Perspective on High-Rate Alkaline Water Splitting

Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive prot...

Full description

Saved in:
Bibliographic Details
Published inACS materials letters Vol. 3; no. 2; pp. 224 - 234
Main Authors Kou, Tianyi, Wang, Shanwen, Li, Yat
Format Journal Article
LanguageEnglish
Published American Chemical Society 01.02.2021
Online AccessGet full text

Cover

Loading…
Abstract Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive proton exchange membranes. Despite the rapid development of cost-effective and intrinsically active catalysts that showed record-breaking performances at low current density (tens of mA cm–2), the cell efficiency of AWS at large current density (>400 mA cm–2) is still limited. In this Perspective, we aim to share our thoughts on the design of hydrogen evolution and oxygen evolution catalysts for high-rate AWS, the possible problems in catalyst’s performance evaluation, and the stability issues of catalysts.
AbstractList Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive proton exchange membranes. Despite the rapid development of cost-effective and intrinsically active catalysts that showed record-breaking performances at low current density (tens of mA cm–2), the cell efficiency of AWS at large current density (>400 mA cm–2) is still limited. In this Perspective, we aim to share our thoughts on the design of hydrogen evolution and oxygen evolution catalysts for high-rate AWS, the possible problems in catalyst’s performance evaluation, and the stability issues of catalysts.
Author Kou, Tianyi
Li, Yat
Wang, Shanwen
AuthorAffiliation Department of Chemistry and Biochemistry
AuthorAffiliation_xml – name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Tianyi
  orcidid: 0000-0002-1563-7819
  surname: Kou
  fullname: Kou, Tianyi
– sequence: 2
  givenname: Shanwen
  surname: Wang
  fullname: Wang, Shanwen
– sequence: 3
  givenname: Yat
  orcidid: 0000-0002-8058-2084
  surname: Li
  fullname: Li, Yat
  email: yatli@ucsc.edu
BookMark eNqNj8tOwzAQRS1UJErpP-QHUvyKE2-QqgooUiUQD7GMBmdSXFInsg0Sf4-rdoG6gdXMYs65c8_JyPUOCckYnTHK2SWYsIWI3kIXOoxxRg2lhVAnZMyV0LnUpR792s_INIQNpYlVTEs5JuwBfRjQRPuFWe-ypV2_54_Jmc27D-isw-x1l5A9DZ2N0br1BTltUxxOD3NCXm6unxfLfHV_e7eYr3IQJY250arhqmnSO6LgrWypggolqyRKBQUDKLQyLQICNZyXwBv9VlDZaFagUFpMSLX3Gt-H4LGtB2-34L9rRutd-_q4fX1on9CrI9TYCNH2Lnqw3X8Eci9IF_Wm__QuXfyN_QBAgXzq
CitedBy_id crossref_primary_10_1002_sus2_186
crossref_primary_10_1016_j_cej_2024_151705
crossref_primary_10_2320_materia_62_368
crossref_primary_10_1360_TB_2024_0397
crossref_primary_10_1016_j_apenergy_2022_119887
crossref_primary_10_1002_adma_202306108
crossref_primary_10_1016_j_apcatb_2022_121605
crossref_primary_10_1002_smll_202407261
crossref_primary_10_1016_j_cej_2022_136031
crossref_primary_10_1016_j_jallcom_2022_167312
crossref_primary_10_3389_fchem_2022_1047398
crossref_primary_10_1002_sstr_202200404
crossref_primary_10_1016_j_ultsonch_2023_106734
crossref_primary_10_1016_j_ccr_2024_216190
crossref_primary_10_1016_j_jcis_2023_02_114
crossref_primary_10_1002_sstr_202200133
crossref_primary_10_1021_acsaem_4c01292
crossref_primary_10_1039_D4CY00328D
crossref_primary_10_1002_eem2_12457
crossref_primary_10_1002_smsc_202300055
crossref_primary_10_1039_D3NR01940C
crossref_primary_10_1016_S1872_2067_24_60130_0
crossref_primary_10_1021_acsenergylett_2c01820
crossref_primary_10_1016_j_electacta_2023_142283
crossref_primary_10_1016_j_ijhydene_2024_02_291
crossref_primary_10_1016_j_pecs_2023_101075
crossref_primary_10_1016_j_jssc_2022_123542
crossref_primary_10_1002_aenm_202303529
crossref_primary_10_1016_j_electacta_2022_141053
crossref_primary_10_1021_acs_inorgchem_4c01963
crossref_primary_10_1021_jacs_4c14493
crossref_primary_10_1016_j_rser_2025_115385
crossref_primary_10_1021_acsmaterialslett_4c01040
crossref_primary_10_1021_jacs_4c04189
crossref_primary_10_1002_aenm_202203002
crossref_primary_10_3390_molecules28155648
crossref_primary_10_1016_j_electacta_2021_139648
crossref_primary_10_1039_D3TA07373D
crossref_primary_10_1002_cctc_202100129
crossref_primary_10_1016_j_jics_2022_100775
crossref_primary_10_1021_acsmaterialslett_4c02409
crossref_primary_10_1039_D2TA06514B
crossref_primary_10_1016_j_cej_2022_134669
crossref_primary_10_1021_acsmaterialslett_4c00746
crossref_primary_10_3390_en16052441
crossref_primary_10_1021_acsmaterialslett_4c00906
crossref_primary_10_1016_j_apcatb_2022_122256
crossref_primary_10_1002_aenm_202302966
crossref_primary_10_1021_acsami_3c03934
crossref_primary_10_1016_j_cej_2024_150953
crossref_primary_10_1021_acscatal_4c03700
crossref_primary_10_1016_j_ijhydene_2021_09_070
crossref_primary_10_1002_smll_202407043
crossref_primary_10_1016_j_ijhydene_2023_09_270
crossref_primary_10_1016_j_renene_2021_12_075
crossref_primary_10_1039_D3NR02458J
crossref_primary_10_1016_j_gee_2023_02_011
crossref_primary_10_3390_catal12080895
crossref_primary_10_1021_acsami_2c19710
crossref_primary_10_1021_acssuschemeng_4c05467
crossref_primary_10_1039_D4CC01267D
crossref_primary_10_3390_membranes12100989
crossref_primary_10_1016_j_cej_2024_154524
crossref_primary_10_1016_j_ijhydene_2022_01_166
crossref_primary_10_1021_acsenergylett_4c02182
crossref_primary_10_1039_D3TA03132B
crossref_primary_10_1016_j_decarb_2024_100052
crossref_primary_10_1016_j_jece_2022_107648
crossref_primary_10_1038_s41467_021_24529_3
crossref_primary_10_1016_j_ccr_2024_215832
crossref_primary_10_1021_acscatal_2c05655
crossref_primary_10_1002_adfm_202315460
crossref_primary_10_1002_idm2_12169
crossref_primary_10_1016_j_apsusc_2023_157870
crossref_primary_10_1021_acssuschemeng_2c05636
crossref_primary_10_1002_smll_202308672
crossref_primary_10_1016_j_carbon_2024_119676
crossref_primary_10_1021_acsaem_4c03252
crossref_primary_10_1002_celc_202400631
crossref_primary_10_1021_acsnano_4c09259
crossref_primary_10_1016_j_apsusc_2023_157590
crossref_primary_10_1039_D3DT03059H
crossref_primary_10_1039_D2EE00951J
crossref_primary_10_1002_smll_202403364
crossref_primary_10_1016_j_ijhydene_2021_09_064
crossref_primary_10_1016_S1872_5805_24_60831_0
crossref_primary_10_1039_D1NR02074A
crossref_primary_10_1038_s41467_022_35464_2
crossref_primary_10_1002_cnma_202200328
crossref_primary_10_1016_j_ijhydene_2024_03_186
crossref_primary_10_1016_j_ijhydene_2023_07_026
crossref_primary_10_1016_j_jechem_2024_02_036
crossref_primary_10_1016_j_oneear_2023_02_003
crossref_primary_10_1021_acsmaterialslett_1c00762
crossref_primary_10_1021_acsnano_1c08814
crossref_primary_10_1002_celc_202100984
crossref_primary_10_1016_j_jcis_2022_11_072
crossref_primary_10_1021_acsami_1c08867
crossref_primary_10_1002_celc_202200999
crossref_primary_10_1016_j_ijhydene_2023_06_039
crossref_primary_10_1002_adfm_202107651
crossref_primary_10_1039_D3TA02930A
crossref_primary_10_1021_acs_langmuir_4c01963
crossref_primary_10_1016_j_ijhydene_2022_05_191
crossref_primary_10_2139_ssrn_4183141
crossref_primary_10_1002_cey2_156
crossref_primary_10_1021_acsomega_1c03014
crossref_primary_10_1002_aenm_202302073
crossref_primary_10_1002_cey2_555
crossref_primary_10_1002_cctc_202300562
crossref_primary_10_1016_j_ijhydene_2023_08_178
crossref_primary_10_1002_advs_202401207
crossref_primary_10_1016_j_apcatb_2022_121534
crossref_primary_10_1021_acsami_4c02524
crossref_primary_10_1002_adfm_202107308
crossref_primary_10_1002_cnl2_110
crossref_primary_10_2320_matertrans_MT_MH2022002
crossref_primary_10_1016_j_jallcom_2022_168339
crossref_primary_10_1039_D2EN00805J
crossref_primary_10_1002_aesr_202200178
crossref_primary_10_1002_ange_202308670
crossref_primary_10_1016_j_apcatb_2021_120847
crossref_primary_10_1016_j_jcis_2024_01_057
crossref_primary_10_1016_j_jallcom_2022_168578
crossref_primary_10_1002_smll_202101163
crossref_primary_10_1016_j_renene_2024_121383
crossref_primary_10_1016_j_cej_2024_156356
crossref_primary_10_1021_acsnano_4c06516
crossref_primary_10_1039_D3TA04533A
crossref_primary_10_1021_acs_chemmater_2c00932
crossref_primary_10_1002_celc_202400492
crossref_primary_10_1002_sstr_202300176
crossref_primary_10_1021_acsmaterialslett_4c00544
crossref_primary_10_1002_aenm_202303451
crossref_primary_10_1002_eem2_12644
crossref_primary_10_2139_ssrn_3925486
crossref_primary_10_1016_j_jallcom_2025_178941
crossref_primary_10_1021_acsnano_2c02820
crossref_primary_10_1002_smll_202102407
crossref_primary_10_1016_j_apsusc_2023_156456
crossref_primary_10_1039_D4TA02869D
crossref_primary_10_1002_eem2_12441
crossref_primary_10_1021_acsami_1c16547
crossref_primary_10_1016_j_electacta_2022_140071
crossref_primary_10_1063_5_0054273
crossref_primary_10_1002_chem_202303826
crossref_primary_10_1016_j_ijhydene_2023_03_085
crossref_primary_10_1002_aenm_202401444
crossref_primary_10_1016_j_rser_2023_113538
crossref_primary_10_1021_acssuschemeng_2c04597
crossref_primary_10_1016_j_jcis_2022_06_061
crossref_primary_10_1007_s12209_023_00374_x
crossref_primary_10_1016_j_nanoen_2024_110099
crossref_primary_10_1021_acsmaterialslett_4c01471
crossref_primary_10_1016_j_jpowsour_2023_232733
crossref_primary_10_1039_D3EY00182B
crossref_primary_10_1016_j_jcis_2022_07_118
crossref_primary_10_1021_acsami_2c15158
crossref_primary_10_1002_advs_202411964
crossref_primary_10_1002_smll_202104513
crossref_primary_10_1021_acsmaterialslett_4c00659
crossref_primary_10_2139_ssrn_4148194
crossref_primary_10_1021_acs_chemrev_1c00854
crossref_primary_10_1002_aenm_202100968
crossref_primary_10_1007_s11426_022_1435_6
crossref_primary_10_1016_j_jpowsour_2024_235083
crossref_primary_10_1039_D1QM00551K
crossref_primary_10_1007_s10008_022_05202_1
crossref_primary_10_1039_D3YA00348E
crossref_primary_10_1039_D2DT01098D
crossref_primary_10_1021_acscatal_2c01090
crossref_primary_10_1016_j_cej_2024_151697
crossref_primary_10_1002_advs_202203199
crossref_primary_10_1021_acsmaterialslett_4c00761
crossref_primary_10_1021_acsami_5c01010
crossref_primary_10_1002_cplu_202200416
crossref_primary_10_1039_D4SE00983E
crossref_primary_10_33961_jecst_2021_00857
crossref_primary_10_1039_D4TA04762A
crossref_primary_10_1038_s41467_024_47622_9
crossref_primary_10_1002_anie_202308670
crossref_primary_10_1016_j_cej_2023_142280
crossref_primary_10_1016_j_fuel_2025_134283
crossref_primary_10_1007_s40820_021_00744_x
crossref_primary_10_54227_elab_20220013
crossref_primary_10_1021_acs_energyfuels_3c02671
crossref_primary_10_5796_electrochemistry_23_00047
Cites_doi 10.1021/acssuschemeng.7b04173
10.1021/acsmaterialslett.0c00229
10.1016/j.jpowsour.2015.07.039
10.1021/acs.langmuir.9b00119
10.1002/adma.201304759
10.1016/j.chemphys.2005.05.038
10.1016/j.ijhydene.2017.10.045
10.1002/adma.201700404
10.1016/j.jelechem.2009.11.024
10.1039/C7TA08090E
10.1126/science.1141483
10.1016/S0360-3199(02)00033-2
10.1038/s41560-020-0577-x
10.1021/acsenergylett.9b00047
10.1038/s41560-020-0550-8
10.1039/C4CS00448E
10.1039/C6RA22242K
10.1016/j.pecs.2009.11.002
10.1038/s41467-018-07792-9
10.1002/anie.201407031
10.1002/smll.201600189
10.1021/acsmaterialslett.9b00414
10.1016/j.nanoen.2018.08.025
10.1016/B978-0-12-811250-2.00003-0
10.1038/ncomms5695
10.1002/adfm.201601315
10.1039/C8EE00927A
10.1021/acs.jpcc.5b03169
10.1016/j.scib.2019.10.024
10.1038/s41467-018-04746-z
10.1021/acsmaterialslett.0c00339
10.1002/cctc.201000397
10.1002/aenm.202002955
10.1016/j.ijhydene.2006.10.034
10.1038/s41467-018-05019-5
10.1073/pnas.1701562114
10.1017/S0022112093003015
10.1038/s41467-020-14462-2
10.1016/j.chempr.2018.02.023
10.1038/nmat4764
10.1021/ja511559d
10.1016/S1872-2067(17)62949-8
10.1016/j.rser.2017.09.003
10.1021/jacs.9b10388
10.1039/C6TA02334G
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsmaterialslett.0c00536
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2639-4979
EndPage 234
ExternalDocumentID 10_1021_acsmaterialslett_0c00536
i24006988
GroupedDBID ACS
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
GGK
M~E
ID FETCH-LOGICAL-a370t-c96d26dd053352f4f06a8e4184e46a51aa596cfeaea0c227a2d9b504d915e3693
IEDL.DBID ACS
ISSN 2639-4979
IngestDate Tue Jul 01 04:21:51 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Wed Feb 03 04:51:48 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a370t-c96d26dd053352f4f06a8e4184e46a51aa596cfeaea0c227a2d9b504d915e3693
ORCID 0000-0002-8058-2084
0000-0002-1563-7819
PageCount 11
ParticipantIDs crossref_primary_10_1021_acsmaterialslett_0c00536
crossref_citationtrail_10_1021_acsmaterialslett_0c00536
acs_journals_10_1021_acsmaterialslett_0c00536
ProviderPackageCode VF5
ACS
VG9
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle ACS materials letters
PublicationTitleAlternate ACS Materials Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
Coutanceau C. (ref8/cit8) 2018
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1021/acssuschemeng.7b04173
– ident: ref33/cit33
  doi: 10.1021/acsmaterialslett.0c00229
– ident: ref35/cit35
  doi: 10.1016/j.jpowsour.2015.07.039
– ident: ref34/cit34
  doi: 10.1021/acs.langmuir.9b00119
– ident: ref37/cit37
  doi: 10.1002/adma.201304759
– ident: ref28/cit28
  doi: 10.1016/j.chemphys.2005.05.038
– ident: ref9/cit9
  doi: 10.1016/j.ijhydene.2017.10.045
– ident: ref19/cit19
  doi: 10.1002/adma.201700404
– ident: ref29/cit29
  doi: 10.1016/j.jelechem.2009.11.024
– ident: ref12/cit12
  doi: 10.1039/C7TA08090E
– ident: ref27/cit27
  doi: 10.1126/science.1141483
– ident: ref4/cit4
  doi: 10.1016/S0360-3199(02)00033-2
– ident: ref6/cit6
  doi: 10.1038/s41560-020-0577-x
– ident: ref10/cit10
  doi: 10.1021/acsenergylett.9b00047
– ident: ref43/cit43
  doi: 10.1038/s41560-020-0550-8
– ident: ref2/cit2
  doi: 10.1039/C4CS00448E
– ident: ref36/cit36
  doi: 10.1039/C6RA22242K
– ident: ref5/cit5
  doi: 10.1016/j.pecs.2009.11.002
– ident: ref15/cit15
  doi: 10.1038/s41467-018-07792-9
– ident: ref23/cit23
  doi: 10.1002/anie.201407031
– ident: ref39/cit39
  doi: 10.1002/smll.201600189
– ident: ref31/cit31
  doi: 10.1021/acsmaterialslett.9b00414
– ident: ref18/cit18
  doi: 10.1016/j.nanoen.2018.08.025
– start-page: 17
  volume-title: Hydrogen Electrochemical Production
  year: 2018
  ident: ref8/cit8
  doi: 10.1016/B978-0-12-811250-2.00003-0
– ident: ref24/cit24
  doi: 10.1038/ncomms5695
– ident: ref13/cit13
  doi: 10.1002/adfm.201601315
– ident: ref21/cit21
  doi: 10.1039/C8EE00927A
– ident: ref44/cit44
  doi: 10.1021/acs.jpcc.5b03169
– ident: ref14/cit14
  doi: 10.1016/j.scib.2019.10.024
– ident: ref17/cit17
  doi: 10.1038/s41467-018-04746-z
– ident: ref26/cit26
  doi: 10.1021/acsmaterialslett.0c00339
– ident: ref30/cit30
  doi: 10.1002/cctc.201000397
– ident: ref41/cit41
  doi: 10.1002/aenm.202002955
– ident: ref42/cit42
  doi: 10.1016/j.ijhydene.2006.10.034
– ident: ref20/cit20
  doi: 10.1038/s41467-018-05019-5
– ident: ref22/cit22
  doi: 10.1073/pnas.1701562114
– ident: ref40/cit40
  doi: 10.1017/S0022112093003015
– ident: ref11/cit11
  doi: 10.1038/s41467-020-14462-2
– ident: ref16/cit16
  doi: 10.1016/j.chempr.2018.02.023
– ident: ref45/cit45
  doi: 10.1038/nmat4764
– ident: ref32/cit32
  doi: 10.1021/ja511559d
– ident: ref1/cit1
  doi: 10.1016/S1872-2067(17)62949-8
– ident: ref7/cit7
  doi: 10.1016/j.rser.2017.09.003
– ident: ref38/cit38
  doi: 10.1021/jacs.9b10388
– ident: ref25/cit25
  doi: 10.1039/C6TA02334G
SSID ssj0002161944
Score 2.5569868
SecondaryResourceType review_article
Snippet Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 224
Title Perspective on High-Rate Alkaline Water Splitting
URI http://dx.doi.org/10.1021/acsmaterialslett.0c00536
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VssDAG1FeysDqEju2E49V1apCAiFKRbfIryytWkTShYHfjp2EUoF4dMl2jn2-6L7LfXcHcKWyUGItBFKcckQTFSOlRIhYxjVx982wLQmyd3wwojdjNm4A-SGDT_C11LnDbtV1uKMU7VB7y-EbsEl4EvuAq9MdLv-rEOzjcp9Mdq8qB6iJmsDz22LeN-l8xTetOJn-blX4l5e9CT23ZNJeFKqtX793blxj_3uwU2POoFMZyT407OwAtlc6ER4Cvv8sugzms8DTP9CDWzDoTCfSQ9HgyS8fDB1oLanSRzDq9x67A1RPU0AyisMCacEN4cb44ltGMpqFXCaWugjPUi4ZlpIJrjMrrQw1IbEkRigWUiMwsxEX0TE0Z_OZPYGAZVRLzoR2no3aLJIGKwd_tYh4Io0yLUDu1Gn9NeRpmegmOP2qirRWRQviD72num5N7idkTP8hiZeSz1V7jj9lTtfc3RlsEU9kKana59AsXhb2wiGRQl2Wpueet2-9d-Um30c
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMDAG1GeGVhdYsd26rGqqAqUCtFWVCyRX1lapYikC78e2w1t1YHXGskX3_mi-y73-Q6Aa5mGAinOoWSEQVKXMZSSh5CmTGF73hQZT5DtsvaA3A_pcGnUl91EbiXlvoi_6C6AbuwzC-Fmp2I1Kmqhcg7E1sGGxSTY5V2NZm_-ewUjl567mrJ9o5-jxksez3fCXIhS-VKIWoo1rV3wOt-lp5iMatNC1tTHSgPHf6mxB3ZKBBo0Zi6zD9ZMdgC2l_oSHgL0tLiCGUyywJFB4LMVGDTGI-GAafDixAc9C2E9cfoIDFq3_WYblrMVoIjisICKM42Z1u4qLsUpSUMm6obYfM8QJigSgnKmUiOMCBXGscCaSxoSzRE1EePRMahkk8ycgICmRAlGubJxjpg0EhpJC4YVj1hdaKmrAFqtk_LbyBNf9sYoWTVFUpqiCuIv8yeqbFTu5mWMf7ESzVe-zZp1_Ljm9I-7uwKb7f5jJ-ncdR_OwBZ2FBdP4j4HleJ9ai4sRinkpffGT5u75nc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagSAgG3ojyzMDqEju2U49VoSoPVRWlolvkV5ZWaUXShV-P7YRSdeC1RvLZ57N13-U-3wFwLdNQIMU5lIwwSJoyhlLyENKUKWztTZHxBNke6w7Jw4iOKm6OewtjF5FbSblP4rtbPdNpVWEA3djvFsaVlrFaFY1QuUPE1sGGy9652KvVHix-sWDkQnSXV7az-l5qvOLyfCfMuSmVL7mpJX_T2S2bqvqVeprJuDEvZEO9rxRx_Lcqe2CnQqJBqzw6-2DNZAdge6k-4SFA_a-nmME0CxwpBD5bgUFrMhYOoAavTnwwsFDWE6iPwLBz99LuwqrHAhRRHBZQcaYx09o9yaU4JWnIRNMQG_cZwgRFQlDOVGqEEaHCOBZYc0lDojmiJmI8Oga1bJqZExDQlCjBKFfW3xGTRkIjaUGx4hFrCi11HUCrdVLdkTzx6W-MktWtSKqtqIP40wSJqgqWu74Zk1-MRIuRs7Jox49jTv-4uiuw2b_tJE_3vcczsIUd08Vzuc9BrXibmwsLVQp56Q_kB__T6Po
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perspective+on+High-Rate+Alkaline+Water+Splitting&rft.jtitle=ACS+materials+letters&rft.au=Kou%2C+Tianyi&rft.au=Wang%2C+Shanwen&rft.au=Li%2C+Yat&rft.date=2021-02-01&rft.pub=American+Chemical+Society&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=3&rft.issue=2&rft.spage=224&rft.epage=234&rft_id=info:doi/10.1021%2Facsmaterialslett.0c00536&rft.externalDocID=i24006988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon