Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling
As a passive cooling strategy, radiative cooling is becoming an appealing approach to dissipate heat from terrestrial emitters to the outer space. However, the currently achieved cooling performance is still underperforming due to considerable solar radiation absorbed by the emitter and nonradiative...
Saved in:
Published in | ACS applied materials & interfaces Vol. 13; no. 12; pp. 14132 - 14140 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
31.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a passive cooling strategy, radiative cooling is becoming an appealing approach to dissipate heat from terrestrial emitters to the outer space. However, the currently achieved cooling performance is still underperforming due to considerable solar radiation absorbed by the emitter and nonradiative heat transferred from the surroundings. Here, we proposed a mechanically robust and spectrally selective convection shield composed of nanoporous composite fabric (NCF) to achieve daytime subambient radiative cooling. By selectively reflecting ∼95% solar radiation, transmitting ∼84% thermal radiation, and suppressing the nonradiative heat transferred from warmer surroundings, the NCF-based radiative cooler demonstrated an average daytime temperature reduction of ∼4.9 °C below the ambient temperature, resulting in an average net radiative cooling power of ∼48 W/m2 over a 24 h measurement. In addition, we also modeled the potential cooling capacity of the NCF-based radiative cooler and demonstrated that it can cover the cooling demands of energy-efficient residential buildings in most regions of China. Excellent spectral selectivity, mechanical strength, and weatherability of the NCF cover enable a much broader selection for the emitters, which is promising in the real-world deployment of direct daytime subambient radiative cooling. |
---|---|
AbstractList | As a passive cooling strategy, radiative cooling is becoming an appealing approach to dissipate heat from terrestrial emitters to the outer space. However, the currently achieved cooling performance is still underperforming due to considerable solar radiation absorbed by the emitter and nonradiative heat transferred from the surroundings. Here, we proposed a mechanically robust and spectrally selective convection shield composed of nanoporous composite fabric (NCF) to achieve daytime subambient radiative cooling. By selectively reflecting ∼95% solar radiation, transmitting ∼84% thermal radiation, and suppressing the nonradiative heat transferred from warmer surroundings, the NCF-based radiative cooler demonstrated an average daytime temperature reduction of ∼4.9 °C below the ambient temperature, resulting in an average net radiative cooling power of ∼48 W/m
over a 24 h measurement. In addition, we also modeled the potential cooling capacity of the NCF-based radiative cooler and demonstrated that it can cover the cooling demands of energy-efficient residential buildings in most regions of China. Excellent spectral selectivity, mechanical strength, and weatherability of the NCF cover enable a much broader selection for the emitters, which is promising in the real-world deployment of direct daytime subambient radiative cooling. As a passive cooling strategy, radiative cooling is becoming an appealing approach to dissipate heat from terrestrial emitters to the outer space. However, the currently achieved cooling performance is still underperforming due to considerable solar radiation absorbed by the emitter and nonradiative heat transferred from the surroundings. Here, we proposed a mechanically robust and spectrally selective convection shield composed of nanoporous composite fabric (NCF) to achieve daytime subambient radiative cooling. By selectively reflecting ∼95% solar radiation, transmitting ∼84% thermal radiation, and suppressing the nonradiative heat transferred from warmer surroundings, the NCF-based radiative cooler demonstrated an average daytime temperature reduction of ∼4.9 °C below the ambient temperature, resulting in an average net radiative cooling power of ∼48 W/m2 over a 24 h measurement. In addition, we also modeled the potential cooling capacity of the NCF-based radiative cooler and demonstrated that it can cover the cooling demands of energy-efficient residential buildings in most regions of China. Excellent spectral selectivity, mechanical strength, and weatherability of the NCF cover enable a much broader selection for the emitters, which is promising in the real-world deployment of direct daytime subambient radiative cooling. |
Author | Tang, Huajie Zhou, Zhihua Zhang, Ji Liu, Junwei Xing, Jincheng Yu, Junrong Hu, Mingke Quan, Jiayou |
AuthorAffiliation | Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Department of Architecture and Built Environment Donghua University |
AuthorAffiliation_xml | – name: Donghua University – name: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering – name: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering – name: Department of Architecture and Built Environment |
Author_xml | – sequence: 1 givenname: Ji surname: Zhang fullname: Zhang, Ji organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering – sequence: 2 givenname: Zhihua surname: Zhou fullname: Zhou, Zhihua organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering – sequence: 3 givenname: Huajie surname: Tang fullname: Tang, Huajie organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering – sequence: 4 givenname: Jincheng surname: Xing fullname: Xing, Jincheng organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering – sequence: 5 givenname: Jiayou surname: Quan fullname: Quan, Jiayou organization: Donghua University – sequence: 6 givenname: Junwei surname: Liu fullname: Liu, Junwei organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering – sequence: 7 givenname: Junrong orcidid: 0000-0003-3813-8403 surname: Yu fullname: Yu, Junrong email: yjr@dhu.edu.cn organization: Donghua University – sequence: 8 givenname: Mingke orcidid: 0000-0002-3760-7709 surname: Hu fullname: Hu, Mingke email: Mingke.Hu@nottingham.ac.uk organization: Department of Architecture and Built Environment |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33724770$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtPAjEYRRuDkYduXZoujQnYJ4WlwWeCMQFdT0r7DZTMtDidIeHfWwTZuepNe-5Nerqo5YMHhK4pGVDC6L02UZduQAyjjIgz1KFjIfojJlnrlIVoo26Ma0KGnBF5gdqcKyaUIh20fAez0t4ZXRQ7PAuLJtZYe4vnGzB19Xs7hyJltwU8CX67j8Hj-cpBYXEeKvyod7UrAc-bhS4XDnyNZ9o6fayEwvnlJTrPdRHh6nj20Nfz0-fktT_9eHmbPEz7mitS940gQkkGBhSXOeMWeM6ZJblUkFNOU7bCGsrocMxGIzskSo7SgxoSoyhVvIduD7ubKnw3EOusdNFAUWgPoYkZk4QlUZLJhA4OqKlCjBXk2aZypa52GSXZXm52kJsd5abCzXG7WZRgT_ifzQTcHYBUzNahqXz66n9rP7DIhe8 |
CitedBy_id | crossref_primary_10_1126_science_abf7136 crossref_primary_10_1002_eom2_12153 crossref_primary_10_1039_D3MH01802D crossref_primary_10_1039_D4TA00315B crossref_primary_10_1515_nanoph_2023_0641 crossref_primary_10_1016_j_applthermaleng_2022_119125 crossref_primary_10_1016_j_applthermaleng_2023_121305 crossref_primary_10_1016_j_polymer_2023_126468 crossref_primary_10_1002_adom_202202163 crossref_primary_10_1016_j_nanoen_2024_109909 crossref_primary_10_1016_j_nantod_2022_101745 crossref_primary_10_1021_acsaelm_3c01023 crossref_primary_10_1002_advs_202302701 crossref_primary_10_1002_adom_202400144 crossref_primary_10_1016_j_enbenv_2021_10_001 crossref_primary_10_1039_D2TC00834C crossref_primary_10_1021_acsaelm_2c01250 crossref_primary_10_1021_acsami_4c00825 crossref_primary_10_1002_adfm_202206962 crossref_primary_10_1039_D2MA01000C crossref_primary_10_1088_1361_6528_ace44f crossref_primary_10_1515_nanoph_2023_0611 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123494 crossref_primary_10_1002_smll_202206145 crossref_primary_10_1021_acsnano_1c08227 crossref_primary_10_1016_j_applthermaleng_2022_119657 crossref_primary_10_1016_j_optmat_2022_112472 crossref_primary_10_1039_D4TA01734J crossref_primary_10_1016_j_pmatsci_2024_101291 crossref_primary_10_1016_j_solmat_2023_112316 crossref_primary_10_1002_adfm_202405903 crossref_primary_10_1016_j_apenergy_2022_120181 crossref_primary_10_1016_j_cej_2022_139739 crossref_primary_10_1021_acssuschemeng_4c00300 crossref_primary_10_1016_j_buildenv_2024_111213 crossref_primary_10_3390_mi14010219 crossref_primary_10_3390_en16041975 |
Cites_doi | 10.1021/acsphotonics.7b01492 10.1021/acsphotonics.7b00991 10.1016/j.renene.2020.03.136 10.1021/nl4004283 10.1016/j.solmat.2013.03.001 10.1016/j.conbuildmat.2006.10.015 10.1016/j.joule.2020.02.011 10.1016/j.joule.2018.10.006 10.1021/acsami.9b13933 10.1016/j.egypro.2014.10.064 10.1126/science.aau9101 10.1016/j.solmat.2018.11.032 10.1002/pen.24296 10.1016/j.renene.2017.01.018 10.1016/j.solmat.2018.01.015 10.1126/science.aaf5471 10.1016/j.jqsrt.2017.03.046 10.1006/jaer.1997.0187 10.1016/0165-1633(85)90002-4 10.1002/mame.201700456 10.1016/j.triboint.2019.05.034 10.1063/1.4835995 10.1016/j.solmat.2020.110412 10.1021/acsphotonics.6b01005 10.1016/j.solmat.2019.110320 10.1038/s41893-018-0023-2 10.1021/acsapm.0c00234 10.1038/nenergy.2017.142 10.1038/nature13883 10.1016/s0142-9418(01)00124-6 10.1021/acsphotonics.5b00140 10.1016/j.enconman.2019.112395 10.1063/1.92783 10.1126/sciadv.aat9480 10.1002/advs.201500119 10.1016/j.solmat.2019.110368 10.1038/nenergy.2017.143 10.1016/j.renene.2019.03.013 10.1016/j.rser.2015.09.015 10.1016/j.solmat.2019.110319 10.1038/ncomms13729 10.1021/acsami.0c03897 10.1016/j.solmat.2017.04.020 10.1126/science.aat9513 10.1016/j.nanoen.2020.105517 10.1016/0038-092x(75)90056-0 10.1016/j.solmat.2019.04.028 10.1063/1.5087281 10.1016/j.solmat.2018.06.012 10.1126/science.aai7899 10.1016/j.optcom.2006.06.050 10.1063/1.370757 10.1126/science.aab3564 10.1039/c6ra11456c 10.1021/acsami.0c09374 10.1016/j.rser.2020.109935 10.1016/j.enbenv.2020.06.008 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acsami.0c21204 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 14140 |
ExternalDocumentID | 10_1021_acsami_0c21204 33724770 b531863611 |
Genre | Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS ACSAX AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 5ZA 6J9 AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a370t-c404752ece735f23de3f32d0f57ef13132dd4dc12169288d60758f13760c71173 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Sat Aug 17 02:44:19 EDT 2024 Fri Aug 23 02:40:49 EDT 2024 Sat Sep 28 08:35:02 EDT 2024 Fri Apr 02 15:26:46 EDT 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | radiative cooling composite film mechanically robust spectrally selective convection shield |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a370t-c404752ece735f23de3f32d0f57ef13132dd4dc12169288d60758f13760c71173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3813-8403 0000-0002-3760-7709 |
OpenAccessLink | https://nottingham-repository.worktribe.com/preview/5466735/Revised%20manuscript.pdf |
PMID | 33724770 |
PQID | 2502204525 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2502204525 crossref_primary_10_1021_acsami_0c21204 pubmed_primary_33724770 acs_journals_10_1021_acsami_0c21204 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ABFRP ACS AEESW AFEFF ABMVS ABUCX ACSAX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20210331 2021-Mar-31 2021-03-31 |
PublicationDateYYYYMMDD | 2021-03-31 |
PublicationDate_xml | – month: 03 year: 2021 text: 20210331 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 Palik E. (ref37/cit37) 1998; 3 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref12/cit12 doi: 10.1021/acsphotonics.7b01492 – ident: ref17/cit17 doi: 10.1021/acsphotonics.7b00991 – ident: ref56/cit56 doi: 10.1016/j.renene.2020.03.136 – ident: ref9/cit9 doi: 10.1021/nl4004283 – ident: ref35/cit35 doi: 10.1016/j.solmat.2013.03.001 – ident: ref16/cit16 doi: 10.1016/j.conbuildmat.2006.10.015 – ident: ref43/cit43 doi: 10.1016/j.joule.2020.02.011 – ident: ref8/cit8 doi: 10.1016/j.joule.2018.10.006 – ident: ref20/cit20 doi: 10.1021/acsami.9b13933 – ident: ref29/cit29 doi: 10.1016/j.egypro.2014.10.064 – ident: ref14/cit14 doi: 10.1126/science.aau9101 – ident: ref11/cit11 doi: 10.1016/j.solmat.2018.11.032 – ident: ref47/cit47 – ident: ref49/cit49 doi: 10.1002/pen.24296 – ident: ref58/cit58 doi: 10.1016/j.renene.2017.01.018 – ident: ref59/cit59 doi: 10.1016/j.solmat.2018.01.015 – ident: ref46/cit46 doi: 10.1126/science.aaf5471 – ident: ref7/cit7 doi: 10.1016/j.jqsrt.2017.03.046 – ident: ref51/cit51 doi: 10.1006/jaer.1997.0187 – ident: ref34/cit34 doi: 10.1016/0165-1633(85)90002-4 – ident: ref44/cit44 doi: 10.1002/mame.201700456 – ident: ref50/cit50 doi: 10.1016/j.triboint.2019.05.034 – ident: ref26/cit26 doi: 10.1063/1.4835995 – ident: ref60/cit60 doi: 10.1016/j.solmat.2020.110412 – ident: ref45/cit45 doi: 10.1021/acsphotonics.6b01005 – volume: 3 volume-title: Handbook of Optical Constants of Solids year: 1998 ident: ref37/cit37 contributor: fullname: Palik E. – ident: ref52/cit52 doi: 10.1016/j.solmat.2019.110320 – ident: ref19/cit19 doi: 10.1038/s41893-018-0023-2 – ident: ref21/cit21 doi: 10.1021/acsapm.0c00234 – ident: ref2/cit2 doi: 10.1038/nenergy.2017.142 – ident: ref4/cit4 doi: 10.1038/nature13883 – ident: ref36/cit36 doi: 10.1016/s0142-9418(01)00124-6 – ident: ref40/cit40 doi: 10.1021/acsphotonics.5b00140 – ident: ref54/cit54 doi: 10.1016/j.enconman.2019.112395 – ident: ref33/cit33 doi: 10.1063/1.92783 – ident: ref25/cit25 doi: 10.1126/sciadv.aat9480 – ident: ref53/cit53 doi: 10.1002/advs.201500119 – ident: ref15/cit15 doi: 10.1016/j.solmat.2019.110368 – ident: ref55/cit55 doi: 10.1038/nenergy.2017.143 – ident: ref32/cit32 doi: 10.1016/j.renene.2019.03.013 – ident: ref42/cit42 doi: 10.1016/j.rser.2015.09.015 – ident: ref24/cit24 doi: 10.1016/j.solmat.2019.110319 – ident: ref3/cit3 doi: 10.1038/ncomms13729 – ident: ref57/cit57 – ident: ref22/cit22 doi: 10.1021/acsami.0c03897 – ident: ref27/cit27 doi: 10.1016/j.solmat.2017.04.020 – ident: ref13/cit13 doi: 10.1126/science.aat9513 – ident: ref1/cit1 doi: 10.1016/j.nanoen.2020.105517 – ident: ref28/cit28 doi: 10.1016/0038-092x(75)90056-0 – ident: ref31/cit31 doi: 10.1016/j.solmat.2019.04.028 – ident: ref6/cit6 doi: 10.1063/1.5087281 – ident: ref39/cit39 doi: 10.1016/j.solmat.2018.06.012 – ident: ref10/cit10 doi: 10.1126/science.aai7899 – ident: ref30/cit30 doi: 10.1016/j.optcom.2006.06.050 – ident: ref38/cit38 doi: 10.1063/1.370757 – ident: ref5/cit5 doi: 10.1126/science.aab3564 – ident: ref41/cit41 doi: 10.1039/c6ra11456c – ident: ref23/cit23 doi: 10.1021/acsami.0c09374 – ident: ref48/cit48 doi: 10.1016/j.rser.2020.109935 – ident: ref18/cit18 doi: 10.1016/j.enbenv.2020.06.008 |
SSID | ssj0063205 |
Score | 2.5624118 |
Snippet | As a passive cooling strategy, radiative cooling is becoming an appealing approach to dissipate heat from terrestrial emitters to the outer space. However, the... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 14132 |
SubjectTerms | Energy, Environmental, and Catalysis Applications |
Title | Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling |
URI | http://dx.doi.org/10.1021/acsami.0c21204 https://www.ncbi.nlm.nih.gov/pubmed/33724770 https://search.proquest.com/docview/2502204525 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELUQNFBwH8slI5CoAontxEmJFtAKaSkWkOgiX6FgySKSFMvXM5ODUwjaJI4sjz3zbM-8R8hRFDsTcpN4mgN8Ey62XpKYwLORtTwLdSIV1jsPr6PBnbi6D-8_zju-3-Cz4FSZAqVwfANOFok_55iElYEgqH_T-dyIszpZEXbkwoshYnX0jD_aYxAyxdcg9AuyrCPM5VJDd1TUxISYWPJ4UpX6xLz-pG38s_PLZLGFmfSsmRcrZMblq2ThE_ngGnkYOqz6RSONp3Q00VVRUpVbipL0eP4BT29qlRxwiLSP2el1DQRF-eyxpYB26bmaojg9BfejnjSWVtIRkh20TVAQ6GGd3F1e3PYHXiu74Cku_dIzwhcyZM44ycOMcet4xpn1s1C6LECqR2uFNQELooTFsY0AdcTwQka-kUEg-QaZzSe52yIUtmeZFpl20kmRWT9hKoE9TKgBOChnWY8cwgil7bIp0vpGnAVpM2xpO2w9ctxZK31uODh-_fKgM2YKywTvPlTuJlWRAtJjyLzPwh7ZbKz8_i_OJRNS-tv_6s0OmWeY11LXJe6S2fKlcnsATEq9X8_JN4213Rk |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hOLQcgPIo29LiikqcAokfcXKslqItsKjiIXGL4kc4FLKoyR7or--MN4EWhNRendhyZuyZz_HMNwCf08xbJWweGYHwTfrMRXluk8ilzolKmVyXlO88Pk1Hl_LoSl3NwX6fC4OTaHCkJlziP7ILJPvYRhVxYou2lvg_F5RGb0lYaHjem95U8BCziAdzGWXouHqWxmf9yRfZ5m9f9ALADI7mcBm-P0wxxJf82Ju2Zs_-esLe-B_fsAJLHehkX2ar5A3M-XoVFv-gIlyD67GnHGBS2c09O5uYadOysnaMCtTT3xBsPQ81c9A8siHFqoeMCEbFtG8cQ-zLDsp7KlXP0BiVt4YSLdkZUR90Xag80PU6XB5-vRiOoq4IQ1QKHbeRlbHUinvrtVAVF86LSnAXV0r7KiHiR-ekswlP0pxnmUsRg2T4QKex1UmixQbM15PabwLDw1plZGW89lpWLs55meOJRhmEEaV3fAA7KKGi20RNEe7HeVLMxFZ0YhvAbq-04m7GyPHim596nRa4aegmpKz9ZNoUiPs48fBzNYC3M2U_jCWE5lLr-N0_zWYbXo0uxifFybfT4_fwmlPES8hY3IL59ufUf0DI0pqPYZn-BsZj5X4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSKg9FOhzedVVK_UUSPyIkyPaZQVtF1W7IHGL4tceSrOoSQ7w65lxsohSIZWrE1uOx575nJn5hpAvaeaM5CaPNAf4Jlxmozw3SWRTa7mXOlcl5jtPztKTC_HtUl72edyYCwOTqGGkOjjx8VRfW98zDCSH0I5VcWID-hY5QNekSoJv9mg4W6rflLMQtwiXcxFlYLyWTI3_9Ed7ZOq_7dETIDMYm_EGOb-fZogx-XXQNvrA3D5icHzmd2ySVz34pEfdbtkiK656TV4-oCR8Q-YTh7nAKLqrGzpd6LZuaFlZioXq8a8ItM5C7RxQk3SIMeshM4JiUe0rSwED01F5gyXrKSil8rfGhEs6RQqEvguWCZq_JRfj4_PhSdQXY4hKruImMiIWSjJnnOLSM24d95zZ2EvlfIIEkNYKaxKWpDnLMpsCFsnggUpjA1JS_B1ZrRaV-0AoXNq8Fl475ZTwNs5ZmcPNRmqAE6WzbEA-wwoV_WGqi-AnZ0nRLVvRL9uAfF0KrrjumDmefPPTUq4FHB70iJSVW7R1AfiPIR8_kwPyvhP4_VicKyaUirf_azYfyfrP0bj4cXr2fYe8YBj4EhIXd8lq86d1e4BcGr0fduodOrDn-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+Robust+and+Spectrally+Selective+Convection+Shield+for+Daytime+Subambient+Radiative+Cooling&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Ji&rft.au=Zhou%2C+Zhihua&rft.au=Tang%2C+Huajie&rft.au=Xing%2C+Jincheng&rft.date=2021-03-31&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=13&rft.issue=12&rft.spage=14132&rft.epage=14140&rft_id=info:doi/10.1021%2Facsami.0c21204&rft.externalDocID=b531863611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |