temperature-sensitive SWIR bands and the high-temperature-insensitive NIR band to enhance HTAs, based on the above characteristics and a comprehensive sampling of different types of HTAs from 1,974 MSI images. (iii) We develop a TAI-based approach for MSI images to detect HTAs in general. The proposed approach was applied to detect different types of HTAs, including different biomass burnings, active volcanoes, and industrial HTAs, over a wide range of land-cover scenarios. Validations and comparisons demonstrate the proposed approach is reliable and performs better than the existing state-of-the-art HTA detection approaches. Evaluations on two types of small industrial HTAs, including operating kilns and enclosed landfill gas flares, show that the HTA detection probability of the TAI-based approach from time-series MSI images is ~ 84.91% and 88.23%, respectively. Further investigations show that the TAI-based approach also has good transferability in detecting HTAs from multispectral images acquired by Landsat-family satellites. |
Author | Wu, Wei Liu, Yongxue Xu, Bihua Xu, Wenxuan Zhi, Weifeng |
Author_xml | – sequence: 1 givenname: Yongxue surname: Liu fullname: Liu, Yongxue email: yongxue@nju.edu.cn organization: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu Province 210046, PR China – sequence: 2 givenname: Weifeng surname: Zhi fullname: Zhi, Weifeng email: weifengnju@yeah.net organization: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu Province 210046, PR China – sequence: 3 givenname: Bihua surname: Xu fullname: Xu, Bihua email: bihuaxu@foxmail.com organization: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu Province 210046, PR China – sequence: 4 givenname: Wenxuan surname: Xu fullname: Xu, Wenxuan email: wenshinexu@foxmail.com organization: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu Province 210046, PR China – sequence: 5 givenname: Wei surname: Wu fullname: Wu, Wei email: weiwu_9410@163.com organization: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu Province 210046, PR China |
BookMark | eNqNkDtPwzAUhS1UJNrCbyAjS4JfSewBoaq8KhUxFGbLdW5aR3kU20Xi3-OqiIEFhqu7nO9I55ugUT_0gNAlwRnBpLhuMut3zjfxMoopyXCeYSxO0JiIkqaCsnyExlhSntKSFGdo4n2DMSZ5Icbo9g4CmGD7TbK1m20aoNuB02HvINH90OnWgk9qN3TJCvqYgzalyfNqkdhOb8Cfo9Natx4uvv8UvT3cv86f0uXL42I-W6aalSSkjDFZcNA6x1UBstKkYEQIJiTnpQTMuebAmVljXnGgwlBYgxayruqCrAvDpujq2Ltzw_sefFCd9QbaVvcw7L2iUuQyTqUyRm-OUeMG7x3Uytiggx364LRtFcHqIE416kecOohTOFdRXOTLX_zOxbHu8x_k7EhCNPFhwSlvLPQGKuuiZFUN9s-OL5FvkDw |
CitedBy_id | crossref_primary_10_3390_s23125734 crossref_primary_10_3390_rs15020335 crossref_primary_10_1088_1748_9326_ac59aa crossref_primary_10_1016_j_scitotenv_2024_173082 crossref_primary_10_1088_1748_9326_ad82fb crossref_primary_10_1029_2021GL093789 crossref_primary_10_3390_rs13163074 crossref_primary_10_1016_j_isprsjprs_2024_05_002 crossref_primary_10_1016_j_jag_2025_104394 crossref_primary_10_1109_TGRS_2025_3528641 crossref_primary_10_3390_rs14246319 crossref_primary_10_1016_j_jag_2023_103534 crossref_primary_10_1016_j_geomat_2024_100008 crossref_primary_10_1016_j_jag_2022_103075 crossref_primary_10_1016_j_rse_2023_113679 crossref_primary_10_1016_j_rse_2023_113954 crossref_primary_10_1109_LGRS_2024_3443775 crossref_primary_10_3390_rs16050768 crossref_primary_10_3390_f16030497 crossref_primary_10_1109_JSTARS_2024_3436811 crossref_primary_10_1038_s41598_024_81976_w crossref_primary_10_1007_s12145_024_01316_4 crossref_primary_10_1038_s41597_024_03461_3 crossref_primary_10_3390_land12061246 crossref_primary_10_3390_su15065333 crossref_primary_10_1038_s41893_023_01125_5 crossref_primary_10_1029_2023JD039524 crossref_primary_10_1080_17538947_2024_2441932 crossref_primary_10_3390_environments10070128 crossref_primary_10_1016_j_rse_2023_113753 crossref_primary_10_1109_JSTARS_2024_3406767 |
Cites_doi | 10.3390/rs9060584 10.1080/01431160310001609725 10.1111/j.1365-2699.2011.02595.x 10.1016/j.rse.2016.02.054 10.1038/nature11869 10.1016/j.rse.2011.07.023 10.1016/j.isprsjprs.2020.04.006 10.1038/nature10283 10.1016/j.rse.2017.02.024 10.1016/j.scib.2019.03.002 10.1109/TGRS.2008.915751 10.1016/j.rse.2011.09.033 10.1016/j.rse.2015.10.002 10.3390/rs12193232 10.1016/j.rse.2008.01.005 10.1038/nature19797 10.3390/rs12050820 10.3390/rs11091056 10.1080/0143116031000070283 10.1038/nature13946 10.1016/j.rse.2013.12.008 10.5479/si.GVP.VOTW4-2013 10.1073/pnas.0506179102 10.1016/j.rse.2018.08.009 10.1144/SP426.31 10.1038/nature01437 10.1016/j.isprsjprs.2019.10.013 10.1016/j.isprsjprs.2018.05.007 10.1177/0734242X09339325 10.3390/rs5094423 10.1016/j.isprsjprs.2010.08.004 10.1016/j.rse.2019.01.002 10.1038/nclimate3008 10.1016/j.rse.2020.111867 10.1073/pnas.1617464114 10.1016/j.rse.2020.111968 10.1016/j.isprsjprs.2019.11.012 10.1126/science.284.5421.1832 10.1016/j.rse.2016.02.027 10.1021/es405533d 10.1016/S0034-4257(02)00076-7 10.1016/j.rse.2017.10.019 10.1080/0143116031000117056 10.1080/17538947.2017.1391341 10.1016/j.rse.2018.04.027 10.1016/j.rse.2018.12.011 10.1016/j.rse.2006.11.018 10.1088/1748-9326/10/6/065002 10.1126/science.1163886 10.1016/S0034-4257(02)00030-5 10.3390/rs11232876 10.1080/01431169608949018 10.1016/j.rse.2012.12.005 10.1016/j.rse.2015.08.032 10.1111/j.1365-2486.2010.02279.x 10.1002/2013JD020453 10.1016/j.jvolgeores.2003.12.008 10.1029/98JD01644 10.1016/j.rse.2008.03.003 10.1073/pnas.0803375105 10.1144/SP426.5 10.1016/j.isprsjprs.2014.03.011 10.1016/j.rse.2017.06.027 10.1038/nature24668 |
ContentType | Journal Article |
Copyright | 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2021.05.008 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 193 |
ExternalDocumentID | 10_1016_j_isprsjprs_2021_05_008 S0924271621001337 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a371t-333964eaa50d6e9da1631883894479e044a4e43cb04d4e28c2ebea89fdf61b6c3 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Fri Jul 11 11:59:02 EDT 2025 Tue Jul 01 03:46:46 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Fri Feb 23 02:44:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sentinel-2 Multispectral Instrument (MSI) Thermal anomaly index (TAI) Remote sensing High-temperature anomaly (HTA) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a371t-333964eaa50d6e9da1631883894479e044a4e43cb04d4e28c2ebea89fdf61b6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2985923529 |
PQPubID | 24069 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2985923529 crossref_citationtrail_10_1016_j_isprsjprs_2021_05_008 crossref_primary_10_1016_j_isprsjprs_2021_05_008 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_05_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Xu, Zhi, Hu, Dong, Jin, Lu, Chen, Xu, Liu, Zhao, Lu (b0205) 2020; 246 Adagbasa, Adelabu, Okello (b0005) 2020; 164 Berger, Moreno, Johannessen, Levelt, Hanssen (b0015) 2012; 120 Betha, Behera, Balasubramanian (b0020) 2014; 48 Flasse, Ceccato (b0100) 1996; 17 Kumar, Roy (b0180) 2018; 11 Wooster, Xu, Nightingale (b0335) 2012; 120 Lhermitte, Verbesselt, Verstraeten, Veraverbeke, Coppin (b0185) 2011; 66 Gouhier, Guéhenneux, Labazuy, Cacault, Decriem, Rivet (b0155) 2016; 426 Wright, Flynn, Garbeil, Harris, Pilger (b0345) 2004; 135 Bowman, Balch, Artaxo, Bond, Carlson, Cochrane, D’Antonio, DeFries, Doyle, Harrison, Johnston, Keeley, Krawchuk, Kull, Marston, Moritz, Prentice, Roos, Scott, Swetnam, van der Werf, Pyne (b0030) 2009; 324 Roberts, Wooster (b0270) 2008; 46 Massimetti, Diego, Marco, Sébastien, Ripepe (b0235) 2020; 12 Page, Rieley, Banks (b0260) 2011; 17 Murphy, de Souza Filho, Wright, Sabatino, Correa Pabon (b0250) 2016; 177 Ganci, Vicari, Fortuna, Negro (b0105) 2011; 54 Lin, Chen, Niu, Li, Yu, Jia, Zhang (b0190) 2018; 211 Giglio, Kendall, Mack (b0125) 2003; 24 Xu, Wooster, Kaneko, He, Zhang, Fisher (b0350) 2017; 193 Moritz, Batllori, Bradstock, Gill, Handmer, Hessburg, Leonard, McCaffrey, Odion, Schoennagel, Syphard (b0245) 2014; 515 Kaufman, Justice, Flynn, Kendall, Prins, Giglio, Ward, Menzel, Setzer (b0175) 1998; 103 Csiszar, Schroeder, Giglio, Ellicott, Vadrevu, Justice, Wind (b0075) 2014; 119 Cochrane (b0055) 2003; 421 ESA, 2017. European Space Agency Land Cover CCI Product User Guide Version 2.0. https://www.esa-landcover-cci.org. Accessed date: May 12, 2020. Ahluwalia, Leach, Terry (b0010) 2003 Soja, Sukhinin, Cahoon, Shugart, Stackhouse (b0315) 2004; 25 Global Volcanism Program, 2013. Volcanoes of the World, v. 4.8.8 (April 17 2020). Venzke, E (ed.). Smithsonian Institution. http://dx.doi.org/10.5479/si.GVP.VOTW4-2013. Downloaded May 11 2020. Coppola, Laiolo, Cigolini, Donne, Ripepe (b0070) 2015; 426 Masek, Wulder, Markham, McCorkel, Crawford, Storey, Jenstrom (b0230) 2020; 248 Giglio, Justice (b0120) 2003; 24 Murphy, Wright, Oppenheimer, Filho (b0255) 2013; 131 Maffei, Menenti (b0220) 2019; 158 Pellegrini, Ahlström, Hobbie, Reich, Nieradzik, Staver, Scharenbroch, Jumpponen, Anderegg, Randerson, Jackson (b0265) 2017; 553 Bowman, Balch, Artaxo, Bond, Cochrane, D’Antonio, DeFries, Johnston, Keeley, Krawchuk, Kull, Mack, Moritz, Pyne, Roos, Scott, Sodhi, Swetnam (b0035) 2011; 38 Schroeder, Oliva, Giglio, Csiszar (b0295) 2014; 143 Mack, Bret-Harte, Hollingsworth, Jandt, Schuur, Shaver, Verbyla (b0215) 2011; 475 van der Werf, Dempewolf, Trigg, Randerson, Kasibhatla, Giglio, Murdiyarso, Peters, Morton, Collatz, Dolman, DeFries (b0330) 2008; 105 Coluzzi, Imbrenda, Lanfredi, Simoniello (b0065) 2018; 217 Giglio, Schroeder, Justice (b0140) 2016; 178 Wright, Flynn, Garbeil, Harris, Pilger (b0340) 2002; 82 Cochrane, Alencar, Schulze, Souza, Nepstad, Lefebvre, Davidson (b0060) 1999; 284 Hawbaker, Vanderhoof, Beal, Takacs, Schmidt, Falgout, Williams, Fairaux, Caldwell, Picotte, Howard, Stitt, Dwyer (b0165) 2017; 198 Marchese, Genzano, Neri, Falconieri, Pergola (b0225) 2019; 11 Liu, Hu, Dong, Xu, Zhan, Sun (b0200) 2019; 222 Blackett (b0025) 2015; 171 Schwietzke, Sherwood, Bruhwiler, Miller, Etiope, Dlugokencky, Michel, Arling, Vaughn, White, Tans (b0310) 2016; 538 United States Environmental Protection Agency (EPA), 2000. Landfill manuals. https://www.epa.ie/pubs/advice/waste/waste/EPA%20Landfill%20Monitoring.pdf. Accessed date: May 4, 2020. Schoennagel, Balch, Brenkert-Smith, Dennison, Harvey, Krawchuk, Mietkiewicz, Morgan, Moritz, Rasker, Turner, Whitlock (b0290) 2017; 114 Chen, Lara, Hu (b0045) 2020; 159 Giglio, L., Csiszar, Restás, Á., Morisette, J.T., Schroeder, W., Morton, D., Justice, C.O., 2008. Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ. 112, 3055–3063. Roteta, Bastarrika, Padilla, Storm, Chuvieco (b0275) 2019; 2019 Chowdhury, Hassan (b0050) 2015; 104 Genzano, Pergola, Marchese (b0115) 2020; 12 Elvidge, Zhizhin, Hsu, Baugh, Khomarudin, Vetrita, Sofan, Hilman (b0085) 2015; 10 Gascon, Bouzinac, Thépaut, Jung, Francesconi (b0110) 2017; 9 Elvidge, Zhizhin, Hsu, Baugh (b0080) 2013; 5 ESA, 2015. Sentinel-2 User Handbook. https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook, Accessed date: July 24, 2019. Gong, Liu, Zhang, Li, Wang (b0150) 2019; 64 Scheutz, Kjeldsen, Bogner, de Visscher, Gebert, Hilger (b0285) 2009; 27 Cabral, Silva, Silva, Vanneschi, Vasconcelos (b0040) 2018; 142 Liu, Hu, Zhan, Sun, Murch, Ma (b0195) 2018; 204 Goetz, Bunn, Fiske, Houghton (b0145) 2005; 102 Justice, Giglio, Korontzi, Owens, Morisette, Roy, Descloitres, Alleaume, Petitcolin, Kaufman (b0170) 2002; 83 Zhang, Liu, Chen, Xie, Gao (b0355) 2019; 11 MacDougall, McCann, Gellner, Turkington (b0210) 2013; 494 Giglio (b0130) 2007; 108 Schroeder, Prins, Giglio, Csiszar, Schmidt, Morisette, Morton (b0305) 2008; 112 Tacconi (b0320) 2016; 6 Saxon, E., and Sheppard, S. 2010. Land Systems of Indonesia and Papua New Guinea. Last Accessed April 11, 2020. http://www.arcgis.com/home/item.html?id=dae887c070b840e1bdae639a1e63260d. Schroeder, Oliva, Giglio, Quayle, Lorenz, Morelli (b0300) 2016; 185 Schoennagel (10.1016/j.isprsjprs.2021.05.008_b0290) 2017; 114 Cochrane (10.1016/j.isprsjprs.2021.05.008_b0055) 2003; 421 Liu (10.1016/j.isprsjprs.2021.05.008_b0205) 2020; 246 10.1016/j.isprsjprs.2021.05.008_b0160 10.1016/j.isprsjprs.2021.05.008_b0280 Murphy (10.1016/j.isprsjprs.2021.05.008_b0250) 2016; 177 Berger (10.1016/j.isprsjprs.2021.05.008_b0015) 2012; 120 Mack (10.1016/j.isprsjprs.2021.05.008_b0215) 2011; 475 Gascon (10.1016/j.isprsjprs.2021.05.008_b0110) 2017; 9 Zhang (10.1016/j.isprsjprs.2021.05.008_b0355) 2019; 11 Elvidge (10.1016/j.isprsjprs.2021.05.008_b0080) 2013; 5 Giglio (10.1016/j.isprsjprs.2021.05.008_b0125) 2003; 24 Adagbasa (10.1016/j.isprsjprs.2021.05.008_b0005) 2020; 164 Hawbaker (10.1016/j.isprsjprs.2021.05.008_b0165) 2017; 198 Justice (10.1016/j.isprsjprs.2021.05.008_b0170) 2002; 83 Lhermitte (10.1016/j.isprsjprs.2021.05.008_b0185) 2011; 66 van der Werf (10.1016/j.isprsjprs.2021.05.008_b0330) 2008; 105 Wright (10.1016/j.isprsjprs.2021.05.008_b0345) 2004; 135 Elvidge (10.1016/j.isprsjprs.2021.05.008_b0085) 2015; 10 Marchese (10.1016/j.isprsjprs.2021.05.008_b0225) 2019; 11 Liu (10.1016/j.isprsjprs.2021.05.008_b0195) 2018; 204 Schroeder (10.1016/j.isprsjprs.2021.05.008_b0300) 2016; 185 Schroeder (10.1016/j.isprsjprs.2021.05.008_b0305) 2008; 112 Ganci (10.1016/j.isprsjprs.2021.05.008_b0105) 2011; 54 Soja (10.1016/j.isprsjprs.2021.05.008_b0315) 2004; 25 Giglio (10.1016/j.isprsjprs.2021.05.008_b0140) 2016; 178 Goetz (10.1016/j.isprsjprs.2021.05.008_b0145) 2005; 102 Kumar (10.1016/j.isprsjprs.2021.05.008_b0180) 2018; 11 MacDougall (10.1016/j.isprsjprs.2021.05.008_b0210) 2013; 494 Roteta (10.1016/j.isprsjprs.2021.05.008_b0275) 2019; 2019 Tacconi (10.1016/j.isprsjprs.2021.05.008_b0320) 2016; 6 Genzano (10.1016/j.isprsjprs.2021.05.008_b0115) 2020; 12 Coluzzi (10.1016/j.isprsjprs.2021.05.008_b0065) 2018; 217 Masek (10.1016/j.isprsjprs.2021.05.008_b0230) 2020; 248 Murphy (10.1016/j.isprsjprs.2021.05.008_b0255) 2013; 131 Coppola (10.1016/j.isprsjprs.2021.05.008_b0070) 2015; 426 Cabral (10.1016/j.isprsjprs.2021.05.008_b0040) 2018; 142 Giglio (10.1016/j.isprsjprs.2021.05.008_b0120) 2003; 24 Betha (10.1016/j.isprsjprs.2021.05.008_b0020) 2014; 48 Wooster (10.1016/j.isprsjprs.2021.05.008_b0335) 2012; 120 Massimetti (10.1016/j.isprsjprs.2021.05.008_b0235) 2020; 12 Roberts (10.1016/j.isprsjprs.2021.05.008_b0270) 2008; 46 Gouhier (10.1016/j.isprsjprs.2021.05.008_b0155) 2016; 426 Wright (10.1016/j.isprsjprs.2021.05.008_b0340) 2002; 82 Pellegrini (10.1016/j.isprsjprs.2021.05.008_b0265) 2017; 553 Cochrane (10.1016/j.isprsjprs.2021.05.008_b0060) 1999; 284 10.1016/j.isprsjprs.2021.05.008_b0135 Kaufman (10.1016/j.isprsjprs.2021.05.008_b0175) 1998; 103 Page (10.1016/j.isprsjprs.2021.05.008_b0260) 2011; 17 Bowman (10.1016/j.isprsjprs.2021.05.008_b0030) 2009; 324 Moritz (10.1016/j.isprsjprs.2021.05.008_b0245) 2014; 515 Liu (10.1016/j.isprsjprs.2021.05.008_b0200) 2019; 222 Lin (10.1016/j.isprsjprs.2021.05.008_b0190) 2018; 211 Bowman (10.1016/j.isprsjprs.2021.05.008_b0035) 2011; 38 Maffei (10.1016/j.isprsjprs.2021.05.008_b0220) 2019; 158 Schroeder (10.1016/j.isprsjprs.2021.05.008_b0295) 2014; 143 Xu (10.1016/j.isprsjprs.2021.05.008_b0350) 2017; 193 10.1016/j.isprsjprs.2021.05.008_b0095 10.1016/j.isprsjprs.2021.05.008_b0090 Csiszar (10.1016/j.isprsjprs.2021.05.008_b0075) 2014; 119 Ahluwalia (10.1016/j.isprsjprs.2021.05.008_b0010) 2003 Blackett (10.1016/j.isprsjprs.2021.05.008_b0025) 2015; 171 Chowdhury (10.1016/j.isprsjprs.2021.05.008_b0050) 2015; 104 Gong (10.1016/j.isprsjprs.2021.05.008_b0150) 2019; 64 Schwietzke (10.1016/j.isprsjprs.2021.05.008_b0310) 2016; 538 Giglio (10.1016/j.isprsjprs.2021.05.008_b0130) 2007; 108 Flasse (10.1016/j.isprsjprs.2021.05.008_b0100) 1996; 17 Chen (10.1016/j.isprsjprs.2021.05.008_b0045) 2020; 159 Scheutz (10.1016/j.isprsjprs.2021.05.008_b0285) 2009; 27 10.1016/j.isprsjprs.2021.05.008_b0325 |
References_xml | – volume: 83 start-page: 244 year: 2002 end-page: 262 ident: b0170 article-title: The MODIS fire products publication-title: Remote Sens. Environ. – volume: 217 start-page: 426 year: 2018 end-page: 443 ident: b0065 article-title: A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses publication-title: Remote Sens. Environ. – volume: 24 start-page: 3515 year: 2003 end-page: 3520 ident: b0120 article-title: Effect of wavelength selection on characterization of fire Size and temperature publication-title: Int. J. Remote Sens. – volume: 248 year: 2020 ident: b0230 article-title: Landsat 9: Empowering open science and applications through continuity publication-title: Remote Sens. Environ. – reference: Saxon, E., and Sheppard, S. 2010. Land Systems of Indonesia and Papua New Guinea. Last Accessed April 11, 2020. http://www.arcgis.com/home/item.html?id=dae887c070b840e1bdae639a1e63260d. – volume: 11 start-page: 1056 year: 2019 ident: b0355 article-title: Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach publication-title: Remote Sens. – volume: 178 start-page: 31 year: 2016 end-page: 41 ident: b0140 article-title: The collection 6 MODIS active fire detection algorithm and fire products publication-title: Remote Sens. Environ. – reference: United States Environmental Protection Agency (EPA), 2000. Landfill manuals. https://www.epa.ie/pubs/advice/waste/waste/EPA%20Landfill%20Monitoring.pdf. Accessed date: May 4, 2020. – volume: 143 start-page: 85 year: 2014 end-page: 96 ident: b0295 article-title: The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment publication-title: Remote Sens. Environ. – volume: 515 start-page: 58 year: 2014 ident: b0245 article-title: Learning to coexist with wildfire publication-title: Nature – volume: 102 start-page: 13521 year: 2005 ident: b0145 article-title: Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance publication-title: PNAS – volume: 25 start-page: 1939 year: 2004 end-page: 1960 ident: b0315 article-title: AVHRR-derived fire frequency, distribution and area burned in Siberia publication-title: Int. J. Remote Sens. – volume: 426 start-page: 181 year: 2015 end-page: 205 ident: b0070 article-title: Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system publication-title: Geological Society, London, Special Publications – volume: 119 start-page: 803 year: 2014 end-page: 816 ident: b0075 article-title: Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results publication-title: J. Geophys. Res. [Atmos.] – volume: 38 start-page: 2223 year: 2011 end-page: 2236 ident: b0035 article-title: The human dimension of fire regimes on Earth publication-title: J. Biogeogr. – volume: 284 start-page: 1832 year: 1999 ident: b0060 article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests publication-title: Science – volume: 142 start-page: 94 year: 2018 end-page: 105 ident: b0040 article-title: Burned area estimations derived from Landsat ETM+ and OLI data: Comparing Genetic Programming with Maximum Likelihood and Classification and Regression Trees publication-title: ISPRS J. Photogr. Remote Sensing. – volume: 24 start-page: 4505 year: 2003 end-page: 4525 ident: b0125 article-title: A multi-year active fire dataset for the tropics derived from the TRMM VIRS publication-title: Int. J. Remote Sens. – volume: 2019 start-page: 1 year: 2019 end-page: 17 ident: b0275 article-title: Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa publication-title: Remote Sens. Environ. – volume: 538 start-page: 88 year: 2016 ident: b0310 article-title: Upward revision of global fossil fuel methane emissions based on isotope database publication-title: Nature – volume: 426 start-page: 223 year: 2016 end-page: 241 ident: b0155 article-title: HOTVOLC: a web-based monitoring system for volcanic hot spots publication-title: Geological Society, London, Special Publications – volume: 54 start-page: 544 year: 2011 end-page: 550 ident: b0105 article-title: The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data publication-title: Annals of geophysics – volume: 6 start-page: 640 year: 2016 ident: b0320 article-title: Preventing fires and haze in Southeast Asia publication-title: Nat. Clim. Chang. – reference: Giglio, L., Csiszar, Restás, Á., Morisette, J.T., Schroeder, W., Morton, D., Justice, C.O., 2008. Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ. 112, 3055–3063. – volume: 66 start-page: 17 year: 2011 end-page: 27 ident: b0185 article-title: Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index publication-title: ISPRS J. Photogr. Remote Sensing. – volume: 27 start-page: 409 year: 2009 end-page: 455 ident: b0285 article-title: Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions publication-title: Waste Manage. Res. – volume: 246 year: 2020 ident: b0205 article-title: Space eye on flying aircraft: From Sentinel-2 MSI parallax to hybrid computing publication-title: Remote Sens. Environ. – volume: 12 start-page: 3232 year: 2020 ident: b0115 article-title: A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data publication-title: Remote Sens. – volume: 108 start-page: 407 year: 2007 end-page: 421 ident: b0130 article-title: Characterization of the Tropical Diurnal Fire Cycle Using VIRS and MODIS Observations publication-title: Remote Sens. Environ. – volume: 135 start-page: 29 year: 2004 end-page: 49 ident: b0345 article-title: Modvolc: near-real-time thermal monitoring of global volcanism publication-title: J. Volcanol. Geoth. Res. – reference: ESA, 2015. Sentinel-2 User Handbook. https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook, Accessed date: July 24, 2019. – volume: 159 start-page: 101 year: 2020 end-page: 113 ident: b0045 article-title: A robust visible near-infrared index for fire severity mapping in Arctic tundra ecosystems publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2003 ident: b0010 article-title: Energy efficiency of rotary dryers in manufacturing plants. 7–10 publication-title: Solutions for Energy Security & Facility Management Challenges – volume: 104 start-page: 224 year: 2015 end-page: 236 ident: b0050 article-title: Operational perspective of remote sensing-based forest fire danger forecasting systems publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 64 start-page: 370 year: 2019 end-page: 373 ident: b0150 article-title: Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 publication-title: Science Bulletin. – volume: 198 start-page: 504 year: 2017 end-page: 522 ident: b0165 article-title: Mapping burned areas using dense time-series of Landsat data publication-title: Remote Sens. Environ. – volume: 494 start-page: 86 year: 2013 ident: b0210 article-title: Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse publication-title: Nature – volume: 164 start-page: 173 year: 2020 end-page: 183 ident: b0005 article-title: Development of post-fire vegetation response-ability model in grassland mountainous ecosystem using GIS and remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 2876 year: 2019 ident: b0225 article-title: A multi-channel algorithm for mapping volcanic thermal anomalies by means of Sentinel-2 MSI and Landsat-8 OLI data publication-title: Remote Sens. – volume: 11 start-page: 154 year: 2018 end-page: 178 ident: b0180 article-title: Global operational land imager Landsat-8 reflectance-based active fire detection algorithm publication-title: Int. J. Digit. Earth. – volume: 17 start-page: 798 year: 2011 end-page: 818 ident: b0260 article-title: Global and regional importance of the tropical peatland carbon pool publication-title: Glob. Chang. Biol. – volume: 105 start-page: 20350 year: 2008 ident: b0330 article-title: Climate regulation of fire emissions and deforestation in equatorial Asia publication-title: PNAS – volume: 421 start-page: 913 year: 2003 end-page: 919 ident: b0055 article-title: Fire science for rainforests publication-title: Nature – volume: 48 start-page: 4327 year: 2014 end-page: 4335 ident: b0020 article-title: 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk publication-title: Environ. Sci. Technol. – volume: 171 start-page: 75 year: 2015 end-page: 82 ident: b0025 article-title: An initial comparison of the thermal anomaly detection products of MODIS and VIIRS in their observation of Indonesian volcanic activity publication-title: Remote Sens. Environ. – volume: 131 start-page: 195 year: 2013 end-page: 205 ident: b0255 article-title: MODIS and ASTER synergy for characterizing thermal volcanic activity publication-title: Remote Sens. Environ. – volume: 12 start-page: 820 year: 2020 ident: b0235 article-title: Volcanic hot-spot detection using Sentinel-2: a comparison with MODIS–MIROVA thermal data series publication-title: Remote Sens. – volume: 185 start-page: 210 year: 2016 end-page: 220 ident: b0300 article-title: Active fire detection using Landsat-8/OLI data publication-title: Remote Sens. Environ. – volume: 10 year: 2015 ident: b0085 article-title: Longwave Infrared Identification of Smoldering Peat Fires in Indonesia with Nighttime Landsat Data publication-title: Environ. Res. Lett. – volume: 177 start-page: 78 year: 2016 end-page: 88 ident: b0250 article-title: HOTMAP: Global hot target detection at moderate spatial resolution publication-title: Remote Sens. Environ. – reference: ESA, 2017. European Space Agency Land Cover CCI Product User Guide Version 2.0. https://www.esa-landcover-cci.org. Accessed date: May 12, 2020. – volume: 112 start-page: 2711 year: 2008 end-page: 2726 ident: b0305 article-title: Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data publication-title: Remote Sens. Environ. – volume: 222 start-page: 244 year: 2019 end-page: 266 ident: b0200 article-title: Geometric accuracy of remote sensing images over oceans: The use of global offshore platforms publication-title: Remote Sens. Environ. – volume: 46 start-page: 1200 year: 2008 end-page: 1218 ident: b0270 article-title: Fire detection and fire characterization over Africa using Meteosat SEVIRI publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 211 start-page: 376 year: 2018 end-page: 387 ident: b0190 article-title: An active fire detection algorithm based on multi-temporal FengYun-3C VIRR data publication-title: Remote Sens. Environ. – volume: 114 start-page: 4582 year: 2017 ident: b0290 article-title: Adapt to more wildfire in western North American forests as climate changes publication-title: PNAS – volume: 120 start-page: 84 year: 2012 end-page: 90 ident: b0015 article-title: ESA's Sentinel missions in support of Earth system science publication-title: Remote Sens. Environ. – volume: 120 start-page: 236 year: 2012 end-page: 254 ident: b0335 article-title: Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets publication-title: Remote Sens. Environ. – volume: 103 start-page: 32215 year: 1998 end-page: 32238 ident: b0175 article-title: Potential global fire monitoring from EOS-MODIS publication-title: J. Geophys. Res. – volume: 475 start-page: 489 year: 2011 ident: b0215 article-title: Carbon loss from an unprecedented Arctic tundra wildfire publication-title: Nature – volume: 9 start-page: 584 year: 2017 ident: b0110 article-title: Copernicus Sentinel-2A calibration and products validation status publication-title: Remote Sens. – reference: Global Volcanism Program, 2013. Volcanoes of the World, v. 4.8.8 (April 17 2020). Venzke, E (ed.). Smithsonian Institution. http://dx.doi.org/10.5479/si.GVP.VOTW4-2013. Downloaded May 11 2020. – volume: 553 start-page: 194 year: 2017 ident: b0265 article-title: Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity publication-title: Nature – volume: 82 start-page: 135 year: 2002 end-page: 155 ident: b0340 article-title: Automated volcanic eruption detection using MODIS publication-title: Remote Sens. Environ. – volume: 158 start-page: 263 year: 2019 end-page: 278 ident: b0220 article-title: Predicting forest fires burned area and rate of spread from pre-fire multispectral satellite measurements publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 204 start-page: 347 year: 2018 end-page: 365 ident: b0195 article-title: Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach publication-title: Remote Sens. Environ. – volume: 5 year: 2013 ident: b0080 article-title: VIIRS Nightfire: satellite pyrometry at Night publication-title: Remote Sens. – volume: 324 start-page: 481 year: 2009 ident: b0030 article-title: Fire in the Earth System publication-title: Science – volume: 17 start-page: 419 year: 1996 end-page: 424 ident: b0100 article-title: A contextual algorithm for AVHRR fire detection publication-title: Int. J. Remote Sens. – volume: 193 start-page: 138 year: 2017 end-page: 149 ident: b0350 article-title: Major advances in geostationary fire radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI publication-title: Remote Sens. Environ. – volume: 9 start-page: 584 issue: 6 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.008_b0110 article-title: Copernicus Sentinel-2A calibration and products validation status publication-title: Remote Sens. doi: 10.3390/rs9060584 – volume: 25 start-page: 1939 year: 2004 ident: 10.1016/j.isprsjprs.2021.05.008_b0315 article-title: AVHRR-derived fire frequency, distribution and area burned in Siberia publication-title: Int. J. Remote Sens. doi: 10.1080/01431160310001609725 – volume: 38 start-page: 2223 year: 2011 ident: 10.1016/j.isprsjprs.2021.05.008_b0035 article-title: The human dimension of fire regimes on Earth publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2011.02595.x – volume: 178 start-page: 31 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.008_b0140 article-title: The collection 6 MODIS active fire detection algorithm and fire products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.054 – volume: 494 start-page: 86 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.008_b0210 article-title: Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse publication-title: Nature doi: 10.1038/nature11869 – volume: 120 start-page: 84 year: 2012 ident: 10.1016/j.isprsjprs.2021.05.008_b0015 article-title: ESA's Sentinel missions in support of Earth system science publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.07.023 – ident: 10.1016/j.isprsjprs.2021.05.008_b0095 – volume: 164 start-page: 173 year: 2020 ident: 10.1016/j.isprsjprs.2021.05.008_b0005 article-title: Development of post-fire vegetation response-ability model in grassland mountainous ecosystem using GIS and remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.04.006 – volume: 475 start-page: 489 year: 2011 ident: 10.1016/j.isprsjprs.2021.05.008_b0215 article-title: Carbon loss from an unprecedented Arctic tundra wildfire publication-title: Nature doi: 10.1038/nature10283 – volume: 193 start-page: 138 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.008_b0350 article-title: Major advances in geostationary fire radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.02.024 – volume: 64 start-page: 370 year: 2019 ident: 10.1016/j.isprsjprs.2021.05.008_b0150 article-title: Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 publication-title: Science Bulletin. doi: 10.1016/j.scib.2019.03.002 – volume: 46 start-page: 1200 year: 2008 ident: 10.1016/j.isprsjprs.2021.05.008_b0270 article-title: Fire detection and fire characterization over Africa using Meteosat SEVIRI publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.915751 – volume: 120 start-page: 236 year: 2012 ident: 10.1016/j.isprsjprs.2021.05.008_b0335 article-title: Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.033 – volume: 171 start-page: 75 year: 2015 ident: 10.1016/j.isprsjprs.2021.05.008_b0025 article-title: An initial comparison of the thermal anomaly detection products of MODIS and VIIRS in their observation of Indonesian volcanic activity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.10.002 – volume: 12 start-page: 3232 year: 2020 ident: 10.1016/j.isprsjprs.2021.05.008_b0115 article-title: A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data publication-title: Remote Sens. doi: 10.3390/rs12193232 – volume: 112 start-page: 2711 year: 2008 ident: 10.1016/j.isprsjprs.2021.05.008_b0305 article-title: Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.005 – volume: 538 start-page: 88 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.008_b0310 article-title: Upward revision of global fossil fuel methane emissions based on isotope database publication-title: Nature doi: 10.1038/nature19797 – volume: 12 start-page: 820 issue: 5 year: 2020 ident: 10.1016/j.isprsjprs.2021.05.008_b0235 article-title: Volcanic hot-spot detection using Sentinel-2: a comparison with MODIS–MIROVA thermal data series publication-title: Remote Sens. doi: 10.3390/rs12050820 – volume: 11 start-page: 1056 year: 2019 ident: 10.1016/j.isprsjprs.2021.05.008_b0355 article-title: Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach publication-title: Remote Sens. doi: 10.3390/rs11091056 – volume: 24 start-page: 4505 year: 2003 ident: 10.1016/j.isprsjprs.2021.05.008_b0125 article-title: A multi-year active fire dataset for the tropics derived from the TRMM VIRS publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000070283 – volume: 515 start-page: 58 year: 2014 ident: 10.1016/j.isprsjprs.2021.05.008_b0245 article-title: Learning to coexist with wildfire publication-title: Nature doi: 10.1038/nature13946 – volume: 143 start-page: 85 year: 2014 ident: 10.1016/j.isprsjprs.2021.05.008_b0295 article-title: The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.12.008 – ident: 10.1016/j.isprsjprs.2021.05.008_b0160 doi: 10.5479/si.GVP.VOTW4-2013 – volume: 102 start-page: 13521 year: 2005 ident: 10.1016/j.isprsjprs.2021.05.008_b0145 article-title: Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance publication-title: PNAS doi: 10.1073/pnas.0506179102 – volume: 217 start-page: 426 year: 2018 ident: 10.1016/j.isprsjprs.2021.05.008_b0065 article-title: A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.08.009 – volume: 426 start-page: 223 issue: 1 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.008_b0155 article-title: HOTVOLC: a web-based monitoring system for volcanic hot spots publication-title: Geological Society, London, Special Publications doi: 10.1144/SP426.31 – volume: 421 start-page: 913 year: 2003 ident: 10.1016/j.isprsjprs.2021.05.008_b0055 article-title: Fire science for rainforests publication-title: Nature doi: 10.1038/nature01437 – volume: 158 start-page: 263 year: 2019 ident: 10.1016/j.isprsjprs.2021.05.008_b0220 article-title: Predicting forest fires burned area and rate of spread from pre-fire multispectral satellite measurements publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.10.013 – volume: 142 start-page: 94 year: 2018 ident: 10.1016/j.isprsjprs.2021.05.008_b0040 article-title: Burned area estimations derived from Landsat ETM+ and OLI data: Comparing Genetic Programming with Maximum Likelihood and Classification and Regression Trees publication-title: ISPRS J. Photogr. Remote Sensing. doi: 10.1016/j.isprsjprs.2018.05.007 – volume: 27 start-page: 409 issue: 5 year: 2009 ident: 10.1016/j.isprsjprs.2021.05.008_b0285 article-title: Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions publication-title: Waste Manage. Res. doi: 10.1177/0734242X09339325 – volume: 5 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.008_b0080 article-title: VIIRS Nightfire: satellite pyrometry at Night publication-title: Remote Sens. doi: 10.3390/rs5094423 – volume: 66 start-page: 17 issue: 1 year: 2011 ident: 10.1016/j.isprsjprs.2021.05.008_b0185 article-title: Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index publication-title: ISPRS J. Photogr. Remote Sensing. doi: 10.1016/j.isprsjprs.2010.08.004 – volume: 222 start-page: 244 year: 2019 ident: 10.1016/j.isprsjprs.2021.05.008_b0200 article-title: Geometric accuracy of remote sensing images over oceans: The use of global offshore platforms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.002 – volume: 6 start-page: 640 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.008_b0320 article-title: Preventing fires and haze in Southeast Asia publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3008 – volume: 246 year: 2020 ident: 10.1016/j.isprsjprs.2021.05.008_b0205 article-title: Space eye on flying aircraft: From Sentinel-2 MSI parallax to hybrid computing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111867 – volume: 114 start-page: 4582 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.008_b0290 article-title: Adapt to more wildfire in western North American forests as climate changes publication-title: PNAS doi: 10.1073/pnas.1617464114 – volume: 54 start-page: 544 issue: 5 year: 2011 ident: 10.1016/j.isprsjprs.2021.05.008_b0105 article-title: The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data publication-title: Annals of geophysics – volume: 248 year: 2020 ident: 10.1016/j.isprsjprs.2021.05.008_b0230 article-title: Landsat 9: Empowering open science and applications through continuity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111968 – volume: 159 start-page: 101 year: 2020 ident: 10.1016/j.isprsjprs.2021.05.008_b0045 article-title: A robust visible near-infrared index for fire severity mapping in Arctic tundra ecosystems publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.11.012 – volume: 284 start-page: 1832 year: 1999 ident: 10.1016/j.isprsjprs.2021.05.008_b0060 article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests publication-title: Science doi: 10.1126/science.284.5421.1832 – volume: 177 start-page: 78 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.008_b0250 article-title: HOTMAP: Global hot target detection at moderate spatial resolution publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.027 – volume: 48 start-page: 4327 year: 2014 ident: 10.1016/j.isprsjprs.2021.05.008_b0020 article-title: 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk publication-title: Environ. Sci. Technol. doi: 10.1021/es405533d – volume: 83 start-page: 244 year: 2002 ident: 10.1016/j.isprsjprs.2021.05.008_b0170 article-title: The MODIS fire products publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00076-7 – volume: 204 start-page: 347 year: 2018 ident: 10.1016/j.isprsjprs.2021.05.008_b0195 article-title: Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.019 – volume: 24 start-page: 3515 year: 2003 ident: 10.1016/j.isprsjprs.2021.05.008_b0120 article-title: Effect of wavelength selection on characterization of fire Size and temperature publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000117056 – volume: 11 start-page: 154 year: 2018 ident: 10.1016/j.isprsjprs.2021.05.008_b0180 article-title: Global operational land imager Landsat-8 reflectance-based active fire detection algorithm publication-title: Int. J. Digit. Earth. doi: 10.1080/17538947.2017.1391341 – volume: 211 start-page: 376 year: 2018 ident: 10.1016/j.isprsjprs.2021.05.008_b0190 article-title: An active fire detection algorithm based on multi-temporal FengYun-3C VIRR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.027 – volume: 2019 start-page: 1 issue: 222 year: 2019 ident: 10.1016/j.isprsjprs.2021.05.008_b0275 article-title: Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.011 – volume: 108 start-page: 407 year: 2007 ident: 10.1016/j.isprsjprs.2021.05.008_b0130 article-title: Characterization of the Tropical Diurnal Fire Cycle Using VIRS and MODIS Observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.018 – volume: 10 year: 2015 ident: 10.1016/j.isprsjprs.2021.05.008_b0085 article-title: Longwave Infrared Identification of Smoldering Peat Fires in Indonesia with Nighttime Landsat Data publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/6/065002 – volume: 324 start-page: 481 year: 2009 ident: 10.1016/j.isprsjprs.2021.05.008_b0030 article-title: Fire in the Earth System publication-title: Science doi: 10.1126/science.1163886 – volume: 82 start-page: 135 year: 2002 ident: 10.1016/j.isprsjprs.2021.05.008_b0340 article-title: Automated volcanic eruption detection using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00030-5 – volume: 11 start-page: 2876 issue: 23 year: 2019 ident: 10.1016/j.isprsjprs.2021.05.008_b0225 article-title: A multi-channel algorithm for mapping volcanic thermal anomalies by means of Sentinel-2 MSI and Landsat-8 OLI data publication-title: Remote Sens. doi: 10.3390/rs11232876 – volume: 17 start-page: 419 year: 1996 ident: 10.1016/j.isprsjprs.2021.05.008_b0100 article-title: A contextual algorithm for AVHRR fire detection publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608949018 – volume: 131 start-page: 195 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.008_b0255 article-title: MODIS and ASTER synergy for characterizing thermal volcanic activity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.005 – ident: 10.1016/j.isprsjprs.2021.05.008_b0280 – volume: 185 start-page: 210 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.008_b0300 article-title: Active fire detection using Landsat-8/OLI data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.032 – volume: 17 start-page: 798 year: 2011 ident: 10.1016/j.isprsjprs.2021.05.008_b0260 article-title: Global and regional importance of the tropical peatland carbon pool publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02279.x – year: 2003 ident: 10.1016/j.isprsjprs.2021.05.008_b0010 article-title: Energy efficiency of rotary dryers in manufacturing plants. 7–10 – volume: 119 start-page: 803 year: 2014 ident: 10.1016/j.isprsjprs.2021.05.008_b0075 article-title: Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results publication-title: J. Geophys. Res. [Atmos.] doi: 10.1002/2013JD020453 – ident: 10.1016/j.isprsjprs.2021.05.008_b0325 – volume: 135 start-page: 29 issue: 1/2 year: 2004 ident: 10.1016/j.isprsjprs.2021.05.008_b0345 article-title: Modvolc: near-real-time thermal monitoring of global volcanism publication-title: J. Volcanol. Geoth. Res. doi: 10.1016/j.jvolgeores.2003.12.008 – volume: 103 start-page: 32215 year: 1998 ident: 10.1016/j.isprsjprs.2021.05.008_b0175 article-title: Potential global fire monitoring from EOS-MODIS publication-title: J. Geophys. Res. doi: 10.1029/98JD01644 – ident: 10.1016/j.isprsjprs.2021.05.008_b0135 doi: 10.1016/j.rse.2008.03.003 – volume: 105 start-page: 20350 year: 2008 ident: 10.1016/j.isprsjprs.2021.05.008_b0330 article-title: Climate regulation of fire emissions and deforestation in equatorial Asia publication-title: PNAS doi: 10.1073/pnas.0803375105 – volume: 426 start-page: 181 issue: 1 year: 2015 ident: 10.1016/j.isprsjprs.2021.05.008_b0070 article-title: Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system publication-title: Geological Society, London, Special Publications doi: 10.1144/SP426.5 – ident: 10.1016/j.isprsjprs.2021.05.008_b0090 – volume: 104 start-page: 224 year: 2015 ident: 10.1016/j.isprsjprs.2021.05.008_b0050 article-title: Operational perspective of remote sensing-based forest fire danger forecasting systems publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.03.011 – volume: 198 start-page: 504 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.008_b0165 article-title: Mapping burned areas using dense time-series of Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.027 – volume: 553 start-page: 194 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.008_b0265 article-title: Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity publication-title: Nature doi: 10.1038/nature24668 |
SSID | ssj0001568 |
Score | 2.4928007 |
Snippet | •Two spectral characteristics of high-temperature anomalies (HTAs) were found.•A tri-spectral thermal-anomaly index (TAI) for Sentinel-2 MSI is proposed.•The... High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 174 |
SubjectTerms | biomass heat High-temperature anomaly (HTA) land cover landfills photogrammetry probability reflectance Remote sensing Sentinel-2 Multispectral Instrument (MSI) spectrometers Thermal anomaly index (TAI) time series analysis |
Title | Detecting high-temperature anomalies from Sentinel-2 MSI images |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2021.05.008 https://www.proquest.com/docview/2985923529 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeIq3gsRqmjh2mrAgBFQFRJdSqZt1Sa6iFaQVKQMLv527PIAipA4MGWLZSvSdfT7L330nxCk0B0bHCiUELkiNsSsBQ09iGoGmHSUOsCDIdoJ2T9_1TX9BXNW5MEyrrHx_6dMLb121NCo0G5PhsNF16eigWACJZYR8nzPKtW7yLD_7-KZ5eGU6HHeW3HuG4zXMJ6_5iB46KCqvkPDkOpN_71C_fHWxAbXWxVoVOTqX5c9tiAXMNsXqDz3BTbFclTR_et8SF9fI9wPU7rAksWQNqkpA2YFs_ELxN-YOZ5c4XWYMZfgslfPQvXWGL-Rj8m3Ra908XrVlVS1Bgt_0ptL3_SjQCGDclABOgSItLwwpICFUInS1Bo3aT2JXpxpVmCiyH4TRIB0EZJLE3xGL2TjDXeGAiVWcNo0yCV_M0pEOAIMkQh0BJN5gTwQ1QjappMS5osWzrTljI_sFrWVorWssQbsn3K-Bk1JNY_6Q89oEdmZiWPL58wef1EaztGz4LgQyHL9Rpyg0FNsaFe3_5wMHYoXfSv7uoVicvr7hEUUp0_i4mIbHYuny9r7d-QRyZeka |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcKA9VOWlUgoYqddV7PWuH1wqBEUJj1wCErfV2J6oQeBEJBz498zE66hUSBw4-LLeka2Z3W9mtLPfAPzCdGRNoUlhEqIyVIQKKYsUVTka9ihFQosC2UHSuzHnt_Z2BU7auzBSVumxv8H0BVr7ka7XZnc6HneHIacOWgiQhEYojtNPsCrsVLYDq8f9i95gCchRcyNO5isReFXmNZ5NH2d3_HCuqKMFi6e0mnzbSf0H1wsfdPYNvvrgMThu_m8dVqjegC__UApuwJrvav73eRN-n5IcEfB4IKzESmioPIdygPXkgUNwmgVywSQYStFQTfdKB1fDfjB-YJiZbcHN2Z_rk57yDRMUxmk0V3Ec54khRBtWrOMKOdiKsoxjEmPSnEJj0JCJyyI0lSGdlZpNiFk-qkYJW6WMt6FTT2r6DgHaQhdVarUt5WyWszpESsqcTI5YRqMdSFoNudKziUtTi3vXlo3duaVqnajWhdaxancgXApOG0KN90WOWhO4V2vDMey_L3zYGs3xzpHjEKxp8sST8sxyeGt1_uMjHziAtd711aW77A8uduGzvGnKeX9CZ_74RHsctMyLfb8oXwBw_uvL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+high-temperature+anomalies+from+Sentinel-2+MSI+images&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Liu%2C+Yongxue&rft.au=Zhi%2C+Weifeng&rft.au=Xu%2C+Bihua&rft.au=Xu%2C+Wenxuan&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=177&rft.spage=174&rft.epage=193&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.05.008&rft.externalDocID=S0924271621001337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |