Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method

Machine learning (ML) algorithms are widely applied in various fields owing to their strong ability to abstract high-level features from a large number of training samples. However, few supervised ML algorithms have been applied in geochemical prospecting and mineral exploration because mineralizati...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 130; p. 104994
Main Authors Zhang, Chunjie, Zuo, Renguang, Xiong, Yihui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning (ML) algorithms are widely applied in various fields owing to their strong ability to abstract high-level features from a large number of training samples. However, few supervised ML algorithms have been applied in geochemical prospecting and mineral exploration because mineralization is a rare geological event that leads to an insufficient number of training samples. Generating a large number of training samples is crucial for the application of supervised ML in geochemical prospecting and mineral exploration. In this study, a novel anomaly detection framework combined with a pixel-pair feature (PPF) method and a deep convolutional neural network (CNN) was employed to identify the multivariate geochemical anomalies associated with mineralization. First, the PPF method was employed to generate sufficient training samples by recombining the pixel pairs of the labeled samples. Then, a multilayer supervised CNN framework, which consists of 13 convolutional layers, an average pooling layer, and a fully connected layer, was trained with these pixel pairs for geochemical anomaly recognition. The testing procedure was based on the fact that neighboring pixels belong to the same class with a high probability. The dual-window detector was applied to detect multivariate geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province of China. The identified geochemical anomalies exhibited a close spatial correlation with the known mineral deposits, which validates the potential of the proposed method. Therefore, the method developed in this study can enhance the application of supervised ML in geochemical prospecting and mineral exploration. •A data augmented algorithm is used to solve the issue of insufficient training samples.•A deep CNN framework is constructed for identifying multivariate geochemical anomalies.•The obtained results were strongly spatially correlated with locations of known mineral deposits.
AbstractList Machine learning (ML) algorithms are widely applied in various fields owing to their strong ability to abstract high-level features from a large number of training samples. However, few supervised ML algorithms have been applied in geochemical prospecting and mineral exploration because mineralization is a rare geological event that leads to an insufficient number of training samples. Generating a large number of training samples is crucial for the application of supervised ML in geochemical prospecting and mineral exploration. In this study, a novel anomaly detection framework combined with a pixel-pair feature (PPF) method and a deep convolutional neural network (CNN) was employed to identify the multivariate geochemical anomalies associated with mineralization. First, the PPF method was employed to generate sufficient training samples by recombining the pixel pairs of the labeled samples. Then, a multilayer supervised CNN framework, which consists of 13 convolutional layers, an average pooling layer, and a fully connected layer, was trained with these pixel pairs for geochemical anomaly recognition. The testing procedure was based on the fact that neighboring pixels belong to the same class with a high probability. The dual-window detector was applied to detect multivariate geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province of China. The identified geochemical anomalies exhibited a close spatial correlation with the known mineral deposits, which validates the potential of the proposed method. Therefore, the method developed in this study can enhance the application of supervised ML in geochemical prospecting and mineral exploration. •A data augmented algorithm is used to solve the issue of insufficient training samples.•A deep CNN framework is constructed for identifying multivariate geochemical anomalies.•The obtained results were strongly spatially correlated with locations of known mineral deposits.
Machine learning (ML) algorithms are widely applied in various fields owing to their strong ability to abstract high-level features from a large number of training samples. However, few supervised ML algorithms have been applied in geochemical prospecting and mineral exploration because mineralization is a rare geological event that leads to an insufficient number of training samples. Generating a large number of training samples is crucial for the application of supervised ML in geochemical prospecting and mineral exploration. In this study, a novel anomaly detection framework combined with a pixel-pair feature (PPF) method and a deep convolutional neural network (CNN) was employed to identify the multivariate geochemical anomalies associated with mineralization. First, the PPF method was employed to generate sufficient training samples by recombining the pixel pairs of the labeled samples. Then, a multilayer supervised CNN framework, which consists of 13 convolutional layers, an average pooling layer, and a fully connected layer, was trained with these pixel pairs for geochemical anomaly recognition. The testing procedure was based on the fact that neighboring pixels belong to the same class with a high probability. The dual-window detector was applied to detect multivariate geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province of China. The identified geochemical anomalies exhibited a close spatial correlation with the known mineral deposits, which validates the potential of the proposed method. Therefore, the method developed in this study can enhance the application of supervised ML in geochemical prospecting and mineral exploration.
ArticleNumber 104994
Author Zuo, Renguang
Xiong, Yihui
Zhang, Chunjie
Author_xml – sequence: 1
  givenname: Chunjie
  surname: Zhang
  fullname: Zhang, Chunjie
– sequence: 2
  givenname: Renguang
  surname: Zuo
  fullname: Zuo, Renguang
  email: zrguang@cug.edu.cn
– sequence: 3
  givenname: Yihui
  surname: Xiong
  fullname: Xiong, Yihui
BookMark eNqNkc1u1DAUhS1UpE5bnqFessngn2ScLFhU5VeqxIaurTvOTceDYwfbmRaehYfFmalYsIHVlX3O-XR1zwU588EjIdecrTnjmzf7NUwPGMwOx7VggpffuuvqF2TFWyWqjsv6jKxY28pKdEKdk4uU9oyxRjGxIr_eYUaTbfA0DDTvkI6zy_YA0UJG-gy2BhwFH0ZwFhOFlIJZ9J4-2ryjo_UYi_QTjqA5Wf9AgfaIEzXBH4KbF6EwPM7xOPJjiN8Ksi--yT6hqyawkQ4IeY5lCcy70F-RlwO4hK-e5yW5__D-6-2n6u7Lx8-3N3cVSMVzJaDm20aKvlPdBjdKNgpqtmWmyFsU2-XRompRDoINjWiZANkqxnrDjcRWXpLXJ-4Uw_cZU9ajTQadA49hTlo0G94I0fCuWNXJamJIKeKgp2hHiD80Z3rpQ-_1nz700oc-9VGSb_9KGpuPB8sRrPuP_M0pj-USB4tRJ2PRG-xtLA3qPth_Mn4DyomytA
CitedBy_id crossref_primary_10_1016_j_oregeorev_2023_105787
crossref_primary_10_1007_s11053_024_10433_2
crossref_primary_10_1016_j_gexplo_2021_106875
crossref_primary_10_1016_j_oregeorev_2022_104693
crossref_primary_10_1016_j_petsci_2023_11_010
crossref_primary_10_3390_min12091112
crossref_primary_10_1007_s11053_023_10200_9
crossref_primary_10_3724_j_issn_1007_2802_20240164
crossref_primary_10_1016_j_gexplo_2021_106872
crossref_primary_10_1016_j_cageo_2024_105657
crossref_primary_10_1016_j_cageo_2025_105853
crossref_primary_10_1007_s11042_024_19972_5
crossref_primary_10_1007_s11053_023_10286_1
crossref_primary_10_1016_j_chemer_2024_126156
crossref_primary_10_1007_s11053_022_10143_7
crossref_primary_10_3390_min14101021
crossref_primary_10_1109_ACCESS_2022_3215957
crossref_primary_10_1016_j_chemer_2024_126197
crossref_primary_10_1016_j_apgeochem_2023_105722
crossref_primary_10_1016_j_marpetgeo_2024_106965
crossref_primary_10_1007_s12145_024_01565_3
crossref_primary_10_1016_j_mineng_2024_108669
crossref_primary_10_1016_j_gexplo_2024_107443
crossref_primary_10_1007_s12145_025_01843_8
crossref_primary_10_1007_s11053_025_10464_3
crossref_primary_10_1016_j_apgeochem_2021_105043
crossref_primary_10_1007_s11053_024_10409_2
crossref_primary_10_1016_j_oregeorev_2023_105418
crossref_primary_10_1007_s11430_024_1309_9
crossref_primary_10_1007_s11004_021_09979_1
crossref_primary_10_1007_s11004_022_10023_z
crossref_primary_10_3390_rs14236017
crossref_primary_10_1016_j_apgeochem_2021_105072
crossref_primary_10_1016_j_cageo_2022_105100
crossref_primary_10_1016_j_gexplo_2022_106983
crossref_primary_10_3389_feart_2023_1102640
crossref_primary_10_3389_fenvs_2023_1076302
crossref_primary_10_1016_j_jag_2024_103697
crossref_primary_10_1007_s11053_022_10080_5
crossref_primary_10_1007_s12145_024_01246_1
crossref_primary_10_1016_j_apgeochem_2022_105450
crossref_primary_10_1016_j_apgeochem_2021_105111
crossref_primary_10_1016_j_apgeochem_2024_106146
crossref_primary_10_1016_j_chemer_2021_125800
crossref_primary_10_1016_j_cageo_2023_105392
crossref_primary_10_1007_s12145_025_01811_2
crossref_primary_10_1016_j_cageo_2022_105153
crossref_primary_10_1016_j_cageo_2022_105075
crossref_primary_10_1016_j_jafrearsci_2023_104865
crossref_primary_10_1016_j_cageo_2025_105913
crossref_primary_10_1016_j_jag_2024_103780
crossref_primary_10_1016_j_oregeorev_2022_105242
crossref_primary_10_1007_s11053_022_10144_6
crossref_primary_10_1007_s11004_022_10042_w
crossref_primary_10_1007_s11053_024_10334_4
crossref_primary_10_1360_N072024_0018
crossref_primary_10_1016_j_chemer_2023_125959
crossref_primary_10_1007_s11004_023_10133_2
crossref_primary_10_1007_s11004_024_10153_6
crossref_primary_10_1007_s11053_022_10088_x
crossref_primary_10_1016_j_cageo_2023_105341
crossref_primary_10_1016_j_jappgeo_2025_105637
crossref_primary_10_1021_acs_energyfuels_4c05402
crossref_primary_10_1016_j_gexplo_2023_107238
crossref_primary_10_3390_min12060689
crossref_primary_10_1016_j_chemer_2021_125830
crossref_primary_10_1016_j_gexplo_2021_106904
crossref_primary_10_1016_j_oregeorev_2024_106263
crossref_primary_10_1016_j_cageo_2021_104974
crossref_primary_10_1016_j_gsf_2023_101715
crossref_primary_10_1016_j_gexplo_2023_107274
crossref_primary_10_12677_AG_2022_125067
crossref_primary_10_1016_j_apgeochem_2022_105273
crossref_primary_10_1016_j_oregeorev_2022_104955
crossref_primary_10_3390_jmse12111907
crossref_primary_10_1016_j_apgeochem_2024_106124
crossref_primary_10_1016_j_oregeorev_2023_105706
crossref_primary_10_3390_rs13234860
Cites_doi 10.1016/j.cageo.2015.10.006
10.1144/geochem2016-024
10.1023/A:1010933404324
10.1016/j.apgeochem.2011.12.020
10.1007/s11053-017-9357-0
10.1016/j.earscirev.2019.02.023
10.1016/j.cageo.2019.01.016
10.2307/2529204
10.1109/TGRS.2016.2616355
10.1023/A:1011552810482
10.1016/S0375-6742(97)00029-0
10.1016/j.gexplo.2015.04.010
10.1190/geo2012-0411.1
10.1111/j.2517-6161.1959.tb00334.x
10.1016/0025-5564(72)90075-2
10.1016/j.oregeorev.2019.103005
10.1007/s11053-020-09742-z
10.1016/j.apgeochem.2020.104747
10.1016/0098-3004(84)90020-7
10.1016/j.oregeorev.2019.02.027
10.1007/s11053-017-9345-4
10.1007/s11053-020-09700-9
10.1016/j.gexplo.2012.07.007
10.1016/j.oregeorev.2014.09.024
10.1016/j.gexplo.2015.06.001
10.1038/s41586-019-0912-1
10.1016/j.cageo.2020.104484
10.1016/j.gexplo.2014.02.013
10.1144/1467-7873/09-210
10.1111/rge.12070
10.1144/1467-7873/09-215
10.1109/5.726791
10.1016/j.gexplo.2008.03.004
10.1126/science.aau0323
10.1007/s11053-019-09510-8
10.1016/j.oregeorev.2015.12.012
10.1016/j.gexplo.2016.05.003
10.1109/TKDE.2018.2861006
10.1109/JSTARS.2013.2239959
10.1016/j.neucom.2015.09.116
10.1038/nature14539
10.1016/j.apgeochem.2020.104710
10.1007/s00531-014-1096-4
10.1016/j.gexplo.2017.10.020
10.1016/j.gexplo.2019.04.007
10.1023/A:1023818214614
10.1109/TGRS.2018.2805286
10.1016/j.gexplo.2019.106431
10.1148/radiology.148.3.6878708
10.1162/neco.2006.18.7.1527
10.1162/neco.1993.5.2.289
10.1016/j.oregeorev.2006.10.002
10.1016/j.oregeorev.2013.09.009
10.1007/s11053-019-09471-y
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apgeochem.2021.104994
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9134
ExternalDocumentID 10_1016_j_apgeochem_2021_104994
S0883292721001268
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a371t-2a41b532d9796e67357a40b0ca37be2ba40b8e78e3f20f52802a38700dc1c3e83
IEDL.DBID .~1
ISSN 0883-2927
IngestDate Fri Jul 11 09:03:18 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Tue Jul 01 01:59:41 EDT 2025
Fri Feb 23 02:43:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Geochemical anomalies
Deep learning
Mineral exploration
Pixel-pair feature method
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-2a41b532d9796e67357a40b0ca37be2ba40b8e78e3f20f52802a38700dc1c3e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2561522519
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2561522519
crossref_primary_10_1016_j_apgeochem_2021_104994
crossref_citationtrail_10_1016_j_apgeochem_2021_104994
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2021_104994
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Applied geochemistry
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xie, Mu, Ren (bib46) 1997; 60
Xiong, Zuo (bib48) 2020; 140
Cox (bib14) 1959; 21
Krizhevsky, Sutskever, Hinton (bib27) 2012; vol. 25
Fodor (bib18) 2002
Zuo (bib58) 2017; 26
Redlich (bib36) 1993; 5
Karpatne, Ebert-Uphoff, Ravela, Babaie, Kumar (bib25) 2018; 31
Zhang, Zuo, Cheng (bib54) 2015; 65
Xiong, Zuo (bib47) 2016; 86
Zuo, Xiong (bib62) 2018; 27
Bezdek, Ehrlich, Full (bib4) 1984; 10
Zuo (bib60) 2020; 29
Cheng (bib10) 2007; 32
Liu, Chang (bib33) 2013; 6
Chen, Lu, Li (bib7) 2014; 140
Aitchison (bib1) 1986
Kirkwood, Cave, Beamish, Grebby, Ferreira (bib26) 2016; 167
Gonbadi, Tabatabaei, Carranza (bib19) 2015; 157
Hinton, Osindero, Teh (bib24) 2006; 18
Bergen, Johnson, De Hoop, Beroza (bib3) 2019; 363
Cracknell, Reading (bib15) 2013; 78
Zhang, Zuo (bib53) 2014; 57
Chen, Wu (bib8) 2017; 17
Singer, Kouda (bib41) 2001; 10
Bishop (bib5) 1995; 12
Yu, Xiao, Zhou, Wang, Wang (bib51) 2019; 203
Cheng (bib11) 2012; 122
Wang, Zuo, Dong (bib43) 2019; 28
Ziaii, Pouyan, Ziaei (bib57) 2009; 100
Silverman (bib40) 1986; vol. 175
Luo, Xiong, Zuo (bib34) 2020; 122
Li, Zuo, Xiong, Peng (bib31) 2021; 30
Dietterich (bib16) 2002; 2
Li, Li, Yuan, Jowitt, Zhang, Zhou, Wu (bib30) 2020; 122
Zuo, Zhang, Zhang, Carranza, Wang (bib65) 2015; 71
Zhang, Zuo, Cheng (bib52) 2015; 104
Coates, Ng, Lee (bib12) 2011
Anderson (bib2) 1972; 14
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais (bib37) 2019; 566
Chen, Guan, Xiong, Liang, Wang, Xu (bib9) 2019; 125
Shepard (bib39) 1968
Cohen, Kelley, Anand, Coker (bib13) 2010; 10
Yousefi, Kreuzer, Nyknen, Hronsky (bib50) 2019; 111
Mohri, Rostamizadeh, Talwalkar (bib35) 2018
LeCun, Bottou, Bengio, Haffner (bib29) 1998; 86
Zuo, Wang (bib61) 2016; 164
Ziaii, Ardejani, Ziaei, Soleymani (bib56) 2012; 27
Egozcue, Pawlowsky-Glahn, Mateu-Figueras, Barcelo-Vidal (bib17) 2003; 35
Zuo, Xiong, Wang, Carranza (bib64) 2019; 192
Xiong, Zuo (bib49) 2021
Zuo (bib59) 2018; 184
Grunsky (bib20) 2010; 10
Zhu, Chen, Ghamisi, Benediktsson (bib55) 2018; 56
Breiman (bib6) 2001; 45
Zuo, Xiong (bib63) 2020; 209
Guo, Liu, Oerlemans, Lao, Wu, Lew (bib21) 2016; 187
LeCun, Bengio, Hinton (bib28) 2015; 521
Scott, Knott (bib38) 1974; 20
Li, Wu, Zhang, Du (bib32) 2016; 55
Wang, Zuo, Xiong (bib45) 2020; 29
Vapnik (bib42) 1995
Wang, Dong, Zuo (bib44) 2019; 107
Hanley, Mcneil (bib23) 1983; 148
Hagemann, Lisitsin, Huston (bib22) 2016; 76
Zuo (10.1016/j.apgeochem.2021.104994_bib63) 2020; 209
Hagemann (10.1016/j.apgeochem.2021.104994_bib22) 2016; 76
Chen (10.1016/j.apgeochem.2021.104994_bib9) 2019; 125
Krizhevsky (10.1016/j.apgeochem.2021.104994_bib27) 2012; vol. 25
Anderson (10.1016/j.apgeochem.2021.104994_bib2) 1972; 14
Zuo (10.1016/j.apgeochem.2021.104994_bib65) 2015; 71
Bishop (10.1016/j.apgeochem.2021.104994_bib5) 1995; 12
Li (10.1016/j.apgeochem.2021.104994_bib31) 2021; 30
Zhang (10.1016/j.apgeochem.2021.104994_bib52) 2015; 104
Singer (10.1016/j.apgeochem.2021.104994_bib41) 2001; 10
Shepard (10.1016/j.apgeochem.2021.104994_bib39) 1968
Wang (10.1016/j.apgeochem.2021.104994_bib44) 2019; 107
Zhu (10.1016/j.apgeochem.2021.104994_bib55) 2018; 56
Coates (10.1016/j.apgeochem.2021.104994_bib12) 2011
Fodor (10.1016/j.apgeochem.2021.104994_bib18) 2002
Redlich (10.1016/j.apgeochem.2021.104994_bib36) 1993; 5
Kirkwood (10.1016/j.apgeochem.2021.104994_bib26) 2016; 167
Grunsky (10.1016/j.apgeochem.2021.104994_bib20) 2010; 10
Breiman (10.1016/j.apgeochem.2021.104994_bib6) 2001; 45
Mohri (10.1016/j.apgeochem.2021.104994_bib35) 2018
Li (10.1016/j.apgeochem.2021.104994_bib32) 2016; 55
Dietterich (10.1016/j.apgeochem.2021.104994_bib16) 2002; 2
Hanley (10.1016/j.apgeochem.2021.104994_bib23) 1983; 148
LeCun (10.1016/j.apgeochem.2021.104994_bib29) 1998; 86
Bezdek (10.1016/j.apgeochem.2021.104994_bib4) 1984; 10
Zuo (10.1016/j.apgeochem.2021.104994_bib64) 2019; 192
Egozcue (10.1016/j.apgeochem.2021.104994_bib17) 2003; 35
Cheng (10.1016/j.apgeochem.2021.104994_bib10) 2007; 32
Xiong (10.1016/j.apgeochem.2021.104994_bib49) 2021
Yousefi (10.1016/j.apgeochem.2021.104994_bib50) 2019; 111
Hinton (10.1016/j.apgeochem.2021.104994_bib24) 2006; 18
Cox (10.1016/j.apgeochem.2021.104994_bib14) 1959; 21
Bergen (10.1016/j.apgeochem.2021.104994_bib3) 2019; 363
Li (10.1016/j.apgeochem.2021.104994_bib30) 2020; 122
Scott (10.1016/j.apgeochem.2021.104994_bib38) 1974; 20
Chen (10.1016/j.apgeochem.2021.104994_bib8) 2017; 17
Cracknell (10.1016/j.apgeochem.2021.104994_bib15) 2013; 78
Xie (10.1016/j.apgeochem.2021.104994_bib46) 1997; 60
Zuo (10.1016/j.apgeochem.2021.104994_bib58) 2017; 26
Zuo (10.1016/j.apgeochem.2021.104994_bib59) 2018; 184
Guo (10.1016/j.apgeochem.2021.104994_bib21) 2016; 187
Reichstein (10.1016/j.apgeochem.2021.104994_bib37) 2019; 566
Zuo (10.1016/j.apgeochem.2021.104994_bib61) 2016; 164
Zhang (10.1016/j.apgeochem.2021.104994_bib53) 2014; 57
Zuo (10.1016/j.apgeochem.2021.104994_bib60) 2020; 29
Luo (10.1016/j.apgeochem.2021.104994_bib34) 2020; 122
Cohen (10.1016/j.apgeochem.2021.104994_bib13) 2010; 10
Gonbadi (10.1016/j.apgeochem.2021.104994_bib19) 2015; 157
Chen (10.1016/j.apgeochem.2021.104994_bib7) 2014; 140
LeCun (10.1016/j.apgeochem.2021.104994_bib28) 2015; 521
Vapnik (10.1016/j.apgeochem.2021.104994_bib42) 1995
Wang (10.1016/j.apgeochem.2021.104994_bib45) 2020; 29
Silverman (10.1016/j.apgeochem.2021.104994_bib40) 1986; vol. 175
Karpatne (10.1016/j.apgeochem.2021.104994_bib25) 2018; 31
Aitchison (10.1016/j.apgeochem.2021.104994_bib1) 1986
Cheng (10.1016/j.apgeochem.2021.104994_bib11) 2012; 122
Wang (10.1016/j.apgeochem.2021.104994_bib43) 2019; 28
Xiong (10.1016/j.apgeochem.2021.104994_bib48) 2020; 140
Ziaii (10.1016/j.apgeochem.2021.104994_bib56) 2012; 27
Zuo (10.1016/j.apgeochem.2021.104994_bib62) 2018; 27
Liu (10.1016/j.apgeochem.2021.104994_bib33) 2013; 6
Yu (10.1016/j.apgeochem.2021.104994_bib51) 2019; 203
Xiong (10.1016/j.apgeochem.2021.104994_bib47) 2016; 86
Zhang (10.1016/j.apgeochem.2021.104994_bib54) 2015; 65
Ziaii (10.1016/j.apgeochem.2021.104994_bib57) 2009; 100
References_xml – volume: 76
  start-page: 504
  year: 2016
  end-page: 522
  ident: bib22
  article-title: Mineral system analysis: Quo vadis
  publication-title: Ore Geol. Rev.
– volume: 10
  start-page: 27
  year: 2010
  end-page: 74
  ident: bib20
  article-title: The interpretation of geochemical survey data
  publication-title: Geochem. Explor. Environ. Anal.
– volume: 31
  start-page: 1544
  year: 2018
  end-page: 1554
  ident: bib25
  article-title: Machine learning for the geosciences: challenges and opportunities
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: vol. 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib27
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 107
  start-page: 258
  year: 2019
  end-page: 265
  ident: bib44
  article-title: Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method
  publication-title: Ore Geol. Rev.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib24
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– start-page: 517
  year: 1968
  end-page: 524
  ident: bib39
  article-title: A two-dimensional interpolation function for irregularly-spaced data
  publication-title: ACM National Conference
– start-page: 9 10
  year: 2002
  end-page: 20
  ident: bib18
  article-title: A survey of dimension reduction techniques
  publication-title: Neoplasia
– volume: 55
  start-page: 844
  year: 2016
  end-page: 853
  ident: bib32
  article-title: Hyperspectral image classification using deep pixel-pair features
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 203
  start-page: 87
  year: 2019
  end-page: 95
  ident: bib51
  article-title: Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district
  publication-title: J. Geochem. Explor.
– volume: 192
  start-page: 1
  year: 2019
  end-page: 14
  ident: bib64
  article-title: Deep learning and its application in geochemical mapping
  publication-title: Earth Sci. Rev.
– volume: 30
  start-page: 27
  year: 2021
  end-page: 38
  ident: bib31
  article-title: Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping
  publication-title: Nat. Resour. Res.
– volume: 164
  start-page: 33
  year: 2016
  end-page: 41
  ident: bib61
  article-title: Fractal/multifractal modeling of geochemical data: a review
  publication-title: J. Geochem. Explor.
– volume: 29
  start-page: 3415
  year: 2020
  end-page: 3424
  ident: bib60
  article-title: Geodata science-based mineral prospectivity mapping: a review
  publication-title: Nat. Resour. Res.
– volume: 27
  start-page: 5
  year: 2018
  end-page: 13
  ident: bib62
  article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods
  publication-title: Nat. Resour. Res.
– volume: 122
  start-page: 104747
  year: 2020
  ident: bib30
  article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China
  publication-title: Appl. Geochem.
– volume: 100
  start-page: 25
  year: 2009
  end-page: 36
  ident: bib57
  article-title: Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies
  publication-title: J. Geochem. Explor.
– volume: 209
  start-page: 106431
  year: 2020
  ident: bib63
  article-title: Geodata science and geochemical mapping
  publication-title: J. Geochem. Explor.
– volume: 32
  start-page: 314
  year: 2007
  end-page: 324
  ident: bib10
  article-title: Mapping singularities with stream sediment geochemical data for Prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore Geol. Rev.
– volume: 521
  start-page: 436
  year: 2015
  ident: bib28
  article-title: Deep learning
  publication-title: Nature
– volume: 6
  start-page: 644
  year: 2013
  end-page: 658
  ident: bib33
  article-title: Multiple-window anomaly detection for hyperspectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 14
  start-page: 197
  year: 1972
  end-page: 220
  ident: bib2
  article-title: A simple neural network generating an interactive memory
  publication-title: Math. Biosci.
– volume: 65
  start-page: 266
  year: 2015
  end-page: 284
  ident: bib54
  article-title: Geological features and formation processes of the Makeng Fe deposit, China
  publication-title: Resour. Geol.
– volume: 122
  start-page: 55
  year: 2012
  end-page: 70
  ident: bib11
  article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas
  publication-title: J. Geochem. Explor.
– volume: 57
  start-page: 53
  year: 2014
  end-page: 60
  ident: bib53
  article-title: Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China
  publication-title: Ore Geol. Rev.
– volume: 148
  start-page: 839
  year: 1983
  end-page: 843
  ident: bib23
  article-title: A method of comparing the areas under receiver operating characteristic curves derived from the same cases
  publication-title: Radiology
– volume: 167
  start-page: 49
  year: 2016
  end-page: 61
  ident: bib26
  article-title: A machine learning approach to geochemical mapping
  publication-title: J. Geochem. Explor.
– volume: 56
  start-page: 5046
  year: 2018
  end-page: 5063
  ident: bib55
  article-title: Generative adversarial networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 104
  start-page: 663
  year: 2015
  end-page: 682
  ident: bib52
  article-title: The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology
  publication-title: Int. J. Earth Sci.
– year: 2021
  ident: bib49
  article-title: Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder
  publication-title: Math. Geosci.
– year: 1995
  ident: bib42
  article-title: The Nature of Statistical Learning Theory
– volume: 12
  start-page: 1235
  year: 1995
  end-page: 1242
  ident: bib5
  article-title: Neural networks for pattern recognition
  publication-title: Agric. Eng. Int. CIGR J.
– volume: 26
  start-page: 457
  year: 2017
  end-page: 464
  ident: bib58
  article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods
  publication-title: Nat. Resour. Res.
– volume: 566
  start-page: 195
  year: 2019
  ident: bib37
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
– volume: 2
  start-page: 405
  year: 2002
  end-page: 408
  ident: bib16
  article-title: Ensemble learning
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: bib4
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
– start-page: 215
  year: 2011
  end-page: 223
  ident: bib12
  article-title: An analysis of single-layer networks in unsupervised feature learning
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– volume: 29
  start-page: 189
  year: 2020
  end-page: 202
  ident: bib45
  article-title: Mapping mineral prospectivity via semi–supervised random forest
  publication-title: Nat. Resour. Res.
– volume: 27
  start-page: 663
  year: 2012
  end-page: 676
  ident: bib56
  article-title: Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry
  publication-title: Appl. Geochem.
– volume: 140
  start-page: 56
  year: 2014
  end-page: 63
  ident: bib7
  article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly
  publication-title: J. Geochem. Explor.
– volume: 28
  start-page: 1285
  year: 2019
  end-page: 1298
  ident: bib43
  article-title: Mapping geochemical anomalies through integrating random forest and metric learning methods
  publication-title: Nat. Resour. Res.
– volume: 5
  start-page: 289
  year: 1993
  end-page: 304
  ident: bib36
  article-title: Redundancy reduction as a strategy for unsupervised learning
  publication-title: Neural Comput.
– volume: 157
  start-page: 81
  year: 2015
  end-page: 91
  ident: bib19
  article-title: Supervised geochemical anomaly detection by pattern recognition
  publication-title: J. Geochem. Explor.
– volume: 71
  start-page: 502
  year: 2015
  end-page: 515
  ident: bib65
  article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China
  publication-title: Ore Geol. Rev.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib29
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 86
  start-page: 75
  year: 2016
  end-page: 82
  ident: bib47
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput. Geosci.
– volume: 78
  start-page: WB113
  year: 2013
  end-page: WB126
  ident: bib15
  article-title: The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines
  publication-title: Geophysics
– volume: 60
  start-page: 99
  year: 1997
  end-page: 113
  ident: bib46
  article-title: Geochemical mapping in China
  publication-title: J. Geochem. Explor.
– volume: 184
  start-page: 150
  year: 2018
  end-page: 157
  ident: bib59
  article-title: Selection of an elemental association related to mineralization using spatial analysis
  publication-title: J. Geochem. Explor.
– volume: 140
  start-page: 104484
  year: 2020
  ident: bib48
  article-title: Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine
  publication-title: Comput. Geosci.
– volume: 125
  start-page: 43
  year: 2019
  end-page: 54
  ident: bib9
  article-title: A Spatially Constrained Multi-Autoencoder approach for multivariate geochemical anomaly recognition
  publication-title: Comput. Geosci.
– volume: 363
  year: 2019
  ident: bib3
  article-title: Machine learning for data-driven discovery in solid earth geoscience
  publication-title: Science
– volume: 20
  start-page: 507
  year: 1974
  end-page: 512
  ident: bib38
  article-title: A cluster analysis method for grouping means in the analysis of variance
  publication-title: Biometrics
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib6
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: vol. 175
  start-page: 12
  year: 1986
  ident: bib40
  article-title: Density Estimation for Statistics and Data Analysis
– start-page: 416
  year: 1986
  ident: bib1
  article-title: The Statistical Analysis of Compositional Data
– volume: 35
  start-page: 279
  year: 2003
  end-page: 300
  ident: bib17
  article-title: Isometric logratio transformations for compositional data analysis
  publication-title: Math. Geol.
– volume: 17
  start-page: 231
  year: 2017
  end-page: 238
  ident: bib8
  article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data
  publication-title: Geochem. Explor. Environ. Anal.
– volume: 10
  start-page: 3
  year: 2010
  end-page: 16
  ident: bib13
  article-title: Major advances in exploration geochemistry, 1998-2007
  publication-title: Geochem. Explor. Environ. Anal.
– volume: 111
  start-page: 103005
  year: 2019
  ident: bib50
  article-title: Exploration information systems - a proposal for the future use of GIS in mineral exploration targeting
  publication-title: Ore Geol. Rev.
– volume: 21
  start-page: 238
  year: 1959
  ident: bib14
  article-title: Corrigenda: the regression analysis of binary sequences
  publication-title: J. Roy. Stat. Soc.
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: bib21
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
– volume: 10
  start-page: 137
  year: 2001
  end-page: 147
  ident: bib41
  article-title: Some simple guides to finding useful information in exploration geochemical data
  publication-title: Nat. Resour. Res.
– volume: 122
  start-page: 104710
  year: 2020
  ident: bib34
  article-title: Recognition of geochemical anomalies using a deep variational autoencoder network
  publication-title: Appl. Geochem.
– year: 2018
  ident: bib35
  article-title: Foundations of Machine Learning
– volume: 86
  start-page: 75
  year: 2016
  ident: 10.1016/j.apgeochem.2021.104994_bib47
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.10.006
– year: 2021
  ident: 10.1016/j.apgeochem.2021.104994_bib49
  article-title: Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder
  publication-title: Math. Geosci.
– volume: 17
  start-page: 231
  year: 2017
  ident: 10.1016/j.apgeochem.2021.104994_bib8
  article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2016-024
– start-page: 9 10
  year: 2002
  ident: 10.1016/j.apgeochem.2021.104994_bib18
  article-title: A survey of dimension reduction techniques
  publication-title: Neoplasia
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.apgeochem.2021.104994_bib6
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 27
  start-page: 663
  year: 2012
  ident: 10.1016/j.apgeochem.2021.104994_bib56
  article-title: Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2011.12.020
– year: 2018
  ident: 10.1016/j.apgeochem.2021.104994_bib35
– volume: 27
  start-page: 5
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104994_bib62
  article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9357-0
– volume: 192
  start-page: 1
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104994_bib64
  article-title: Deep learning and its application in geochemical mapping
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.02.023
– start-page: 416
  year: 1986
  ident: 10.1016/j.apgeochem.2021.104994_bib1
– volume: 125
  start-page: 43
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104994_bib9
  article-title: A Spatially Constrained Multi-Autoencoder approach for multivariate geochemical anomaly recognition
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.01.016
– volume: 12
  start-page: 1235
  year: 1995
  ident: 10.1016/j.apgeochem.2021.104994_bib5
  article-title: Neural networks for pattern recognition
  publication-title: Agric. Eng. Int. CIGR J.
– volume: 20
  start-page: 507
  year: 1974
  ident: 10.1016/j.apgeochem.2021.104994_bib38
  article-title: A cluster analysis method for grouping means in the analysis of variance
  publication-title: Biometrics
  doi: 10.2307/2529204
– volume: 55
  start-page: 844
  year: 2016
  ident: 10.1016/j.apgeochem.2021.104994_bib32
  article-title: Hyperspectral image classification using deep pixel-pair features
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2016.2616355
– volume: 10
  start-page: 137
  year: 2001
  ident: 10.1016/j.apgeochem.2021.104994_bib41
  article-title: Some simple guides to finding useful information in exploration geochemical data
  publication-title: Nat. Resour. Res.
  doi: 10.1023/A:1011552810482
– year: 1995
  ident: 10.1016/j.apgeochem.2021.104994_bib42
– volume: 60
  start-page: 99
  year: 1997
  ident: 10.1016/j.apgeochem.2021.104994_bib46
  article-title: Geochemical mapping in China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(97)00029-0
– volume: 164
  start-page: 33
  year: 2016
  ident: 10.1016/j.apgeochem.2021.104994_bib61
  article-title: Fractal/multifractal modeling of geochemical data: a review
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.04.010
– volume: 78
  start-page: WB113
  year: 2013
  ident: 10.1016/j.apgeochem.2021.104994_bib15
  article-title: The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines
  publication-title: Geophysics
  doi: 10.1190/geo2012-0411.1
– volume: 21
  start-page: 238
  year: 1959
  ident: 10.1016/j.apgeochem.2021.104994_bib14
  article-title: Corrigenda: the regression analysis of binary sequences
  publication-title: J. Roy. Stat. Soc.
  doi: 10.1111/j.2517-6161.1959.tb00334.x
– volume: 14
  start-page: 197
  year: 1972
  ident: 10.1016/j.apgeochem.2021.104994_bib2
  article-title: A simple neural network generating an interactive memory
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(72)90075-2
– volume: 111
  start-page: 103005
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104994_bib50
  article-title: Exploration information systems - a proposal for the future use of GIS in mineral exploration targeting
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2019.103005
– volume: 30
  start-page: 27
  year: 2021
  ident: 10.1016/j.apgeochem.2021.104994_bib31
  article-title: Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09742-z
– volume: 122
  start-page: 104747
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104994_bib30
  article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2020.104747
– volume: 10
  start-page: 191
  year: 1984
  ident: 10.1016/j.apgeochem.2021.104994_bib4
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– start-page: 517
  year: 1968
  ident: 10.1016/j.apgeochem.2021.104994_bib39
  article-title: A two-dimensional interpolation function for irregularly-spaced data
– volume: 107
  start-page: 258
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104994_bib44
  article-title: Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2019.02.027
– volume: 26
  start-page: 457
  year: 2017
  ident: 10.1016/j.apgeochem.2021.104994_bib58
  article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9345-4
– volume: 29
  start-page: 3415
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104994_bib60
  article-title: Geodata science-based mineral prospectivity mapping: a review
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09700-9
– volume: 122
  start-page: 55
  year: 2012
  ident: 10.1016/j.apgeochem.2021.104994_bib11
  article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.07.007
– volume: 71
  start-page: 502
  year: 2015
  ident: 10.1016/j.apgeochem.2021.104994_bib65
  article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.09.024
– volume: 157
  start-page: 81
  year: 2015
  ident: 10.1016/j.apgeochem.2021.104994_bib19
  article-title: Supervised geochemical anomaly detection by pattern recognition
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.06.001
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104994_bib37
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– start-page: 215
  year: 2011
  ident: 10.1016/j.apgeochem.2021.104994_bib12
  article-title: An analysis of single-layer networks in unsupervised feature learning
– volume: 140
  start-page: 104484
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104994_bib48
  article-title: Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104484
– volume: 140
  start-page: 56
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104994_bib7
  article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.02.013
– volume: 10
  start-page: 27
  year: 2010
  ident: 10.1016/j.apgeochem.2021.104994_bib20
  article-title: The interpretation of geochemical survey data
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/09-210
– volume: 65
  start-page: 266
  year: 2015
  ident: 10.1016/j.apgeochem.2021.104994_bib54
  article-title: Geological features and formation processes of the Makeng Fe deposit, China
  publication-title: Resour. Geol.
  doi: 10.1111/rge.12070
– volume: vol. 175
  start-page: 12
  year: 1986
  ident: 10.1016/j.apgeochem.2021.104994_bib40
– volume: 10
  start-page: 3
  year: 2010
  ident: 10.1016/j.apgeochem.2021.104994_bib13
  article-title: Major advances in exploration geochemistry, 1998-2007
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/09-215
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.apgeochem.2021.104994_bib29
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 100
  start-page: 25
  year: 2009
  ident: 10.1016/j.apgeochem.2021.104994_bib57
  article-title: Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2008.03.004
– volume: 363
  issue: 6433
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104994_bib3
  article-title: Machine learning for data-driven discovery in solid earth geoscience
  publication-title: Science
  doi: 10.1126/science.aau0323
– volume: 29
  start-page: 189
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104994_bib45
  article-title: Mapping mineral prospectivity via semi–supervised random forest
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09510-8
– volume: 2
  start-page: 405
  year: 2002
  ident: 10.1016/j.apgeochem.2021.104994_bib16
  article-title: Ensemble learning
– volume: 76
  start-page: 504
  year: 2016
  ident: 10.1016/j.apgeochem.2021.104994_bib22
  article-title: Mineral system analysis: Quo vadis
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.12.012
– volume: 167
  start-page: 49
  year: 2016
  ident: 10.1016/j.apgeochem.2021.104994_bib26
  article-title: A machine learning approach to geochemical mapping
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2016.05.003
– volume: 31
  start-page: 1544
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104994_bib25
  article-title: Machine learning for the geosciences: challenges and opportunities
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2861006
– volume: 6
  start-page: 644
  year: 2013
  ident: 10.1016/j.apgeochem.2021.104994_bib33
  article-title: Multiple-window anomaly detection for hyperspectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2239959
– volume: 187
  start-page: 27
  year: 2016
  ident: 10.1016/j.apgeochem.2021.104994_bib21
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.apgeochem.2021.104994_bib28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 122
  start-page: 104710
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104994_bib34
  article-title: Recognition of geochemical anomalies using a deep variational autoencoder network
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2020.104710
– volume: 104
  start-page: 663
  year: 2015
  ident: 10.1016/j.apgeochem.2021.104994_bib52
  article-title: The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology
  publication-title: Int. J. Earth Sci.
  doi: 10.1007/s00531-014-1096-4
– volume: 184
  start-page: 150
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104994_bib59
  article-title: Selection of an elemental association related to mineralization using spatial analysis
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2017.10.020
– volume: 203
  start-page: 87
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104994_bib51
  article-title: Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2019.04.007
– volume: 35
  start-page: 279
  year: 2003
  ident: 10.1016/j.apgeochem.2021.104994_bib17
  article-title: Isometric logratio transformations for compositional data analysis
  publication-title: Math. Geol.
  doi: 10.1023/A:1023818214614
– volume: 56
  start-page: 5046
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104994_bib55
  article-title: Generative adversarial networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2018.2805286
– volume: 209
  start-page: 106431
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104994_bib63
  article-title: Geodata science and geochemical mapping
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2019.106431
– volume: 148
  start-page: 839
  year: 1983
  ident: 10.1016/j.apgeochem.2021.104994_bib23
  article-title: A method of comparing the areas under receiver operating characteristic curves derived from the same cases
  publication-title: Radiology
  doi: 10.1148/radiology.148.3.6878708
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.apgeochem.2021.104994_bib24
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: vol. 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.apgeochem.2021.104994_bib27
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 5
  start-page: 289
  year: 1993
  ident: 10.1016/j.apgeochem.2021.104994_bib36
  article-title: Redundancy reduction as a strategy for unsupervised learning
  publication-title: Neural Comput.
  doi: 10.1162/neco.1993.5.2.289
– volume: 32
  start-page: 314
  year: 2007
  ident: 10.1016/j.apgeochem.2021.104994_bib10
  article-title: Mapping singularities with stream sediment geochemical data for Prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2006.10.002
– volume: 57
  start-page: 53
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104994_bib53
  article-title: Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2013.09.009
– volume: 28
  start-page: 1285
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104994_bib43
  article-title: Mapping geochemical anomalies through integrating random forest and metric learning methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09471-y
SSID ssj0005702
Score 2.5805125
Snippet Machine learning (ML) algorithms are widely applied in various fields owing to their strong ability to abstract high-level features from a large number of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104994
SubjectTerms China
Convolutional neural network
Deep learning
Geochemical anomalies
geochemistry
Mineral exploration
mineralization
neural networks
Pixel-pair feature method
probability
Title Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method
URI https://dx.doi.org/10.1016/j.apgeochem.2021.104994
https://www.proquest.com/docview/2561522519
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9UwDI-mTUhcEH_FBkxB4lpem6ZJym3aGA8Qu8Ck3aIkdaaira_a3hBc-CR8WOw0nRgS2oFTlTZJo9ixneRnm7FXtY5gNC4kKVtfSNN2hY8BDbloHOqr0OhAB_qfjtTyWH44aU422P7sC0Owyiz7J5mepHV-s8izuRj7fvEZ10ctWoFbGNLZihx-pdTE5a9__gHz0Al3SJULqn0D4-XGU6DEVOSSLiq672xb-S8N9ZesTgro8D67ly1HvjcN7gHbgOEhu_MuZeb98Yj9OoB1glUNfBU5mnU8YQW_4V4YzUmeR0Ak4W5YnaP5DZfcZeJAx-lAlp_3KQh19s3kBIo_5Y53ACMnfHrmU-yD4mCmR0KRY5cd1hv773BWjK6_4BFSxFA-Zah-zI4P337ZXxY59ULhal2tC-Fk5ZtadK1uFShdN9rJ0pcBP3sQngoGtIE6ijI2wpTC1bj0yy5UoQZTP2Gbw2qAp4yHqBwKscoEo6SqOhONDtEHD1JFr8w2U_N025DjklN6jDM7A9C-2ms6WaKTnei0zcrrhuMUmuP2Jm9metobXGZRgdze-OXMARbXIF2suAFWV5cWzUY0g8gHeOd_fvCM3aXSBAZ-zjbXF1fwAk2etd9NPL3Ltvbef1we_QbyTAVx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVgguiKcoTyNxjTYPx3a4VYWype1eaKXeLNsZV0FtNmq3CP4LP5YZxykqEuqBU5T4Ecsznhnb38ww9r5SAbTChSRE4zKhmzZzwaMhF7RFfeVr5elA_3ApF8fiy0l9ssF2Jl8YglUm2T_K9Cit05d5ms350HXzr7g-qrIpcQtDOlvqO2yTolPVM7a5vbe_WP5BeqgIPaT6GTW4AfOywylQbirySi8LuvJsGvEvJfWXuI46aPche5CMR749ju8R24D-Mbv7OSbn_fmE_foI64is6vkqcLTseIQLfsftMFqUPI2AqMJtvzpHCxwuuU30gZbTmSw_72Ic6uSeyQkXf8otbwEGThD1xKrYB4XCjI8IJMcuW6w3dD_gLBtsd8EDxKChfExS_ZQd73462llkKftCZitVrLPSisLVVdk2qpEgVVUrK3KXeyx2UDp60aA0VKHMQ13qvLQVrv689YWvQFfP2Kxf9fCccR-kRTlWaK-lkEWrg1Y-OO9AyOCk3mJymm7jU2hyypBxZiYM2jdzTSdDdDIjnbZYft1wGKNz3N7kw0RPc4PRDOqQ2xu_mzjA4DKkuxXbw-rq0qDliJYQuQG_-J8fvGX3FkeHB-Zgb7n_kt2nkhEb_IrN1hdX8BotoLV7kzj8N9QpCCI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+the+multivariate+geochemical+anomalies+associated+with+mineralization+using+a+deep+convolutional+neural+network+and+a+pixel-pair+feature+method&rft.jtitle=Applied+geochemistry&rft.au=Zhang%2C+Chunjie&rft.au=Zuo%2C+Renguang&rft.au=Xiong%2C+Yihui&rft.date=2021-07-01&rft.issn=0883-2927&rft.volume=130&rft.spage=104994&rft_id=info:doi/10.1016%2Fj.apgeochem.2021.104994&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apgeochem_2021_104994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon