Mechanism of Rotenone Toxicity against Plutella xylostella: New Perspective from a Spatial Metabolomics and Lipidomics Study

The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella usi...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 71; no. 1; pp. 211 - 222
Main Authors Li, Ping, Tian, Yongqing, Du, Mingyi, Xie, Qingrong, Chen, Yingying, Ma, Lianlian, Huang, Yudi, Yin, Zhibin, Xu, Hanhong, Wu, Xinzhou
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5′-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.
AbstractList The botanical pesticide rotenone can effectively control target pest , yet insights into metabolic regulation of toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of , inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.
The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5′-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.
The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.
Author Tian, Yongqing
Huang, Yudi
Wu, Xinzhou
Li, Ping
Xu, Hanhong
Chen, Yingying
Xie, Qingrong
Yin, Zhibin
Du, Mingyi
Ma, Lianlian
AuthorAffiliation Agro-biological Gene Research Center
South China Agricultural University
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education
Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection
AuthorAffiliation_xml – name: Agro-biological Gene Research Center
– name: South China Agricultural University
– name: Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection
– name: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education
Author_xml – sequence: 1
  givenname: Ping
  surname: Li
  fullname: Li, Ping
  organization: South China Agricultural University
– sequence: 2
  givenname: Yongqing
  surname: Tian
  fullname: Tian, Yongqing
  organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education
– sequence: 3
  givenname: Mingyi
  surname: Du
  fullname: Du, Mingyi
  organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education
– sequence: 4
  givenname: Qingrong
  surname: Xie
  fullname: Xie, Qingrong
  organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education
– sequence: 5
  givenname: Yingying
  surname: Chen
  fullname: Chen, Yingying
  organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education
– sequence: 6
  givenname: Lianlian
  surname: Ma
  fullname: Ma, Lianlian
  organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education
– sequence: 7
  givenname: Yudi
  surname: Huang
  fullname: Huang, Yudi
  organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education
– sequence: 8
  givenname: Zhibin
  surname: Yin
  fullname: Yin, Zhibin
  email: zbyin@agrogene.ac.cn
  organization: Agro-biological Gene Research Center
– sequence: 9
  givenname: Hanhong
  orcidid: 0000-0001-7841-2396
  surname: Xu
  fullname: Xu, Hanhong
  email: hhxu@scau.edu.cn
  organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education
– sequence: 10
  givenname: Xinzhou
  orcidid: 0000-0001-5079-4994
  surname: Wu
  fullname: Wu, Xinzhou
  email: wuxz@scau.edu.cn
  organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36538414$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFOyfkYw9k8UfiTbhVFS1IW6hoOUdjZ1xcJXGwHehK_PF4u0sPSMDJY_n3xnrvHZGD0Y9IyEvOlpwJ_gZMXN6BNUthmBKNeEIWvBKsqDivD8iCZaaoK8UPyVGMd4yxulqxZ-RQqkrWJS8X5Oclmq8wujhQb-lnn3D7Bb3x9864tKFwC26MiV71c8K-B3q_6X18GN_Sj_iDXmGIE5rkviO1wQ8U6PUEyUFPLzGB9r0fnIkUxo6u3eS63fU6zd3mOXlqoY_4Yn8eky_n727O3hfrTxcfzk7XBUjVpMI2pbWlKhE0CKtrrXVjuaiMWKHmMhvWVkmUUCvGsWQNs9J0XXYoJKJq5DE52e2dgv82Y0zt4KLZehjRz7GVrGSZbSr5X1SscpyCl1Wd0Vd7dNYDdu0U3ABh0_4ONwNsB5jgYwxoHxHO2m1_be6v3fbX7vvLEvWHJLeQ0_RjCuD6fwlf74QPL34OYw707_gvM5Cx7g
CitedBy_id crossref_primary_10_1021_acs_jafc_4c06927
crossref_primary_10_1016_j_aac_2023_07_002
crossref_primary_10_1021_acs_jafc_4c01049
crossref_primary_10_3389_fphar_2025_1449639
crossref_primary_10_1016_j_biortech_2023_128705
crossref_primary_10_1016_j_foodchem_2024_142656
crossref_primary_10_1016_j_jhazmat_2024_136640
crossref_primary_10_3390_agronomy13051315
crossref_primary_10_1016_j_aac_2024_04_002
Cites_doi 10.1016/j.scitotenv.2021.145170
10.1002/ps.449
10.1038/s41598-020-58796-9
10.1186/s12986-016-0080-3
10.1093/jisesa/ieaa049
10.1021/acs.jafc.8b03183
10.1002/ps.5226
10.1007/s12274-020-2700-5
10.1016/j.ibmb.2015.09.009
10.1021/acs.jafc.2c03821
10.1016/j.pestbp.2005.03.003
10.1016/0014-2999(85)90427-3
10.1016/j.nbt.2016.06.800
10.1016/j.vetpar.2005.11.001
10.1111/j.1600-0854.2007.00689.x
10.1021/cr078215f
10.1016/j.pestbp.2021.104801
10.1016/j.pt.2012.05.005
10.1021/acs.jafc.8b06511
10.1002/ps.946
10.1002/ps.1596
10.1146/annurev-ento-010715-023622
10.1074/jbc.M310207200
10.1021/jf5034575
10.1002/ps.6009
10.1002/biof.25
10.1016/j.cmet.2012.12.003
10.1111/1744-7917.12963
10.1111/j.1471-4159.2010.07022.x
10.1016/j.bioorg.2020.104493
10.1074/jbc.274.5.2625
10.1016/j.neuro.2013.04.006
10.1016/j.scitotenv.2021.151116
10.1016/j.jclepro.2020.124657
10.1194/jlr.M076745
10.1007/s11427-020-1834-9
10.3390/metabo12020158
10.1007/s00216-018-1355-5
10.1111/1744-7917.12038
10.1002/anie.201813744
10.1146/annurev-ento-011019-025010
10.1021/acs.analchem.9b04067
10.1021/acs.jafc.2c01867
10.1016/j.ecoenv.2020.111033
10.1042/bst0220230
10.1021/acs.jafc.2c00468
10.1021/acs.jafc.2c00635
10.1016/j.ecoenv.2018.06.084
10.1002/ps.1747
10.1016/j.ecoenv.2019.110020
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jafc.2c06292
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1520-5118
EndPage 222
ExternalDocumentID 36538414
10_1021_acs_jafc_2c06292
b092043281
Genre Journal Article
GroupedDBID ---
-~X
.K2
4.4
55A
5GY
5VS
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED~
F5P
GGK
GNL
GX1
IH9
JG~
LG6
P2P
ROL
TWZ
UI2
VF5
VG9
W1F
WH7
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a369t-f94ff464eaba2fb8bbb9f125c27eb13520bf63e3a8601e4090f3cdd38423ee693
IEDL.DBID ACS
ISSN 0021-8561
1520-5118
IngestDate Fri Jul 11 08:02:19 EDT 2025
Fri Jul 11 12:25:51 EDT 2025
Thu Jan 02 22:53:46 EST 2025
Thu Apr 24 23:08:33 EDT 2025
Tue Jul 01 01:40:16 EDT 2025
Fri Jan 13 03:10:46 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords rotenone
Plutella xylostella
mass spectrometry imaging
metabolomics
lipidomics
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-f94ff464eaba2fb8bbb9f125c27eb13520bf63e3a8601e4090f3cdd38423ee693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7841-2396
0000-0001-5079-4994
PMID 36538414
PQID 2756121458
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3040423953
proquest_miscellaneous_2756121458
pubmed_primary_36538414
crossref_primary_10_1021_acs_jafc_2c06292
crossref_citationtrail_10_1021_acs_jafc_2c06292
acs_journals_10_1021_acs_jafc_2c06292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-11
PublicationDateYYYYMMDD 2023-01-11
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of agricultural and food chemistry
PublicationTitleAlternate J. Agric. Food Chem
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1016/j.scitotenv.2021.145170
– ident: ref43/cit43
  doi: 10.1002/ps.449
– ident: ref20/cit20
  doi: 10.1038/s41598-020-58796-9
– ident: ref40/cit40
  doi: 10.1186/s12986-016-0080-3
– ident: ref36/cit36
  doi: 10.1093/jisesa/ieaa049
– ident: ref3/cit3
  doi: 10.1021/acs.jafc.8b03183
– ident: ref31/cit31
  doi: 10.1002/ps.5226
– ident: ref32/cit32
  doi: 10.1007/s12274-020-2700-5
– ident: ref42/cit42
  doi: 10.1016/j.ibmb.2015.09.009
– ident: ref2/cit2
  doi: 10.1021/acs.jafc.2c03821
– ident: ref44/cit44
  doi: 10.1016/j.pestbp.2005.03.003
– ident: ref39/cit39
  doi: 10.1016/0014-2999(85)90427-3
– ident: ref27/cit27
  doi: 10.1016/j.nbt.2016.06.800
– ident: ref14/cit14
  doi: 10.1016/j.vetpar.2005.11.001
– ident: ref50/cit50
  doi: 10.1111/j.1600-0854.2007.00689.x
– ident: ref38/cit38
  doi: 10.1021/cr078215f
– ident: ref9/cit9
  doi: 10.1016/j.pestbp.2021.104801
– ident: ref37/cit37
  doi: 10.1016/j.pt.2012.05.005
– ident: ref6/cit6
  doi: 10.1021/acs.jafc.8b06511
– ident: ref35/cit35
  doi: 10.1002/ps.946
– ident: ref28/cit28
  doi: 10.1002/ps.1596
– ident: ref7/cit7
  doi: 10.1146/annurev-ento-010715-023622
– ident: ref47/cit47
  doi: 10.1074/jbc.M310207200
– ident: ref33/cit33
  doi: 10.1021/jf5034575
– ident: ref19/cit19
  doi: 10.1002/ps.6009
– ident: ref45/cit45
  doi: 10.1002/biof.25
– ident: ref49/cit49
  doi: 10.1016/j.cmet.2012.12.003
– ident: ref17/cit17
  doi: 10.1111/1744-7917.12963
– ident: ref46/cit46
  doi: 10.1111/j.1471-4159.2010.07022.x
– ident: ref13/cit13
  doi: 10.1016/j.bioorg.2020.104493
– ident: ref11/cit11
  doi: 10.1074/jbc.274.5.2625
– ident: ref12/cit12
  doi: 10.1016/j.neuro.2013.04.006
– ident: ref30/cit30
  doi: 10.1016/j.scitotenv.2021.151116
– ident: ref1/cit1
  doi: 10.1016/j.jclepro.2020.124657
– ident: ref48/cit48
  doi: 10.1194/jlr.M076745
– ident: ref23/cit23
  doi: 10.1007/s11427-020-1834-9
– ident: ref22/cit22
  doi: 10.3390/metabo12020158
– ident: ref34/cit34
  doi: 10.1007/s00216-018-1355-5
– ident: ref41/cit41
  doi: 10.1111/1744-7917.12038
– ident: ref26/cit26
  doi: 10.1002/anie.201813744
– ident: ref5/cit5
  doi: 10.1146/annurev-ento-011019-025010
– ident: ref25/cit25
  doi: 10.1021/acs.analchem.9b04067
– ident: ref8/cit8
  doi: 10.1021/acs.jafc.2c01867
– ident: ref16/cit16
  doi: 10.1016/j.ecoenv.2020.111033
– ident: ref10/cit10
  doi: 10.1042/bst0220230
– ident: ref24/cit24
  doi: 10.1021/acs.jafc.2c00468
– ident: ref4/cit4
  doi: 10.1021/acs.jafc.2c00635
– ident: ref18/cit18
  doi: 10.1016/j.ecoenv.2018.06.084
– ident: ref15/cit15
  doi: 10.1002/ps.1747
– ident: ref21/cit21
  doi: 10.1016/j.ecoenv.2019.110020
SSID ssj0008570
Score 2.4756653
Snippet The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella...
The botanical pesticide rotenone can effectively control target pest , yet insights into metabolic regulation of toward rotenone remain limited. Herein, we...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 211
SubjectTerms adenosine monophosphate
Agricultural and Environmental Chemistry
Amino Acids - metabolism
Animals
biosynthesis
diacylglycerols
energy
fatty acids
food chemistry
glycerophospholipids
guanosine
inosine
Insecticides - pharmacology
Larva
lipid metabolism
Lipidomics
Moths
pesticides
Pesticides - metabolism
pests
Plutella xylostella
rotenone
Rotenone - toxicity
toxicity
tryptophan
Title Mechanism of Rotenone Toxicity against Plutella xylostella: New Perspective from a Spatial Metabolomics and Lipidomics Study
URI http://dx.doi.org/10.1021/acs.jafc.2c06292
https://www.ncbi.nlm.nih.gov/pubmed/36538414
https://www.proquest.com/docview/2756121458
https://www.proquest.com/docview/3040423953
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQeIEHxjfdYPIkeOAhXf1R1-GtqpgqpKIJNmlvke2cp46SoCWVBtofz12Sdhpj1d7yYSeycz7_Lnf3O8bepzJYkNElOQiVaOFNYo2AxA8MAPGtuKbG0uyrmZ7oL6fD02uanH89-FIcuFD1z10MfRkGRqaobh9KY0dkaI0n39dal4ja23AOkVgEBZ1L8n9PoI0oVDc3ojvQZbPLHG635YqqhpyQgkt-9Je174c_t6kb7zGAp-xJBzb5uJWOZ-wBFM_Z4_HZRUe4AS_Y1Qwo93de_eRl5N9KhNBlAfy4vJwHBOjcnbk5Ikh-hBJKgVL8Ei38qjn8xFFD8qPrbE1OuSrccSpzjGLNZ1CjiC0o77nirsg5FcrO21OKX_z9kp0cfj6eTJOuIkPilEnrJKY6Rm00OO9k9NZ7n0aESEGOUOcjlhv4aBQoZ9HOAzQdB1GFPFcWQRuASdUrtkWjeMN4HqUEFfG-FDoi0ITREATkJtXGBit67ANOXNatqCprnOVSZM1FnM2sm80eO1h9xix0tOZUXWOxocfHdY9fLaXHhrb7K8nIcN2RM8UVUC6rjGjzBdG827vbKNSQRLA4VD32uhWr9RuVwa1GC71zz3HuskdU6Z7-_gjxlm3VF0t4h3io9nvNQvgLDjYHJA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqcgAOlDdbXkaiBw7Zru2s6yBxWBWqLe1WFWyl3oLtjKuFZYOarNqt-DP8FX4ZM0l2KxCtuFTilnfs2DPzTTzzDWMvE-kNyGCjDISKYuF0ZLSAyHU0APGt2KrG0mBP9w_i94fdwyX2Y54Lg40o8ElFtYh_zi4g1unYZxt8W_qOlols4ih3YHaCXlrxZvstDumalFvvhpv9qCkkEFmlkzIKSRxCrGOwzsrgjHMuCWjZvdxAVYUQpOOCVqCsQfcE0OPpBOWzTBnEGgCa-JZQy19D7CPJv-ttflwoe-KHr6NIRGQQizQroX9rMdk_X_xu_y4AtZVx21phPxefpYpp-dKelq7tz_5gjPyvv9ttdquB1rxXy8IdtgSTu-xm7-i4oReBe-z7ACjTeVR85XngH3J0GPIJ8GF-OvLojnB7ZEeIl_k-yiOFhfHT2ZiyYHDzNUd7wPfPc1M5ZeZwy6moMwoxH0CJAjWmLO-C20nGqSx4Vu9StObsPju4ku4_YMvUi0eMZ0FKUAHPSxEHhNWw0QUBmU5ibbwRLbaGA5U2-qNIq9AAKdLqII5e2oxei63PZ0_qGxJ3qiUyvuSOV4s7vtUEJpdc-2I-IVPUMrR0ZCeQT4uUigQIIrU3F1-j0B4QnWRXtdjDejYv3qg0GtZYxKv_2M_n7Hp_ONhNd7f3dh6zGxKRJf33EuIJWy6Pp_AUkWDpnlWyyNmnq57EvwAO3msQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqIiE4lDddnkaiBw7Zru2s6yBxWLWsWspWK2il3oLtjKuFZVM1WdFF_Tv9K_wuZpLsIhCtuFTilnfs2DPzTTzzDWMvE-kNyGCjDISKYuF0ZLSAyHU0APGt2KrG0mBPbx_E7w67h0vsfJ4Lg40o8ElFtYhPUn2chYZhQKzT8c82-Lb0HS0T2cRS7sLsG3pqxZudLRzWNSn7b_c3t6OmmEBklU7KKCRxCLGOwTorgzPOuSSgdfdyA9UVwpCOC1qBsgZdFECvpxOUzzJlEG8AaOJcQk1_jVYJycfrbX5cKHziiK8jSURkEI80q6F_azHZQF_8bgMvALaVgevfYj8Wn6aKa_nSnpau7b__wRr533-722ylgdi8V8vEHbYEk7vsZu_opKEZgXvsbACU8TwqvvI88A85Og75BPh-fjry6JZwe2RHiJv5EOWSwsP46WxM2TC4-ZqjXeDDXzmqnDJ0uOVU3BmFmQ-gRMEaU7Z3we0k41QePKt3KWpzdp8dXEn3H7Bl6sUq41mQElTA81LEAeE1bHRBQKaTWBtvRIut4UCljR4p0ipEQIq0Ooijlzaj12Lr8xmU-obMnWqKjC-549XijuOayOSSa1_MJ2WK2oaWkOwE8mmRUrEAQeT25uJrFNoFopXsqhZ7WM_oxRuVRgMbi_jRP_bzObs-3Oqn73f2dh-zGxIBJv3-EuIJWy5PpvAUAWHpnlXiyNmnq57DPwHg2W2T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Rotenone+Toxicity+against+Plutella+xylostella%3A+New+Perspective+from+a+Spatial+Metabolomics+and+Lipidomics+Study&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Li%2C+Ping&rft.au=Tian%2C+Yongqing&rft.au=Du%2C+Mingyi&rft.au=Xie%2C+Qingrong&rft.date=2023-01-11&rft.issn=1520-5118&rft.eissn=1520-5118&rft.volume=71&rft.issue=1&rft.spage=211&rft_id=info:doi/10.1021%2Facs.jafc.2c06292&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon