Detecting high-temperature anomalies from Sentinel-2 MSI images

•Two spectral characteristics of high-temperature anomalies (HTAs) were found.•A tri-spectral thermal-anomaly index (TAI) for Sentinel-2 MSI is proposed.•The TAI-based HTA detection approach performs well at scene/regional scales.•The TAI-based approach shows a transferability to Landsat family imag...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 177; pp. 174 - 193
Main Authors Liu, Yongxue, Zhi, Weifeng, Xu, Bihua, Xu, Wenxuan, Wu, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Two spectral characteristics of high-temperature anomalies (HTAs) were found.•A tri-spectral thermal-anomaly index (TAI) for Sentinel-2 MSI is proposed.•The TAI-based HTA detection approach performs well at scene/regional scales.•The TAI-based approach shows a transferability to Landsat family images. High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's system. Sentinel-2 Multispectral Instrument (MSI) provides spatially-specific information for precisely measuring the location and extent of HTAs at a fine scale. However, detecting HTAs from MSI images remains challenging because the emitted radiance of an HTA in the short-wave infrared (SWIR) bands can be easily mixed with the reflected solar radiance background in the daytime; and an increasing number of atypical cases in MSI images need to be treated with the enhanced spatial resolution. A generic HTA detection approach that handles both anthropogenic and natural HTAs will broaden the scope of MSI applications. In this study, (i) we highlight two spectral characteristics of HTAs in the far-SWIR, near-SWIR, and NIR bands (i.e., (ρfar-SWIR - ρnear-SWIR)/ρNIR ≥ 0.45 and (ρfar-SWIR -ρnear-SWIR) ≥ ρnear-SWIR - ρNIR) that can effectively enhance HTAs from background geo-features, based on the reflectance spectra in airborne imaging spectrometer data. (ii) We propose a tri-spectral thermal anomaly index (TAI) that jointly uses the two high-temperature-sensitive SWIR bands and the high-temperature-insensitive NIR band to enhance HTAs, based on the above characteristics and a comprehensive sampling of different types of HTAs from 1,974 MSI images. (iii) We develop a TAI-based approach for MSI images to detect HTAs in general. The proposed approach was applied to detect different types of HTAs, including different biomass burnings, active volcanoes, and industrial HTAs, over a wide range of land-cover scenarios. Validations and comparisons demonstrate the proposed approach is reliable and performs better than the existing state-of-the-art HTA detection approaches. Evaluations on two types of small industrial HTAs, including operating kilns and enclosed landfill gas flares, show that the HTA detection probability of the TAI-based approach from time-series MSI images is ~ 84.91% and 88.23%, respectively. Further investigations show that the TAI-based approach also has good transferability in detecting HTAs from multispectral images acquired by Landsat-family satellites.
AbstractList High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's system. Sentinel-2 Multispectral Instrument (MSI) provides spatially-specific information for precisely measuring the location and extent of HTAs at a fine scale. However, detecting HTAs from MSI images remains challenging because the emitted radiance of an HTA in the short-wave infrared (SWIR) bands can be easily mixed with the reflected solar radiance background in the daytime; and an increasing number of atypical cases in MSI images need to be treated with the enhanced spatial resolution. A generic HTA detection approach that handles both anthropogenic and natural HTAs will broaden the scope of MSI applications. In this study, (i) we highlight two spectral characteristics of HTAs in the far-SWIR, near-SWIR, and NIR bands (i.e., (ρfₐᵣ₋SWIR - ρₙₑₐᵣ₋SWIR)/ρNIR ≥ 0.45 and (ρfₐᵣ₋SWIR -ρₙₑₐᵣ₋SWIR) ≥ ρₙₑₐᵣ₋SWIR - ρNIR) that can effectively enhance HTAs from background geo-features, based on the reflectance spectra in airborne imaging spectrometer data. (ii) We propose a tri-spectral thermal anomaly index (TAI) that jointly uses the two high-temperature-sensitive SWIR bands and the high-temperature-insensitive NIR band to enhance HTAs, based on the above characteristics and a comprehensive sampling of different types of HTAs from 1,974 MSI images. (iii) We develop a TAI-based approach for MSI images to detect HTAs in general. The proposed approach was applied to detect different types of HTAs, including different biomass burnings, active volcanoes, and industrial HTAs, over a wide range of land-cover scenarios. Validations and comparisons demonstrate the proposed approach is reliable and performs better than the existing state-of-the-art HTA detection approaches. Evaluations on two types of small industrial HTAs, including operating kilns and enclosed landfill gas flares, show that the HTA detection probability of the TAI-based approach from time-series MSI images is ~ 84.91% and 88.23%, respectively. Further investigations show that the TAI-based approach also has good transferability in detecting HTAs from multispectral images acquired by Landsat-family satellites.
•Two spectral characteristics of high-temperature anomalies (HTAs) were found.•A tri-spectral thermal-anomaly index (TAI) for Sentinel-2 MSI is proposed.•The TAI-based HTA detection approach performs well at scene/regional scales.•The TAI-based approach shows a transferability to Landsat family images. High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's system. Sentinel-2 Multispectral Instrument (MSI) provides spatially-specific information for precisely measuring the location and extent of HTAs at a fine scale. However, detecting HTAs from MSI images remains challenging because the emitted radiance of an HTA in the short-wave infrared (SWIR) bands can be easily mixed with the reflected solar radiance background in the daytime; and an increasing number of atypical cases in MSI images need to be treated with the enhanced spatial resolution. A generic HTA detection approach that handles both anthropogenic and natural HTAs will broaden the scope of MSI applications. In this study, (i) we highlight two spectral characteristics of HTAs in the far-SWIR, near-SWIR, and NIR bands (i.e., (ρfar-SWIR - ρnear-SWIR)/ρNIR ≥ 0.45 and (ρfar-SWIR -ρnear-SWIR) ≥ ρnear-SWIR - ρNIR) that can effectively enhance HTAs from background geo-features, based on the reflectance spectra in airborne imaging spectrometer data. (ii) We propose a tri-spectral thermal anomaly index (TAI) that jointly uses the two high-temperature-sensitive SWIR bands and the high-temperature-insensitive NIR band to enhance HTAs, based on the above characteristics and a comprehensive sampling of different types of HTAs from 1,974 MSI images. (iii) We develop a TAI-based approach for MSI images to detect HTAs in general. The proposed approach was applied to detect different types of HTAs, including different biomass burnings, active volcanoes, and industrial HTAs, over a wide range of land-cover scenarios. Validations and comparisons demonstrate the proposed approach is reliable and performs better than the existing state-of-the-art HTA detection approaches. Evaluations on two types of small industrial HTAs, including operating kilns and enclosed landfill gas flares, show that the HTA detection probability of the TAI-based approach from time-series MSI images is ~ 84.91% and 88.23%, respectively. Further investigations show that the TAI-based approach also has good transferability in detecting HTAs from multispectral images acquired by Landsat-family satellites.
Author Wu, Wei
Liu, Yongxue
Xu, Bihua
Xu, Wenxuan
Zhi, Weifeng
Author_xml – sequence: 1
  givenname: Yongxue
  surname: Liu
  fullname: Liu, Yongxue
  email: yongxue@nju.edu.cn
  organization: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu Province 210046, PR China
– sequence: 2
  givenname: Weifeng
  surname: Zhi
  fullname: Zhi, Weifeng
  email: weifengnju@yeah.net
  organization: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu Province 210046, PR China
– sequence: 3
  givenname: Bihua
  surname: Xu
  fullname: Xu, Bihua
  email: bihuaxu@foxmail.com
  organization: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu Province 210046, PR China
– sequence: 4
  givenname: Wenxuan
  surname: Xu
  fullname: Xu, Wenxuan
  email: wenshinexu@foxmail.com
  organization: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu Province 210046, PR China
– sequence: 5
  givenname: Wei
  surname: Wu
  fullname: Wu, Wei
  email: weiwu_9410@163.com
  organization: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu Province 210046, PR China
BookMark eNqNkDtPwzAUhS1UJNrCbyAjS4JfSewBoaq8KhUxFGbLdW5aR3kU20Xi3-OqiIEFhqu7nO9I55ugUT_0gNAlwRnBpLhuMut3zjfxMoopyXCeYSxO0JiIkqaCsnyExlhSntKSFGdo4n2DMSZ5Icbo9g4CmGD7TbK1m20aoNuB02HvINH90OnWgk9qN3TJCvqYgzalyfNqkdhOb8Cfo9Natx4uvv8UvT3cv86f0uXL42I-W6aalSSkjDFZcNA6x1UBstKkYEQIJiTnpQTMuebAmVljXnGgwlBYgxayruqCrAvDpujq2Ltzw_sefFCd9QbaVvcw7L2iUuQyTqUyRm-OUeMG7x3Uytiggx364LRtFcHqIE416kecOohTOFdRXOTLX_zOxbHu8x_k7EhCNPFhwSlvLPQGKuuiZFUN9s-OL5FvkDw
CitedBy_id crossref_primary_10_3390_s23125734
crossref_primary_10_3390_rs15020335
crossref_primary_10_1088_1748_9326_ac59aa
crossref_primary_10_1016_j_scitotenv_2024_173082
crossref_primary_10_1088_1748_9326_ad82fb
crossref_primary_10_1029_2021GL093789
crossref_primary_10_3390_rs13163074
crossref_primary_10_1016_j_isprsjprs_2024_05_002
crossref_primary_10_1016_j_jag_2025_104394
crossref_primary_10_1109_TGRS_2025_3528641
crossref_primary_10_3390_rs14246319
crossref_primary_10_1016_j_jag_2023_103534
crossref_primary_10_1016_j_geomat_2024_100008
crossref_primary_10_1016_j_jag_2022_103075
crossref_primary_10_1016_j_rse_2023_113679
crossref_primary_10_1016_j_rse_2023_113954
crossref_primary_10_1109_LGRS_2024_3443775
crossref_primary_10_3390_rs16050768
crossref_primary_10_3390_f16030497
crossref_primary_10_1109_JSTARS_2024_3436811
crossref_primary_10_1038_s41598_024_81976_w
crossref_primary_10_1007_s12145_024_01316_4
crossref_primary_10_1038_s41597_024_03461_3
crossref_primary_10_3390_land12061246
crossref_primary_10_3390_su15065333
crossref_primary_10_1038_s41893_023_01125_5
crossref_primary_10_1029_2023JD039524
crossref_primary_10_1080_17538947_2024_2441932
crossref_primary_10_3390_environments10070128
crossref_primary_10_1016_j_rse_2023_113753
crossref_primary_10_1109_JSTARS_2024_3406767
Cites_doi 10.3390/rs9060584
10.1080/01431160310001609725
10.1111/j.1365-2699.2011.02595.x
10.1016/j.rse.2016.02.054
10.1038/nature11869
10.1016/j.rse.2011.07.023
10.1016/j.isprsjprs.2020.04.006
10.1038/nature10283
10.1016/j.rse.2017.02.024
10.1016/j.scib.2019.03.002
10.1109/TGRS.2008.915751
10.1016/j.rse.2011.09.033
10.1016/j.rse.2015.10.002
10.3390/rs12193232
10.1016/j.rse.2008.01.005
10.1038/nature19797
10.3390/rs12050820
10.3390/rs11091056
10.1080/0143116031000070283
10.1038/nature13946
10.1016/j.rse.2013.12.008
10.5479/si.GVP.VOTW4-2013
10.1073/pnas.0506179102
10.1016/j.rse.2018.08.009
10.1144/SP426.31
10.1038/nature01437
10.1016/j.isprsjprs.2019.10.013
10.1016/j.isprsjprs.2018.05.007
10.1177/0734242X09339325
10.3390/rs5094423
10.1016/j.isprsjprs.2010.08.004
10.1016/j.rse.2019.01.002
10.1038/nclimate3008
10.1016/j.rse.2020.111867
10.1073/pnas.1617464114
10.1016/j.rse.2020.111968
10.1016/j.isprsjprs.2019.11.012
10.1126/science.284.5421.1832
10.1016/j.rse.2016.02.027
10.1021/es405533d
10.1016/S0034-4257(02)00076-7
10.1016/j.rse.2017.10.019
10.1080/0143116031000117056
10.1080/17538947.2017.1391341
10.1016/j.rse.2018.04.027
10.1016/j.rse.2018.12.011
10.1016/j.rse.2006.11.018
10.1088/1748-9326/10/6/065002
10.1126/science.1163886
10.1016/S0034-4257(02)00030-5
10.3390/rs11232876
10.1080/01431169608949018
10.1016/j.rse.2012.12.005
10.1016/j.rse.2015.08.032
10.1111/j.1365-2486.2010.02279.x
10.1002/2013JD020453
10.1016/j.jvolgeores.2003.12.008
10.1029/98JD01644
10.1016/j.rse.2008.03.003
10.1073/pnas.0803375105
10.1144/SP426.5
10.1016/j.isprsjprs.2014.03.011
10.1016/j.rse.2017.06.027
10.1038/nature24668
ContentType Journal Article
Copyright 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2021.05.008
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 193
ExternalDocumentID 10_1016_j_isprsjprs_2021_05_008
S0924271621001337
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a371t-333964eaa50d6e9da1631883894479e044a4e43cb04d4e28c2ebea89fdf61b6c3
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Fri Jul 11 11:59:02 EDT 2025
Tue Jul 01 03:46:46 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Fri Feb 23 02:44:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sentinel-2 Multispectral Instrument (MSI)
Thermal anomaly index (TAI)
Remote sensing
High-temperature anomaly (HTA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-333964eaa50d6e9da1631883894479e044a4e43cb04d4e28c2ebea89fdf61b6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2985923529
PQPubID 24069
PageCount 20
ParticipantIDs proquest_miscellaneous_2985923529
crossref_citationtrail_10_1016_j_isprsjprs_2021_05_008
crossref_primary_10_1016_j_isprsjprs_2021_05_008
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Xu, Zhi, Hu, Dong, Jin, Lu, Chen, Xu, Liu, Zhao, Lu (b0205) 2020; 246
Adagbasa, Adelabu, Okello (b0005) 2020; 164
Berger, Moreno, Johannessen, Levelt, Hanssen (b0015) 2012; 120
Betha, Behera, Balasubramanian (b0020) 2014; 48
Flasse, Ceccato (b0100) 1996; 17
Kumar, Roy (b0180) 2018; 11
Wooster, Xu, Nightingale (b0335) 2012; 120
Lhermitte, Verbesselt, Verstraeten, Veraverbeke, Coppin (b0185) 2011; 66
Gouhier, Guéhenneux, Labazuy, Cacault, Decriem, Rivet (b0155) 2016; 426
Wright, Flynn, Garbeil, Harris, Pilger (b0345) 2004; 135
Bowman, Balch, Artaxo, Bond, Carlson, Cochrane, D’Antonio, DeFries, Doyle, Harrison, Johnston, Keeley, Krawchuk, Kull, Marston, Moritz, Prentice, Roos, Scott, Swetnam, van der Werf, Pyne (b0030) 2009; 324
Roberts, Wooster (b0270) 2008; 46
Massimetti, Diego, Marco, Sébastien, Ripepe (b0235) 2020; 12
Page, Rieley, Banks (b0260) 2011; 17
Murphy, de Souza Filho, Wright, Sabatino, Correa Pabon (b0250) 2016; 177
Ganci, Vicari, Fortuna, Negro (b0105) 2011; 54
Lin, Chen, Niu, Li, Yu, Jia, Zhang (b0190) 2018; 211
Giglio, Kendall, Mack (b0125) 2003; 24
Xu, Wooster, Kaneko, He, Zhang, Fisher (b0350) 2017; 193
Moritz, Batllori, Bradstock, Gill, Handmer, Hessburg, Leonard, McCaffrey, Odion, Schoennagel, Syphard (b0245) 2014; 515
Kaufman, Justice, Flynn, Kendall, Prins, Giglio, Ward, Menzel, Setzer (b0175) 1998; 103
Csiszar, Schroeder, Giglio, Ellicott, Vadrevu, Justice, Wind (b0075) 2014; 119
Cochrane (b0055) 2003; 421
ESA, 2017. European Space Agency Land Cover CCI Product User Guide Version 2.0. https://www.esa-landcover-cci.org. Accessed date: May 12, 2020.
Ahluwalia, Leach, Terry (b0010) 2003
Soja, Sukhinin, Cahoon, Shugart, Stackhouse (b0315) 2004; 25
Global Volcanism Program, 2013. Volcanoes of the World, v. 4.8.8 (April 17 2020). Venzke, E (ed.). Smithsonian Institution. http://dx.doi.org/10.5479/si.GVP.VOTW4-2013. Downloaded May 11 2020.
Coppola, Laiolo, Cigolini, Donne, Ripepe (b0070) 2015; 426
Masek, Wulder, Markham, McCorkel, Crawford, Storey, Jenstrom (b0230) 2020; 248
Giglio, Justice (b0120) 2003; 24
Murphy, Wright, Oppenheimer, Filho (b0255) 2013; 131
Maffei, Menenti (b0220) 2019; 158
Pellegrini, Ahlström, Hobbie, Reich, Nieradzik, Staver, Scharenbroch, Jumpponen, Anderegg, Randerson, Jackson (b0265) 2017; 553
Bowman, Balch, Artaxo, Bond, Cochrane, D’Antonio, DeFries, Johnston, Keeley, Krawchuk, Kull, Mack, Moritz, Pyne, Roos, Scott, Sodhi, Swetnam (b0035) 2011; 38
Schroeder, Oliva, Giglio, Csiszar (b0295) 2014; 143
Mack, Bret-Harte, Hollingsworth, Jandt, Schuur, Shaver, Verbyla (b0215) 2011; 475
van der Werf, Dempewolf, Trigg, Randerson, Kasibhatla, Giglio, Murdiyarso, Peters, Morton, Collatz, Dolman, DeFries (b0330) 2008; 105
Coluzzi, Imbrenda, Lanfredi, Simoniello (b0065) 2018; 217
Giglio, Schroeder, Justice (b0140) 2016; 178
Wright, Flynn, Garbeil, Harris, Pilger (b0340) 2002; 82
Cochrane, Alencar, Schulze, Souza, Nepstad, Lefebvre, Davidson (b0060) 1999; 284
Hawbaker, Vanderhoof, Beal, Takacs, Schmidt, Falgout, Williams, Fairaux, Caldwell, Picotte, Howard, Stitt, Dwyer (b0165) 2017; 198
Marchese, Genzano, Neri, Falconieri, Pergola (b0225) 2019; 11
Liu, Hu, Dong, Xu, Zhan, Sun (b0200) 2019; 222
Blackett (b0025) 2015; 171
Schwietzke, Sherwood, Bruhwiler, Miller, Etiope, Dlugokencky, Michel, Arling, Vaughn, White, Tans (b0310) 2016; 538
United States Environmental Protection Agency (EPA), 2000. Landfill manuals. https://www.epa.ie/pubs/advice/waste/waste/EPA%20Landfill%20Monitoring.pdf. Accessed date: May 4, 2020.
Schoennagel, Balch, Brenkert-Smith, Dennison, Harvey, Krawchuk, Mietkiewicz, Morgan, Moritz, Rasker, Turner, Whitlock (b0290) 2017; 114
Chen, Lara, Hu (b0045) 2020; 159
Giglio, L., Csiszar, Restás, Á., Morisette, J.T., Schroeder, W., Morton, D., Justice, C.O., 2008. Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ. 112, 3055–3063.
Roteta, Bastarrika, Padilla, Storm, Chuvieco (b0275) 2019; 2019
Chowdhury, Hassan (b0050) 2015; 104
Genzano, Pergola, Marchese (b0115) 2020; 12
Elvidge, Zhizhin, Hsu, Baugh, Khomarudin, Vetrita, Sofan, Hilman (b0085) 2015; 10
Gascon, Bouzinac, Thépaut, Jung, Francesconi (b0110) 2017; 9
Elvidge, Zhizhin, Hsu, Baugh (b0080) 2013; 5
ESA, 2015. Sentinel-2 User Handbook. https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook, Accessed date: July 24, 2019.
Gong, Liu, Zhang, Li, Wang (b0150) 2019; 64
Scheutz, Kjeldsen, Bogner, de Visscher, Gebert, Hilger (b0285) 2009; 27
Cabral, Silva, Silva, Vanneschi, Vasconcelos (b0040) 2018; 142
Liu, Hu, Zhan, Sun, Murch, Ma (b0195) 2018; 204
Goetz, Bunn, Fiske, Houghton (b0145) 2005; 102
Justice, Giglio, Korontzi, Owens, Morisette, Roy, Descloitres, Alleaume, Petitcolin, Kaufman (b0170) 2002; 83
Zhang, Liu, Chen, Xie, Gao (b0355) 2019; 11
MacDougall, McCann, Gellner, Turkington (b0210) 2013; 494
Giglio (b0130) 2007; 108
Schroeder, Prins, Giglio, Csiszar, Schmidt, Morisette, Morton (b0305) 2008; 112
Tacconi (b0320) 2016; 6
Saxon, E., and Sheppard, S. 2010. Land Systems of Indonesia and Papua New Guinea. Last Accessed April 11, 2020. http://www.arcgis.com/home/item.html?id=dae887c070b840e1bdae639a1e63260d.
Schroeder, Oliva, Giglio, Quayle, Lorenz, Morelli (b0300) 2016; 185
Schoennagel (10.1016/j.isprsjprs.2021.05.008_b0290) 2017; 114
Cochrane (10.1016/j.isprsjprs.2021.05.008_b0055) 2003; 421
Liu (10.1016/j.isprsjprs.2021.05.008_b0205) 2020; 246
10.1016/j.isprsjprs.2021.05.008_b0160
10.1016/j.isprsjprs.2021.05.008_b0280
Murphy (10.1016/j.isprsjprs.2021.05.008_b0250) 2016; 177
Berger (10.1016/j.isprsjprs.2021.05.008_b0015) 2012; 120
Mack (10.1016/j.isprsjprs.2021.05.008_b0215) 2011; 475
Gascon (10.1016/j.isprsjprs.2021.05.008_b0110) 2017; 9
Zhang (10.1016/j.isprsjprs.2021.05.008_b0355) 2019; 11
Elvidge (10.1016/j.isprsjprs.2021.05.008_b0080) 2013; 5
Giglio (10.1016/j.isprsjprs.2021.05.008_b0125) 2003; 24
Adagbasa (10.1016/j.isprsjprs.2021.05.008_b0005) 2020; 164
Hawbaker (10.1016/j.isprsjprs.2021.05.008_b0165) 2017; 198
Justice (10.1016/j.isprsjprs.2021.05.008_b0170) 2002; 83
Lhermitte (10.1016/j.isprsjprs.2021.05.008_b0185) 2011; 66
van der Werf (10.1016/j.isprsjprs.2021.05.008_b0330) 2008; 105
Wright (10.1016/j.isprsjprs.2021.05.008_b0345) 2004; 135
Elvidge (10.1016/j.isprsjprs.2021.05.008_b0085) 2015; 10
Marchese (10.1016/j.isprsjprs.2021.05.008_b0225) 2019; 11
Liu (10.1016/j.isprsjprs.2021.05.008_b0195) 2018; 204
Schroeder (10.1016/j.isprsjprs.2021.05.008_b0300) 2016; 185
Schroeder (10.1016/j.isprsjprs.2021.05.008_b0305) 2008; 112
Ganci (10.1016/j.isprsjprs.2021.05.008_b0105) 2011; 54
Soja (10.1016/j.isprsjprs.2021.05.008_b0315) 2004; 25
Giglio (10.1016/j.isprsjprs.2021.05.008_b0140) 2016; 178
Goetz (10.1016/j.isprsjprs.2021.05.008_b0145) 2005; 102
Kumar (10.1016/j.isprsjprs.2021.05.008_b0180) 2018; 11
MacDougall (10.1016/j.isprsjprs.2021.05.008_b0210) 2013; 494
Roteta (10.1016/j.isprsjprs.2021.05.008_b0275) 2019; 2019
Tacconi (10.1016/j.isprsjprs.2021.05.008_b0320) 2016; 6
Genzano (10.1016/j.isprsjprs.2021.05.008_b0115) 2020; 12
Coluzzi (10.1016/j.isprsjprs.2021.05.008_b0065) 2018; 217
Masek (10.1016/j.isprsjprs.2021.05.008_b0230) 2020; 248
Murphy (10.1016/j.isprsjprs.2021.05.008_b0255) 2013; 131
Coppola (10.1016/j.isprsjprs.2021.05.008_b0070) 2015; 426
Cabral (10.1016/j.isprsjprs.2021.05.008_b0040) 2018; 142
Giglio (10.1016/j.isprsjprs.2021.05.008_b0120) 2003; 24
Betha (10.1016/j.isprsjprs.2021.05.008_b0020) 2014; 48
Wooster (10.1016/j.isprsjprs.2021.05.008_b0335) 2012; 120
Massimetti (10.1016/j.isprsjprs.2021.05.008_b0235) 2020; 12
Roberts (10.1016/j.isprsjprs.2021.05.008_b0270) 2008; 46
Gouhier (10.1016/j.isprsjprs.2021.05.008_b0155) 2016; 426
Wright (10.1016/j.isprsjprs.2021.05.008_b0340) 2002; 82
Pellegrini (10.1016/j.isprsjprs.2021.05.008_b0265) 2017; 553
Cochrane (10.1016/j.isprsjprs.2021.05.008_b0060) 1999; 284
10.1016/j.isprsjprs.2021.05.008_b0135
Kaufman (10.1016/j.isprsjprs.2021.05.008_b0175) 1998; 103
Page (10.1016/j.isprsjprs.2021.05.008_b0260) 2011; 17
Bowman (10.1016/j.isprsjprs.2021.05.008_b0030) 2009; 324
Moritz (10.1016/j.isprsjprs.2021.05.008_b0245) 2014; 515
Liu (10.1016/j.isprsjprs.2021.05.008_b0200) 2019; 222
Lin (10.1016/j.isprsjprs.2021.05.008_b0190) 2018; 211
Bowman (10.1016/j.isprsjprs.2021.05.008_b0035) 2011; 38
Maffei (10.1016/j.isprsjprs.2021.05.008_b0220) 2019; 158
Schroeder (10.1016/j.isprsjprs.2021.05.008_b0295) 2014; 143
Xu (10.1016/j.isprsjprs.2021.05.008_b0350) 2017; 193
10.1016/j.isprsjprs.2021.05.008_b0095
10.1016/j.isprsjprs.2021.05.008_b0090
Csiszar (10.1016/j.isprsjprs.2021.05.008_b0075) 2014; 119
Ahluwalia (10.1016/j.isprsjprs.2021.05.008_b0010) 2003
Blackett (10.1016/j.isprsjprs.2021.05.008_b0025) 2015; 171
Chowdhury (10.1016/j.isprsjprs.2021.05.008_b0050) 2015; 104
Gong (10.1016/j.isprsjprs.2021.05.008_b0150) 2019; 64
Schwietzke (10.1016/j.isprsjprs.2021.05.008_b0310) 2016; 538
Giglio (10.1016/j.isprsjprs.2021.05.008_b0130) 2007; 108
Flasse (10.1016/j.isprsjprs.2021.05.008_b0100) 1996; 17
Chen (10.1016/j.isprsjprs.2021.05.008_b0045) 2020; 159
Scheutz (10.1016/j.isprsjprs.2021.05.008_b0285) 2009; 27
10.1016/j.isprsjprs.2021.05.008_b0325
References_xml – volume: 83
  start-page: 244
  year: 2002
  end-page: 262
  ident: b0170
  article-title: The MODIS fire products
  publication-title: Remote Sens. Environ.
– volume: 217
  start-page: 426
  year: 2018
  end-page: 443
  ident: b0065
  article-title: A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses
  publication-title: Remote Sens. Environ.
– volume: 24
  start-page: 3515
  year: 2003
  end-page: 3520
  ident: b0120
  article-title: Effect of wavelength selection on characterization of fire Size and temperature
  publication-title: Int. J. Remote Sens.
– volume: 248
  year: 2020
  ident: b0230
  article-title: Landsat 9: Empowering open science and applications through continuity
  publication-title: Remote Sens. Environ.
– reference: Saxon, E., and Sheppard, S. 2010. Land Systems of Indonesia and Papua New Guinea. Last Accessed April 11, 2020. http://www.arcgis.com/home/item.html?id=dae887c070b840e1bdae639a1e63260d.
– volume: 11
  start-page: 1056
  year: 2019
  ident: b0355
  article-title: Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach
  publication-title: Remote Sens.
– volume: 178
  start-page: 31
  year: 2016
  end-page: 41
  ident: b0140
  article-title: The collection 6 MODIS active fire detection algorithm and fire products
  publication-title: Remote Sens. Environ.
– reference: United States Environmental Protection Agency (EPA), 2000. Landfill manuals. https://www.epa.ie/pubs/advice/waste/waste/EPA%20Landfill%20Monitoring.pdf. Accessed date: May 4, 2020.
– volume: 143
  start-page: 85
  year: 2014
  end-page: 96
  ident: b0295
  article-title: The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment
  publication-title: Remote Sens. Environ.
– volume: 515
  start-page: 58
  year: 2014
  ident: b0245
  article-title: Learning to coexist with wildfire
  publication-title: Nature
– volume: 102
  start-page: 13521
  year: 2005
  ident: b0145
  article-title: Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance
  publication-title: PNAS
– volume: 25
  start-page: 1939
  year: 2004
  end-page: 1960
  ident: b0315
  article-title: AVHRR-derived fire frequency, distribution and area burned in Siberia
  publication-title: Int. J. Remote Sens.
– volume: 426
  start-page: 181
  year: 2015
  end-page: 205
  ident: b0070
  article-title: Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system
  publication-title: Geological Society, London, Special Publications
– volume: 119
  start-page: 803
  year: 2014
  end-page: 816
  ident: b0075
  article-title: Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results
  publication-title: J. Geophys. Res. [Atmos.]
– volume: 38
  start-page: 2223
  year: 2011
  end-page: 2236
  ident: b0035
  article-title: The human dimension of fire regimes on Earth
  publication-title: J. Biogeogr.
– volume: 284
  start-page: 1832
  year: 1999
  ident: b0060
  article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests
  publication-title: Science
– volume: 142
  start-page: 94
  year: 2018
  end-page: 105
  ident: b0040
  article-title: Burned area estimations derived from Landsat ETM+ and OLI data: Comparing Genetic Programming with Maximum Likelihood and Classification and Regression Trees
  publication-title: ISPRS J. Photogr. Remote Sensing.
– volume: 24
  start-page: 4505
  year: 2003
  end-page: 4525
  ident: b0125
  article-title: A multi-year active fire dataset for the tropics derived from the TRMM VIRS
  publication-title: Int. J. Remote Sens.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 17
  ident: b0275
  article-title: Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa
  publication-title: Remote Sens. Environ.
– volume: 538
  start-page: 88
  year: 2016
  ident: b0310
  article-title: Upward revision of global fossil fuel methane emissions based on isotope database
  publication-title: Nature
– volume: 426
  start-page: 223
  year: 2016
  end-page: 241
  ident: b0155
  article-title: HOTVOLC: a web-based monitoring system for volcanic hot spots
  publication-title: Geological Society, London, Special Publications
– volume: 54
  start-page: 544
  year: 2011
  end-page: 550
  ident: b0105
  article-title: The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data
  publication-title: Annals of geophysics
– volume: 6
  start-page: 640
  year: 2016
  ident: b0320
  article-title: Preventing fires and haze in Southeast Asia
  publication-title: Nat. Clim. Chang.
– reference: Giglio, L., Csiszar, Restás, Á., Morisette, J.T., Schroeder, W., Morton, D., Justice, C.O., 2008. Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ. 112, 3055–3063.
– volume: 66
  start-page: 17
  year: 2011
  end-page: 27
  ident: b0185
  article-title: Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index
  publication-title: ISPRS J. Photogr. Remote Sensing.
– volume: 27
  start-page: 409
  year: 2009
  end-page: 455
  ident: b0285
  article-title: Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions
  publication-title: Waste Manage. Res.
– volume: 246
  year: 2020
  ident: b0205
  article-title: Space eye on flying aircraft: From Sentinel-2 MSI parallax to hybrid computing
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 3232
  year: 2020
  ident: b0115
  article-title: A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data
  publication-title: Remote Sens.
– volume: 108
  start-page: 407
  year: 2007
  end-page: 421
  ident: b0130
  article-title: Characterization of the Tropical Diurnal Fire Cycle Using VIRS and MODIS Observations
  publication-title: Remote Sens. Environ.
– volume: 135
  start-page: 29
  year: 2004
  end-page: 49
  ident: b0345
  article-title: Modvolc: near-real-time thermal monitoring of global volcanism
  publication-title: J. Volcanol. Geoth. Res.
– reference: ESA, 2015. Sentinel-2 User Handbook. https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook, Accessed date: July 24, 2019.
– volume: 159
  start-page: 101
  year: 2020
  end-page: 113
  ident: b0045
  article-title: A robust visible near-infrared index for fire severity mapping in Arctic tundra ecosystems
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2003
  ident: b0010
  article-title: Energy efficiency of rotary dryers in manufacturing plants. 7–10
  publication-title: Solutions for Energy Security & Facility Management Challenges
– volume: 104
  start-page: 224
  year: 2015
  end-page: 236
  ident: b0050
  article-title: Operational perspective of remote sensing-based forest fire danger forecasting systems
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 64
  start-page: 370
  year: 2019
  end-page: 373
  ident: b0150
  article-title: Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017
  publication-title: Science Bulletin.
– volume: 198
  start-page: 504
  year: 2017
  end-page: 522
  ident: b0165
  article-title: Mapping burned areas using dense time-series of Landsat data
  publication-title: Remote Sens. Environ.
– volume: 494
  start-page: 86
  year: 2013
  ident: b0210
  article-title: Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse
  publication-title: Nature
– volume: 164
  start-page: 173
  year: 2020
  end-page: 183
  ident: b0005
  article-title: Development of post-fire vegetation response-ability model in grassland mountainous ecosystem using GIS and remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 2876
  year: 2019
  ident: b0225
  article-title: A multi-channel algorithm for mapping volcanic thermal anomalies by means of Sentinel-2 MSI and Landsat-8 OLI data
  publication-title: Remote Sens.
– volume: 11
  start-page: 154
  year: 2018
  end-page: 178
  ident: b0180
  article-title: Global operational land imager Landsat-8 reflectance-based active fire detection algorithm
  publication-title: Int. J. Digit. Earth.
– volume: 17
  start-page: 798
  year: 2011
  end-page: 818
  ident: b0260
  article-title: Global and regional importance of the tropical peatland carbon pool
  publication-title: Glob. Chang. Biol.
– volume: 105
  start-page: 20350
  year: 2008
  ident: b0330
  article-title: Climate regulation of fire emissions and deforestation in equatorial Asia
  publication-title: PNAS
– volume: 421
  start-page: 913
  year: 2003
  end-page: 919
  ident: b0055
  article-title: Fire science for rainforests
  publication-title: Nature
– volume: 48
  start-page: 4327
  year: 2014
  end-page: 4335
  ident: b0020
  article-title: 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk
  publication-title: Environ. Sci. Technol.
– volume: 171
  start-page: 75
  year: 2015
  end-page: 82
  ident: b0025
  article-title: An initial comparison of the thermal anomaly detection products of MODIS and VIIRS in their observation of Indonesian volcanic activity
  publication-title: Remote Sens. Environ.
– volume: 131
  start-page: 195
  year: 2013
  end-page: 205
  ident: b0255
  article-title: MODIS and ASTER synergy for characterizing thermal volcanic activity
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 820
  year: 2020
  ident: b0235
  article-title: Volcanic hot-spot detection using Sentinel-2: a comparison with MODIS–MIROVA thermal data series
  publication-title: Remote Sens.
– volume: 185
  start-page: 210
  year: 2016
  end-page: 220
  ident: b0300
  article-title: Active fire detection using Landsat-8/OLI data
  publication-title: Remote Sens. Environ.
– volume: 10
  year: 2015
  ident: b0085
  article-title: Longwave Infrared Identification of Smoldering Peat Fires in Indonesia with Nighttime Landsat Data
  publication-title: Environ. Res. Lett.
– volume: 177
  start-page: 78
  year: 2016
  end-page: 88
  ident: b0250
  article-title: HOTMAP: Global hot target detection at moderate spatial resolution
  publication-title: Remote Sens. Environ.
– reference: ESA, 2017. European Space Agency Land Cover CCI Product User Guide Version 2.0. https://www.esa-landcover-cci.org. Accessed date: May 12, 2020.
– volume: 112
  start-page: 2711
  year: 2008
  end-page: 2726
  ident: b0305
  article-title: Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data
  publication-title: Remote Sens. Environ.
– volume: 222
  start-page: 244
  year: 2019
  end-page: 266
  ident: b0200
  article-title: Geometric accuracy of remote sensing images over oceans: The use of global offshore platforms
  publication-title: Remote Sens. Environ.
– volume: 46
  start-page: 1200
  year: 2008
  end-page: 1218
  ident: b0270
  article-title: Fire detection and fire characterization over Africa using Meteosat SEVIRI
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 211
  start-page: 376
  year: 2018
  end-page: 387
  ident: b0190
  article-title: An active fire detection algorithm based on multi-temporal FengYun-3C VIRR data
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 4582
  year: 2017
  ident: b0290
  article-title: Adapt to more wildfire in western North American forests as climate changes
  publication-title: PNAS
– volume: 120
  start-page: 84
  year: 2012
  end-page: 90
  ident: b0015
  article-title: ESA's Sentinel missions in support of Earth system science
  publication-title: Remote Sens. Environ.
– volume: 120
  start-page: 236
  year: 2012
  end-page: 254
  ident: b0335
  article-title: Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets
  publication-title: Remote Sens. Environ.
– volume: 103
  start-page: 32215
  year: 1998
  end-page: 32238
  ident: b0175
  article-title: Potential global fire monitoring from EOS-MODIS
  publication-title: J. Geophys. Res.
– volume: 475
  start-page: 489
  year: 2011
  ident: b0215
  article-title: Carbon loss from an unprecedented Arctic tundra wildfire
  publication-title: Nature
– volume: 9
  start-page: 584
  year: 2017
  ident: b0110
  article-title: Copernicus Sentinel-2A calibration and products validation status
  publication-title: Remote Sens.
– reference: Global Volcanism Program, 2013. Volcanoes of the World, v. 4.8.8 (April 17 2020). Venzke, E (ed.). Smithsonian Institution. http://dx.doi.org/10.5479/si.GVP.VOTW4-2013. Downloaded May 11 2020.
– volume: 553
  start-page: 194
  year: 2017
  ident: b0265
  article-title: Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity
  publication-title: Nature
– volume: 82
  start-page: 135
  year: 2002
  end-page: 155
  ident: b0340
  article-title: Automated volcanic eruption detection using MODIS
  publication-title: Remote Sens. Environ.
– volume: 158
  start-page: 263
  year: 2019
  end-page: 278
  ident: b0220
  article-title: Predicting forest fires burned area and rate of spread from pre-fire multispectral satellite measurements
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 204
  start-page: 347
  year: 2018
  end-page: 365
  ident: b0195
  article-title: Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach
  publication-title: Remote Sens. Environ.
– volume: 5
  year: 2013
  ident: b0080
  article-title: VIIRS Nightfire: satellite pyrometry at Night
  publication-title: Remote Sens.
– volume: 324
  start-page: 481
  year: 2009
  ident: b0030
  article-title: Fire in the Earth System
  publication-title: Science
– volume: 17
  start-page: 419
  year: 1996
  end-page: 424
  ident: b0100
  article-title: A contextual algorithm for AVHRR fire detection
  publication-title: Int. J. Remote Sens.
– volume: 193
  start-page: 138
  year: 2017
  end-page: 149
  ident: b0350
  article-title: Major advances in geostationary fire radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 584
  issue: 6
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.008_b0110
  article-title: Copernicus Sentinel-2A calibration and products validation status
  publication-title: Remote Sens.
  doi: 10.3390/rs9060584
– volume: 25
  start-page: 1939
  year: 2004
  ident: 10.1016/j.isprsjprs.2021.05.008_b0315
  article-title: AVHRR-derived fire frequency, distribution and area burned in Siberia
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001609725
– volume: 38
  start-page: 2223
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.05.008_b0035
  article-title: The human dimension of fire regimes on Earth
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2011.02595.x
– volume: 178
  start-page: 31
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.008_b0140
  article-title: The collection 6 MODIS active fire detection algorithm and fire products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.054
– volume: 494
  start-page: 86
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.008_b0210
  article-title: Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse
  publication-title: Nature
  doi: 10.1038/nature11869
– volume: 120
  start-page: 84
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.05.008_b0015
  article-title: ESA's Sentinel missions in support of Earth system science
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.07.023
– ident: 10.1016/j.isprsjprs.2021.05.008_b0095
– volume: 164
  start-page: 173
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.05.008_b0005
  article-title: Development of post-fire vegetation response-ability model in grassland mountainous ecosystem using GIS and remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.04.006
– volume: 475
  start-page: 489
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.05.008_b0215
  article-title: Carbon loss from an unprecedented Arctic tundra wildfire
  publication-title: Nature
  doi: 10.1038/nature10283
– volume: 193
  start-page: 138
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.008_b0350
  article-title: Major advances in geostationary fire radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.02.024
– volume: 64
  start-page: 370
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.05.008_b0150
  article-title: Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017
  publication-title: Science Bulletin.
  doi: 10.1016/j.scib.2019.03.002
– volume: 46
  start-page: 1200
  year: 2008
  ident: 10.1016/j.isprsjprs.2021.05.008_b0270
  article-title: Fire detection and fire characterization over Africa using Meteosat SEVIRI
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.915751
– volume: 120
  start-page: 236
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.05.008_b0335
  article-title: Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.033
– volume: 171
  start-page: 75
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.05.008_b0025
  article-title: An initial comparison of the thermal anomaly detection products of MODIS and VIIRS in their observation of Indonesian volcanic activity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.002
– volume: 12
  start-page: 3232
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.05.008_b0115
  article-title: A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data
  publication-title: Remote Sens.
  doi: 10.3390/rs12193232
– volume: 112
  start-page: 2711
  year: 2008
  ident: 10.1016/j.isprsjprs.2021.05.008_b0305
  article-title: Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.005
– volume: 538
  start-page: 88
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.008_b0310
  article-title: Upward revision of global fossil fuel methane emissions based on isotope database
  publication-title: Nature
  doi: 10.1038/nature19797
– volume: 12
  start-page: 820
  issue: 5
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.05.008_b0235
  article-title: Volcanic hot-spot detection using Sentinel-2: a comparison with MODIS–MIROVA thermal data series
  publication-title: Remote Sens.
  doi: 10.3390/rs12050820
– volume: 11
  start-page: 1056
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.05.008_b0355
  article-title: Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach
  publication-title: Remote Sens.
  doi: 10.3390/rs11091056
– volume: 24
  start-page: 4505
  year: 2003
  ident: 10.1016/j.isprsjprs.2021.05.008_b0125
  article-title: A multi-year active fire dataset for the tropics derived from the TRMM VIRS
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000070283
– volume: 515
  start-page: 58
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.05.008_b0245
  article-title: Learning to coexist with wildfire
  publication-title: Nature
  doi: 10.1038/nature13946
– volume: 143
  start-page: 85
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.05.008_b0295
  article-title: The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.12.008
– ident: 10.1016/j.isprsjprs.2021.05.008_b0160
  doi: 10.5479/si.GVP.VOTW4-2013
– volume: 102
  start-page: 13521
  year: 2005
  ident: 10.1016/j.isprsjprs.2021.05.008_b0145
  article-title: Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance
  publication-title: PNAS
  doi: 10.1073/pnas.0506179102
– volume: 217
  start-page: 426
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.05.008_b0065
  article-title: A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.08.009
– volume: 426
  start-page: 223
  issue: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.008_b0155
  article-title: HOTVOLC: a web-based monitoring system for volcanic hot spots
  publication-title: Geological Society, London, Special Publications
  doi: 10.1144/SP426.31
– volume: 421
  start-page: 913
  year: 2003
  ident: 10.1016/j.isprsjprs.2021.05.008_b0055
  article-title: Fire science for rainforests
  publication-title: Nature
  doi: 10.1038/nature01437
– volume: 158
  start-page: 263
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.05.008_b0220
  article-title: Predicting forest fires burned area and rate of spread from pre-fire multispectral satellite measurements
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.10.013
– volume: 142
  start-page: 94
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.05.008_b0040
  article-title: Burned area estimations derived from Landsat ETM+ and OLI data: Comparing Genetic Programming with Maximum Likelihood and Classification and Regression Trees
  publication-title: ISPRS J. Photogr. Remote Sensing.
  doi: 10.1016/j.isprsjprs.2018.05.007
– volume: 27
  start-page: 409
  issue: 5
  year: 2009
  ident: 10.1016/j.isprsjprs.2021.05.008_b0285
  article-title: Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions
  publication-title: Waste Manage. Res.
  doi: 10.1177/0734242X09339325
– volume: 5
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.008_b0080
  article-title: VIIRS Nightfire: satellite pyrometry at Night
  publication-title: Remote Sens.
  doi: 10.3390/rs5094423
– volume: 66
  start-page: 17
  issue: 1
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.05.008_b0185
  article-title: Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index
  publication-title: ISPRS J. Photogr. Remote Sensing.
  doi: 10.1016/j.isprsjprs.2010.08.004
– volume: 222
  start-page: 244
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.05.008_b0200
  article-title: Geometric accuracy of remote sensing images over oceans: The use of global offshore platforms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.002
– volume: 6
  start-page: 640
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.008_b0320
  article-title: Preventing fires and haze in Southeast Asia
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3008
– volume: 246
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.05.008_b0205
  article-title: Space eye on flying aircraft: From Sentinel-2 MSI parallax to hybrid computing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111867
– volume: 114
  start-page: 4582
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.008_b0290
  article-title: Adapt to more wildfire in western North American forests as climate changes
  publication-title: PNAS
  doi: 10.1073/pnas.1617464114
– volume: 54
  start-page: 544
  issue: 5
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.05.008_b0105
  article-title: The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data
  publication-title: Annals of geophysics
– volume: 248
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.05.008_b0230
  article-title: Landsat 9: Empowering open science and applications through continuity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111968
– volume: 159
  start-page: 101
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.05.008_b0045
  article-title: A robust visible near-infrared index for fire severity mapping in Arctic tundra ecosystems
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.012
– volume: 284
  start-page: 1832
  year: 1999
  ident: 10.1016/j.isprsjprs.2021.05.008_b0060
  article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests
  publication-title: Science
  doi: 10.1126/science.284.5421.1832
– volume: 177
  start-page: 78
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.008_b0250
  article-title: HOTMAP: Global hot target detection at moderate spatial resolution
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.027
– volume: 48
  start-page: 4327
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.05.008_b0020
  article-title: 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405533d
– volume: 83
  start-page: 244
  year: 2002
  ident: 10.1016/j.isprsjprs.2021.05.008_b0170
  article-title: The MODIS fire products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00076-7
– volume: 204
  start-page: 347
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.05.008_b0195
  article-title: Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.019
– volume: 24
  start-page: 3515
  year: 2003
  ident: 10.1016/j.isprsjprs.2021.05.008_b0120
  article-title: Effect of wavelength selection on characterization of fire Size and temperature
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000117056
– volume: 11
  start-page: 154
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.05.008_b0180
  article-title: Global operational land imager Landsat-8 reflectance-based active fire detection algorithm
  publication-title: Int. J. Digit. Earth.
  doi: 10.1080/17538947.2017.1391341
– volume: 211
  start-page: 376
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.05.008_b0190
  article-title: An active fire detection algorithm based on multi-temporal FengYun-3C VIRR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.027
– volume: 2019
  start-page: 1
  issue: 222
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.05.008_b0275
  article-title: Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.011
– volume: 108
  start-page: 407
  year: 2007
  ident: 10.1016/j.isprsjprs.2021.05.008_b0130
  article-title: Characterization of the Tropical Diurnal Fire Cycle Using VIRS and MODIS Observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.11.018
– volume: 10
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.05.008_b0085
  article-title: Longwave Infrared Identification of Smoldering Peat Fires in Indonesia with Nighttime Landsat Data
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/6/065002
– volume: 324
  start-page: 481
  year: 2009
  ident: 10.1016/j.isprsjprs.2021.05.008_b0030
  article-title: Fire in the Earth System
  publication-title: Science
  doi: 10.1126/science.1163886
– volume: 82
  start-page: 135
  year: 2002
  ident: 10.1016/j.isprsjprs.2021.05.008_b0340
  article-title: Automated volcanic eruption detection using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00030-5
– volume: 11
  start-page: 2876
  issue: 23
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.05.008_b0225
  article-title: A multi-channel algorithm for mapping volcanic thermal anomalies by means of Sentinel-2 MSI and Landsat-8 OLI data
  publication-title: Remote Sens.
  doi: 10.3390/rs11232876
– volume: 17
  start-page: 419
  year: 1996
  ident: 10.1016/j.isprsjprs.2021.05.008_b0100
  article-title: A contextual algorithm for AVHRR fire detection
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608949018
– volume: 131
  start-page: 195
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.008_b0255
  article-title: MODIS and ASTER synergy for characterizing thermal volcanic activity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.005
– ident: 10.1016/j.isprsjprs.2021.05.008_b0280
– volume: 185
  start-page: 210
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.008_b0300
  article-title: Active fire detection using Landsat-8/OLI data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.032
– volume: 17
  start-page: 798
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.05.008_b0260
  article-title: Global and regional importance of the tropical peatland carbon pool
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02279.x
– year: 2003
  ident: 10.1016/j.isprsjprs.2021.05.008_b0010
  article-title: Energy efficiency of rotary dryers in manufacturing plants. 7–10
– volume: 119
  start-page: 803
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.05.008_b0075
  article-title: Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results
  publication-title: J. Geophys. Res. [Atmos.]
  doi: 10.1002/2013JD020453
– ident: 10.1016/j.isprsjprs.2021.05.008_b0325
– volume: 135
  start-page: 29
  issue: 1/2
  year: 2004
  ident: 10.1016/j.isprsjprs.2021.05.008_b0345
  article-title: Modvolc: near-real-time thermal monitoring of global volcanism
  publication-title: J. Volcanol. Geoth. Res.
  doi: 10.1016/j.jvolgeores.2003.12.008
– volume: 103
  start-page: 32215
  year: 1998
  ident: 10.1016/j.isprsjprs.2021.05.008_b0175
  article-title: Potential global fire monitoring from EOS-MODIS
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JD01644
– ident: 10.1016/j.isprsjprs.2021.05.008_b0135
  doi: 10.1016/j.rse.2008.03.003
– volume: 105
  start-page: 20350
  year: 2008
  ident: 10.1016/j.isprsjprs.2021.05.008_b0330
  article-title: Climate regulation of fire emissions and deforestation in equatorial Asia
  publication-title: PNAS
  doi: 10.1073/pnas.0803375105
– volume: 426
  start-page: 181
  issue: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.05.008_b0070
  article-title: Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system
  publication-title: Geological Society, London, Special Publications
  doi: 10.1144/SP426.5
– ident: 10.1016/j.isprsjprs.2021.05.008_b0090
– volume: 104
  start-page: 224
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.05.008_b0050
  article-title: Operational perspective of remote sensing-based forest fire danger forecasting systems
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.03.011
– volume: 198
  start-page: 504
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.008_b0165
  article-title: Mapping burned areas using dense time-series of Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.027
– volume: 553
  start-page: 194
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.008_b0265
  article-title: Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity
  publication-title: Nature
  doi: 10.1038/nature24668
SSID ssj0001568
Score 2.4928007
Snippet •Two spectral characteristics of high-temperature anomalies (HTAs) were found.•A tri-spectral thermal-anomaly index (TAI) for Sentinel-2 MSI is proposed.•The...
High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 174
SubjectTerms biomass
heat
High-temperature anomaly (HTA)
land cover
landfills
photogrammetry
probability
reflectance
Remote sensing
Sentinel-2 Multispectral Instrument (MSI)
spectrometers
Thermal anomaly index (TAI)
time series analysis
Title Detecting high-temperature anomalies from Sentinel-2 MSI images
URI https://dx.doi.org/10.1016/j.isprsjprs.2021.05.008
https://www.proquest.com/docview/2985923529
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeIq3gsRqmjh2mrAgBFQFRJdSqZt1Sa6iFaQVKQMLv527PIAipA4MGWLZSvSdfT7L330nxCk0B0bHCiUELkiNsSsBQ09iGoGmHSUOsCDIdoJ2T9_1TX9BXNW5MEyrrHx_6dMLb121NCo0G5PhsNF16eigWACJZYR8nzPKtW7yLD_7-KZ5eGU6HHeW3HuG4zXMJ6_5iB46KCqvkPDkOpN_71C_fHWxAbXWxVoVOTqX5c9tiAXMNsXqDz3BTbFclTR_et8SF9fI9wPU7rAksWQNqkpA2YFs_ELxN-YOZ5c4XWYMZfgslfPQvXWGL-Rj8m3Ra908XrVlVS1Bgt_0ptL3_SjQCGDclABOgSItLwwpICFUInS1Bo3aT2JXpxpVmCiyH4TRIB0EZJLE3xGL2TjDXeGAiVWcNo0yCV_M0pEOAIMkQh0BJN5gTwQ1QjappMS5osWzrTljI_sFrWVorWssQbsn3K-Bk1JNY_6Q89oEdmZiWPL58wef1EaztGz4LgQyHL9Rpyg0FNsaFe3_5wMHYoXfSv7uoVicvr7hEUUp0_i4mIbHYuny9r7d-QRyZeka
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcKA9VOWlUgoYqddV7PWuH1wqBEUJj1wCErfV2J6oQeBEJBz498zE66hUSBw4-LLeka2Z3W9mtLPfAPzCdGRNoUlhEqIyVIQKKYsUVTka9ihFQosC2UHSuzHnt_Z2BU7auzBSVumxv8H0BVr7ka7XZnc6HneHIacOWgiQhEYojtNPsCrsVLYDq8f9i95gCchRcyNO5isReFXmNZ5NH2d3_HCuqKMFi6e0mnzbSf0H1wsfdPYNvvrgMThu_m8dVqjegC__UApuwJrvav73eRN-n5IcEfB4IKzESmioPIdygPXkgUNwmgVywSQYStFQTfdKB1fDfjB-YJiZbcHN2Z_rk57yDRMUxmk0V3Ec54khRBtWrOMKOdiKsoxjEmPSnEJj0JCJyyI0lSGdlZpNiFk-qkYJW6WMt6FTT2r6DgHaQhdVarUt5WyWszpESsqcTI5YRqMdSFoNudKziUtTi3vXlo3duaVqnajWhdaxancgXApOG0KN90WOWhO4V2vDMey_L3zYGs3xzpHjEKxp8sST8sxyeGt1_uMjHziAtd711aW77A8uduGzvGnKeX9CZ_74RHsctMyLfb8oXwBw_uvL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+high-temperature+anomalies+from+Sentinel-2+MSI+images&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Liu%2C+Yongxue&rft.au=Zhi%2C+Weifeng&rft.au=Xu%2C+Bihua&rft.au=Xu%2C+Wenxuan&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=177&rft.spage=174&rft.epage=193&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.05.008&rft.externalDocID=S0924271621001337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon