Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts

The electrochemical oxygen reduction reaction (ORR) via the two-electron pathway provides a promising approach for the direct synthesis of hydrogen peroxide (H2O2) and its on-site utilizations. The effective electrocatalyst is one of the key factors determining the future applications of this techno...

Full description

Saved in:
Bibliographic Details
Published inACS materials letters Vol. 2; no. 8; pp. 1008 - 1024
Main Authors Gao, Jiajian, Liu, Bin
Format Journal Article
LanguageEnglish
Published American Chemical Society 03.08.2020
Online AccessGet full text

Cover

Loading…
Abstract The electrochemical oxygen reduction reaction (ORR) via the two-electron pathway provides a promising approach for the direct synthesis of hydrogen peroxide (H2O2) and its on-site utilizations. The effective electrocatalyst is one of the key factors determining the future applications of this technology. In recent years, various catalysts, such as pristine carbon materials, modified carbon materials (oxidized or heteroatom doped such as nitrogen, fluorine, or sulfur doped), gold, or mercury alloyed palladium or platinum nanoparticles, as well as transition metal single atom catalysts (SACs) have been reported to effectively catalyze the H2O2 production via the two-electron ORR process. Among these candidates, SACs with 100% atom utilization and well-defined active centers attracted extra attention due to their high catalytic performance for H2O2 synthesis. In this review, the thermodynamics, oxygen molecular activation, and theoretical screening and prediction of SACs for electrochemical H2O2 synthesis are discussed. The catalytic performance, reaction kinetics and mechanism of SACs together with electrochemical devices for H2O2 synthesis via the two-electron ORR are summarized. It is hoped that this contribution can offer a comprehensive reference for the progress of SACs in H2O2 electrochemical production process.
AbstractList The electrochemical oxygen reduction reaction (ORR) via the two-electron pathway provides a promising approach for the direct synthesis of hydrogen peroxide (H2O2) and its on-site utilizations. The effective electrocatalyst is one of the key factors determining the future applications of this technology. In recent years, various catalysts, such as pristine carbon materials, modified carbon materials (oxidized or heteroatom doped such as nitrogen, fluorine, or sulfur doped), gold, or mercury alloyed palladium or platinum nanoparticles, as well as transition metal single atom catalysts (SACs) have been reported to effectively catalyze the H2O2 production via the two-electron ORR process. Among these candidates, SACs with 100% atom utilization and well-defined active centers attracted extra attention due to their high catalytic performance for H2O2 synthesis. In this review, the thermodynamics, oxygen molecular activation, and theoretical screening and prediction of SACs for electrochemical H2O2 synthesis are discussed. The catalytic performance, reaction kinetics and mechanism of SACs together with electrochemical devices for H2O2 synthesis via the two-electron ORR are summarized. It is hoped that this contribution can offer a comprehensive reference for the progress of SACs in H2O2 electrochemical production process.
Author Liu, Bin
Gao, Jiajian
AuthorAffiliation School of Chemical and Biomedical Engineering
AuthorAffiliation_xml – name: School of Chemical and Biomedical Engineering
Author_xml – sequence: 1
  givenname: Jiajian
  orcidid: 0000-0002-7507-3445
  surname: Gao
  fullname: Gao, Jiajian
– sequence: 2
  givenname: Bin
  orcidid: 0000-0002-4685-2052
  surname: Liu
  fullname: Liu, Bin
  email: liubin@ntu.edu.sg
BookMark eNqNkN1KAzEQRoNUsNa-Q15ga7KbbDY3Qin1BwoWq9fLNJ1tU7YbSaK4b2-kvZDe6NUMzDkfw3dNBp3rkBDK2YSznN-CCQeI6C20ocUYJ8wwxit9QYZ5WehMaKUHv_YrMg5hz1hyS66FGJKXpXdbjyFQ19B5iyZ6Z3Z4sAZa-thv0hU7ukTvvuwG6arv4g6DTfgnerqy3bZFOo3uQGcQoe1DDDfkskn_4Pg0R-Ttfv46e8wWzw9Ps-kig0KxmPH1Zi2FgkYKaQpRqkpjhVAWeSMVrAHzUgsuFZesZHmjJAOplapUqfIEqGJE7o65xrsQPDa1sRGidV30YNuas_qnpPq8pPpUUgqozgLevT2A7_-jiqOaiHrvPnyXiL-1b6epiMc
CitedBy_id crossref_primary_10_1016_j_electacta_2023_142031
crossref_primary_10_1002_adfm_202314282
crossref_primary_10_1002_adfm_202314281
crossref_primary_10_1002_ange_202418713
crossref_primary_10_1016_j_pecs_2023_101101
crossref_primary_10_1002_anie_202306491
crossref_primary_10_1007_s41918_022_00163_5
crossref_primary_10_1002_ange_202422495
crossref_primary_10_1016_j_cej_2023_147608
crossref_primary_10_1007_s12274_024_6505_9
crossref_primary_10_1016_S1872_2067_20_63781_0
crossref_primary_10_1021_acsami_3c09412
crossref_primary_10_1680_jsuin_22_01036
crossref_primary_10_1016_j_est_2023_109141
crossref_primary_10_3866_PKU_WHXB202304001
crossref_primary_10_1002_ange_202413933
crossref_primary_10_1016_j_coelec_2021_100792
crossref_primary_10_1021_acsnano_4c07916
crossref_primary_10_1016_j_cej_2022_135105
crossref_primary_10_1007_s40820_023_01196_1
crossref_primary_10_1016_j_nanoen_2023_108798
crossref_primary_10_1002_adfm_202411457
crossref_primary_10_1021_acscatal_4c05357
crossref_primary_10_1002_adfm_202407121
crossref_primary_10_1002_anie_202313914
crossref_primary_10_1016_j_gerr_2023_100031
crossref_primary_10_1002_adma_202110266
crossref_primary_10_1002_aenm_202003323
crossref_primary_10_1002_ange_202206544
crossref_primary_10_1002_smll_202103824
crossref_primary_10_1021_acs_jpcc_2c02803
crossref_primary_10_1016_j_ese_2022_100170
crossref_primary_10_1016_j_jece_2023_109572
crossref_primary_10_1021_acs_jpcc_5c00163
crossref_primary_10_1002_adma_202400140
crossref_primary_10_1016_j_mattod_2023_02_004
crossref_primary_10_1021_acsami_3c04772
crossref_primary_10_1016_j_cej_2024_151272
crossref_primary_10_1021_acs_nanolett_1c04420
crossref_primary_10_1007_s42823_023_00679_w
crossref_primary_10_1016_j_cej_2024_157125
crossref_primary_10_1002_adfm_202203647
crossref_primary_10_1016_j_cej_2024_157129
crossref_primary_10_1021_acs_jpcc_1c08365
crossref_primary_10_14356_kona_2023004
crossref_primary_10_1021_jacs_3c09644
crossref_primary_10_1016_j_chempr_2021_08_007
crossref_primary_10_1039_D1TA06306E
crossref_primary_10_1021_acssuschemeng_0c07263
crossref_primary_10_1021_acsestengg_2c00187
crossref_primary_10_1021_acsmaterialslett_1c00660
crossref_primary_10_1016_S1872_5805_22_60583_3
crossref_primary_10_1039_D0TA10549J
crossref_primary_10_1002_adfm_202300895
crossref_primary_10_1002_advs_202205347
crossref_primary_10_1002_anie_202200086
crossref_primary_10_1016_j_checat_2023_100586
crossref_primary_10_1002_adma_202202995
crossref_primary_10_1039_D4GC05661B
crossref_primary_10_1021_acscatal_2c00099
crossref_primary_10_1039_D1SC01375K
crossref_primary_10_1016_j_cartre_2024_100365
crossref_primary_10_1002_ange_202406701
crossref_primary_10_1002_cey2_378
crossref_primary_10_1007_s12274_023_5823_7
crossref_primary_10_1002_adfm_202407147
crossref_primary_10_1002_ange_202310847
crossref_primary_10_1016_j_jcis_2022_03_052
crossref_primary_10_2139_ssrn_3866374
crossref_primary_10_1038_s41467_024_48209_0
crossref_primary_10_1016_j_checat_2022_06_002
crossref_primary_10_1021_acsami_1c17727
crossref_primary_10_1021_acscatal_2c02029
crossref_primary_10_1002_celc_202000926
crossref_primary_10_1038_s41467_022_28346_0
crossref_primary_10_1007_s40820_023_01052_2
crossref_primary_10_1016_j_efmat_2023_08_002
crossref_primary_10_1016_j_fuel_2023_129496
crossref_primary_10_1002_adfm_202212087
crossref_primary_10_1016_j_matt_2024_04_015
crossref_primary_10_1039_D3EW00302G
crossref_primary_10_3390_en16186616
crossref_primary_10_1039_D0TA07900F
crossref_primary_10_1039_D2CC03463H
crossref_primary_10_1016_j_apcatb_2022_121265
crossref_primary_10_1021_acsmaterialslett_0c00419
crossref_primary_10_2139_ssrn_4160397
crossref_primary_10_1016_j_ica_2023_121753
crossref_primary_10_1002_anie_202406701
crossref_primary_10_1016_j_matt_2022_05_011
crossref_primary_10_1016_S1872_2067_21_63961_X
crossref_primary_10_1002_adma_202107954
crossref_primary_10_1016_j_jmat_2024_100982
crossref_primary_10_1039_D4SC02853H
crossref_primary_10_1039_D3NJ03398H
crossref_primary_10_1002_smll_202310468
crossref_primary_10_1021_acsmaterialslett_3c01036
crossref_primary_10_1016_j_electacta_2024_144533
crossref_primary_10_1088_2053_1583_ac9290
crossref_primary_10_1016_j_cej_2023_142906
crossref_primary_10_1021_acs_inorgchem_4c05341
crossref_primary_10_1016_j_coelec_2022_101163
crossref_primary_10_1021_acsmaterialsau_3c00070
crossref_primary_10_1016_j_apcatb_2023_122987
crossref_primary_10_1002_adfm_202210837
crossref_primary_10_1021_acs_chemrev_1c00158
crossref_primary_10_1002_adma_202103266
crossref_primary_10_1002_adma_202412670
crossref_primary_10_1080_14328917_2025_2459774
crossref_primary_10_1016_j_apcatb_2022_122105
crossref_primary_10_1007_s44246_023_00090_0
crossref_primary_10_1002_aenm_202301543
crossref_primary_10_1016_j_ccr_2024_216427
crossref_primary_10_1016_j_jcis_2023_05_011
crossref_primary_10_1002_anie_202310847
crossref_primary_10_1002_ange_202306491
crossref_primary_10_1002_ange_202200086
crossref_primary_10_1016_S1872_2067_23_64498_5
crossref_primary_10_1021_acsami_3c02793
crossref_primary_10_1016_j_jece_2024_114425
crossref_primary_10_1038_s41929_021_00650_w
crossref_primary_10_1007_s40820_023_01067_9
crossref_primary_10_1002_smll_202006473
crossref_primary_10_1007_s12678_021_00692_5
crossref_primary_10_1021_acsami_1c22362
crossref_primary_10_1039_D1TA08325B
crossref_primary_10_1021_acs_jpcc_1c03775
crossref_primary_10_1007_s12274_022_5160_2
crossref_primary_10_1016_j_jechem_2021_10_013
crossref_primary_10_1016_j_matre_2022_100140
crossref_primary_10_1002_adma_202104891
crossref_primary_10_1021_acsmaterialslett_2c01005
crossref_primary_10_1016_j_ccr_2023_215602
crossref_primary_10_1016_j_cej_2024_149527
crossref_primary_10_1002_ange_202313914
crossref_primary_10_1002_anie_202206544
crossref_primary_10_1002_anie_202413933
crossref_primary_10_1016_j_cej_2021_131112
crossref_primary_10_1002_ange_202407163
crossref_primary_10_1016_j_electacta_2023_142777
crossref_primary_10_1039_D3CP05492F
crossref_primary_10_1002_slct_202401836
crossref_primary_10_1016_j_cclet_2023_108784
crossref_primary_10_1021_jacsau_3c00557
crossref_primary_10_1016_j_mtener_2025_101840
crossref_primary_10_1002_cnma_202300476
crossref_primary_10_1002_cssc_202401952
crossref_primary_10_1021_acsmaterialslett_4c00415
crossref_primary_10_1002_adfm_202008318
crossref_primary_10_1039_D4TA04567J
crossref_primary_10_1016_j_nanoen_2022_107046
crossref_primary_10_1016_j_apcatb_2024_124663
crossref_primary_10_1002_anie_202418713
crossref_primary_10_1039_D4GC00387J
crossref_primary_10_1016_j_cej_2022_139371
crossref_primary_10_1021_jacs_2c01194
crossref_primary_10_1002_anie_202407163
crossref_primary_10_1002_anie_202422495
crossref_primary_10_1007_s40843_022_2054_5
crossref_primary_10_1038_s41467_023_35839_z
crossref_primary_10_26599_NRE_2023_9120082
crossref_primary_10_1038_s41467_024_54593_4
crossref_primary_10_1016_j_jelechem_2022_116476
crossref_primary_10_1039_D5NR00337G
crossref_primary_10_1038_s41467_023_40991_7
crossref_primary_10_1002_smll_202309448
crossref_primary_10_1021_acsanm_1c03287
Cites_doi 10.1021/jacs.5b10669
10.1016/j.electacta.2013.06.072
10.1021/ar300361m
10.1126/science.aad4998
10.1038/s41929-018-0063-z
10.1038/s41563-019-0571-5
10.1038/s41467-019-11992-2
10.1021/acs.chemrev.7b00335
10.1126/science.1200832
10.1038/ncomms9618
10.1016/j.joule.2019.09.019
10.1021/acscatal.6b02899
10.1016/j.cattod.2010.10.102
10.1021/jp047349j
10.1038/s41570-018-0010-1
10.1021/jacs.7b07093
10.1021/acscatal.8b02813
10.1016/j.jcat.2017.10.020
10.1038/nchem.121
10.1016/j.chempr.2019.12.008
10.1021/acs.jpcc.7b04959
10.1016/0043-1354(92)90192-7
10.1002/cey2.33
10.1016/j.electacta.2008.02.012
10.1002/celc.201900772
10.1039/c1cp21228a
10.1002/smll.201902845
10.1002/anie.200704431
10.1002/anie.201509241
10.1002/anie.201604802
10.1039/C6SC02123A
10.1039/C5CY01567G
10.1016/j.cattod.2016.12.020
10.1038/s41467-017-00585-6
10.1016/0022-0728(82)80006-5
10.1021/jp207679e
10.1002/cssc.200800176
10.1021/ja206477z
10.1016/S0022-0728(76)80250-1
10.1021/jacs.9b05576
10.1002/aenm.202000789
10.1016/j.chempr.2020.02.011
10.1038/ncomms10922
10.1039/C5CY00088B
10.1016/j.electacta.2018.03.170
10.1039/c2ee21832a
10.1016/j.chempr.2017.10.013
10.1016/j.carbon.2020.02.084
10.1016/S0022-0728(79)80367-8
10.1002/anie.200503779
10.1021/acscatal.8b00217
10.1038/s41929-019-0297-4
10.1002/anie.200351343
10.1016/j.joule.2019.11.017
10.1038/nmat4367
10.1002/aenm.201801909
10.1007/s10008-012-1918-x
10.1126/science.aad5705
10.1016/j.chempr.2019.07.005
10.1021/acs.jpcc.5b07653
10.1016/0013-4686(90)87004-L
10.1021/acs.chemrev.7b00542
10.1142/S0218625X09012615
10.1016/S0013-4686(98)00384-3
10.1126/science.aay1844
10.1016/j.chempr.2017.12.015
10.1002/adma.201802920
10.1021/acscatal.9b04106
10.1021/acscatal.8b03734
10.1002/cssc.200900246
10.1002/slct.201601469
10.1021/acscatal.7b03464
10.1039/C9CC01593K
10.1021/acs.chemrev.7b00217
10.1038/s41929-019-0402-8
10.1016/j.elecom.2017.09.004
10.1021/cs3004352
10.1002/cssc.201701306
10.1007/s12274-020-2755-3
10.1038/nchem.1095
10.1021/acsomega.7b00594
10.1002/anie.201916131
10.1016/j.jechem.2016.01.024
10.1016/j.cplett.2017.01.071
10.1002/anie.202004841
10.1021/jacs.5b11015
10.1016/j.cattod.2012.05.015
10.1039/c002416c
10.1021/acsaem.0c00093
10.1126/science.1170051
10.1038/s41929-017-0008-y
10.1126/science.aan2255
10.1126/sciadv.1501122
10.1016/j.chempr.2019.04.024
10.1021/acscatal.0c01305
10.1016/j.susc.2012.08.005
10.1038/nmat3795
10.1002/anie.201704356
10.1021/acs.jpclett.5b02178
10.1016/j.carbon.2015.09.002
10.1021/nl500037x
10.1007/978-1-4684-5568-7_2
10.1007/BF00241923
10.1038/s41929-018-0090-9
10.1038/s41467-017-01100-7
10.1038/s41929-018-0044-2
10.1021/acs.chemrev.8b00046
10.1038/s41467-020-15597-y
10.1038/s41929-017-0017-x
10.1021/acsami.0c01278
10.1002/celc.201402426
10.1016/S0043-1354(01)00235-4
10.1021/jp5113894
10.1021/acscatal.7b03991
10.1021/acssuschemeng.7b02517
10.1016/j.electacta.2013.04.079
10.1002/bbpc.19810850917
10.1016/j.cattod.2014.03.011
10.1007/s40843-020-1334-6
10.1002/anie.201604311
10.1021/acs.chemrev.7b00488
10.1016/j.jcat.2017.11.008
10.1021/ja303560c
10.1016/j.mattod.2020.02.019
10.1021/cs3003337
10.1039/C7SE00038C
10.1002/anie.202003842
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acsmaterialslett.0c00189
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2639-4979
EndPage 1024
ExternalDocumentID 10_1021_acsmaterialslett_0c00189
b385290923
GroupedDBID ACS
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
AAYXX
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
GGK
M~E
ID FETCH-LOGICAL-a370t-1bdb547af545c346789e8ea632f57abae2694157150602f750a59778767257a73
IEDL.DBID ACS
ISSN 2639-4979
IngestDate Thu Apr 24 23:11:30 EDT 2025
Tue Jul 01 04:21:51 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a370t-1bdb547af545c346789e8ea632f57abae2694157150602f750a59778767257a73
ORCID 0000-0002-4685-2052
0000-0002-7507-3445
PageCount 17
ParticipantIDs crossref_citationtrail_10_1021_acsmaterialslett_0c00189
crossref_primary_10_1021_acsmaterialslett_0c00189
acs_journals_10_1021_acsmaterialslett_0c00189
ProviderPackageCode VF5
ACS
VG9
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-03
PublicationDateYYYYMMDD 2020-08-03
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-03
  day: 03
PublicationDecade 2020
PublicationTitle ACS materials letters
PublicationTitleAlternate ACS Materials Lett
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
Sawyer D. T. (ref57/cit57) 1988
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref63/cit63
ref92/cit92
Jones C. W. (ref4/cit4) 2007
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
Hammer B. (ref65/cit65) 2000; 45
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref51/cit51
ref134/cit134
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
Zoski C. G. (ref56/cit56) 2007
ref123/cit123
ref7/cit7
References_xml – ident: ref60/cit60
  doi: 10.1021/jacs.5b10669
– ident: ref92/cit92
  doi: 10.1016/j.electacta.2013.06.072
– ident: ref43/cit43
  doi: 10.1021/ar300361m
– ident: ref67/cit67
  doi: 10.1126/science.aad4998
– volume-title: Applications of Hydrogen Peroxide and Derivatives
  year: 2007
  ident: ref4/cit4
– ident: ref71/cit71
  doi: 10.1038/s41929-018-0063-z
– ident: ref8/cit8
  doi: 10.1038/s41563-019-0571-5
– ident: ref12/cit12
  doi: 10.1038/s41467-019-11992-2
– ident: ref101/cit101
  doi: 10.1021/acs.chemrev.7b00335
– ident: ref95/cit95
  doi: 10.1126/science.1200832
– ident: ref109/cit109
  doi: 10.1038/ncomms9618
– ident: ref126/cit126
  doi: 10.1016/j.joule.2019.09.019
– ident: ref47/cit47
  doi: 10.1021/acscatal.6b02899
– ident: ref27/cit27
  doi: 10.1016/j.cattod.2010.10.102
– ident: ref69/cit69
  doi: 10.1021/jp047349j
– ident: ref42/cit42
  doi: 10.1038/s41570-018-0010-1
– ident: ref108/cit108
  doi: 10.1021/jacs.7b07093
– ident: ref89/cit89
  doi: 10.1021/acscatal.8b02813
– ident: ref103/cit103
  doi: 10.1016/j.jcat.2017.10.020
– ident: ref66/cit66
  doi: 10.1038/nchem.121
– ident: ref9/cit9
  doi: 10.1016/j.chempr.2019.12.008
– ident: ref88/cit88
  doi: 10.1021/acs.jpcc.7b04959
– ident: ref25/cit25
  doi: 10.1016/0043-1354(92)90192-7
– ident: ref38/cit38
  doi: 10.1002/cey2.33
– ident: ref96/cit96
  doi: 10.1016/j.electacta.2008.02.012
– ident: ref51/cit51
  doi: 10.1002/celc.201900772
– ident: ref76/cit76
  doi: 10.1039/c1cp21228a
– ident: ref54/cit54
  doi: 10.1002/smll.201902845
– ident: ref132/cit132
  doi: 10.1002/anie.200704431
– ident: ref49/cit49
  doi: 10.1002/anie.201509241
– ident: ref97/cit97
  doi: 10.1002/anie.201604802
– volume: 45
  start-page: 71
  volume-title: Adv. Catal.
  year: 2000
  ident: ref65/cit65
– ident: ref75/cit75
  doi: 10.1039/C6SC02123A
– ident: ref5/cit5
  doi: 10.1039/C5CY01567G
– ident: ref33/cit33
  doi: 10.1016/j.cattod.2016.12.020
– ident: ref13/cit13
  doi: 10.1038/s41467-017-00585-6
– ident: ref90/cit90
  doi: 10.1016/0022-0728(82)80006-5
– ident: ref37/cit37
  doi: 10.1021/jp207679e
– volume-title: Handbook of Electrochemistry
  year: 2007
  ident: ref56/cit56
– ident: ref131/cit131
  doi: 10.1002/cssc.200800176
– ident: ref26/cit26
  doi: 10.1021/ja206477z
– ident: ref115/cit115
  doi: 10.1016/S0022-0728(76)80250-1
– ident: ref11/cit11
  doi: 10.1021/jacs.9b05576
– ident: ref78/cit78
  doi: 10.1002/aenm.202000789
– ident: ref1/cit1
– ident: ref106/cit106
  doi: 10.1016/j.chempr.2020.02.011
– ident: ref48/cit48
  doi: 10.1038/ncomms10922
– ident: ref63/cit63
  doi: 10.1039/C5CY00088B
– ident: ref30/cit30
  doi: 10.1016/j.electacta.2018.03.170
– ident: ref16/cit16
  doi: 10.1039/c2ee21832a
– ident: ref18/cit18
  doi: 10.1016/j.chempr.2017.10.013
– ident: ref31/cit31
  doi: 10.1016/j.carbon.2020.02.084
– ident: ref91/cit91
  doi: 10.1016/S0022-0728(79)80367-8
– ident: ref55/cit55
  doi: 10.1002/anie.200503779
– ident: ref3/cit3
  doi: 10.1021/acscatal.8b00217
– ident: ref85/cit85
  doi: 10.1038/s41929-019-0297-4
– ident: ref125/cit125
  doi: 10.1002/anie.200351343
– ident: ref128/cit128
  doi: 10.1016/j.joule.2019.11.017
– ident: ref74/cit74
  doi: 10.1038/nmat4367
– ident: ref53/cit53
  doi: 10.1002/aenm.201801909
– ident: ref117/cit117
  doi: 10.1007/s10008-012-1918-x
– ident: ref2/cit2
  doi: 10.1126/science.aad5705
– ident: ref105/cit105
  doi: 10.1016/j.chempr.2019.07.005
– ident: ref110/cit110
  doi: 10.1021/acs.jpcc.5b07653
– ident: ref124/cit124
  doi: 10.1016/0013-4686(90)87004-L
– ident: ref29/cit29
  doi: 10.1021/acs.chemrev.7b00542
– ident: ref61/cit61
  doi: 10.1142/S0218625X09012615
– ident: ref72/cit72
  doi: 10.1016/S0013-4686(98)00384-3
– ident: ref10/cit10
  doi: 10.1126/science.aay1844
– ident: ref22/cit22
  doi: 10.1016/j.chempr.2017.12.015
– ident: ref21/cit21
  doi: 10.1002/adma.201802920
– ident: ref32/cit32
  doi: 10.1021/acscatal.9b04106
– ident: ref82/cit82
  doi: 10.1021/acscatal.8b03734
– ident: ref127/cit127
  doi: 10.1002/cssc.200900246
– ident: ref14/cit14
  doi: 10.1002/slct.201601469
– ident: ref23/cit23
  doi: 10.1021/acscatal.7b03464
– ident: ref50/cit50
  doi: 10.1039/C9CC01593K
– ident: ref120/cit120
– ident: ref58/cit58
  doi: 10.1021/acs.chemrev.7b00217
– ident: ref7/cit7
  doi: 10.1038/s41929-019-0402-8
– ident: ref77/cit77
  doi: 10.1016/j.elecom.2017.09.004
– ident: ref80/cit80
  doi: 10.1021/cs3004352
– ident: ref113/cit113
  doi: 10.1002/cssc.201701306
– ident: ref133/cit133
  doi: 10.1007/s12274-020-2755-3
– ident: ref45/cit45
  doi: 10.1038/nchem.1095
– ident: ref129/cit129
  doi: 10.1021/acsomega.7b00594
– ident: ref93/cit93
  doi: 10.1002/anie.201916131
– ident: ref84/cit84
  doi: 10.1016/j.jechem.2016.01.024
– ident: ref112/cit112
  doi: 10.1016/j.cplett.2017.01.071
– ident: ref46/cit46
  doi: 10.1002/anie.202004841
– ident: ref107/cit107
  doi: 10.1021/jacs.5b11015
– ident: ref36/cit36
  doi: 10.1016/j.cattod.2012.05.015
– ident: ref116/cit116
  doi: 10.1039/c002416c
– ident: ref17/cit17
  doi: 10.1021/acsaem.0c00093
– ident: ref94/cit94
  doi: 10.1126/science.1170051
– ident: ref102/cit102
  doi: 10.1038/s41929-017-0008-y
– ident: ref99/cit99
  doi: 10.1126/science.aan2255
– ident: ref83/cit83
  doi: 10.1126/sciadv.1501122
– ident: ref41/cit41
  doi: 10.1016/j.chempr.2019.04.024
– ident: ref52/cit52
  doi: 10.1021/acscatal.0c01305
– ident: ref70/cit70
  doi: 10.1016/j.susc.2012.08.005
– ident: ref34/cit34
  doi: 10.1038/nmat3795
– ident: ref111/cit111
  doi: 10.1002/anie.201704356
– ident: ref15/cit15
  doi: 10.1021/acs.jpclett.5b02178
– ident: ref79/cit79
  doi: 10.1016/j.carbon.2015.09.002
– ident: ref35/cit35
  doi: 10.1021/nl500037x
– start-page: 11
  volume-title: Oxygen Radicals in Biology and Medicine
  year: 1988
  ident: ref57/cit57
  doi: 10.1007/978-1-4684-5568-7_2
– ident: ref122/cit122
  doi: 10.1007/BF00241923
– ident: ref44/cit44
  doi: 10.1038/s41929-018-0090-9
– ident: ref100/cit100
  doi: 10.1038/s41467-017-01100-7
– ident: ref19/cit19
  doi: 10.1038/s41929-018-0044-2
– ident: ref59/cit59
  doi: 10.1021/acs.chemrev.8b00046
– ident: ref118/cit118
  doi: 10.1038/s41467-020-15597-y
– ident: ref20/cit20
  doi: 10.1038/s41929-017-0017-x
– ident: ref40/cit40
  doi: 10.1021/acsami.0c01278
– ident: ref119/cit119
  doi: 10.1002/celc.201402426
– ident: ref24/cit24
  doi: 10.1016/S0043-1354(01)00235-4
– ident: ref121/cit121
– ident: ref64/cit64
  doi: 10.1021/jp5113894
– ident: ref123/cit123
– ident: ref87/cit87
  doi: 10.1021/acscatal.7b03991
– ident: ref81/cit81
  doi: 10.1021/acssuschemeng.7b02517
– ident: ref28/cit28
  doi: 10.1016/j.electacta.2013.04.079
– ident: ref73/cit73
  doi: 10.1002/bbpc.19810850917
– ident: ref6/cit6
  doi: 10.1016/j.cattod.2014.03.011
– ident: ref134/cit134
  doi: 10.1007/s40843-020-1334-6
– ident: ref98/cit98
  doi: 10.1002/anie.201604311
– ident: ref68/cit68
  doi: 10.1021/acs.chemrev.7b00488
– ident: ref86/cit86
  doi: 10.1016/j.jcat.2017.11.008
– ident: ref114/cit114
  doi: 10.1021/ja303560c
– ident: ref104/cit104
  doi: 10.1016/j.mattod.2020.02.019
– ident: ref62/cit62
  doi: 10.1021/cs3003337
– ident: ref130/cit130
  doi: 10.1039/C7SE00038C
– ident: ref39/cit39
  doi: 10.1002/anie.202003842
SSID ssj0002161944
Score 2.526052
Snippet The electrochemical oxygen reduction reaction (ORR) via the two-electron pathway provides a promising approach for the direct synthesis of hydrogen peroxide...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 1008
Title Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts
URI http://dx.doi.org/10.1021/acsmaterialslett.0c00189
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKWWDgjSgveWBNqe3EjseqalUhFVWUSt0i23GkipIikg5l4LdzTkJVgXh0yZKcdbHv7M--83cI3RArdUC18QznyvNDqV2Q0PcIFxzsJdE2cRecB_e8P_bvJsGkhugPEXxKbpXJALuVwwG_kjdbxlWSk1tom3LwZQeHOqPVuQolbl_ugsmUs6KAmqwSeH5rzK1NJltbm9YWmd5-efEvK7gJXW7JU3OR66Z5-87cuIH-B2ivwpy4XRrJIarZ9AjtrjERHqOHocvTglkPzxPcLUvjmIpLAPeXMby1KR5aUGwaWzxapgAcsyl8Dq6AR9DGzOJ2Pn_GHXcetMzy7ASNe93HTt-ryi14iolW7hEd68AXKgFQZRhMoKG0oVWc0SQQSitbXHoNRMFJSBOAGsqR18EQCPB7Jdgpqqfz1J4hLFpCaxZaS2C7Il2BdV9LnkhBKA9iJhvIg26JKnfJoiISTkn0ta-iqq8aSHwOTGQq7nJXQmP2D0myknwp-Tv-lDnfULsLtEPdLtwlkrBLVM9fF_YKoEqurwvbhOfgvfsBHPTqFQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8UD-rBbyN-9uB1SLutXY-EYKYCIQIJ8bK0o0uIOIwbB_zrfd0mLhz8uq5r89q-vv7a9_p7CF0TLZRLVWiFjEnL8YQyTkLHIowz0JdI6cg8cO50mT907kfuqJTqC4RIoKUkc-J_sQuQG_gGEC6fFehRWquHJqGcWEcbgEmoUe5Gs7-8XqHEHM-NT5kyO8ujJoo4nu8aM1tUmJS2qNJec7uLnpZSZiEmz7V5qmrh-wqB47-6sYd2CgSKG7nK7KM1HR-g7RIv4SF67JmoLbCBeBbhVp4oJyyYBbC_GEOpjnFPg3yTscb9RQwwMpnA77AwcB_amGrcSGcvuGluhxZJmhyh4W1r0PStIvmCJW1eTy2ixsp1uIwAYoU2mFNPaE9LZtPI5VJJnT2BdXnGUEgjAB7SUNmBceVgBSS3j1ElnsX6BGFe50rZntYEDi_CpFt3lGCR4IQyd2yLKrJgWIJi8SRB5henJFgdq6AYqyrin_MThAWTuUmoMf1FTbKs-ZqzefxY5_SP0l2hTX_QaQftu-7DGdqi5nxuQkzsc1RJ3-b6AkBMqi4zdf0Ay9nxRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgSAgO7Iiy-sA1pc5ix8eqtCpbVVEq9RbFiSNVlLQi6aF8PTOJqaoe2K5xbI3t8XjsGb9HyDXTUnm2iqyI89ByfakwSOhajAsO-pIoneAD56cu7wzc-6E3NLk5-BYGhMigpawI4uOqnsaJQRhgN_Ad3LhyZqBXea0eIamcXCcbGL1DBW80-4srFpvhER3jyjZ3Ci41aXJ5vmsMt6koW9qmlvab9m5JqlpIWqSZvNZmuapFHysgjv_uyh7ZMZ4obZSqs0_WdHpAtpfwCQ_Jcw-zt8AW0klCWyVhTmQQBmhnHkOpTmlPg4yjWNP-PAV3MhvB77BAaB_aGGvayCdvtIm3RPMsz47IoN16aXYsQ8JghY6o5xZTsfJcESbgakUOmFVfal-H3LETT4Qq1MVTWE8USIV2Ag5IiJB2YGQFWINQOMekkk5SfUKoqAulHF9rBocYibTrrpI8kYLZ3IsdWSUWDEtgFlEWFPFxmwWrYxWYsaoS8TVHQWQQzZFYY_yLmmxRc1qievxY5_SP0l2Rzd5tO3i86z6ckS0bj-mYaeKck0r-PtMX4Mvk6rLQ2E-F9PPI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+of+Electrochemical+Hydrogen+Peroxide+Synthesis+over+Single+Atom+Catalysts&rft.jtitle=ACS+materials+letters&rft.au=Gao%2C+Jiajian&rft.au=Liu%2C+Bin&rft.date=2020-08-03&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=2&rft.issue=8&rft.spage=1008&rft.epage=1024&rft_id=info:doi/10.1021%2Facsmaterialslett.0c00189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmaterialslett_0c00189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon