Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method
Machine learning (ML) algorithms are widely applied in various fields owing to their strong ability to abstract high-level features from a large number of training samples. However, few supervised ML algorithms have been applied in geochemical prospecting and mineral exploration because mineralizati...
Saved in:
Published in | Applied geochemistry Vol. 130; p. 104994 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning (ML) algorithms are widely applied in various fields owing to their strong ability to abstract high-level features from a large number of training samples. However, few supervised ML algorithms have been applied in geochemical prospecting and mineral exploration because mineralization is a rare geological event that leads to an insufficient number of training samples. Generating a large number of training samples is crucial for the application of supervised ML in geochemical prospecting and mineral exploration. In this study, a novel anomaly detection framework combined with a pixel-pair feature (PPF) method and a deep convolutional neural network (CNN) was employed to identify the multivariate geochemical anomalies associated with mineralization. First, the PPF method was employed to generate sufficient training samples by recombining the pixel pairs of the labeled samples. Then, a multilayer supervised CNN framework, which consists of 13 convolutional layers, an average pooling layer, and a fully connected layer, was trained with these pixel pairs for geochemical anomaly recognition. The testing procedure was based on the fact that neighboring pixels belong to the same class with a high probability. The dual-window detector was applied to detect multivariate geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province of China. The identified geochemical anomalies exhibited a close spatial correlation with the known mineral deposits, which validates the potential of the proposed method. Therefore, the method developed in this study can enhance the application of supervised ML in geochemical prospecting and mineral exploration.
•A data augmented algorithm is used to solve the issue of insufficient training samples.•A deep CNN framework is constructed for identifying multivariate geochemical anomalies.•The obtained results were strongly spatially correlated with locations of known mineral deposits. |
---|---|
AbstractList | Machine learning (ML) algorithms are widely applied in various fields owing to their strong ability to abstract high-level features from a large number of training samples. However, few supervised ML algorithms have been applied in geochemical prospecting and mineral exploration because mineralization is a rare geological event that leads to an insufficient number of training samples. Generating a large number of training samples is crucial for the application of supervised ML in geochemical prospecting and mineral exploration. In this study, a novel anomaly detection framework combined with a pixel-pair feature (PPF) method and a deep convolutional neural network (CNN) was employed to identify the multivariate geochemical anomalies associated with mineralization. First, the PPF method was employed to generate sufficient training samples by recombining the pixel pairs of the labeled samples. Then, a multilayer supervised CNN framework, which consists of 13 convolutional layers, an average pooling layer, and a fully connected layer, was trained with these pixel pairs for geochemical anomaly recognition. The testing procedure was based on the fact that neighboring pixels belong to the same class with a high probability. The dual-window detector was applied to detect multivariate geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province of China. The identified geochemical anomalies exhibited a close spatial correlation with the known mineral deposits, which validates the potential of the proposed method. Therefore, the method developed in this study can enhance the application of supervised ML in geochemical prospecting and mineral exploration.
•A data augmented algorithm is used to solve the issue of insufficient training samples.•A deep CNN framework is constructed for identifying multivariate geochemical anomalies.•The obtained results were strongly spatially correlated with locations of known mineral deposits. Machine learning (ML) algorithms are widely applied in various fields owing to their strong ability to abstract high-level features from a large number of training samples. However, few supervised ML algorithms have been applied in geochemical prospecting and mineral exploration because mineralization is a rare geological event that leads to an insufficient number of training samples. Generating a large number of training samples is crucial for the application of supervised ML in geochemical prospecting and mineral exploration. In this study, a novel anomaly detection framework combined with a pixel-pair feature (PPF) method and a deep convolutional neural network (CNN) was employed to identify the multivariate geochemical anomalies associated with mineralization. First, the PPF method was employed to generate sufficient training samples by recombining the pixel pairs of the labeled samples. Then, a multilayer supervised CNN framework, which consists of 13 convolutional layers, an average pooling layer, and a fully connected layer, was trained with these pixel pairs for geochemical anomaly recognition. The testing procedure was based on the fact that neighboring pixels belong to the same class with a high probability. The dual-window detector was applied to detect multivariate geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province of China. The identified geochemical anomalies exhibited a close spatial correlation with the known mineral deposits, which validates the potential of the proposed method. Therefore, the method developed in this study can enhance the application of supervised ML in geochemical prospecting and mineral exploration. |
ArticleNumber | 104994 |
Author | Zuo, Renguang Xiong, Yihui Zhang, Chunjie |
Author_xml | – sequence: 1 givenname: Chunjie surname: Zhang fullname: Zhang, Chunjie – sequence: 2 givenname: Renguang surname: Zuo fullname: Zuo, Renguang email: zrguang@cug.edu.cn – sequence: 3 givenname: Yihui surname: Xiong fullname: Xiong, Yihui |
BookMark | eNqNkc1u1DAUhS1UpE5bnqFessngn2ScLFhU5VeqxIaurTvOTceDYwfbmRaehYfFmalYsIHVlX3O-XR1zwU588EjIdecrTnjmzf7NUwPGMwOx7VggpffuuvqF2TFWyWqjsv6jKxY28pKdEKdk4uU9oyxRjGxIr_eYUaTbfA0DDTvkI6zy_YA0UJG-gy2BhwFH0ZwFhOFlIJZ9J4-2ryjo_UYi_QTjqA5Wf9AgfaIEzXBH4KbF6EwPM7xOPJjiN8Ksi--yT6hqyawkQ4IeY5lCcy70F-RlwO4hK-e5yW5__D-6-2n6u7Lx8-3N3cVSMVzJaDm20aKvlPdBjdKNgpqtmWmyFsU2-XRompRDoINjWiZANkqxnrDjcRWXpLXJ-4Uw_cZU9ajTQadA49hTlo0G94I0fCuWNXJamJIKeKgp2hHiD80Z3rpQ-_1nz700oc-9VGSb_9KGpuPB8sRrPuP_M0pj-USB4tRJ2PRG-xtLA3qPth_Mn4DyomytA |
CitedBy_id | crossref_primary_10_1016_j_oregeorev_2023_105787 crossref_primary_10_1007_s11053_024_10433_2 crossref_primary_10_1016_j_gexplo_2021_106875 crossref_primary_10_1016_j_oregeorev_2022_104693 crossref_primary_10_1016_j_petsci_2023_11_010 crossref_primary_10_3390_min12091112 crossref_primary_10_1007_s11053_023_10200_9 crossref_primary_10_3724_j_issn_1007_2802_20240164 crossref_primary_10_1016_j_gexplo_2021_106872 crossref_primary_10_1016_j_cageo_2024_105657 crossref_primary_10_1016_j_cageo_2025_105853 crossref_primary_10_1007_s11042_024_19972_5 crossref_primary_10_1007_s11053_023_10286_1 crossref_primary_10_1016_j_chemer_2024_126156 crossref_primary_10_1007_s11053_022_10143_7 crossref_primary_10_3390_min14101021 crossref_primary_10_1109_ACCESS_2022_3215957 crossref_primary_10_1016_j_chemer_2024_126197 crossref_primary_10_1016_j_apgeochem_2023_105722 crossref_primary_10_1016_j_marpetgeo_2024_106965 crossref_primary_10_1007_s12145_024_01565_3 crossref_primary_10_1016_j_mineng_2024_108669 crossref_primary_10_1016_j_gexplo_2024_107443 crossref_primary_10_1007_s12145_025_01843_8 crossref_primary_10_1007_s11053_025_10464_3 crossref_primary_10_1016_j_apgeochem_2021_105043 crossref_primary_10_1007_s11053_024_10409_2 crossref_primary_10_1016_j_oregeorev_2023_105418 crossref_primary_10_1007_s11430_024_1309_9 crossref_primary_10_1007_s11004_021_09979_1 crossref_primary_10_1007_s11004_022_10023_z crossref_primary_10_3390_rs14236017 crossref_primary_10_1016_j_apgeochem_2021_105072 crossref_primary_10_1016_j_cageo_2022_105100 crossref_primary_10_1016_j_gexplo_2022_106983 crossref_primary_10_3389_feart_2023_1102640 crossref_primary_10_3389_fenvs_2023_1076302 crossref_primary_10_1016_j_jag_2024_103697 crossref_primary_10_1007_s11053_022_10080_5 crossref_primary_10_1007_s12145_024_01246_1 crossref_primary_10_1016_j_apgeochem_2022_105450 crossref_primary_10_1016_j_apgeochem_2021_105111 crossref_primary_10_1016_j_apgeochem_2024_106146 crossref_primary_10_1016_j_chemer_2021_125800 crossref_primary_10_1016_j_cageo_2023_105392 crossref_primary_10_1007_s12145_025_01811_2 crossref_primary_10_1016_j_cageo_2022_105153 crossref_primary_10_1016_j_cageo_2022_105075 crossref_primary_10_1016_j_jafrearsci_2023_104865 crossref_primary_10_1016_j_cageo_2025_105913 crossref_primary_10_1016_j_jag_2024_103780 crossref_primary_10_1016_j_oregeorev_2022_105242 crossref_primary_10_1007_s11053_022_10144_6 crossref_primary_10_1007_s11004_022_10042_w crossref_primary_10_1007_s11053_024_10334_4 crossref_primary_10_1360_N072024_0018 crossref_primary_10_1016_j_chemer_2023_125959 crossref_primary_10_1007_s11004_023_10133_2 crossref_primary_10_1007_s11004_024_10153_6 crossref_primary_10_1007_s11053_022_10088_x crossref_primary_10_1016_j_cageo_2023_105341 crossref_primary_10_1016_j_jappgeo_2025_105637 crossref_primary_10_1021_acs_energyfuels_4c05402 crossref_primary_10_1016_j_gexplo_2023_107238 crossref_primary_10_3390_min12060689 crossref_primary_10_1016_j_chemer_2021_125830 crossref_primary_10_1016_j_gexplo_2021_106904 crossref_primary_10_1016_j_oregeorev_2024_106263 crossref_primary_10_1016_j_cageo_2021_104974 crossref_primary_10_1016_j_gsf_2023_101715 crossref_primary_10_1016_j_gexplo_2023_107274 crossref_primary_10_12677_AG_2022_125067 crossref_primary_10_1016_j_apgeochem_2022_105273 crossref_primary_10_1016_j_oregeorev_2022_104955 crossref_primary_10_3390_jmse12111907 crossref_primary_10_1016_j_apgeochem_2024_106124 crossref_primary_10_1016_j_oregeorev_2023_105706 crossref_primary_10_3390_rs13234860 |
Cites_doi | 10.1016/j.cageo.2015.10.006 10.1144/geochem2016-024 10.1023/A:1010933404324 10.1016/j.apgeochem.2011.12.020 10.1007/s11053-017-9357-0 10.1016/j.earscirev.2019.02.023 10.1016/j.cageo.2019.01.016 10.2307/2529204 10.1109/TGRS.2016.2616355 10.1023/A:1011552810482 10.1016/S0375-6742(97)00029-0 10.1016/j.gexplo.2015.04.010 10.1190/geo2012-0411.1 10.1111/j.2517-6161.1959.tb00334.x 10.1016/0025-5564(72)90075-2 10.1016/j.oregeorev.2019.103005 10.1007/s11053-020-09742-z 10.1016/j.apgeochem.2020.104747 10.1016/0098-3004(84)90020-7 10.1016/j.oregeorev.2019.02.027 10.1007/s11053-017-9345-4 10.1007/s11053-020-09700-9 10.1016/j.gexplo.2012.07.007 10.1016/j.oregeorev.2014.09.024 10.1016/j.gexplo.2015.06.001 10.1038/s41586-019-0912-1 10.1016/j.cageo.2020.104484 10.1016/j.gexplo.2014.02.013 10.1144/1467-7873/09-210 10.1111/rge.12070 10.1144/1467-7873/09-215 10.1109/5.726791 10.1016/j.gexplo.2008.03.004 10.1126/science.aau0323 10.1007/s11053-019-09510-8 10.1016/j.oregeorev.2015.12.012 10.1016/j.gexplo.2016.05.003 10.1109/TKDE.2018.2861006 10.1109/JSTARS.2013.2239959 10.1016/j.neucom.2015.09.116 10.1038/nature14539 10.1016/j.apgeochem.2020.104710 10.1007/s00531-014-1096-4 10.1016/j.gexplo.2017.10.020 10.1016/j.gexplo.2019.04.007 10.1023/A:1023818214614 10.1109/TGRS.2018.2805286 10.1016/j.gexplo.2019.106431 10.1148/radiology.148.3.6878708 10.1162/neco.2006.18.7.1527 10.1162/neco.1993.5.2.289 10.1016/j.oregeorev.2006.10.002 10.1016/j.oregeorev.2013.09.009 10.1007/s11053-019-09471-y |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apgeochem.2021.104994 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9134 |
ExternalDocumentID | 10_1016_j_apgeochem_2021_104994 S0883292721001268 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a371t-2a41b532d9796e67357a40b0ca37be2ba40b8e78e3f20f52802a38700dc1c3e83 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Fri Jul 11 09:03:18 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Tue Jul 01 01:59:41 EDT 2025 Fri Feb 23 02:43:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Geochemical anomalies Deep learning Mineral exploration Pixel-pair feature method Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a371t-2a41b532d9796e67357a40b0ca37be2ba40b8e78e3f20f52802a38700dc1c3e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2561522519 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2561522519 crossref_primary_10_1016_j_apgeochem_2021_104994 crossref_citationtrail_10_1016_j_apgeochem_2021_104994 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2021_104994 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied geochemistry |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xie, Mu, Ren (bib46) 1997; 60 Xiong, Zuo (bib48) 2020; 140 Cox (bib14) 1959; 21 Krizhevsky, Sutskever, Hinton (bib27) 2012; vol. 25 Fodor (bib18) 2002 Zuo (bib58) 2017; 26 Redlich (bib36) 1993; 5 Karpatne, Ebert-Uphoff, Ravela, Babaie, Kumar (bib25) 2018; 31 Zhang, Zuo, Cheng (bib54) 2015; 65 Xiong, Zuo (bib47) 2016; 86 Zuo, Xiong (bib62) 2018; 27 Bezdek, Ehrlich, Full (bib4) 1984; 10 Zuo (bib60) 2020; 29 Cheng (bib10) 2007; 32 Liu, Chang (bib33) 2013; 6 Chen, Lu, Li (bib7) 2014; 140 Aitchison (bib1) 1986 Kirkwood, Cave, Beamish, Grebby, Ferreira (bib26) 2016; 167 Gonbadi, Tabatabaei, Carranza (bib19) 2015; 157 Hinton, Osindero, Teh (bib24) 2006; 18 Bergen, Johnson, De Hoop, Beroza (bib3) 2019; 363 Cracknell, Reading (bib15) 2013; 78 Zhang, Zuo (bib53) 2014; 57 Chen, Wu (bib8) 2017; 17 Singer, Kouda (bib41) 2001; 10 Bishop (bib5) 1995; 12 Yu, Xiao, Zhou, Wang, Wang (bib51) 2019; 203 Cheng (bib11) 2012; 122 Wang, Zuo, Dong (bib43) 2019; 28 Ziaii, Pouyan, Ziaei (bib57) 2009; 100 Silverman (bib40) 1986; vol. 175 Luo, Xiong, Zuo (bib34) 2020; 122 Li, Zuo, Xiong, Peng (bib31) 2021; 30 Dietterich (bib16) 2002; 2 Li, Li, Yuan, Jowitt, Zhang, Zhou, Wu (bib30) 2020; 122 Zuo, Zhang, Zhang, Carranza, Wang (bib65) 2015; 71 Zhang, Zuo, Cheng (bib52) 2015; 104 Coates, Ng, Lee (bib12) 2011 Anderson (bib2) 1972; 14 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais (bib37) 2019; 566 Chen, Guan, Xiong, Liang, Wang, Xu (bib9) 2019; 125 Shepard (bib39) 1968 Cohen, Kelley, Anand, Coker (bib13) 2010; 10 Yousefi, Kreuzer, Nyknen, Hronsky (bib50) 2019; 111 Mohri, Rostamizadeh, Talwalkar (bib35) 2018 LeCun, Bottou, Bengio, Haffner (bib29) 1998; 86 Zuo, Wang (bib61) 2016; 164 Ziaii, Ardejani, Ziaei, Soleymani (bib56) 2012; 27 Egozcue, Pawlowsky-Glahn, Mateu-Figueras, Barcelo-Vidal (bib17) 2003; 35 Zuo, Xiong, Wang, Carranza (bib64) 2019; 192 Xiong, Zuo (bib49) 2021 Zuo (bib59) 2018; 184 Grunsky (bib20) 2010; 10 Zhu, Chen, Ghamisi, Benediktsson (bib55) 2018; 56 Breiman (bib6) 2001; 45 Zuo, Xiong (bib63) 2020; 209 Guo, Liu, Oerlemans, Lao, Wu, Lew (bib21) 2016; 187 LeCun, Bengio, Hinton (bib28) 2015; 521 Scott, Knott (bib38) 1974; 20 Li, Wu, Zhang, Du (bib32) 2016; 55 Wang, Zuo, Xiong (bib45) 2020; 29 Vapnik (bib42) 1995 Wang, Dong, Zuo (bib44) 2019; 107 Hanley, Mcneil (bib23) 1983; 148 Hagemann, Lisitsin, Huston (bib22) 2016; 76 Zuo (10.1016/j.apgeochem.2021.104994_bib63) 2020; 209 Hagemann (10.1016/j.apgeochem.2021.104994_bib22) 2016; 76 Chen (10.1016/j.apgeochem.2021.104994_bib9) 2019; 125 Krizhevsky (10.1016/j.apgeochem.2021.104994_bib27) 2012; vol. 25 Anderson (10.1016/j.apgeochem.2021.104994_bib2) 1972; 14 Zuo (10.1016/j.apgeochem.2021.104994_bib65) 2015; 71 Bishop (10.1016/j.apgeochem.2021.104994_bib5) 1995; 12 Li (10.1016/j.apgeochem.2021.104994_bib31) 2021; 30 Zhang (10.1016/j.apgeochem.2021.104994_bib52) 2015; 104 Singer (10.1016/j.apgeochem.2021.104994_bib41) 2001; 10 Shepard (10.1016/j.apgeochem.2021.104994_bib39) 1968 Wang (10.1016/j.apgeochem.2021.104994_bib44) 2019; 107 Zhu (10.1016/j.apgeochem.2021.104994_bib55) 2018; 56 Coates (10.1016/j.apgeochem.2021.104994_bib12) 2011 Fodor (10.1016/j.apgeochem.2021.104994_bib18) 2002 Redlich (10.1016/j.apgeochem.2021.104994_bib36) 1993; 5 Kirkwood (10.1016/j.apgeochem.2021.104994_bib26) 2016; 167 Grunsky (10.1016/j.apgeochem.2021.104994_bib20) 2010; 10 Breiman (10.1016/j.apgeochem.2021.104994_bib6) 2001; 45 Mohri (10.1016/j.apgeochem.2021.104994_bib35) 2018 Li (10.1016/j.apgeochem.2021.104994_bib32) 2016; 55 Dietterich (10.1016/j.apgeochem.2021.104994_bib16) 2002; 2 Hanley (10.1016/j.apgeochem.2021.104994_bib23) 1983; 148 LeCun (10.1016/j.apgeochem.2021.104994_bib29) 1998; 86 Bezdek (10.1016/j.apgeochem.2021.104994_bib4) 1984; 10 Zuo (10.1016/j.apgeochem.2021.104994_bib64) 2019; 192 Egozcue (10.1016/j.apgeochem.2021.104994_bib17) 2003; 35 Cheng (10.1016/j.apgeochem.2021.104994_bib10) 2007; 32 Xiong (10.1016/j.apgeochem.2021.104994_bib49) 2021 Yousefi (10.1016/j.apgeochem.2021.104994_bib50) 2019; 111 Hinton (10.1016/j.apgeochem.2021.104994_bib24) 2006; 18 Cox (10.1016/j.apgeochem.2021.104994_bib14) 1959; 21 Bergen (10.1016/j.apgeochem.2021.104994_bib3) 2019; 363 Li (10.1016/j.apgeochem.2021.104994_bib30) 2020; 122 Scott (10.1016/j.apgeochem.2021.104994_bib38) 1974; 20 Chen (10.1016/j.apgeochem.2021.104994_bib8) 2017; 17 Cracknell (10.1016/j.apgeochem.2021.104994_bib15) 2013; 78 Xie (10.1016/j.apgeochem.2021.104994_bib46) 1997; 60 Zuo (10.1016/j.apgeochem.2021.104994_bib58) 2017; 26 Zuo (10.1016/j.apgeochem.2021.104994_bib59) 2018; 184 Guo (10.1016/j.apgeochem.2021.104994_bib21) 2016; 187 Reichstein (10.1016/j.apgeochem.2021.104994_bib37) 2019; 566 Zuo (10.1016/j.apgeochem.2021.104994_bib61) 2016; 164 Zhang (10.1016/j.apgeochem.2021.104994_bib53) 2014; 57 Zuo (10.1016/j.apgeochem.2021.104994_bib60) 2020; 29 Luo (10.1016/j.apgeochem.2021.104994_bib34) 2020; 122 Cohen (10.1016/j.apgeochem.2021.104994_bib13) 2010; 10 Gonbadi (10.1016/j.apgeochem.2021.104994_bib19) 2015; 157 Chen (10.1016/j.apgeochem.2021.104994_bib7) 2014; 140 LeCun (10.1016/j.apgeochem.2021.104994_bib28) 2015; 521 Vapnik (10.1016/j.apgeochem.2021.104994_bib42) 1995 Wang (10.1016/j.apgeochem.2021.104994_bib45) 2020; 29 Silverman (10.1016/j.apgeochem.2021.104994_bib40) 1986; vol. 175 Karpatne (10.1016/j.apgeochem.2021.104994_bib25) 2018; 31 Aitchison (10.1016/j.apgeochem.2021.104994_bib1) 1986 Cheng (10.1016/j.apgeochem.2021.104994_bib11) 2012; 122 Wang (10.1016/j.apgeochem.2021.104994_bib43) 2019; 28 Xiong (10.1016/j.apgeochem.2021.104994_bib48) 2020; 140 Ziaii (10.1016/j.apgeochem.2021.104994_bib56) 2012; 27 Zuo (10.1016/j.apgeochem.2021.104994_bib62) 2018; 27 Liu (10.1016/j.apgeochem.2021.104994_bib33) 2013; 6 Yu (10.1016/j.apgeochem.2021.104994_bib51) 2019; 203 Xiong (10.1016/j.apgeochem.2021.104994_bib47) 2016; 86 Zhang (10.1016/j.apgeochem.2021.104994_bib54) 2015; 65 Ziaii (10.1016/j.apgeochem.2021.104994_bib57) 2009; 100 |
References_xml | – volume: 76 start-page: 504 year: 2016 end-page: 522 ident: bib22 article-title: Mineral system analysis: Quo vadis publication-title: Ore Geol. Rev. – volume: 10 start-page: 27 year: 2010 end-page: 74 ident: bib20 article-title: The interpretation of geochemical survey data publication-title: Geochem. Explor. Environ. Anal. – volume: 31 start-page: 1544 year: 2018 end-page: 1554 ident: bib25 article-title: Machine learning for the geosciences: challenges and opportunities publication-title: IEEE Trans. Knowl. Data Eng. – volume: vol. 25 start-page: 1097 year: 2012 end-page: 1105 ident: bib27 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 107 start-page: 258 year: 2019 end-page: 265 ident: bib44 article-title: Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method publication-title: Ore Geol. Rev. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib24 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – start-page: 517 year: 1968 end-page: 524 ident: bib39 article-title: A two-dimensional interpolation function for irregularly-spaced data publication-title: ACM National Conference – start-page: 9 10 year: 2002 end-page: 20 ident: bib18 article-title: A survey of dimension reduction techniques publication-title: Neoplasia – volume: 55 start-page: 844 year: 2016 end-page: 853 ident: bib32 article-title: Hyperspectral image classification using deep pixel-pair features publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 203 start-page: 87 year: 2019 end-page: 95 ident: bib51 article-title: Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district publication-title: J. Geochem. Explor. – volume: 192 start-page: 1 year: 2019 end-page: 14 ident: bib64 article-title: Deep learning and its application in geochemical mapping publication-title: Earth Sci. Rev. – volume: 30 start-page: 27 year: 2021 end-page: 38 ident: bib31 article-title: Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping publication-title: Nat. Resour. Res. – volume: 164 start-page: 33 year: 2016 end-page: 41 ident: bib61 article-title: Fractal/multifractal modeling of geochemical data: a review publication-title: J. Geochem. Explor. – volume: 29 start-page: 3415 year: 2020 end-page: 3424 ident: bib60 article-title: Geodata science-based mineral prospectivity mapping: a review publication-title: Nat. Resour. Res. – volume: 27 start-page: 5 year: 2018 end-page: 13 ident: bib62 article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods publication-title: Nat. Resour. Res. – volume: 122 start-page: 104747 year: 2020 ident: bib30 article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China publication-title: Appl. Geochem. – volume: 100 start-page: 25 year: 2009 end-page: 36 ident: bib57 article-title: Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies publication-title: J. Geochem. Explor. – volume: 209 start-page: 106431 year: 2020 ident: bib63 article-title: Geodata science and geochemical mapping publication-title: J. Geochem. Explor. – volume: 32 start-page: 314 year: 2007 end-page: 324 ident: bib10 article-title: Mapping singularities with stream sediment geochemical data for Prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China publication-title: Ore Geol. Rev. – volume: 521 start-page: 436 year: 2015 ident: bib28 article-title: Deep learning publication-title: Nature – volume: 6 start-page: 644 year: 2013 end-page: 658 ident: bib33 article-title: Multiple-window anomaly detection for hyperspectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 14 start-page: 197 year: 1972 end-page: 220 ident: bib2 article-title: A simple neural network generating an interactive memory publication-title: Math. Biosci. – volume: 65 start-page: 266 year: 2015 end-page: 284 ident: bib54 article-title: Geological features and formation processes of the Makeng Fe deposit, China publication-title: Resour. Geol. – volume: 122 start-page: 55 year: 2012 end-page: 70 ident: bib11 article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas publication-title: J. Geochem. Explor. – volume: 57 start-page: 53 year: 2014 end-page: 60 ident: bib53 article-title: Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China publication-title: Ore Geol. Rev. – volume: 148 start-page: 839 year: 1983 end-page: 843 ident: bib23 article-title: A method of comparing the areas under receiver operating characteristic curves derived from the same cases publication-title: Radiology – volume: 167 start-page: 49 year: 2016 end-page: 61 ident: bib26 article-title: A machine learning approach to geochemical mapping publication-title: J. Geochem. Explor. – volume: 56 start-page: 5046 year: 2018 end-page: 5063 ident: bib55 article-title: Generative adversarial networks for hyperspectral image classification publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 104 start-page: 663 year: 2015 end-page: 682 ident: bib52 article-title: The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology publication-title: Int. J. Earth Sci. – year: 2021 ident: bib49 article-title: Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder publication-title: Math. Geosci. – year: 1995 ident: bib42 article-title: The Nature of Statistical Learning Theory – volume: 12 start-page: 1235 year: 1995 end-page: 1242 ident: bib5 article-title: Neural networks for pattern recognition publication-title: Agric. Eng. Int. CIGR J. – volume: 26 start-page: 457 year: 2017 end-page: 464 ident: bib58 article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods publication-title: Nat. Resour. Res. – volume: 566 start-page: 195 year: 2019 ident: bib37 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature – volume: 2 start-page: 405 year: 2002 end-page: 408 ident: bib16 article-title: Ensemble learning publication-title: The Handbook of Brain Theory and Neural Networks – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: bib4 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Comput. Geosci. – start-page: 215 year: 2011 end-page: 223 ident: bib12 article-title: An analysis of single-layer networks in unsupervised feature learning publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – volume: 29 start-page: 189 year: 2020 end-page: 202 ident: bib45 article-title: Mapping mineral prospectivity via semi–supervised random forest publication-title: Nat. Resour. Res. – volume: 27 start-page: 663 year: 2012 end-page: 676 ident: bib56 article-title: Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry publication-title: Appl. Geochem. – volume: 140 start-page: 56 year: 2014 end-page: 63 ident: bib7 article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly publication-title: J. Geochem. Explor. – volume: 28 start-page: 1285 year: 2019 end-page: 1298 ident: bib43 article-title: Mapping geochemical anomalies through integrating random forest and metric learning methods publication-title: Nat. Resour. Res. – volume: 5 start-page: 289 year: 1993 end-page: 304 ident: bib36 article-title: Redundancy reduction as a strategy for unsupervised learning publication-title: Neural Comput. – volume: 157 start-page: 81 year: 2015 end-page: 91 ident: bib19 article-title: Supervised geochemical anomaly detection by pattern recognition publication-title: J. Geochem. Explor. – volume: 71 start-page: 502 year: 2015 end-page: 515 ident: bib65 article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China publication-title: Ore Geol. Rev. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib29 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 86 start-page: 75 year: 2016 end-page: 82 ident: bib47 article-title: Recognition of geochemical anomalies using a deep autoencoder network publication-title: Comput. Geosci. – volume: 78 start-page: WB113 year: 2013 end-page: WB126 ident: bib15 article-title: The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines publication-title: Geophysics – volume: 60 start-page: 99 year: 1997 end-page: 113 ident: bib46 article-title: Geochemical mapping in China publication-title: J. Geochem. Explor. – volume: 184 start-page: 150 year: 2018 end-page: 157 ident: bib59 article-title: Selection of an elemental association related to mineralization using spatial analysis publication-title: J. Geochem. Explor. – volume: 140 start-page: 104484 year: 2020 ident: bib48 article-title: Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine publication-title: Comput. Geosci. – volume: 125 start-page: 43 year: 2019 end-page: 54 ident: bib9 article-title: A Spatially Constrained Multi-Autoencoder approach for multivariate geochemical anomaly recognition publication-title: Comput. Geosci. – volume: 363 year: 2019 ident: bib3 article-title: Machine learning for data-driven discovery in solid earth geoscience publication-title: Science – volume: 20 start-page: 507 year: 1974 end-page: 512 ident: bib38 article-title: A cluster analysis method for grouping means in the analysis of variance publication-title: Biometrics – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib6 article-title: Random forests publication-title: Mach. Learn. – volume: vol. 175 start-page: 12 year: 1986 ident: bib40 article-title: Density Estimation for Statistics and Data Analysis – start-page: 416 year: 1986 ident: bib1 article-title: The Statistical Analysis of Compositional Data – volume: 35 start-page: 279 year: 2003 end-page: 300 ident: bib17 article-title: Isometric logratio transformations for compositional data analysis publication-title: Math. Geol. – volume: 17 start-page: 231 year: 2017 end-page: 238 ident: bib8 article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data publication-title: Geochem. Explor. Environ. Anal. – volume: 10 start-page: 3 year: 2010 end-page: 16 ident: bib13 article-title: Major advances in exploration geochemistry, 1998-2007 publication-title: Geochem. Explor. Environ. Anal. – volume: 111 start-page: 103005 year: 2019 ident: bib50 article-title: Exploration information systems - a proposal for the future use of GIS in mineral exploration targeting publication-title: Ore Geol. Rev. – volume: 21 start-page: 238 year: 1959 ident: bib14 article-title: Corrigenda: the regression analysis of binary sequences publication-title: J. Roy. Stat. Soc. – volume: 187 start-page: 27 year: 2016 end-page: 48 ident: bib21 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing – volume: 10 start-page: 137 year: 2001 end-page: 147 ident: bib41 article-title: Some simple guides to finding useful information in exploration geochemical data publication-title: Nat. Resour. Res. – volume: 122 start-page: 104710 year: 2020 ident: bib34 article-title: Recognition of geochemical anomalies using a deep variational autoencoder network publication-title: Appl. Geochem. – year: 2018 ident: bib35 article-title: Foundations of Machine Learning – volume: 86 start-page: 75 year: 2016 ident: 10.1016/j.apgeochem.2021.104994_bib47 article-title: Recognition of geochemical anomalies using a deep autoencoder network publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.10.006 – year: 2021 ident: 10.1016/j.apgeochem.2021.104994_bib49 article-title: Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder publication-title: Math. Geosci. – volume: 17 start-page: 231 year: 2017 ident: 10.1016/j.apgeochem.2021.104994_bib8 article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2016-024 – start-page: 9 10 year: 2002 ident: 10.1016/j.apgeochem.2021.104994_bib18 article-title: A survey of dimension reduction techniques publication-title: Neoplasia – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.apgeochem.2021.104994_bib6 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 27 start-page: 663 year: 2012 ident: 10.1016/j.apgeochem.2021.104994_bib56 article-title: Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2011.12.020 – year: 2018 ident: 10.1016/j.apgeochem.2021.104994_bib35 – volume: 27 start-page: 5 year: 2018 ident: 10.1016/j.apgeochem.2021.104994_bib62 article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9357-0 – volume: 192 start-page: 1 year: 2019 ident: 10.1016/j.apgeochem.2021.104994_bib64 article-title: Deep learning and its application in geochemical mapping publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2019.02.023 – start-page: 416 year: 1986 ident: 10.1016/j.apgeochem.2021.104994_bib1 – volume: 125 start-page: 43 year: 2019 ident: 10.1016/j.apgeochem.2021.104994_bib9 article-title: A Spatially Constrained Multi-Autoencoder approach for multivariate geochemical anomaly recognition publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.01.016 – volume: 12 start-page: 1235 year: 1995 ident: 10.1016/j.apgeochem.2021.104994_bib5 article-title: Neural networks for pattern recognition publication-title: Agric. Eng. Int. CIGR J. – volume: 20 start-page: 507 year: 1974 ident: 10.1016/j.apgeochem.2021.104994_bib38 article-title: A cluster analysis method for grouping means in the analysis of variance publication-title: Biometrics doi: 10.2307/2529204 – volume: 55 start-page: 844 year: 2016 ident: 10.1016/j.apgeochem.2021.104994_bib32 article-title: Hyperspectral image classification using deep pixel-pair features publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2016.2616355 – volume: 10 start-page: 137 year: 2001 ident: 10.1016/j.apgeochem.2021.104994_bib41 article-title: Some simple guides to finding useful information in exploration geochemical data publication-title: Nat. Resour. Res. doi: 10.1023/A:1011552810482 – year: 1995 ident: 10.1016/j.apgeochem.2021.104994_bib42 – volume: 60 start-page: 99 year: 1997 ident: 10.1016/j.apgeochem.2021.104994_bib46 article-title: Geochemical mapping in China publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(97)00029-0 – volume: 164 start-page: 33 year: 2016 ident: 10.1016/j.apgeochem.2021.104994_bib61 article-title: Fractal/multifractal modeling of geochemical data: a review publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.04.010 – volume: 78 start-page: WB113 year: 2013 ident: 10.1016/j.apgeochem.2021.104994_bib15 article-title: The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines publication-title: Geophysics doi: 10.1190/geo2012-0411.1 – volume: 21 start-page: 238 year: 1959 ident: 10.1016/j.apgeochem.2021.104994_bib14 article-title: Corrigenda: the regression analysis of binary sequences publication-title: J. Roy. Stat. Soc. doi: 10.1111/j.2517-6161.1959.tb00334.x – volume: 14 start-page: 197 year: 1972 ident: 10.1016/j.apgeochem.2021.104994_bib2 article-title: A simple neural network generating an interactive memory publication-title: Math. Biosci. doi: 10.1016/0025-5564(72)90075-2 – volume: 111 start-page: 103005 year: 2019 ident: 10.1016/j.apgeochem.2021.104994_bib50 article-title: Exploration information systems - a proposal for the future use of GIS in mineral exploration targeting publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2019.103005 – volume: 30 start-page: 27 year: 2021 ident: 10.1016/j.apgeochem.2021.104994_bib31 article-title: Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping publication-title: Nat. Resour. Res. doi: 10.1007/s11053-020-09742-z – volume: 122 start-page: 104747 year: 2020 ident: 10.1016/j.apgeochem.2021.104994_bib30 article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2020.104747 – volume: 10 start-page: 191 year: 1984 ident: 10.1016/j.apgeochem.2021.104994_bib4 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – start-page: 517 year: 1968 ident: 10.1016/j.apgeochem.2021.104994_bib39 article-title: A two-dimensional interpolation function for irregularly-spaced data – volume: 107 start-page: 258 year: 2019 ident: 10.1016/j.apgeochem.2021.104994_bib44 article-title: Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2019.02.027 – volume: 26 start-page: 457 year: 2017 ident: 10.1016/j.apgeochem.2021.104994_bib58 article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9345-4 – volume: 29 start-page: 3415 year: 2020 ident: 10.1016/j.apgeochem.2021.104994_bib60 article-title: Geodata science-based mineral prospectivity mapping: a review publication-title: Nat. Resour. Res. doi: 10.1007/s11053-020-09700-9 – volume: 122 start-page: 55 year: 2012 ident: 10.1016/j.apgeochem.2021.104994_bib11 article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2012.07.007 – volume: 71 start-page: 502 year: 2015 ident: 10.1016/j.apgeochem.2021.104994_bib65 article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2014.09.024 – volume: 157 start-page: 81 year: 2015 ident: 10.1016/j.apgeochem.2021.104994_bib19 article-title: Supervised geochemical anomaly detection by pattern recognition publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.06.001 – volume: 566 start-page: 195 issue: 7743 year: 2019 ident: 10.1016/j.apgeochem.2021.104994_bib37 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – start-page: 215 year: 2011 ident: 10.1016/j.apgeochem.2021.104994_bib12 article-title: An analysis of single-layer networks in unsupervised feature learning – volume: 140 start-page: 104484 year: 2020 ident: 10.1016/j.apgeochem.2021.104994_bib48 article-title: Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104484 – volume: 140 start-page: 56 year: 2014 ident: 10.1016/j.apgeochem.2021.104994_bib7 article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2014.02.013 – volume: 10 start-page: 27 year: 2010 ident: 10.1016/j.apgeochem.2021.104994_bib20 article-title: The interpretation of geochemical survey data publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/1467-7873/09-210 – volume: 65 start-page: 266 year: 2015 ident: 10.1016/j.apgeochem.2021.104994_bib54 article-title: Geological features and formation processes of the Makeng Fe deposit, China publication-title: Resour. Geol. doi: 10.1111/rge.12070 – volume: vol. 175 start-page: 12 year: 1986 ident: 10.1016/j.apgeochem.2021.104994_bib40 – volume: 10 start-page: 3 year: 2010 ident: 10.1016/j.apgeochem.2021.104994_bib13 article-title: Major advances in exploration geochemistry, 1998-2007 publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/1467-7873/09-215 – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.apgeochem.2021.104994_bib29 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 100 start-page: 25 year: 2009 ident: 10.1016/j.apgeochem.2021.104994_bib57 article-title: Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2008.03.004 – volume: 363 issue: 6433 year: 2019 ident: 10.1016/j.apgeochem.2021.104994_bib3 article-title: Machine learning for data-driven discovery in solid earth geoscience publication-title: Science doi: 10.1126/science.aau0323 – volume: 29 start-page: 189 year: 2020 ident: 10.1016/j.apgeochem.2021.104994_bib45 article-title: Mapping mineral prospectivity via semi–supervised random forest publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09510-8 – volume: 2 start-page: 405 year: 2002 ident: 10.1016/j.apgeochem.2021.104994_bib16 article-title: Ensemble learning – volume: 76 start-page: 504 year: 2016 ident: 10.1016/j.apgeochem.2021.104994_bib22 article-title: Mineral system analysis: Quo vadis publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.12.012 – volume: 167 start-page: 49 year: 2016 ident: 10.1016/j.apgeochem.2021.104994_bib26 article-title: A machine learning approach to geochemical mapping publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2016.05.003 – volume: 31 start-page: 1544 year: 2018 ident: 10.1016/j.apgeochem.2021.104994_bib25 article-title: Machine learning for the geosciences: challenges and opportunities publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2861006 – volume: 6 start-page: 644 year: 2013 ident: 10.1016/j.apgeochem.2021.104994_bib33 article-title: Multiple-window anomaly detection for hyperspectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2239959 – volume: 187 start-page: 27 year: 2016 ident: 10.1016/j.apgeochem.2021.104994_bib21 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.apgeochem.2021.104994_bib28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 122 start-page: 104710 year: 2020 ident: 10.1016/j.apgeochem.2021.104994_bib34 article-title: Recognition of geochemical anomalies using a deep variational autoencoder network publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2020.104710 – volume: 104 start-page: 663 year: 2015 ident: 10.1016/j.apgeochem.2021.104994_bib52 article-title: The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology publication-title: Int. J. Earth Sci. doi: 10.1007/s00531-014-1096-4 – volume: 184 start-page: 150 year: 2018 ident: 10.1016/j.apgeochem.2021.104994_bib59 article-title: Selection of an elemental association related to mineralization using spatial analysis publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2017.10.020 – volume: 203 start-page: 87 year: 2019 ident: 10.1016/j.apgeochem.2021.104994_bib51 article-title: Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2019.04.007 – volume: 35 start-page: 279 year: 2003 ident: 10.1016/j.apgeochem.2021.104994_bib17 article-title: Isometric logratio transformations for compositional data analysis publication-title: Math. Geol. doi: 10.1023/A:1023818214614 – volume: 56 start-page: 5046 year: 2018 ident: 10.1016/j.apgeochem.2021.104994_bib55 article-title: Generative adversarial networks for hyperspectral image classification publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2018.2805286 – volume: 209 start-page: 106431 year: 2020 ident: 10.1016/j.apgeochem.2021.104994_bib63 article-title: Geodata science and geochemical mapping publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2019.106431 – volume: 148 start-page: 839 year: 1983 ident: 10.1016/j.apgeochem.2021.104994_bib23 article-title: A method of comparing the areas under receiver operating characteristic curves derived from the same cases publication-title: Radiology doi: 10.1148/radiology.148.3.6878708 – volume: 18 start-page: 1527 year: 2006 ident: 10.1016/j.apgeochem.2021.104994_bib24 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: vol. 25 start-page: 1097 year: 2012 ident: 10.1016/j.apgeochem.2021.104994_bib27 article-title: ImageNet classification with deep convolutional neural networks – volume: 5 start-page: 289 year: 1993 ident: 10.1016/j.apgeochem.2021.104994_bib36 article-title: Redundancy reduction as a strategy for unsupervised learning publication-title: Neural Comput. doi: 10.1162/neco.1993.5.2.289 – volume: 32 start-page: 314 year: 2007 ident: 10.1016/j.apgeochem.2021.104994_bib10 article-title: Mapping singularities with stream sediment geochemical data for Prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2006.10.002 – volume: 57 start-page: 53 year: 2014 ident: 10.1016/j.apgeochem.2021.104994_bib53 article-title: Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2013.09.009 – volume: 28 start-page: 1285 year: 2019 ident: 10.1016/j.apgeochem.2021.104994_bib43 article-title: Mapping geochemical anomalies through integrating random forest and metric learning methods publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09471-y |
SSID | ssj0005702 |
Score | 2.5805125 |
Snippet | Machine learning (ML) algorithms are widely applied in various fields owing to their strong ability to abstract high-level features from a large number of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104994 |
SubjectTerms | China Convolutional neural network Deep learning Geochemical anomalies geochemistry Mineral exploration mineralization neural networks Pixel-pair feature method probability |
Title | Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method |
URI | https://dx.doi.org/10.1016/j.apgeochem.2021.104994 https://www.proquest.com/docview/2561522519 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9UwDI-mTUhcEH_FBkxB4lpem6ZJym3aGA8Qu8Ck3aIkdaaira_a3hBc-CR8WOw0nRgS2oFTlTZJo9ixneRnm7FXtY5gNC4kKVtfSNN2hY8BDbloHOqr0OhAB_qfjtTyWH44aU422P7sC0Owyiz7J5mepHV-s8izuRj7fvEZ10ctWoFbGNLZihx-pdTE5a9__gHz0Al3SJULqn0D4-XGU6DEVOSSLiq672xb-S8N9ZesTgro8D67ly1HvjcN7gHbgOEhu_MuZeb98Yj9OoB1glUNfBU5mnU8YQW_4V4YzUmeR0Ak4W5YnaP5DZfcZeJAx-lAlp_3KQh19s3kBIo_5Y53ACMnfHrmU-yD4mCmR0KRY5cd1hv773BWjK6_4BFSxFA-Zah-zI4P337ZXxY59ULhal2tC-Fk5ZtadK1uFShdN9rJ0pcBP3sQngoGtIE6ijI2wpTC1bj0yy5UoQZTP2Gbw2qAp4yHqBwKscoEo6SqOhONDtEHD1JFr8w2U_N025DjklN6jDM7A9C-2ms6WaKTnei0zcrrhuMUmuP2Jm9metobXGZRgdze-OXMARbXIF2suAFWV5cWzUY0g8gHeOd_fvCM3aXSBAZ-zjbXF1fwAk2etd9NPL3Ltvbef1we_QbyTAVx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVgguiKcoTyNxjTYPx3a4VYWype1eaKXeLNsZV0FtNmq3CP4LP5YZxykqEuqBU5T4Ecsznhnb38ww9r5SAbTChSRE4zKhmzZzwaMhF7RFfeVr5elA_3ApF8fiy0l9ssF2Jl8YglUm2T_K9Cit05d5ms350HXzr7g-qrIpcQtDOlvqO2yTolPVM7a5vbe_WP5BeqgIPaT6GTW4AfOywylQbirySi8LuvJsGvEvJfWXuI46aPche5CMR749ju8R24D-Mbv7OSbn_fmE_foI64is6vkqcLTseIQLfsftMFqUPI2AqMJtvzpHCxwuuU30gZbTmSw_72Ic6uSeyQkXf8otbwEGThD1xKrYB4XCjI8IJMcuW6w3dD_gLBtsd8EDxKChfExS_ZQd73462llkKftCZitVrLPSisLVVdk2qpEgVVUrK3KXeyx2UDp60aA0VKHMQ13qvLQVrv689YWvQFfP2Kxf9fCccR-kRTlWaK-lkEWrg1Y-OO9AyOCk3mJymm7jU2hyypBxZiYM2jdzTSdDdDIjnbZYft1wGKNz3N7kw0RPc4PRDOqQ2xu_mzjA4DKkuxXbw-rq0qDliJYQuQG_-J8fvGX3FkeHB-Zgb7n_kt2nkhEb_IrN1hdX8BotoLV7kzj8N9QpCCI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+the+multivariate+geochemical+anomalies+associated+with+mineralization+using+a+deep+convolutional+neural+network+and+a+pixel-pair+feature+method&rft.jtitle=Applied+geochemistry&rft.au=Zhang%2C+Chunjie&rft.au=Zuo%2C+Renguang&rft.au=Xiong%2C+Yihui&rft.date=2021-07-01&rft.issn=0883-2927&rft.volume=130&rft.spage=104994&rft_id=info:doi/10.1016%2Fj.apgeochem.2021.104994&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apgeochem_2021_104994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |