Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts
The electrochemical oxygen reduction reaction (ORR) via the two-electron pathway provides a promising approach for the direct synthesis of hydrogen peroxide (H2O2) and its on-site utilizations. The effective electrocatalyst is one of the key factors determining the future applications of this techno...
Saved in:
Published in | ACS materials letters Vol. 2; no. 8; pp. 1008 - 1024 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
03.08.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | The electrochemical oxygen reduction reaction (ORR) via the two-electron pathway provides a promising approach for the direct synthesis of hydrogen peroxide (H2O2) and its on-site utilizations. The effective electrocatalyst is one of the key factors determining the future applications of this technology. In recent years, various catalysts, such as pristine carbon materials, modified carbon materials (oxidized or heteroatom doped such as nitrogen, fluorine, or sulfur doped), gold, or mercury alloyed palladium or platinum nanoparticles, as well as transition metal single atom catalysts (SACs) have been reported to effectively catalyze the H2O2 production via the two-electron ORR process. Among these candidates, SACs with 100% atom utilization and well-defined active centers attracted extra attention due to their high catalytic performance for H2O2 synthesis. In this review, the thermodynamics, oxygen molecular activation, and theoretical screening and prediction of SACs for electrochemical H2O2 synthesis are discussed. The catalytic performance, reaction kinetics and mechanism of SACs together with electrochemical devices for H2O2 synthesis via the two-electron ORR are summarized. It is hoped that this contribution can offer a comprehensive reference for the progress of SACs in H2O2 electrochemical production process. |
---|---|
AbstractList | The electrochemical oxygen reduction reaction (ORR) via the two-electron pathway provides a promising approach for the direct synthesis of hydrogen peroxide (H2O2) and its on-site utilizations. The effective electrocatalyst is one of the key factors determining the future applications of this technology. In recent years, various catalysts, such as pristine carbon materials, modified carbon materials (oxidized or heteroatom doped such as nitrogen, fluorine, or sulfur doped), gold, or mercury alloyed palladium or platinum nanoparticles, as well as transition metal single atom catalysts (SACs) have been reported to effectively catalyze the H2O2 production via the two-electron ORR process. Among these candidates, SACs with 100% atom utilization and well-defined active centers attracted extra attention due to their high catalytic performance for H2O2 synthesis. In this review, the thermodynamics, oxygen molecular activation, and theoretical screening and prediction of SACs for electrochemical H2O2 synthesis are discussed. The catalytic performance, reaction kinetics and mechanism of SACs together with electrochemical devices for H2O2 synthesis via the two-electron ORR are summarized. It is hoped that this contribution can offer a comprehensive reference for the progress of SACs in H2O2 electrochemical production process. |
Author | Liu, Bin Gao, Jiajian |
AuthorAffiliation | School of Chemical and Biomedical Engineering |
AuthorAffiliation_xml | – name: School of Chemical and Biomedical Engineering |
Author_xml | – sequence: 1 givenname: Jiajian orcidid: 0000-0002-7507-3445 surname: Gao fullname: Gao, Jiajian – sequence: 2 givenname: Bin orcidid: 0000-0002-4685-2052 surname: Liu fullname: Liu, Bin email: liubin@ntu.edu.sg |
BookMark | eNqNkN1KAzEQRoNUsNa-Q15ga7KbbDY3Qin1BwoWq9fLNJ1tU7YbSaK4b2-kvZDe6NUMzDkfw3dNBp3rkBDK2YSznN-CCQeI6C20ocUYJ8wwxit9QYZ5WehMaKUHv_YrMg5hz1hyS66FGJKXpXdbjyFQ19B5iyZ6Z3Z4sAZa-thv0hU7ukTvvuwG6arv4g6DTfgnerqy3bZFOo3uQGcQoe1DDDfkskn_4Pg0R-Ttfv46e8wWzw9Ps-kig0KxmPH1Zi2FgkYKaQpRqkpjhVAWeSMVrAHzUgsuFZesZHmjJAOplapUqfIEqGJE7o65xrsQPDa1sRGidV30YNuas_qnpPq8pPpUUgqozgLevT2A7_-jiqOaiHrvPnyXiL-1b6epiMc |
CitedBy_id | crossref_primary_10_1016_j_electacta_2023_142031 crossref_primary_10_1002_adfm_202314282 crossref_primary_10_1002_adfm_202314281 crossref_primary_10_1002_ange_202418713 crossref_primary_10_1016_j_pecs_2023_101101 crossref_primary_10_1002_anie_202306491 crossref_primary_10_1007_s41918_022_00163_5 crossref_primary_10_1002_ange_202422495 crossref_primary_10_1016_j_cej_2023_147608 crossref_primary_10_1007_s12274_024_6505_9 crossref_primary_10_1016_S1872_2067_20_63781_0 crossref_primary_10_1021_acsami_3c09412 crossref_primary_10_1680_jsuin_22_01036 crossref_primary_10_1016_j_est_2023_109141 crossref_primary_10_3866_PKU_WHXB202304001 crossref_primary_10_1002_ange_202413933 crossref_primary_10_1016_j_coelec_2021_100792 crossref_primary_10_1021_acsnano_4c07916 crossref_primary_10_1016_j_cej_2022_135105 crossref_primary_10_1007_s40820_023_01196_1 crossref_primary_10_1016_j_nanoen_2023_108798 crossref_primary_10_1002_adfm_202411457 crossref_primary_10_1021_acscatal_4c05357 crossref_primary_10_1002_adfm_202407121 crossref_primary_10_1002_anie_202313914 crossref_primary_10_1016_j_gerr_2023_100031 crossref_primary_10_1002_adma_202110266 crossref_primary_10_1002_aenm_202003323 crossref_primary_10_1002_ange_202206544 crossref_primary_10_1002_smll_202103824 crossref_primary_10_1021_acs_jpcc_2c02803 crossref_primary_10_1016_j_ese_2022_100170 crossref_primary_10_1016_j_jece_2023_109572 crossref_primary_10_1021_acs_jpcc_5c00163 crossref_primary_10_1002_adma_202400140 crossref_primary_10_1016_j_mattod_2023_02_004 crossref_primary_10_1021_acsami_3c04772 crossref_primary_10_1016_j_cej_2024_151272 crossref_primary_10_1021_acs_nanolett_1c04420 crossref_primary_10_1007_s42823_023_00679_w crossref_primary_10_1016_j_cej_2024_157125 crossref_primary_10_1002_adfm_202203647 crossref_primary_10_1016_j_cej_2024_157129 crossref_primary_10_1021_acs_jpcc_1c08365 crossref_primary_10_14356_kona_2023004 crossref_primary_10_1021_jacs_3c09644 crossref_primary_10_1016_j_chempr_2021_08_007 crossref_primary_10_1039_D1TA06306E crossref_primary_10_1021_acssuschemeng_0c07263 crossref_primary_10_1021_acsestengg_2c00187 crossref_primary_10_1021_acsmaterialslett_1c00660 crossref_primary_10_1016_S1872_5805_22_60583_3 crossref_primary_10_1039_D0TA10549J crossref_primary_10_1002_adfm_202300895 crossref_primary_10_1002_advs_202205347 crossref_primary_10_1002_anie_202200086 crossref_primary_10_1016_j_checat_2023_100586 crossref_primary_10_1002_adma_202202995 crossref_primary_10_1039_D4GC05661B crossref_primary_10_1021_acscatal_2c00099 crossref_primary_10_1039_D1SC01375K crossref_primary_10_1016_j_cartre_2024_100365 crossref_primary_10_1002_ange_202406701 crossref_primary_10_1002_cey2_378 crossref_primary_10_1007_s12274_023_5823_7 crossref_primary_10_1002_adfm_202407147 crossref_primary_10_1002_ange_202310847 crossref_primary_10_1016_j_jcis_2022_03_052 crossref_primary_10_2139_ssrn_3866374 crossref_primary_10_1038_s41467_024_48209_0 crossref_primary_10_1016_j_checat_2022_06_002 crossref_primary_10_1021_acsami_1c17727 crossref_primary_10_1021_acscatal_2c02029 crossref_primary_10_1002_celc_202000926 crossref_primary_10_1038_s41467_022_28346_0 crossref_primary_10_1007_s40820_023_01052_2 crossref_primary_10_1016_j_efmat_2023_08_002 crossref_primary_10_1016_j_fuel_2023_129496 crossref_primary_10_1002_adfm_202212087 crossref_primary_10_1016_j_matt_2024_04_015 crossref_primary_10_1039_D3EW00302G crossref_primary_10_3390_en16186616 crossref_primary_10_1039_D0TA07900F crossref_primary_10_1039_D2CC03463H crossref_primary_10_1016_j_apcatb_2022_121265 crossref_primary_10_1021_acsmaterialslett_0c00419 crossref_primary_10_2139_ssrn_4160397 crossref_primary_10_1016_j_ica_2023_121753 crossref_primary_10_1002_anie_202406701 crossref_primary_10_1016_j_matt_2022_05_011 crossref_primary_10_1016_S1872_2067_21_63961_X crossref_primary_10_1002_adma_202107954 crossref_primary_10_1016_j_jmat_2024_100982 crossref_primary_10_1039_D4SC02853H crossref_primary_10_1039_D3NJ03398H crossref_primary_10_1002_smll_202310468 crossref_primary_10_1021_acsmaterialslett_3c01036 crossref_primary_10_1016_j_electacta_2024_144533 crossref_primary_10_1088_2053_1583_ac9290 crossref_primary_10_1016_j_cej_2023_142906 crossref_primary_10_1021_acs_inorgchem_4c05341 crossref_primary_10_1016_j_coelec_2022_101163 crossref_primary_10_1021_acsmaterialsau_3c00070 crossref_primary_10_1016_j_apcatb_2023_122987 crossref_primary_10_1002_adfm_202210837 crossref_primary_10_1021_acs_chemrev_1c00158 crossref_primary_10_1002_adma_202103266 crossref_primary_10_1002_adma_202412670 crossref_primary_10_1080_14328917_2025_2459774 crossref_primary_10_1016_j_apcatb_2022_122105 crossref_primary_10_1007_s44246_023_00090_0 crossref_primary_10_1002_aenm_202301543 crossref_primary_10_1016_j_ccr_2024_216427 crossref_primary_10_1016_j_jcis_2023_05_011 crossref_primary_10_1002_anie_202310847 crossref_primary_10_1002_ange_202306491 crossref_primary_10_1002_ange_202200086 crossref_primary_10_1016_S1872_2067_23_64498_5 crossref_primary_10_1021_acsami_3c02793 crossref_primary_10_1016_j_jece_2024_114425 crossref_primary_10_1038_s41929_021_00650_w crossref_primary_10_1007_s40820_023_01067_9 crossref_primary_10_1002_smll_202006473 crossref_primary_10_1007_s12678_021_00692_5 crossref_primary_10_1021_acsami_1c22362 crossref_primary_10_1039_D1TA08325B crossref_primary_10_1021_acs_jpcc_1c03775 crossref_primary_10_1007_s12274_022_5160_2 crossref_primary_10_1016_j_jechem_2021_10_013 crossref_primary_10_1016_j_matre_2022_100140 crossref_primary_10_1002_adma_202104891 crossref_primary_10_1021_acsmaterialslett_2c01005 crossref_primary_10_1016_j_ccr_2023_215602 crossref_primary_10_1016_j_cej_2024_149527 crossref_primary_10_1002_ange_202313914 crossref_primary_10_1002_anie_202206544 crossref_primary_10_1002_anie_202413933 crossref_primary_10_1016_j_cej_2021_131112 crossref_primary_10_1002_ange_202407163 crossref_primary_10_1016_j_electacta_2023_142777 crossref_primary_10_1039_D3CP05492F crossref_primary_10_1002_slct_202401836 crossref_primary_10_1016_j_cclet_2023_108784 crossref_primary_10_1021_jacsau_3c00557 crossref_primary_10_1016_j_mtener_2025_101840 crossref_primary_10_1002_cnma_202300476 crossref_primary_10_1002_cssc_202401952 crossref_primary_10_1021_acsmaterialslett_4c00415 crossref_primary_10_1002_adfm_202008318 crossref_primary_10_1039_D4TA04567J crossref_primary_10_1016_j_nanoen_2022_107046 crossref_primary_10_1016_j_apcatb_2024_124663 crossref_primary_10_1002_anie_202418713 crossref_primary_10_1039_D4GC00387J crossref_primary_10_1016_j_cej_2022_139371 crossref_primary_10_1021_jacs_2c01194 crossref_primary_10_1002_anie_202407163 crossref_primary_10_1002_anie_202422495 crossref_primary_10_1007_s40843_022_2054_5 crossref_primary_10_1038_s41467_023_35839_z crossref_primary_10_26599_NRE_2023_9120082 crossref_primary_10_1038_s41467_024_54593_4 crossref_primary_10_1016_j_jelechem_2022_116476 crossref_primary_10_1039_D5NR00337G crossref_primary_10_1038_s41467_023_40991_7 crossref_primary_10_1002_smll_202309448 crossref_primary_10_1021_acsanm_1c03287 |
Cites_doi | 10.1021/jacs.5b10669 10.1016/j.electacta.2013.06.072 10.1021/ar300361m 10.1126/science.aad4998 10.1038/s41929-018-0063-z 10.1038/s41563-019-0571-5 10.1038/s41467-019-11992-2 10.1021/acs.chemrev.7b00335 10.1126/science.1200832 10.1038/ncomms9618 10.1016/j.joule.2019.09.019 10.1021/acscatal.6b02899 10.1016/j.cattod.2010.10.102 10.1021/jp047349j 10.1038/s41570-018-0010-1 10.1021/jacs.7b07093 10.1021/acscatal.8b02813 10.1016/j.jcat.2017.10.020 10.1038/nchem.121 10.1016/j.chempr.2019.12.008 10.1021/acs.jpcc.7b04959 10.1016/0043-1354(92)90192-7 10.1002/cey2.33 10.1016/j.electacta.2008.02.012 10.1002/celc.201900772 10.1039/c1cp21228a 10.1002/smll.201902845 10.1002/anie.200704431 10.1002/anie.201509241 10.1002/anie.201604802 10.1039/C6SC02123A 10.1039/C5CY01567G 10.1016/j.cattod.2016.12.020 10.1038/s41467-017-00585-6 10.1016/0022-0728(82)80006-5 10.1021/jp207679e 10.1002/cssc.200800176 10.1021/ja206477z 10.1016/S0022-0728(76)80250-1 10.1021/jacs.9b05576 10.1002/aenm.202000789 10.1016/j.chempr.2020.02.011 10.1038/ncomms10922 10.1039/C5CY00088B 10.1016/j.electacta.2018.03.170 10.1039/c2ee21832a 10.1016/j.chempr.2017.10.013 10.1016/j.carbon.2020.02.084 10.1016/S0022-0728(79)80367-8 10.1002/anie.200503779 10.1021/acscatal.8b00217 10.1038/s41929-019-0297-4 10.1002/anie.200351343 10.1016/j.joule.2019.11.017 10.1038/nmat4367 10.1002/aenm.201801909 10.1007/s10008-012-1918-x 10.1126/science.aad5705 10.1016/j.chempr.2019.07.005 10.1021/acs.jpcc.5b07653 10.1016/0013-4686(90)87004-L 10.1021/acs.chemrev.7b00542 10.1142/S0218625X09012615 10.1016/S0013-4686(98)00384-3 10.1126/science.aay1844 10.1016/j.chempr.2017.12.015 10.1002/adma.201802920 10.1021/acscatal.9b04106 10.1021/acscatal.8b03734 10.1002/cssc.200900246 10.1002/slct.201601469 10.1021/acscatal.7b03464 10.1039/C9CC01593K 10.1021/acs.chemrev.7b00217 10.1038/s41929-019-0402-8 10.1016/j.elecom.2017.09.004 10.1021/cs3004352 10.1002/cssc.201701306 10.1007/s12274-020-2755-3 10.1038/nchem.1095 10.1021/acsomega.7b00594 10.1002/anie.201916131 10.1016/j.jechem.2016.01.024 10.1016/j.cplett.2017.01.071 10.1002/anie.202004841 10.1021/jacs.5b11015 10.1016/j.cattod.2012.05.015 10.1039/c002416c 10.1021/acsaem.0c00093 10.1126/science.1170051 10.1038/s41929-017-0008-y 10.1126/science.aan2255 10.1126/sciadv.1501122 10.1016/j.chempr.2019.04.024 10.1021/acscatal.0c01305 10.1016/j.susc.2012.08.005 10.1038/nmat3795 10.1002/anie.201704356 10.1021/acs.jpclett.5b02178 10.1016/j.carbon.2015.09.002 10.1021/nl500037x 10.1007/978-1-4684-5568-7_2 10.1007/BF00241923 10.1038/s41929-018-0090-9 10.1038/s41467-017-01100-7 10.1038/s41929-018-0044-2 10.1021/acs.chemrev.8b00046 10.1038/s41467-020-15597-y 10.1038/s41929-017-0017-x 10.1021/acsami.0c01278 10.1002/celc.201402426 10.1016/S0043-1354(01)00235-4 10.1021/jp5113894 10.1021/acscatal.7b03991 10.1021/acssuschemeng.7b02517 10.1016/j.electacta.2013.04.079 10.1002/bbpc.19810850917 10.1016/j.cattod.2014.03.011 10.1007/s40843-020-1334-6 10.1002/anie.201604311 10.1021/acs.chemrev.7b00488 10.1016/j.jcat.2017.11.008 10.1021/ja303560c 10.1016/j.mattod.2020.02.019 10.1021/cs3003337 10.1039/C7SE00038C 10.1002/anie.202003842 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acsmaterialslett.0c00189 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2639-4979 |
EndPage | 1024 |
ExternalDocumentID | 10_1021_acsmaterialslett_0c00189 b385290923 |
GroupedDBID | ACS ALMA_UNASSIGNED_HOLDINGS EBS VF5 VG9 AAYXX ABJNI ABLBI ABQRX BAANH CITATION CUPRZ GGK M~E |
ID | FETCH-LOGICAL-a370t-1bdb547af545c346789e8ea632f57abae2694157150602f750a59778767257a73 |
IEDL.DBID | ACS |
ISSN | 2639-4979 |
IngestDate | Thu Apr 24 23:11:30 EDT 2025 Tue Jul 01 04:21:51 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a370t-1bdb547af545c346789e8ea632f57abae2694157150602f750a59778767257a73 |
ORCID | 0000-0002-4685-2052 0000-0002-7507-3445 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1021_acsmaterialslett_0c00189 crossref_primary_10_1021_acsmaterialslett_0c00189 acs_journals_10_1021_acsmaterialslett_0c00189 |
ProviderPackageCode | VF5 ACS VG9 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-03 |
PublicationDateYYYYMMDD | 2020-08-03 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | ACS materials letters |
PublicationTitleAlternate | ACS Materials Lett |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 Sawyer D. T. (ref57/cit57) 1988 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref63/cit63 ref92/cit92 Jones C. W. (ref4/cit4) 2007 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 Hammer B. (ref65/cit65) 2000; 45 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref51/cit51 ref134/cit134 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 Zoski C. G. (ref56/cit56) 2007 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref60/cit60 doi: 10.1021/jacs.5b10669 – ident: ref92/cit92 doi: 10.1016/j.electacta.2013.06.072 – ident: ref43/cit43 doi: 10.1021/ar300361m – ident: ref67/cit67 doi: 10.1126/science.aad4998 – volume-title: Applications of Hydrogen Peroxide and Derivatives year: 2007 ident: ref4/cit4 – ident: ref71/cit71 doi: 10.1038/s41929-018-0063-z – ident: ref8/cit8 doi: 10.1038/s41563-019-0571-5 – ident: ref12/cit12 doi: 10.1038/s41467-019-11992-2 – ident: ref101/cit101 doi: 10.1021/acs.chemrev.7b00335 – ident: ref95/cit95 doi: 10.1126/science.1200832 – ident: ref109/cit109 doi: 10.1038/ncomms9618 – ident: ref126/cit126 doi: 10.1016/j.joule.2019.09.019 – ident: ref47/cit47 doi: 10.1021/acscatal.6b02899 – ident: ref27/cit27 doi: 10.1016/j.cattod.2010.10.102 – ident: ref69/cit69 doi: 10.1021/jp047349j – ident: ref42/cit42 doi: 10.1038/s41570-018-0010-1 – ident: ref108/cit108 doi: 10.1021/jacs.7b07093 – ident: ref89/cit89 doi: 10.1021/acscatal.8b02813 – ident: ref103/cit103 doi: 10.1016/j.jcat.2017.10.020 – ident: ref66/cit66 doi: 10.1038/nchem.121 – ident: ref9/cit9 doi: 10.1016/j.chempr.2019.12.008 – ident: ref88/cit88 doi: 10.1021/acs.jpcc.7b04959 – ident: ref25/cit25 doi: 10.1016/0043-1354(92)90192-7 – ident: ref38/cit38 doi: 10.1002/cey2.33 – ident: ref96/cit96 doi: 10.1016/j.electacta.2008.02.012 – ident: ref51/cit51 doi: 10.1002/celc.201900772 – ident: ref76/cit76 doi: 10.1039/c1cp21228a – ident: ref54/cit54 doi: 10.1002/smll.201902845 – ident: ref132/cit132 doi: 10.1002/anie.200704431 – ident: ref49/cit49 doi: 10.1002/anie.201509241 – ident: ref97/cit97 doi: 10.1002/anie.201604802 – volume: 45 start-page: 71 volume-title: Adv. Catal. year: 2000 ident: ref65/cit65 – ident: ref75/cit75 doi: 10.1039/C6SC02123A – ident: ref5/cit5 doi: 10.1039/C5CY01567G – ident: ref33/cit33 doi: 10.1016/j.cattod.2016.12.020 – ident: ref13/cit13 doi: 10.1038/s41467-017-00585-6 – ident: ref90/cit90 doi: 10.1016/0022-0728(82)80006-5 – ident: ref37/cit37 doi: 10.1021/jp207679e – volume-title: Handbook of Electrochemistry year: 2007 ident: ref56/cit56 – ident: ref131/cit131 doi: 10.1002/cssc.200800176 – ident: ref26/cit26 doi: 10.1021/ja206477z – ident: ref115/cit115 doi: 10.1016/S0022-0728(76)80250-1 – ident: ref11/cit11 doi: 10.1021/jacs.9b05576 – ident: ref78/cit78 doi: 10.1002/aenm.202000789 – ident: ref1/cit1 – ident: ref106/cit106 doi: 10.1016/j.chempr.2020.02.011 – ident: ref48/cit48 doi: 10.1038/ncomms10922 – ident: ref63/cit63 doi: 10.1039/C5CY00088B – ident: ref30/cit30 doi: 10.1016/j.electacta.2018.03.170 – ident: ref16/cit16 doi: 10.1039/c2ee21832a – ident: ref18/cit18 doi: 10.1016/j.chempr.2017.10.013 – ident: ref31/cit31 doi: 10.1016/j.carbon.2020.02.084 – ident: ref91/cit91 doi: 10.1016/S0022-0728(79)80367-8 – ident: ref55/cit55 doi: 10.1002/anie.200503779 – ident: ref3/cit3 doi: 10.1021/acscatal.8b00217 – ident: ref85/cit85 doi: 10.1038/s41929-019-0297-4 – ident: ref125/cit125 doi: 10.1002/anie.200351343 – ident: ref128/cit128 doi: 10.1016/j.joule.2019.11.017 – ident: ref74/cit74 doi: 10.1038/nmat4367 – ident: ref53/cit53 doi: 10.1002/aenm.201801909 – ident: ref117/cit117 doi: 10.1007/s10008-012-1918-x – ident: ref2/cit2 doi: 10.1126/science.aad5705 – ident: ref105/cit105 doi: 10.1016/j.chempr.2019.07.005 – ident: ref110/cit110 doi: 10.1021/acs.jpcc.5b07653 – ident: ref124/cit124 doi: 10.1016/0013-4686(90)87004-L – ident: ref29/cit29 doi: 10.1021/acs.chemrev.7b00542 – ident: ref61/cit61 doi: 10.1142/S0218625X09012615 – ident: ref72/cit72 doi: 10.1016/S0013-4686(98)00384-3 – ident: ref10/cit10 doi: 10.1126/science.aay1844 – ident: ref22/cit22 doi: 10.1016/j.chempr.2017.12.015 – ident: ref21/cit21 doi: 10.1002/adma.201802920 – ident: ref32/cit32 doi: 10.1021/acscatal.9b04106 – ident: ref82/cit82 doi: 10.1021/acscatal.8b03734 – ident: ref127/cit127 doi: 10.1002/cssc.200900246 – ident: ref14/cit14 doi: 10.1002/slct.201601469 – ident: ref23/cit23 doi: 10.1021/acscatal.7b03464 – ident: ref50/cit50 doi: 10.1039/C9CC01593K – ident: ref120/cit120 – ident: ref58/cit58 doi: 10.1021/acs.chemrev.7b00217 – ident: ref7/cit7 doi: 10.1038/s41929-019-0402-8 – ident: ref77/cit77 doi: 10.1016/j.elecom.2017.09.004 – ident: ref80/cit80 doi: 10.1021/cs3004352 – ident: ref113/cit113 doi: 10.1002/cssc.201701306 – ident: ref133/cit133 doi: 10.1007/s12274-020-2755-3 – ident: ref45/cit45 doi: 10.1038/nchem.1095 – ident: ref129/cit129 doi: 10.1021/acsomega.7b00594 – ident: ref93/cit93 doi: 10.1002/anie.201916131 – ident: ref84/cit84 doi: 10.1016/j.jechem.2016.01.024 – ident: ref112/cit112 doi: 10.1016/j.cplett.2017.01.071 – ident: ref46/cit46 doi: 10.1002/anie.202004841 – ident: ref107/cit107 doi: 10.1021/jacs.5b11015 – ident: ref36/cit36 doi: 10.1016/j.cattod.2012.05.015 – ident: ref116/cit116 doi: 10.1039/c002416c – ident: ref17/cit17 doi: 10.1021/acsaem.0c00093 – ident: ref94/cit94 doi: 10.1126/science.1170051 – ident: ref102/cit102 doi: 10.1038/s41929-017-0008-y – ident: ref99/cit99 doi: 10.1126/science.aan2255 – ident: ref83/cit83 doi: 10.1126/sciadv.1501122 – ident: ref41/cit41 doi: 10.1016/j.chempr.2019.04.024 – ident: ref52/cit52 doi: 10.1021/acscatal.0c01305 – ident: ref70/cit70 doi: 10.1016/j.susc.2012.08.005 – ident: ref34/cit34 doi: 10.1038/nmat3795 – ident: ref111/cit111 doi: 10.1002/anie.201704356 – ident: ref15/cit15 doi: 10.1021/acs.jpclett.5b02178 – ident: ref79/cit79 doi: 10.1016/j.carbon.2015.09.002 – ident: ref35/cit35 doi: 10.1021/nl500037x – start-page: 11 volume-title: Oxygen Radicals in Biology and Medicine year: 1988 ident: ref57/cit57 doi: 10.1007/978-1-4684-5568-7_2 – ident: ref122/cit122 doi: 10.1007/BF00241923 – ident: ref44/cit44 doi: 10.1038/s41929-018-0090-9 – ident: ref100/cit100 doi: 10.1038/s41467-017-01100-7 – ident: ref19/cit19 doi: 10.1038/s41929-018-0044-2 – ident: ref59/cit59 doi: 10.1021/acs.chemrev.8b00046 – ident: ref118/cit118 doi: 10.1038/s41467-020-15597-y – ident: ref20/cit20 doi: 10.1038/s41929-017-0017-x – ident: ref40/cit40 doi: 10.1021/acsami.0c01278 – ident: ref119/cit119 doi: 10.1002/celc.201402426 – ident: ref24/cit24 doi: 10.1016/S0043-1354(01)00235-4 – ident: ref121/cit121 – ident: ref64/cit64 doi: 10.1021/jp5113894 – ident: ref123/cit123 – ident: ref87/cit87 doi: 10.1021/acscatal.7b03991 – ident: ref81/cit81 doi: 10.1021/acssuschemeng.7b02517 – ident: ref28/cit28 doi: 10.1016/j.electacta.2013.04.079 – ident: ref73/cit73 doi: 10.1002/bbpc.19810850917 – ident: ref6/cit6 doi: 10.1016/j.cattod.2014.03.011 – ident: ref134/cit134 doi: 10.1007/s40843-020-1334-6 – ident: ref98/cit98 doi: 10.1002/anie.201604311 – ident: ref68/cit68 doi: 10.1021/acs.chemrev.7b00488 – ident: ref86/cit86 doi: 10.1016/j.jcat.2017.11.008 – ident: ref114/cit114 doi: 10.1021/ja303560c – ident: ref104/cit104 doi: 10.1016/j.mattod.2020.02.019 – ident: ref62/cit62 doi: 10.1021/cs3003337 – ident: ref130/cit130 doi: 10.1039/C7SE00038C – ident: ref39/cit39 doi: 10.1002/anie.202003842 |
SSID | ssj0002161944 |
Score | 2.526052 |
Snippet | The electrochemical oxygen reduction reaction (ORR) via the two-electron pathway provides a promising approach for the direct synthesis of hydrogen peroxide... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1008 |
Title | Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts |
URI | http://dx.doi.org/10.1021/acsmaterialslett.0c00189 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKWWDgjSgveWBNqe3EjseqalUhFVWUSt0i23GkipIikg5l4LdzTkJVgXh0yZKcdbHv7M--83cI3RArdUC18QznyvNDqV2Q0PcIFxzsJdE2cRecB_e8P_bvJsGkhugPEXxKbpXJALuVwwG_kjdbxlWSk1tom3LwZQeHOqPVuQolbl_ugsmUs6KAmqwSeH5rzK1NJltbm9YWmd5-efEvK7gJXW7JU3OR66Z5-87cuIH-B2ivwpy4XRrJIarZ9AjtrjERHqOHocvTglkPzxPcLUvjmIpLAPeXMby1KR5aUGwaWzxapgAcsyl8Dq6AR9DGzOJ2Pn_GHXcetMzy7ASNe93HTt-ryi14iolW7hEd68AXKgFQZRhMoKG0oVWc0SQQSitbXHoNRMFJSBOAGsqR18EQCPB7Jdgpqqfz1J4hLFpCaxZaS2C7Il2BdV9LnkhBKA9iJhvIg26JKnfJoiISTkn0ta-iqq8aSHwOTGQq7nJXQmP2D0myknwp-Tv-lDnfULsLtEPdLtwlkrBLVM9fF_YKoEqurwvbhOfgvfsBHPTqFQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8UD-rBbyN-9uB1SLutXY-EYKYCIQIJ8bK0o0uIOIwbB_zrfd0mLhz8uq5r89q-vv7a9_p7CF0TLZRLVWiFjEnL8YQyTkLHIowz0JdI6cg8cO50mT907kfuqJTqC4RIoKUkc-J_sQuQG_gGEC6fFehRWquHJqGcWEcbgEmoUe5Gs7-8XqHEHM-NT5kyO8ujJoo4nu8aM1tUmJS2qNJec7uLnpZSZiEmz7V5qmrh-wqB47-6sYd2CgSKG7nK7KM1HR-g7RIv4SF67JmoLbCBeBbhVp4oJyyYBbC_GEOpjnFPg3yTscb9RQwwMpnA77AwcB_amGrcSGcvuGluhxZJmhyh4W1r0PStIvmCJW1eTy2ixsp1uIwAYoU2mFNPaE9LZtPI5VJJnT2BdXnGUEgjAB7SUNmBceVgBSS3j1ElnsX6BGFe50rZntYEDi_CpFt3lGCR4IQyd2yLKrJgWIJi8SRB5henJFgdq6AYqyrin_MThAWTuUmoMf1FTbKs-ZqzefxY5_SP0l2hTX_QaQftu-7DGdqi5nxuQkzsc1RJ3-b6AkBMqi4zdf0Ay9nxRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgSAgO7Iiy-sA1pc5ix8eqtCpbVVEq9RbFiSNVlLQi6aF8PTOJqaoe2K5xbI3t8XjsGb9HyDXTUnm2iqyI89ByfakwSOhajAsO-pIoneAD56cu7wzc-6E3NLk5-BYGhMigpawI4uOqnsaJQRhgN_Ad3LhyZqBXea0eIamcXCcbGL1DBW80-4srFpvhER3jyjZ3Ci41aXJ5vmsMt6koW9qmlvab9m5JqlpIWqSZvNZmuapFHysgjv_uyh7ZMZ4obZSqs0_WdHpAtpfwCQ_Jcw-zt8AW0klCWyVhTmQQBmhnHkOpTmlPg4yjWNP-PAV3MhvB77BAaB_aGGvayCdvtIm3RPMsz47IoN16aXYsQ8JghY6o5xZTsfJcESbgakUOmFVfal-H3LETT4Qq1MVTWE8USIV2Ag5IiJB2YGQFWINQOMekkk5SfUKoqAulHF9rBocYibTrrpI8kYLZ3IsdWSUWDEtgFlEWFPFxmwWrYxWYsaoS8TVHQWQQzZFYY_yLmmxRc1qievxY5_SP0l2Rzd5tO3i86z6ckS0bj-mYaeKck0r-PtMX4Mvk6rLQ2E-F9PPI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+of+Electrochemical+Hydrogen+Peroxide+Synthesis+over+Single+Atom+Catalysts&rft.jtitle=ACS+materials+letters&rft.au=Gao%2C+Jiajian&rft.au=Liu%2C+Bin&rft.date=2020-08-03&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=2&rft.issue=8&rft.spage=1008&rft.epage=1024&rft_id=info:doi/10.1021%2Facsmaterialslett.0c00189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmaterialslett_0c00189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon |