Perspective on High-Rate Alkaline Water Splitting
Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive prot...
Saved in:
Published in | ACS materials letters Vol. 3; no. 2; pp. 224 - 234 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
01.02.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive proton exchange membranes. Despite the rapid development of cost-effective and intrinsically active catalysts that showed record-breaking performances at low current density (tens of mA cm–2), the cell efficiency of AWS at large current density (>400 mA cm–2) is still limited. In this Perspective, we aim to share our thoughts on the design of hydrogen evolution and oxygen evolution catalysts for high-rate AWS, the possible problems in catalyst’s performance evaluation, and the stability issues of catalysts. |
---|---|
AbstractList | Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive proton exchange membranes. Despite the rapid development of cost-effective and intrinsically active catalysts that showed record-breaking performances at low current density (tens of mA cm–2), the cell efficiency of AWS at large current density (>400 mA cm–2) is still limited. In this Perspective, we aim to share our thoughts on the design of hydrogen evolution and oxygen evolution catalysts for high-rate AWS, the possible problems in catalyst’s performance evaluation, and the stability issues of catalysts. |
Author | Kou, Tianyi Li, Yat Wang, Shanwen |
AuthorAffiliation | Department of Chemistry and Biochemistry |
AuthorAffiliation_xml | – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Tianyi orcidid: 0000-0002-1563-7819 surname: Kou fullname: Kou, Tianyi – sequence: 2 givenname: Shanwen surname: Wang fullname: Wang, Shanwen – sequence: 3 givenname: Yat orcidid: 0000-0002-8058-2084 surname: Li fullname: Li, Yat email: yatli@ucsc.edu |
BookMark | eNqNj8tOwzAQRS1UJErpP-QHUvyKE2-QqgooUiUQD7GMBmdSXFInsg0Sf4-rdoG6gdXMYs65c8_JyPUOCckYnTHK2SWYsIWI3kIXOoxxRg2lhVAnZMyV0LnUpR792s_INIQNpYlVTEs5JuwBfRjQRPuFWe-ypV2_54_Jmc27D-isw-x1l5A9DZ2N0br1BTltUxxOD3NCXm6unxfLfHV_e7eYr3IQJY250arhqmnSO6LgrWypggolqyRKBQUDKLQyLQICNZyXwBv9VlDZaFagUFpMSLX3Gt-H4LGtB2-34L9rRutd-_q4fX1on9CrI9TYCNH2Lnqw3X8Eci9IF_Wm__QuXfyN_QBAgXzq |
CitedBy_id | crossref_primary_10_1002_sus2_186 crossref_primary_10_1016_j_cej_2024_151705 crossref_primary_10_2320_materia_62_368 crossref_primary_10_1360_TB_2024_0397 crossref_primary_10_1016_j_apenergy_2022_119887 crossref_primary_10_1002_adma_202306108 crossref_primary_10_1016_j_apcatb_2022_121605 crossref_primary_10_1002_smll_202407261 crossref_primary_10_1016_j_cej_2022_136031 crossref_primary_10_1016_j_jallcom_2022_167312 crossref_primary_10_3389_fchem_2022_1047398 crossref_primary_10_1002_sstr_202200404 crossref_primary_10_1016_j_ultsonch_2023_106734 crossref_primary_10_1016_j_ccr_2024_216190 crossref_primary_10_1016_j_jcis_2023_02_114 crossref_primary_10_1002_sstr_202200133 crossref_primary_10_1021_acsaem_4c01292 crossref_primary_10_1039_D4CY00328D crossref_primary_10_1002_eem2_12457 crossref_primary_10_1002_smsc_202300055 crossref_primary_10_1039_D3NR01940C crossref_primary_10_1016_S1872_2067_24_60130_0 crossref_primary_10_1021_acsenergylett_2c01820 crossref_primary_10_1016_j_electacta_2023_142283 crossref_primary_10_1016_j_ijhydene_2024_02_291 crossref_primary_10_1016_j_pecs_2023_101075 crossref_primary_10_1016_j_jssc_2022_123542 crossref_primary_10_1002_aenm_202303529 crossref_primary_10_1016_j_electacta_2022_141053 crossref_primary_10_1021_acs_inorgchem_4c01963 crossref_primary_10_1021_jacs_4c14493 crossref_primary_10_1016_j_rser_2025_115385 crossref_primary_10_1021_acsmaterialslett_4c01040 crossref_primary_10_1021_jacs_4c04189 crossref_primary_10_1002_aenm_202203002 crossref_primary_10_3390_molecules28155648 crossref_primary_10_1016_j_electacta_2021_139648 crossref_primary_10_1039_D3TA07373D crossref_primary_10_1002_cctc_202100129 crossref_primary_10_1016_j_jics_2022_100775 crossref_primary_10_1021_acsmaterialslett_4c02409 crossref_primary_10_1039_D2TA06514B crossref_primary_10_1016_j_cej_2022_134669 crossref_primary_10_1021_acsmaterialslett_4c00746 crossref_primary_10_3390_en16052441 crossref_primary_10_1021_acsmaterialslett_4c00906 crossref_primary_10_1016_j_apcatb_2022_122256 crossref_primary_10_1002_aenm_202302966 crossref_primary_10_1021_acsami_3c03934 crossref_primary_10_1016_j_cej_2024_150953 crossref_primary_10_1021_acscatal_4c03700 crossref_primary_10_1016_j_ijhydene_2021_09_070 crossref_primary_10_1002_smll_202407043 crossref_primary_10_1016_j_ijhydene_2023_09_270 crossref_primary_10_1016_j_renene_2021_12_075 crossref_primary_10_1039_D3NR02458J crossref_primary_10_1016_j_gee_2023_02_011 crossref_primary_10_3390_catal12080895 crossref_primary_10_1021_acsami_2c19710 crossref_primary_10_1021_acssuschemeng_4c05467 crossref_primary_10_1039_D4CC01267D crossref_primary_10_3390_membranes12100989 crossref_primary_10_1016_j_cej_2024_154524 crossref_primary_10_1016_j_ijhydene_2022_01_166 crossref_primary_10_1021_acsenergylett_4c02182 crossref_primary_10_1039_D3TA03132B crossref_primary_10_1016_j_decarb_2024_100052 crossref_primary_10_1016_j_jece_2022_107648 crossref_primary_10_1038_s41467_021_24529_3 crossref_primary_10_1016_j_ccr_2024_215832 crossref_primary_10_1021_acscatal_2c05655 crossref_primary_10_1002_adfm_202315460 crossref_primary_10_1002_idm2_12169 crossref_primary_10_1016_j_apsusc_2023_157870 crossref_primary_10_1021_acssuschemeng_2c05636 crossref_primary_10_1002_smll_202308672 crossref_primary_10_1016_j_carbon_2024_119676 crossref_primary_10_1021_acsaem_4c03252 crossref_primary_10_1002_celc_202400631 crossref_primary_10_1021_acsnano_4c09259 crossref_primary_10_1016_j_apsusc_2023_157590 crossref_primary_10_1039_D3DT03059H crossref_primary_10_1039_D2EE00951J crossref_primary_10_1002_smll_202403364 crossref_primary_10_1016_j_ijhydene_2021_09_064 crossref_primary_10_1016_S1872_5805_24_60831_0 crossref_primary_10_1039_D1NR02074A crossref_primary_10_1038_s41467_022_35464_2 crossref_primary_10_1002_cnma_202200328 crossref_primary_10_1016_j_ijhydene_2024_03_186 crossref_primary_10_1016_j_ijhydene_2023_07_026 crossref_primary_10_1016_j_jechem_2024_02_036 crossref_primary_10_1016_j_oneear_2023_02_003 crossref_primary_10_1021_acsmaterialslett_1c00762 crossref_primary_10_1021_acsnano_1c08814 crossref_primary_10_1002_celc_202100984 crossref_primary_10_1016_j_jcis_2022_11_072 crossref_primary_10_1021_acsami_1c08867 crossref_primary_10_1002_celc_202200999 crossref_primary_10_1016_j_ijhydene_2023_06_039 crossref_primary_10_1002_adfm_202107651 crossref_primary_10_1039_D3TA02930A crossref_primary_10_1021_acs_langmuir_4c01963 crossref_primary_10_1016_j_ijhydene_2022_05_191 crossref_primary_10_2139_ssrn_4183141 crossref_primary_10_1002_cey2_156 crossref_primary_10_1021_acsomega_1c03014 crossref_primary_10_1002_aenm_202302073 crossref_primary_10_1002_cey2_555 crossref_primary_10_1002_cctc_202300562 crossref_primary_10_1016_j_ijhydene_2023_08_178 crossref_primary_10_1002_advs_202401207 crossref_primary_10_1016_j_apcatb_2022_121534 crossref_primary_10_1021_acsami_4c02524 crossref_primary_10_1002_adfm_202107308 crossref_primary_10_1002_cnl2_110 crossref_primary_10_2320_matertrans_MT_MH2022002 crossref_primary_10_1016_j_jallcom_2022_168339 crossref_primary_10_1039_D2EN00805J crossref_primary_10_1002_aesr_202200178 crossref_primary_10_1002_ange_202308670 crossref_primary_10_1016_j_apcatb_2021_120847 crossref_primary_10_1016_j_jcis_2024_01_057 crossref_primary_10_1016_j_jallcom_2022_168578 crossref_primary_10_1002_smll_202101163 crossref_primary_10_1016_j_renene_2024_121383 crossref_primary_10_1016_j_cej_2024_156356 crossref_primary_10_1021_acsnano_4c06516 crossref_primary_10_1039_D3TA04533A crossref_primary_10_1021_acs_chemmater_2c00932 crossref_primary_10_1002_celc_202400492 crossref_primary_10_1002_sstr_202300176 crossref_primary_10_1021_acsmaterialslett_4c00544 crossref_primary_10_1002_aenm_202303451 crossref_primary_10_1002_eem2_12644 crossref_primary_10_2139_ssrn_3925486 crossref_primary_10_1016_j_jallcom_2025_178941 crossref_primary_10_1021_acsnano_2c02820 crossref_primary_10_1002_smll_202102407 crossref_primary_10_1016_j_apsusc_2023_156456 crossref_primary_10_1039_D4TA02869D crossref_primary_10_1002_eem2_12441 crossref_primary_10_1021_acsami_1c16547 crossref_primary_10_1016_j_electacta_2022_140071 crossref_primary_10_1063_5_0054273 crossref_primary_10_1002_chem_202303826 crossref_primary_10_1016_j_ijhydene_2023_03_085 crossref_primary_10_1002_aenm_202401444 crossref_primary_10_1016_j_rser_2023_113538 crossref_primary_10_1021_acssuschemeng_2c04597 crossref_primary_10_1016_j_jcis_2022_06_061 crossref_primary_10_1007_s12209_023_00374_x crossref_primary_10_1016_j_nanoen_2024_110099 crossref_primary_10_1021_acsmaterialslett_4c01471 crossref_primary_10_1016_j_jpowsour_2023_232733 crossref_primary_10_1039_D3EY00182B crossref_primary_10_1016_j_jcis_2022_07_118 crossref_primary_10_1021_acsami_2c15158 crossref_primary_10_1002_advs_202411964 crossref_primary_10_1002_smll_202104513 crossref_primary_10_1021_acsmaterialslett_4c00659 crossref_primary_10_2139_ssrn_4148194 crossref_primary_10_1021_acs_chemrev_1c00854 crossref_primary_10_1002_aenm_202100968 crossref_primary_10_1007_s11426_022_1435_6 crossref_primary_10_1016_j_jpowsour_2024_235083 crossref_primary_10_1039_D1QM00551K crossref_primary_10_1007_s10008_022_05202_1 crossref_primary_10_1039_D3YA00348E crossref_primary_10_1039_D2DT01098D crossref_primary_10_1021_acscatal_2c01090 crossref_primary_10_1016_j_cej_2024_151697 crossref_primary_10_1002_advs_202203199 crossref_primary_10_1021_acsmaterialslett_4c00761 crossref_primary_10_1021_acsami_5c01010 crossref_primary_10_1002_cplu_202200416 crossref_primary_10_1039_D4SE00983E crossref_primary_10_33961_jecst_2021_00857 crossref_primary_10_1039_D4TA04762A crossref_primary_10_1038_s41467_024_47622_9 crossref_primary_10_1002_anie_202308670 crossref_primary_10_1016_j_cej_2023_142280 crossref_primary_10_1016_j_fuel_2025_134283 crossref_primary_10_1007_s40820_021_00744_x crossref_primary_10_54227_elab_20220013 crossref_primary_10_1021_acs_energyfuels_3c02671 crossref_primary_10_5796_electrochemistry_23_00047 |
Cites_doi | 10.1021/acssuschemeng.7b04173 10.1021/acsmaterialslett.0c00229 10.1016/j.jpowsour.2015.07.039 10.1021/acs.langmuir.9b00119 10.1002/adma.201304759 10.1016/j.chemphys.2005.05.038 10.1016/j.ijhydene.2017.10.045 10.1002/adma.201700404 10.1016/j.jelechem.2009.11.024 10.1039/C7TA08090E 10.1126/science.1141483 10.1016/S0360-3199(02)00033-2 10.1038/s41560-020-0577-x 10.1021/acsenergylett.9b00047 10.1038/s41560-020-0550-8 10.1039/C4CS00448E 10.1039/C6RA22242K 10.1016/j.pecs.2009.11.002 10.1038/s41467-018-07792-9 10.1002/anie.201407031 10.1002/smll.201600189 10.1021/acsmaterialslett.9b00414 10.1016/j.nanoen.2018.08.025 10.1016/B978-0-12-811250-2.00003-0 10.1038/ncomms5695 10.1002/adfm.201601315 10.1039/C8EE00927A 10.1021/acs.jpcc.5b03169 10.1016/j.scib.2019.10.024 10.1038/s41467-018-04746-z 10.1021/acsmaterialslett.0c00339 10.1002/cctc.201000397 10.1002/aenm.202002955 10.1016/j.ijhydene.2006.10.034 10.1038/s41467-018-05019-5 10.1073/pnas.1701562114 10.1017/S0022112093003015 10.1038/s41467-020-14462-2 10.1016/j.chempr.2018.02.023 10.1038/nmat4764 10.1021/ja511559d 10.1016/S1872-2067(17)62949-8 10.1016/j.rser.2017.09.003 10.1021/jacs.9b10388 10.1039/C6TA02334G |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsmaterialslett.0c00536 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2639-4979 |
EndPage | 234 |
ExternalDocumentID | 10_1021_acsmaterialslett_0c00536 i24006988 |
GroupedDBID | ACS ALMA_UNASSIGNED_HOLDINGS EBS VF5 VG9 AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ GGK M~E |
ID | FETCH-LOGICAL-a370t-c96d26dd053352f4f06a8e4184e46a51aa596cfeaea0c227a2d9b504d915e3693 |
IEDL.DBID | ACS |
ISSN | 2639-4979 |
IngestDate | Tue Jul 01 04:21:51 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Wed Feb 03 04:51:48 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a370t-c96d26dd053352f4f06a8e4184e46a51aa596cfeaea0c227a2d9b504d915e3693 |
ORCID | 0000-0002-8058-2084 0000-0002-1563-7819 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1021_acsmaterialslett_0c00536 crossref_citationtrail_10_1021_acsmaterialslett_0c00536 acs_journals_10_1021_acsmaterialslett_0c00536 |
ProviderPackageCode | VF5 ACS VG9 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | ACS materials letters |
PublicationTitleAlternate | ACS Materials Lett |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 Coutanceau C. (ref8/cit8) 2018 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1021/acssuschemeng.7b04173 – ident: ref33/cit33 doi: 10.1021/acsmaterialslett.0c00229 – ident: ref35/cit35 doi: 10.1016/j.jpowsour.2015.07.039 – ident: ref34/cit34 doi: 10.1021/acs.langmuir.9b00119 – ident: ref37/cit37 doi: 10.1002/adma.201304759 – ident: ref28/cit28 doi: 10.1016/j.chemphys.2005.05.038 – ident: ref9/cit9 doi: 10.1016/j.ijhydene.2017.10.045 – ident: ref19/cit19 doi: 10.1002/adma.201700404 – ident: ref29/cit29 doi: 10.1016/j.jelechem.2009.11.024 – ident: ref12/cit12 doi: 10.1039/C7TA08090E – ident: ref27/cit27 doi: 10.1126/science.1141483 – ident: ref4/cit4 doi: 10.1016/S0360-3199(02)00033-2 – ident: ref6/cit6 doi: 10.1038/s41560-020-0577-x – ident: ref10/cit10 doi: 10.1021/acsenergylett.9b00047 – ident: ref43/cit43 doi: 10.1038/s41560-020-0550-8 – ident: ref2/cit2 doi: 10.1039/C4CS00448E – ident: ref36/cit36 doi: 10.1039/C6RA22242K – ident: ref5/cit5 doi: 10.1016/j.pecs.2009.11.002 – ident: ref15/cit15 doi: 10.1038/s41467-018-07792-9 – ident: ref23/cit23 doi: 10.1002/anie.201407031 – ident: ref39/cit39 doi: 10.1002/smll.201600189 – ident: ref31/cit31 doi: 10.1021/acsmaterialslett.9b00414 – ident: ref18/cit18 doi: 10.1016/j.nanoen.2018.08.025 – start-page: 17 volume-title: Hydrogen Electrochemical Production year: 2018 ident: ref8/cit8 doi: 10.1016/B978-0-12-811250-2.00003-0 – ident: ref24/cit24 doi: 10.1038/ncomms5695 – ident: ref13/cit13 doi: 10.1002/adfm.201601315 – ident: ref21/cit21 doi: 10.1039/C8EE00927A – ident: ref44/cit44 doi: 10.1021/acs.jpcc.5b03169 – ident: ref14/cit14 doi: 10.1016/j.scib.2019.10.024 – ident: ref17/cit17 doi: 10.1038/s41467-018-04746-z – ident: ref26/cit26 doi: 10.1021/acsmaterialslett.0c00339 – ident: ref30/cit30 doi: 10.1002/cctc.201000397 – ident: ref41/cit41 doi: 10.1002/aenm.202002955 – ident: ref42/cit42 doi: 10.1016/j.ijhydene.2006.10.034 – ident: ref20/cit20 doi: 10.1038/s41467-018-05019-5 – ident: ref22/cit22 doi: 10.1073/pnas.1701562114 – ident: ref40/cit40 doi: 10.1017/S0022112093003015 – ident: ref11/cit11 doi: 10.1038/s41467-020-14462-2 – ident: ref16/cit16 doi: 10.1016/j.chempr.2018.02.023 – ident: ref45/cit45 doi: 10.1038/nmat4764 – ident: ref32/cit32 doi: 10.1021/ja511559d – ident: ref1/cit1 doi: 10.1016/S1872-2067(17)62949-8 – ident: ref7/cit7 doi: 10.1016/j.rser.2017.09.003 – ident: ref38/cit38 doi: 10.1021/jacs.9b10388 – ident: ref25/cit25 doi: 10.1039/C6TA02334G |
SSID | ssj0002161944 |
Score | 2.5569868 |
SecondaryResourceType | review_article |
Snippet | Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 224 |
Title | Perspective on High-Rate Alkaline Water Splitting |
URI | http://dx.doi.org/10.1021/acsmaterialslett.0c00536 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VssDAG1FeysDqEju2E49V1apCAiFKRbfIryytWkTShYHfjp2EUoF4dMl2jn2-6L7LfXcHcKWyUGItBFKcckQTFSOlRIhYxjVx982wLQmyd3wwojdjNm4A-SGDT_C11LnDbtV1uKMU7VB7y-EbsEl4EvuAq9MdLv-rEOzjcp9Mdq8qB6iJmsDz22LeN-l8xTetOJn-blX4l5e9CT23ZNJeFKqtX793blxj_3uwU2POoFMZyT407OwAtlc6ER4Cvv8sugzms8DTP9CDWzDoTCfSQ9HgyS8fDB1oLanSRzDq9x67A1RPU0AyisMCacEN4cb44ltGMpqFXCaWugjPUi4ZlpIJrjMrrQw1IbEkRigWUiMwsxEX0TE0Z_OZPYGAZVRLzoR2no3aLJIGKwd_tYh4Io0yLUDu1Gn9NeRpmegmOP2qirRWRQviD72num5N7idkTP8hiZeSz1V7jj9lTtfc3RlsEU9kKana59AsXhb2wiGRQl2Wpueet2-9d-Um30c |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMDAG1GeGVhdYsd26rGqqAqUCtFWVCyRX1lapYikC78e2w1t1YHXGskX3_mi-y73-Q6Aa5mGAinOoWSEQVKXMZSSh5CmTGF73hQZT5DtsvaA3A_pcGnUl91EbiXlvoi_6C6AbuwzC-Fmp2I1Kmqhcg7E1sGGxSTY5V2NZm_-ewUjl567mrJ9o5-jxksez3fCXIhS-VKIWoo1rV3wOt-lp5iMatNC1tTHSgPHf6mxB3ZKBBo0Zi6zD9ZMdgC2l_oSHgL0tLiCGUyywJFB4LMVGDTGI-GAafDixAc9C2E9cfoIDFq3_WYblrMVoIjisICKM42Z1u4qLsUpSUMm6obYfM8QJigSgnKmUiOMCBXGscCaSxoSzRE1EePRMahkk8ycgICmRAlGubJxjpg0EhpJC4YVj1hdaKmrAFqtk_LbyBNf9sYoWTVFUpqiCuIv8yeqbFTu5mWMf7ESzVe-zZp1_Ljm9I-7uwKb7f5jJ-ncdR_OwBZ2FBdP4j4HleJ9ai4sRinkpffGT5u75nc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagSAgG3ojyzMDqEju2U49VoSoPVRWlolvkV5ZWaUXShV-P7YRSdeC1RvLZ57N13-U-3wFwLdNQIMU5lIwwSJoyhlLyENKUKWztTZHxBNke6w7Jw4iOKm6OewtjF5FbSblP4rtbPdNpVWEA3djvFsaVlrFaFY1QuUPE1sGGy9652KvVHix-sWDkQnSXV7az-l5qvOLyfCfMuSmVL7mpJX_T2S2bqvqVeprJuDEvZEO9rxRx_Lcqe2CnQqJBqzw6-2DNZAdge6k-4SFA_a-nmME0CxwpBD5bgUFrMhYOoAavTnwwsFDWE6iPwLBz99LuwqrHAhRRHBZQcaYx09o9yaU4JWnIRNMQG_cZwgRFQlDOVGqEEaHCOBZYc0lDojmiJmI8Oga1bJqZExDQlCjBKFfW3xGTRkIjaUGx4hFrCi11HUCrdVLdkTzx6W-MktWtSKqtqIP40wSJqgqWu74Zk1-MRIuRs7Jox49jTv-4uiuw2b_tJE_3vcczsIUd08Vzuc9BrXibmwsLVQp56Q_kB__T6Po |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perspective+on+High-Rate+Alkaline+Water+Splitting&rft.jtitle=ACS+materials+letters&rft.au=Kou%2C+Tianyi&rft.au=Wang%2C+Shanwen&rft.au=Li%2C+Yat&rft.date=2021-02-01&rft.pub=American+Chemical+Society&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=3&rft.issue=2&rft.spage=224&rft.epage=234&rft_id=info:doi/10.1021%2Facsmaterialslett.0c00536&rft.externalDocID=i24006988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon |