Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling

As a passive cooling strategy, radiative cooling is becoming an appealing approach to dissipate heat from terrestrial emitters to the outer space. However, the currently achieved cooling performance is still underperforming due to considerable solar radiation absorbed by the emitter and nonradiative...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 13; no. 12; pp. 14132 - 14140
Main Authors Zhang, Ji, Zhou, Zhihua, Tang, Huajie, Xing, Jincheng, Quan, Jiayou, Liu, Junwei, Yu, Junrong, Hu, Mingke
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 31.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a passive cooling strategy, radiative cooling is becoming an appealing approach to dissipate heat from terrestrial emitters to the outer space. However, the currently achieved cooling performance is still underperforming due to considerable solar radiation absorbed by the emitter and nonradiative heat transferred from the surroundings. Here, we proposed a mechanically robust and spectrally selective convection shield composed of nanoporous composite fabric (NCF) to achieve daytime subambient radiative cooling. By selectively reflecting ∼95% solar radiation, transmitting ∼84% thermal radiation, and suppressing the nonradiative heat transferred from warmer surroundings, the NCF-based radiative cooler demonstrated an average daytime temperature reduction of ∼4.9 °C below the ambient temperature, resulting in an average net radiative cooling power of ∼48 W/m2 over a 24 h measurement. In addition, we also modeled the potential cooling capacity of the NCF-based radiative cooler and demonstrated that it can cover the cooling demands of energy-efficient residential buildings in most regions of China. Excellent spectral selectivity, mechanical strength, and weatherability of the NCF cover enable a much broader selection for the emitters, which is promising in the real-world deployment of direct daytime subambient radiative cooling.
AbstractList As a passive cooling strategy, radiative cooling is becoming an appealing approach to dissipate heat from terrestrial emitters to the outer space. However, the currently achieved cooling performance is still underperforming due to considerable solar radiation absorbed by the emitter and nonradiative heat transferred from the surroundings. Here, we proposed a mechanically robust and spectrally selective convection shield composed of nanoporous composite fabric (NCF) to achieve daytime subambient radiative cooling. By selectively reflecting ∼95% solar radiation, transmitting ∼84% thermal radiation, and suppressing the nonradiative heat transferred from warmer surroundings, the NCF-based radiative cooler demonstrated an average daytime temperature reduction of ∼4.9 °C below the ambient temperature, resulting in an average net radiative cooling power of ∼48 W/m over a 24 h measurement. In addition, we also modeled the potential cooling capacity of the NCF-based radiative cooler and demonstrated that it can cover the cooling demands of energy-efficient residential buildings in most regions of China. Excellent spectral selectivity, mechanical strength, and weatherability of the NCF cover enable a much broader selection for the emitters, which is promising in the real-world deployment of direct daytime subambient radiative cooling.
As a passive cooling strategy, radiative cooling is becoming an appealing approach to dissipate heat from terrestrial emitters to the outer space. However, the currently achieved cooling performance is still underperforming due to considerable solar radiation absorbed by the emitter and nonradiative heat transferred from the surroundings. Here, we proposed a mechanically robust and spectrally selective convection shield composed of nanoporous composite fabric (NCF) to achieve daytime subambient radiative cooling. By selectively reflecting ∼95% solar radiation, transmitting ∼84% thermal radiation, and suppressing the nonradiative heat transferred from warmer surroundings, the NCF-based radiative cooler demonstrated an average daytime temperature reduction of ∼4.9 °C below the ambient temperature, resulting in an average net radiative cooling power of ∼48 W/m2 over a 24 h measurement. In addition, we also modeled the potential cooling capacity of the NCF-based radiative cooler and demonstrated that it can cover the cooling demands of energy-efficient residential buildings in most regions of China. Excellent spectral selectivity, mechanical strength, and weatherability of the NCF cover enable a much broader selection for the emitters, which is promising in the real-world deployment of direct daytime subambient radiative cooling.
Author Tang, Huajie
Zhou, Zhihua
Zhang, Ji
Liu, Junwei
Xing, Jincheng
Yu, Junrong
Hu, Mingke
Quan, Jiayou
AuthorAffiliation Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering
Department of Architecture and Built Environment
Donghua University
AuthorAffiliation_xml – name: Donghua University
– name: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering
– name: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering
– name: Department of Architecture and Built Environment
Author_xml – sequence: 1
  givenname: Ji
  surname: Zhang
  fullname: Zhang, Ji
  organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering
– sequence: 2
  givenname: Zhihua
  surname: Zhou
  fullname: Zhou, Zhihua
  organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering
– sequence: 3
  givenname: Huajie
  surname: Tang
  fullname: Tang, Huajie
  organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering
– sequence: 4
  givenname: Jincheng
  surname: Xing
  fullname: Xing, Jincheng
  organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering
– sequence: 5
  givenname: Jiayou
  surname: Quan
  fullname: Quan, Jiayou
  organization: Donghua University
– sequence: 6
  givenname: Junwei
  surname: Liu
  fullname: Liu, Junwei
  organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, College of Environmental Science and Engineering
– sequence: 7
  givenname: Junrong
  orcidid: 0000-0003-3813-8403
  surname: Yu
  fullname: Yu, Junrong
  email: yjr@dhu.edu.cn
  organization: Donghua University
– sequence: 8
  givenname: Mingke
  orcidid: 0000-0002-3760-7709
  surname: Hu
  fullname: Hu, Mingke
  email: Mingke.Hu@nottingham.ac.uk
  organization: Department of Architecture and Built Environment
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33724770$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtPAjEYRRuDkYduXZoujQnYJ4WlwWeCMQFdT0r7DZTMtDidIeHfWwTZuepNe-5Nerqo5YMHhK4pGVDC6L02UZduQAyjjIgz1KFjIfojJlnrlIVoo26Ma0KGnBF5gdqcKyaUIh20fAez0t4ZXRQ7PAuLJtZYe4vnGzB19Xs7hyJltwU8CX67j8Hj-cpBYXEeKvyod7UrAc-bhS4XDnyNZ9o6fayEwvnlJTrPdRHh6nj20Nfz0-fktT_9eHmbPEz7mitS940gQkkGBhSXOeMWeM6ZJblUkFNOU7bCGsrocMxGIzskSo7SgxoSoyhVvIduD7ubKnw3EOusdNFAUWgPoYkZk4QlUZLJhA4OqKlCjBXk2aZypa52GSXZXm52kJsd5abCzXG7WZRgT_ifzQTcHYBUzNahqXz66n9rP7DIhe8
CitedBy_id crossref_primary_10_1126_science_abf7136
crossref_primary_10_1002_eom2_12153
crossref_primary_10_1039_D3MH01802D
crossref_primary_10_1039_D4TA00315B
crossref_primary_10_1515_nanoph_2023_0641
crossref_primary_10_1016_j_applthermaleng_2022_119125
crossref_primary_10_1016_j_applthermaleng_2023_121305
crossref_primary_10_1016_j_polymer_2023_126468
crossref_primary_10_1002_adom_202202163
crossref_primary_10_1016_j_nanoen_2024_109909
crossref_primary_10_1016_j_nantod_2022_101745
crossref_primary_10_1021_acsaelm_3c01023
crossref_primary_10_1002_advs_202302701
crossref_primary_10_1002_adom_202400144
crossref_primary_10_1016_j_enbenv_2021_10_001
crossref_primary_10_1039_D2TC00834C
crossref_primary_10_1021_acsaelm_2c01250
crossref_primary_10_1021_acsami_4c00825
crossref_primary_10_1002_adfm_202206962
crossref_primary_10_1039_D2MA01000C
crossref_primary_10_1088_1361_6528_ace44f
crossref_primary_10_1515_nanoph_2023_0611
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123494
crossref_primary_10_1002_smll_202206145
crossref_primary_10_1021_acsnano_1c08227
crossref_primary_10_1016_j_applthermaleng_2022_119657
crossref_primary_10_1016_j_optmat_2022_112472
crossref_primary_10_1039_D4TA01734J
crossref_primary_10_1016_j_pmatsci_2024_101291
crossref_primary_10_1016_j_solmat_2023_112316
crossref_primary_10_1002_adfm_202405903
crossref_primary_10_1016_j_apenergy_2022_120181
crossref_primary_10_1016_j_cej_2022_139739
crossref_primary_10_1021_acssuschemeng_4c00300
crossref_primary_10_1016_j_buildenv_2024_111213
crossref_primary_10_3390_mi14010219
crossref_primary_10_3390_en16041975
Cites_doi 10.1021/acsphotonics.7b01492
10.1021/acsphotonics.7b00991
10.1016/j.renene.2020.03.136
10.1021/nl4004283
10.1016/j.solmat.2013.03.001
10.1016/j.conbuildmat.2006.10.015
10.1016/j.joule.2020.02.011
10.1016/j.joule.2018.10.006
10.1021/acsami.9b13933
10.1016/j.egypro.2014.10.064
10.1126/science.aau9101
10.1016/j.solmat.2018.11.032
10.1002/pen.24296
10.1016/j.renene.2017.01.018
10.1016/j.solmat.2018.01.015
10.1126/science.aaf5471
10.1016/j.jqsrt.2017.03.046
10.1006/jaer.1997.0187
10.1016/0165-1633(85)90002-4
10.1002/mame.201700456
10.1016/j.triboint.2019.05.034
10.1063/1.4835995
10.1016/j.solmat.2020.110412
10.1021/acsphotonics.6b01005
10.1016/j.solmat.2019.110320
10.1038/s41893-018-0023-2
10.1021/acsapm.0c00234
10.1038/nenergy.2017.142
10.1038/nature13883
10.1016/s0142-9418(01)00124-6
10.1021/acsphotonics.5b00140
10.1016/j.enconman.2019.112395
10.1063/1.92783
10.1126/sciadv.aat9480
10.1002/advs.201500119
10.1016/j.solmat.2019.110368
10.1038/nenergy.2017.143
10.1016/j.renene.2019.03.013
10.1016/j.rser.2015.09.015
10.1016/j.solmat.2019.110319
10.1038/ncomms13729
10.1021/acsami.0c03897
10.1016/j.solmat.2017.04.020
10.1126/science.aat9513
10.1016/j.nanoen.2020.105517
10.1016/0038-092x(75)90056-0
10.1016/j.solmat.2019.04.028
10.1063/1.5087281
10.1016/j.solmat.2018.06.012
10.1126/science.aai7899
10.1016/j.optcom.2006.06.050
10.1063/1.370757
10.1126/science.aab3564
10.1039/c6ra11456c
10.1021/acsami.0c09374
10.1016/j.rser.2020.109935
10.1016/j.enbenv.2020.06.008
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsami.0c21204
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 14140
ExternalDocumentID 10_1021_acsami_0c21204
33724770
b531863611
Genre Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
ACSAX
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a370t-c404752ece735f23de3f32d0f57ef13132dd4dc12169288d60758f13760c71173
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Sat Aug 17 02:44:19 EDT 2024
Fri Aug 23 02:40:49 EDT 2024
Sat Sep 28 08:35:02 EDT 2024
Fri Apr 02 15:26:46 EDT 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords radiative cooling
composite film
mechanically robust
spectrally selective
convection shield
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a370t-c404752ece735f23de3f32d0f57ef13132dd4dc12169288d60758f13760c71173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3813-8403
0000-0002-3760-7709
OpenAccessLink https://nottingham-repository.worktribe.com/preview/5466735/Revised%20manuscript.pdf
PMID 33724770
PQID 2502204525
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2502204525
crossref_primary_10_1021_acsami_0c21204
pubmed_primary_33724770
acs_journals_10_1021_acsami_0c21204
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ABFRP
ACS
AEESW
AFEFF
ABMVS
ABUCX
ACSAX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20210331
2021-Mar-31
2021-03-31
PublicationDateYYYYMMDD 2021-03-31
PublicationDate_xml – month: 03
  year: 2021
  text: 20210331
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
Palik E. (ref37/cit37) 1998; 3
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1021/acsphotonics.7b01492
– ident: ref17/cit17
  doi: 10.1021/acsphotonics.7b00991
– ident: ref56/cit56
  doi: 10.1016/j.renene.2020.03.136
– ident: ref9/cit9
  doi: 10.1021/nl4004283
– ident: ref35/cit35
  doi: 10.1016/j.solmat.2013.03.001
– ident: ref16/cit16
  doi: 10.1016/j.conbuildmat.2006.10.015
– ident: ref43/cit43
  doi: 10.1016/j.joule.2020.02.011
– ident: ref8/cit8
  doi: 10.1016/j.joule.2018.10.006
– ident: ref20/cit20
  doi: 10.1021/acsami.9b13933
– ident: ref29/cit29
  doi: 10.1016/j.egypro.2014.10.064
– ident: ref14/cit14
  doi: 10.1126/science.aau9101
– ident: ref11/cit11
  doi: 10.1016/j.solmat.2018.11.032
– ident: ref47/cit47
– ident: ref49/cit49
  doi: 10.1002/pen.24296
– ident: ref58/cit58
  doi: 10.1016/j.renene.2017.01.018
– ident: ref59/cit59
  doi: 10.1016/j.solmat.2018.01.015
– ident: ref46/cit46
  doi: 10.1126/science.aaf5471
– ident: ref7/cit7
  doi: 10.1016/j.jqsrt.2017.03.046
– ident: ref51/cit51
  doi: 10.1006/jaer.1997.0187
– ident: ref34/cit34
  doi: 10.1016/0165-1633(85)90002-4
– ident: ref44/cit44
  doi: 10.1002/mame.201700456
– ident: ref50/cit50
  doi: 10.1016/j.triboint.2019.05.034
– ident: ref26/cit26
  doi: 10.1063/1.4835995
– ident: ref60/cit60
  doi: 10.1016/j.solmat.2020.110412
– ident: ref45/cit45
  doi: 10.1021/acsphotonics.6b01005
– volume: 3
  volume-title: Handbook of Optical Constants of Solids
  year: 1998
  ident: ref37/cit37
  contributor:
    fullname: Palik E.
– ident: ref52/cit52
  doi: 10.1016/j.solmat.2019.110320
– ident: ref19/cit19
  doi: 10.1038/s41893-018-0023-2
– ident: ref21/cit21
  doi: 10.1021/acsapm.0c00234
– ident: ref2/cit2
  doi: 10.1038/nenergy.2017.142
– ident: ref4/cit4
  doi: 10.1038/nature13883
– ident: ref36/cit36
  doi: 10.1016/s0142-9418(01)00124-6
– ident: ref40/cit40
  doi: 10.1021/acsphotonics.5b00140
– ident: ref54/cit54
  doi: 10.1016/j.enconman.2019.112395
– ident: ref33/cit33
  doi: 10.1063/1.92783
– ident: ref25/cit25
  doi: 10.1126/sciadv.aat9480
– ident: ref53/cit53
  doi: 10.1002/advs.201500119
– ident: ref15/cit15
  doi: 10.1016/j.solmat.2019.110368
– ident: ref55/cit55
  doi: 10.1038/nenergy.2017.143
– ident: ref32/cit32
  doi: 10.1016/j.renene.2019.03.013
– ident: ref42/cit42
  doi: 10.1016/j.rser.2015.09.015
– ident: ref24/cit24
  doi: 10.1016/j.solmat.2019.110319
– ident: ref3/cit3
  doi: 10.1038/ncomms13729
– ident: ref57/cit57
– ident: ref22/cit22
  doi: 10.1021/acsami.0c03897
– ident: ref27/cit27
  doi: 10.1016/j.solmat.2017.04.020
– ident: ref13/cit13
  doi: 10.1126/science.aat9513
– ident: ref1/cit1
  doi: 10.1016/j.nanoen.2020.105517
– ident: ref28/cit28
  doi: 10.1016/0038-092x(75)90056-0
– ident: ref31/cit31
  doi: 10.1016/j.solmat.2019.04.028
– ident: ref6/cit6
  doi: 10.1063/1.5087281
– ident: ref39/cit39
  doi: 10.1016/j.solmat.2018.06.012
– ident: ref10/cit10
  doi: 10.1126/science.aai7899
– ident: ref30/cit30
  doi: 10.1016/j.optcom.2006.06.050
– ident: ref38/cit38
  doi: 10.1063/1.370757
– ident: ref5/cit5
  doi: 10.1126/science.aab3564
– ident: ref41/cit41
  doi: 10.1039/c6ra11456c
– ident: ref23/cit23
  doi: 10.1021/acsami.0c09374
– ident: ref48/cit48
  doi: 10.1016/j.rser.2020.109935
– ident: ref18/cit18
  doi: 10.1016/j.enbenv.2020.06.008
SSID ssj0063205
Score 2.5624118
Snippet As a passive cooling strategy, radiative cooling is becoming an appealing approach to dissipate heat from terrestrial emitters to the outer space. However, the...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 14132
SubjectTerms Energy, Environmental, and Catalysis Applications
Title Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling
URI http://dx.doi.org/10.1021/acsami.0c21204
https://www.ncbi.nlm.nih.gov/pubmed/33724770
https://search.proquest.com/docview/2502204525
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELUQNFBwH8slI5CoAontxEmJFtAKaSkWkOgiX6FgySKSFMvXM5ODUwjaJI4sjz3zbM-8R8hRFDsTcpN4mgN8Ey62XpKYwLORtTwLdSIV1jsPr6PBnbi6D-8_zju-3-Cz4FSZAqVwfANOFok_55iElYEgqH_T-dyIszpZEXbkwoshYnX0jD_aYxAyxdcg9AuyrCPM5VJDd1TUxISYWPJ4UpX6xLz-pG38s_PLZLGFmfSsmRcrZMblq2ThE_ngGnkYOqz6RSONp3Q00VVRUpVbipL0eP4BT29qlRxwiLSP2el1DQRF-eyxpYB26bmaojg9BfejnjSWVtIRkh20TVAQ6GGd3F1e3PYHXiu74Cku_dIzwhcyZM44ycOMcet4xpn1s1C6LECqR2uFNQELooTFsY0AdcTwQka-kUEg-QaZzSe52yIUtmeZFpl20kmRWT9hKoE9TKgBOChnWY8cwgil7bIp0vpGnAVpM2xpO2w9ctxZK31uODh-_fKgM2YKywTvPlTuJlWRAtJjyLzPwh7ZbKz8_i_OJRNS-tv_6s0OmWeY11LXJe6S2fKlcnsATEq9X8_JN4213Rk
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hOLQcgPIo29LiikqcAokfcXKslqItsKjiIXGL4kc4FLKoyR7or--MN4EWhNRendhyZuyZz_HMNwCf08xbJWweGYHwTfrMRXluk8ilzolKmVyXlO88Pk1Hl_LoSl3NwX6fC4OTaHCkJlziP7ILJPvYRhVxYou2lvg_F5RGb0lYaHjem95U8BCziAdzGWXouHqWxmf9yRfZ5m9f9ALADI7mcBm-P0wxxJf82Ju2Zs_-esLe-B_fsAJLHehkX2ar5A3M-XoVFv-gIlyD67GnHGBS2c09O5uYadOysnaMCtTT3xBsPQ81c9A8siHFqoeMCEbFtG8cQ-zLDsp7KlXP0BiVt4YSLdkZUR90Xag80PU6XB5-vRiOoq4IQ1QKHbeRlbHUinvrtVAVF86LSnAXV0r7KiHiR-ekswlP0pxnmUsRg2T4QKex1UmixQbM15PabwLDw1plZGW89lpWLs55meOJRhmEEaV3fAA7KKGi20RNEe7HeVLMxFZ0YhvAbq-04m7GyPHim596nRa4aegmpKz9ZNoUiPs48fBzNYC3M2U_jCWE5lLr-N0_zWYbXo0uxifFybfT4_fwmlPES8hY3IL59ufUf0DI0pqPYZn-BsZj5X4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSKg9FOhzedVVK_UUSPyIkyPaZQVtF1W7IHGL4tceSrOoSQ7w65lxsohSIZWrE1uOx575nJn5hpAvaeaM5CaPNAf4Jlxmozw3SWRTa7mXOlcl5jtPztKTC_HtUl72edyYCwOTqGGkOjjx8VRfW98zDCSH0I5VcWID-hY5QNekSoJv9mg4W6rflLMQtwiXcxFlYLyWTI3_9Ed7ZOq_7dETIDMYm_EGOb-fZogx-XXQNvrA3D5icHzmd2ySVz34pEfdbtkiK656TV4-oCR8Q-YTh7nAKLqrGzpd6LZuaFlZioXq8a8ItM5C7RxQk3SIMeshM4JiUe0rSwED01F5gyXrKSil8rfGhEs6RQqEvguWCZq_JRfj4_PhSdQXY4hKruImMiIWSjJnnOLSM24d95zZ2EvlfIIEkNYKaxKWpDnLMpsCFsnggUpjA1JS_B1ZrRaV-0AoXNq8Fl475ZTwNs5ZmcPNRmqAE6WzbEA-wwoV_WGqi-AnZ0nRLVvRL9uAfF0KrrjumDmefPPTUq4FHB70iJSVW7R1AfiPIR8_kwPyvhP4_VicKyaUirf_azYfyfrP0bj4cXr2fYe8YBj4EhIXd8lq86d1e4BcGr0fduodOrDn-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+Robust+and+Spectrally+Selective+Convection+Shield+for+Daytime+Subambient+Radiative+Cooling&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Ji&rft.au=Zhou%2C+Zhihua&rft.au=Tang%2C+Huajie&rft.au=Xing%2C+Jincheng&rft.date=2021-03-31&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=13&rft.issue=12&rft.spage=14132&rft.epage=14140&rft_id=info:doi/10.1021%2Facsami.0c21204&rft.externalDocID=b531863611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon