Lithium Ytterbium-Based Halide Solid Electrolytes for High Voltage All-Solid-State Batteries
All-solid-state Li-ion batteries that utilize nonflammable solid electrolytes are considered potential candidates for sustainable energy storage systems. Although sulfide solid electrolytes have been widely explored, their lack of electrochemical stability above 2.7 V requires the application of pro...
Saved in:
Published in | ACS materials letters Vol. 3; no. 7; pp. 930 - 938 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
05.07.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | All-solid-state Li-ion batteries that utilize nonflammable solid electrolytes are considered potential candidates for sustainable energy storage systems. Although sulfide solid electrolytes have been widely explored, their lack of electrochemical stability above 2.7 V requires the application of protective coating layer on 4 V-class cathode materials, whereas the superior oxidative stability of chloride solid electrolytes enables their direct use with such high voltage cathodes. Here, we report a metastable trigonal phase of Li3YbCl6 with an ionic conductivity of 1.0 × 10–4 S·cm–1 and mixed-metal halide solid electrolytes, Li3–x Yb1–x Zr x Cl6, with conductivities up to 1.1 mS·cm–1 at room temperature. Combined neutron, single-crystal, and powder X-ray diffraction methods reveal that Zr-substitution for Yb in Li3YbCl6 triggers a trigonal-to-orthorhombic phase transition and forms new, lower energy pathways for Li-ion migration. All-solid-state cell cycling with uncoated >4 V-class cathodes is enabled by the high electrochemical oxidation stability of the mixed-metal halide solid electrolyte. |
---|---|
AbstractList | All-solid-state Li-ion batteries that utilize nonflammable solid electrolytes are considered potential candidates for sustainable energy storage systems. Although sulfide solid electrolytes have been widely explored, their lack of electrochemical stability above 2.7 V requires the application of protective coating layer on 4 V-class cathode materials, whereas the superior oxidative stability of chloride solid electrolytes enables their direct use with such high voltage cathodes. Here, we report a metastable trigonal phase of Li3YbCl6 with an ionic conductivity of 1.0 × 10–4 S·cm–1 and mixed-metal halide solid electrolytes, Li3–x Yb1–x Zr x Cl6, with conductivities up to 1.1 mS·cm–1 at room temperature. Combined neutron, single-crystal, and powder X-ray diffraction methods reveal that Zr-substitution for Yb in Li3YbCl6 triggers a trigonal-to-orthorhombic phase transition and forms new, lower energy pathways for Li-ion migration. All-solid-state cell cycling with uncoated >4 V-class cathodes is enabled by the high electrochemical oxidation stability of the mixed-metal halide solid electrolyte. |
Author | Assoud, Abdeljalil Nazar, Linda F Kim, Se Young Zhou, Laidong Liu, Jue Kaup, Kavish Park, Kern-Ho Wu, Xiaohan |
AuthorAffiliation | Department of Chemistry and the Waterloo Institute for Nanotechnology Neutron Scattering Division |
AuthorAffiliation_xml | – name: Department of Chemistry and the Waterloo Institute for Nanotechnology – name: Neutron Scattering Division |
Author_xml | – sequence: 1 givenname: Se Young orcidid: 0000-0001-9188-868X surname: Kim fullname: Kim, Se Young organization: Department of Chemistry and the Waterloo Institute for Nanotechnology – sequence: 2 givenname: Kavish orcidid: 0000-0001-6201-2582 surname: Kaup fullname: Kaup, Kavish organization: Department of Chemistry and the Waterloo Institute for Nanotechnology – sequence: 3 givenname: Kern-Ho surname: Park fullname: Park, Kern-Ho organization: Department of Chemistry and the Waterloo Institute for Nanotechnology – sequence: 4 givenname: Abdeljalil surname: Assoud fullname: Assoud, Abdeljalil organization: Department of Chemistry and the Waterloo Institute for Nanotechnology – sequence: 5 givenname: Laidong orcidid: 0000-0002-8556-3296 surname: Zhou fullname: Zhou, Laidong organization: Department of Chemistry and the Waterloo Institute for Nanotechnology – sequence: 6 givenname: Jue orcidid: 0000-0002-4453-910X surname: Liu fullname: Liu, Jue organization: Neutron Scattering Division – sequence: 7 givenname: Xiaohan surname: Wu fullname: Wu, Xiaohan – sequence: 8 givenname: Linda F orcidid: 0000-0002-3314-8197 surname: Nazar fullname: Nazar, Linda F email: lfnazar@uwaterloo.ca organization: Department of Chemistry and the Waterloo Institute for Nanotechnology |
BookMark | eNqNkMFqAjEYhEOxUGt9h7zA2mQ3mzWXgoqtBaEH20KhsCS7fzQSNyWJB9--sXooXtrTzGHmY5hb1OtcBwhhSkaU5PReNmEnI3gjbbAQ44g2hFCWX6F-zguRMVGJ3i9_g4YhbAlJXU4FY330uTRxY_Y7_BETRyWXTWWAFi-kNS3glUuC5xaa6J09RAhYO48XZr3B785GuQY8sTb7yWWrmNbgqTyyDIQ7dK3TMhiedYDeHuevs0W2fHl6nk2WmSwqErNSVSUTbakrxliZy5wpXVDC2xaAcF21BVClpVCq0YVqORNjIoFLARUXXNBigB5O3Ma7EDzoujFpiXFd9NLYmpL6eFd9eVd9visBxheAL2920h_-U2WnakrUW7f3XUr8XfsGw_mNCw |
CitedBy_id | crossref_primary_10_1021_acsami_2c06216 crossref_primary_10_1039_D5CP00254K crossref_primary_10_1039_D3TA01327H crossref_primary_10_1063_5_0167817 crossref_primary_10_1021_acs_nanolett_4c05460 crossref_primary_10_1039_D2TA08433C crossref_primary_10_1016_j_ensm_2024_103733 crossref_primary_10_1002_eom2_12315 crossref_primary_10_1021_acs_jpcc_4c05494 crossref_primary_10_1016_j_jpowsour_2023_232992 crossref_primary_10_1002_idm2_12090 crossref_primary_10_1021_acsami_4c01352 crossref_primary_10_1021_acs_chemmater_3c01525 crossref_primary_10_1007_s12274_023_5559_4 crossref_primary_10_1016_j_matdes_2023_111690 crossref_primary_10_1002_ange_202403617 crossref_primary_10_1016_j_nanoen_2024_109522 crossref_primary_10_1021_acsami_3c13002 crossref_primary_10_1039_D4EE01302F crossref_primary_10_1039_D4TA03587A crossref_primary_10_1002_adfm_202213638 crossref_primary_10_1002_aenm_202401299 crossref_primary_10_1021_acsaem_4c02948 crossref_primary_10_1007_s11581_023_05028_5 crossref_primary_10_1021_acs_chemmater_4c01160 crossref_primary_10_1039_D4MA00405A crossref_primary_10_1016_j_ijoes_2025_101006 crossref_primary_10_1002_anie_202400424 crossref_primary_10_1016_j_ssi_2025_116791 crossref_primary_10_1126_sciadv_adc9516 crossref_primary_10_1002_adfm_202315512 crossref_primary_10_1021_acsenergylett_3c00763 crossref_primary_10_1002_adma_202301631 crossref_primary_10_1021_acsnano_4c15005 crossref_primary_10_1039_D2TA09184D crossref_primary_10_1007_s12598_024_03069_x crossref_primary_10_1016_j_csbj_2025_03_013 crossref_primary_10_1016_j_ensm_2023_103072 crossref_primary_10_1016_j_jre_2023_01_013 crossref_primary_10_5796_electrochemistry_24_00088 crossref_primary_10_1002_adma_202200856 crossref_primary_10_34133_energymatadv_0019 crossref_primary_10_1002_ange_202400562 crossref_primary_10_1039_D5EB00010F crossref_primary_10_1002_batt_202400005 crossref_primary_10_1038_s41586_023_05899_8 crossref_primary_10_1016_j_jpowsour_2022_232257 crossref_primary_10_1021_acsenergylett_3c02496 crossref_primary_10_1016_j_mtchem_2023_101510 crossref_primary_10_1021_acsenergylett_2c02414 crossref_primary_10_1021_acsenergylett_2c02138 crossref_primary_10_1149_1945_7111_ac5bad crossref_primary_10_1021_acsenergylett_1c02428 crossref_primary_10_1021_acsmaterialslett_4c02197 crossref_primary_10_1021_accountsmr_4c00073 crossref_primary_10_1038_s41560_024_01463_4 crossref_primary_10_1039_D3EE00420A crossref_primary_10_1002_anie_202400562 crossref_primary_10_1039_D2EE00803C crossref_primary_10_1002_aenm_202103921 crossref_primary_10_1039_D3CS00572K crossref_primary_10_1021_acsami_3c03513 crossref_primary_10_1039_D4TA05355A crossref_primary_10_1039_D1TA07050A crossref_primary_10_1016_j_nanoen_2024_110435 crossref_primary_10_1002_ange_202400424 crossref_primary_10_1002_adfm_202416671 crossref_primary_10_1002_adsu_202400428 crossref_primary_10_1016_j_ccr_2025_216432 crossref_primary_10_1002_aenm_202202854 crossref_primary_10_1016_j_ensm_2023_103016 crossref_primary_10_1016_j_jpowsour_2024_235157 crossref_primary_10_1021_acs_chemmater_2c01475 crossref_primary_10_1016_j_est_2024_113723 crossref_primary_10_1016_j_jcis_2023_08_056 crossref_primary_10_1016_j_coelec_2021_100877 crossref_primary_10_1016_j_est_2024_111700 crossref_primary_10_1021_acsmaterialslett_4c00315 crossref_primary_10_1021_acsami_4c03694 crossref_primary_10_1016_j_jpowsour_2025_236513 crossref_primary_10_1021_jacsau_2c00009 crossref_primary_10_1021_acsami_1c25087 crossref_primary_10_1007_s10008_024_05833_6 crossref_primary_10_1002_smsc_202300134 crossref_primary_10_1002_smtd_202101002 crossref_primary_10_1016_j_matt_2024_06_027 crossref_primary_10_5796_electrochemistry_23_00063 crossref_primary_10_1126_science_adg6591 crossref_primary_10_1016_j_pmatsci_2023_101193 crossref_primary_10_1021_acsenergylett_4c00317 crossref_primary_10_1016_j_ensm_2025_104077 crossref_primary_10_1021_acsnano_4c02678 crossref_primary_10_1016_j_jpowsour_2024_234051 crossref_primary_10_1021_acsmaterialslett_3c01445 crossref_primary_10_1002_aenm_202401528 crossref_primary_10_1021_acssuschemeng_3c06652 crossref_primary_10_1021_acsami_2c21022 crossref_primary_10_1002_anie_202403617 crossref_primary_10_1038_s41570_023_00541_7 crossref_primary_10_1039_D2EE03297J crossref_primary_10_1021_acsami_4c08915 crossref_primary_10_1016_j_matt_2023_12_028 crossref_primary_10_1021_acsenergylett_2c01514 crossref_primary_10_1039_D3QM00491K crossref_primary_10_1039_D3EE01119D crossref_primary_10_1021_jacs_1c11335 crossref_primary_10_1016_j_cej_2022_140509 crossref_primary_10_1016_j_electacta_2024_144632 crossref_primary_10_1039_D3SC02093B crossref_primary_10_1002_aenm_202401959 crossref_primary_10_1016_j_cclet_2023_108812 crossref_primary_10_1038_s41524_024_01346_y crossref_primary_10_1021_acs_inorgchem_3c04094 crossref_primary_10_1016_j_nanoen_2021_106674 crossref_primary_10_1007_s12274_024_6769_0 crossref_primary_10_1016_j_ensm_2024_103980 crossref_primary_10_1039_D2CS01029A crossref_primary_10_1002_aenm_202200147 crossref_primary_10_1002_batt_202400432 crossref_primary_10_1038_s41560_021_00952_0 crossref_primary_10_3390_batteries9100510 crossref_primary_10_1002_smm2_1183 crossref_primary_10_1021_acsami_2c04160 crossref_primary_10_1002_aesr_202400135 crossref_primary_10_1007_s41918_023_00179_5 crossref_primary_10_1007_s10008_022_05230_x crossref_primary_10_1021_acsenergylett_2c00438 |
Cites_doi | 10.1021/acsami.6b09059 10.1021/cr500003w 10.1016/j.jpowsour.2011.01.068 10.1016/j.ssi.2017.07.005 10.1021/acsami.5b07517 10.1038/nmat3066 10.1021/acs.chemmater.6b03630 10.1039/C5TA08574H 10.1038/nenergy.2016.30 10.1016/S0378-7753(00)00431-6 10.1111/j.1151-2916.2003.tb03318.x 10.1002/zaac.19976230710 10.1021/acsaem.7b00140 10.1006/jssc.2002.9701 10.1021/acsami.9b22788 10.1021/acs.chemrev.9b00268 10.1021/acs.chemmater.6b03870 10.1021/acs.chemmater.9b01550 10.1002/aenm.201501590 10.1246/bcsj.65.2200 10.1039/C9EE03828K 10.1107/S2052520618015718 10.2109/jcersj2.18022 10.1039/C9EE02311A 10.1039/C7EE02555F 10.1038/ncomms14589 10.1016/j.isci.2019.05.036 10.1016/j.ensm.2020.01.027 10.1021/acs.chemmater.5b04082 10.1039/c1ee01598b 10.1038/s41560-019-0464-5 10.1002/adma.201803075 10.1038/d41586-018-05752-3 10.1002/aenm.202002356 10.1016/j.chempr.2018.11.013 10.1038/s41563-019-0431-3 10.1021/acs.chemmater.7b00659 10.1038/nenergy.2016.141 10.1002/anie.202015238 10.1002/aenm.202003190 10.1038/srep02261 10.1021/acs.chemmater.9b01857 10.1039/C7TA08581H 10.1002/zaac.19926130104 10.1002/aenm.201903360 10.1149/1.2086597 10.1021/acsami.9b13955 10.1016/j.nanoen.2020.104686 10.1021/acs.chemmater.8b03321 10.1107/S2052252517010211 10.1149/2.0261509jes 10.1016/j.elecom.2007.02.008 10.1038/s41560-018-0130-3 10.1039/C6CS00875E 10.1002/anie.201814222 10.1007/s10854-021-05699-8 10.1021/acs.jpcc.7b06363 10.1021/jacs.7b06327 10.1016/0038-1098(93)90841-A 10.1021/jacs.9b08357 10.1149/2.0351701jes 10.3389/fenrg.2016.00025 10.1021/acs.chemmater.8b03420 10.1021/acsenergylett.9b02599 |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsmaterialslett.1c00142 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2639-4979 |
EndPage | 938 |
ExternalDocumentID | 10_1021_acsmaterialslett_1c00142 d197828312 |
GroupedDBID | ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ M~E |
ID | FETCH-LOGICAL-a370t-5b7549d5f744452a24bf3106ddee06f7d3e1bfa9bbcf3bd64980ae6a9e7696913 |
IEDL.DBID | ACS |
ISSN | 2639-4979 |
IngestDate | Tue Jul 01 04:21:52 EDT 2025 Thu Apr 24 23:11:45 EDT 2025 Mon Jul 12 10:14:20 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a370t-5b7549d5f744452a24bf3106ddee06f7d3e1bfa9bbcf3bd64980ae6a9e7696913 |
ORCID | 0000-0001-9188-868X 0000-0001-6201-2582 0000-0002-3314-8197 0000-0002-4453-910X 0000-0002-8556-3296 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1021_acsmaterialslett_1c00142 crossref_primary_10_1021_acsmaterialslett_1c00142 acs_journals_10_1021_acsmaterialslett_1c00142 |
ProviderPackageCode | ACS VG9 GGK VF5 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-05 |
PublicationDateYYYYMMDD | 2021-07-05 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | ACS materials letters |
PublicationTitleAlternate | ACS Materials Lett |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 Rumble J. R. (ref60/cit60) 2020 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1021/acsami.6b09059 – ident: ref6/cit6 doi: 10.1021/cr500003w – ident: ref9/cit9 doi: 10.1016/j.jpowsour.2011.01.068 – ident: ref64/cit64 doi: 10.1016/j.ssi.2017.07.005 – ident: ref19/cit19 doi: 10.1021/acsami.5b07517 – ident: ref30/cit30 doi: 10.1038/nmat3066 – ident: ref32/cit32 doi: 10.1021/acs.chemmater.6b03630 – ident: ref50/cit50 – ident: ref16/cit16 doi: 10.1039/C5TA08574H – ident: ref31/cit31 doi: 10.1038/nenergy.2016.30 – ident: ref3/cit3 doi: 10.1016/S0378-7753(00)00431-6 – ident: ref17/cit17 doi: 10.1111/j.1151-2916.2003.tb03318.x – volume-title: CRC Handbook of Chemistry and Physics year: 2020 ident: ref60/cit60 – ident: ref45/cit45 doi: 10.1002/zaac.19976230710 – ident: ref62/cit62 doi: 10.1021/acsaem.7b00140 – ident: ref51/cit51 doi: 10.1006/jssc.2002.9701 – ident: ref56/cit56 doi: 10.1021/acsami.9b22788 – ident: ref61/cit61 doi: 10.1021/acs.chemrev.9b00268 – ident: ref25/cit25 doi: 10.1021/acs.chemmater.6b03870 – ident: ref39/cit39 doi: 10.1021/acs.chemmater.9b01550 – ident: ref14/cit14 doi: 10.1002/aenm.201501590 – ident: ref22/cit22 doi: 10.1246/bcsj.65.2200 – ident: ref55/cit55 doi: 10.1039/C9EE03828K – ident: ref57/cit57 doi: 10.1107/S2052520618015718 – ident: ref29/cit29 doi: 10.2109/jcersj2.18022 – ident: ref46/cit46 doi: 10.1039/C9EE02311A – ident: ref5/cit5 doi: 10.1039/C7EE02555F – ident: ref8/cit8 doi: 10.1038/ncomms14589 – ident: ref47/cit47 doi: 10.1016/j.isci.2019.05.036 – ident: ref68/cit68 doi: 10.1016/j.ensm.2020.01.027 – ident: ref15/cit15 doi: 10.1021/acs.chemmater.5b04082 – ident: ref4/cit4 doi: 10.1039/c1ee01598b – ident: ref11/cit11 doi: 10.1038/s41560-019-0464-5 – ident: ref49/cit49 doi: 10.1002/adma.201803075 – ident: ref36/cit36 doi: 10.1039/C5TA08574H – ident: ref2/cit2 doi: 10.1038/d41586-018-05752-3 – ident: ref59/cit59 doi: 10.1002/aenm.202002356 – ident: ref23/cit23 doi: 10.1016/j.chempr.2018.11.013 – ident: ref13/cit13 doi: 10.1038/s41563-019-0431-3 – ident: ref52/cit52 doi: 10.1021/acs.chemmater.7b00659 – ident: ref12/cit12 doi: 10.1038/nenergy.2016.141 – ident: ref63/cit63 doi: 10.1002/anie.202015238 – ident: ref48/cit48 doi: 10.1002/aenm.202003190 – ident: ref27/cit27 doi: 10.1038/srep02261 – ident: ref54/cit54 doi: 10.1021/acs.chemmater.9b01857 – ident: ref53/cit53 doi: 10.1039/C7TA08581H – ident: ref44/cit44 doi: 10.1002/zaac.19926130104 – ident: ref66/cit66 doi: 10.1002/aenm.201903360 – ident: ref21/cit21 doi: 10.1149/1.2086597 – ident: ref37/cit37 doi: 10.1021/acsami.9b13955 – ident: ref42/cit42 doi: 10.1016/j.nanoen.2020.104686 – ident: ref43/cit43 doi: 10.1021/acs.chemmater.8b03321 – ident: ref58/cit58 doi: 10.1107/S2052252517010211 – ident: ref10/cit10 doi: 10.1149/2.0261509jes – ident: ref41/cit41 doi: 10.1016/j.elecom.2007.02.008 – ident: ref1/cit1 doi: 10.1038/s41560-018-0130-3 – ident: ref7/cit7 doi: 10.1039/C6CS00875E – ident: ref34/cit34 doi: 10.1002/anie.201814222 – ident: ref20/cit20 doi: 10.1007/s10854-021-05699-8 – ident: ref67/cit67 doi: 10.1021/acs.jpcc.7b06363 – ident: ref33/cit33 doi: 10.1021/jacs.7b06327 – ident: ref18/cit18 doi: 10.1016/0038-1098(93)90841-A – ident: ref35/cit35 doi: 10.1021/acs.chemmater.5b04082 – ident: ref65/cit65 doi: 10.1021/jacs.9b08357 – ident: ref24/cit24 doi: 10.1149/2.0351701jes – ident: ref28/cit28 doi: 10.3389/fenrg.2016.00025 – ident: ref38/cit38 doi: 10.1021/acs.chemmater.8b03420 – ident: ref40/cit40 doi: 10.1021/acsenergylett.9b02599 |
SSID | ssj0002161944 |
Score | 2.5249228 |
Snippet | All-solid-state Li-ion batteries that utilize nonflammable solid electrolytes are considered potential candidates for sustainable energy storage systems.... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 930 |
Title | Lithium Ytterbium-Based Halide Solid Electrolytes for High Voltage All-Solid-State Batteries |
URI | http://dx.doi.org/10.1021/acsmaterialslett.1c00142 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLYqWGDgRpRLHlhdYsdx4rFUrSoELFBUJKTIdmyBCC2i6QADv53nJKAKxNElyRBHvvLe9w5_D6EjFlMdcquJisKA8MgIorWKiJNhArZbkKjS4XZ-IfoDfjqMhg3EfojgM3qszASwW7UcMJSiRY3H9SB2F5lIYm9wtTuXn34VRr1d7oPJTIRlATVZJ_D89jGvm8xkRjfNKJneanXwb1JyE_rckofWtNAt8_qduXGO_q-hlRpz4na1SdZRw4420PIME-Emuj27L-7up4_4xp_u0fBETkC_ZbgPOD2z-HIMN9ytaubkL4BPMaBd7LNE8PU4L0Aq4Xaek_I9UiJYXFF3giW-hQa97lWnT-rCC0SFcVCQSMdgNmaRiznnEVOMawcwUIAotIFwcRZaqp2SWhsX6kxwmQTKCiVtLKSQNNxGC6PxyO4gLJWWLEicdCLh3GiVCGqUtp6nzDppm4jABKX1jzNJy5g4o-nXWUvrWWui-GOJUlOzmPtiGvk_WtLPlk8Vk8efbXbn7N0eWmI-58W7f6N9tFA8T-0BgJZCH5a7FK7nb913Wk_vXA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BPZQe-gLE0gc-wNHb2HGc-NDDloIWWLjwEEiVgp3YYtV0tyJZVfQf9a_wqxgnYbviQNsDh54SRbFle2zPN-PxNwAbPGYmFNZQHYUBFVEmqTE6ok6FCdpuQaJrh9vBoeyfiL2z6GwOft3dhcFGlFhTWR_i_2YXYB_wG0K4RirYo6rLMg_veRtPuW-vf6C1Vn7c_Yyi3eR8Z_t4q0_bhAJUh3FQ0cjEaA7lkYuFEBHXXBiH8EbiEreBdHEeWmacVsZkLjS5FCoJtJVa2VgqqViI9c7DE8RA3Nt5va2jqTuHM-8O8GfYXIZ13jbVxg091HivErNyRiXO6LadF3AzHZU6pOVrd1KZbvbzHmHkfzFsL-F5i7BJr1kSr2DOjl7DsxnexSX4MhhWl8PJN3Lu7zIZfKOfUJvnpI9WSW7J0RgfZLvJEFRcIxoniO2Jj4khp-Oiwj2Y9IqC1v_RGq-Thqh0aMtlOHmU7q3Awmg8sqtAlDaKB4lTTiZCZEYnkmXaWM_KZp2yHaAokLTdJsq0jgDgLL0vpbSVUgfiu5mRZi1nu08dUvxFSTYt-b3hLfljmbV_bN06PO0fHwzSwe7h_htY5D7axzu-o7ewUF1N7DuEa5V5Xy8UAhePPcVuAQEVUck |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RKlXtoS9adaEUH9qjt7HjOPGBw_JYLY-iSjxEpUrBTmx1RdhFJKsK_hN_hd_EOAmrFQfaHjj0lCiKLdvj8Xzz8AzAZx4zEwprqI7CgIook9QYHVGnwgR1tyDRtcHt254cHIrt4-h4Dq7v7sLgIErsqayd-J6rz3PXZhhgX_E7wriGMjirqssyD_F5G1O5Yy9_o8ZWrm5tIHm_cN7fPFgf0LaoANVhHFQ0MjGqRHnkYiFExDUXxiHEkcjmNpAuzkPLjNPKmMyFJpdCJYG2UisbSyUVC7HfJ_DUewu9rtdb35-adDjzJgHvx-YyrGu3qTZ26KHBe7GYlTNicUa-9V_BzXRl6rCW0-6kMt3s6l7SyP9m6V7DyxZpk17DGm9gzo7ewouZ_IsL8HN3WP0aTs7ID3-nyeAbXUOpnpMBaie5JftjfJDNplJQcYmonCDGJz42hhyNiwrPYtIrClr_R2vcTpqEpUNbvoPDR5nee5gfjUf2AxCljeJB4pSTiRCZ0YlkmTbWZ2ezTtkOUCRI2h4XZVpHAnCW3qdS2lKpA_Hd7kizNne7LyFS_EVLNm153uQv-WObxX8c3Qo8-77RT3e39naW4Dn3QT_e_h19hPnqYmKXEbVV5lPNKwROHnuH3QLvvFRM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Ytterbium-Based+Halide+Solid+Electrolytes+for+High+Voltage+All-Solid-State+Batteries&rft.jtitle=ACS+materials+letters&rft.au=Kim%2C+Se+Young&rft.au=Kaup%2C+Kavish&rft.au=Park%2C+Kern-Ho&rft.au=Assoud%2C+Abdeljalil&rft.date=2021-07-05&rft.pub=American+Chemical+Society&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=3&rft.issue=7&rft.spage=930&rft.epage=938&rft_id=info:doi/10.1021%2Facsmaterialslett.1c00142&rft.externalDocID=d197828312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon |