Mechanism of Rotenone Toxicity against Plutella xylostella: New Perspective from a Spatial Metabolomics and Lipidomics Study
The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella usi...
Saved in:
Published in | Journal of agricultural and food chemistry Vol. 71; no. 1; pp. 211 - 222 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5′-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates. |
---|---|
AbstractList | The botanical pesticide rotenone can effectively control target pest
, yet insights into
metabolic regulation of
toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated
using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of
with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of
, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward
may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates. The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5′-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates. The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates. |
Author | Tian, Yongqing Huang, Yudi Wu, Xinzhou Li, Ping Xu, Hanhong Chen, Yingying Xie, Qingrong Yin, Zhibin Du, Mingyi Ma, Lianlian |
AuthorAffiliation | Agro-biological Gene Research Center South China Agricultural University State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection |
AuthorAffiliation_xml | – name: Agro-biological Gene Research Center – name: South China Agricultural University – name: Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection – name: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education |
Author_xml | – sequence: 1 givenname: Ping surname: Li fullname: Li, Ping organization: South China Agricultural University – sequence: 2 givenname: Yongqing surname: Tian fullname: Tian, Yongqing organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education – sequence: 3 givenname: Mingyi surname: Du fullname: Du, Mingyi organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education – sequence: 4 givenname: Qingrong surname: Xie fullname: Xie, Qingrong organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education – sequence: 5 givenname: Yingying surname: Chen fullname: Chen, Yingying organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education – sequence: 6 givenname: Lianlian surname: Ma fullname: Ma, Lianlian organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education – sequence: 7 givenname: Yudi surname: Huang fullname: Huang, Yudi organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education – sequence: 8 givenname: Zhibin surname: Yin fullname: Yin, Zhibin email: zbyin@agrogene.ac.cn organization: Agro-biological Gene Research Center – sequence: 9 givenname: Hanhong orcidid: 0000-0001-7841-2396 surname: Xu fullname: Xu, Hanhong email: hhxu@scau.edu.cn organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education – sequence: 10 givenname: Xinzhou orcidid: 0000-0001-5079-4994 surname: Wu fullname: Wu, Xinzhou email: wuxz@scau.edu.cn organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36538414$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFOyfkYw9k8UfiTbhVFS1IW6hoOUdjZ1xcJXGwHehK_PF4u0sPSMDJY_n3xnrvHZGD0Y9IyEvOlpwJ_gZMXN6BNUthmBKNeEIWvBKsqDivD8iCZaaoK8UPyVGMd4yxulqxZ-RQqkrWJS8X5Oclmq8wujhQb-lnn3D7Bb3x9864tKFwC26MiV71c8K-B3q_6X18GN_Sj_iDXmGIE5rkviO1wQ8U6PUEyUFPLzGB9r0fnIkUxo6u3eS63fU6zd3mOXlqoY_4Yn8eky_n727O3hfrTxcfzk7XBUjVpMI2pbWlKhE0CKtrrXVjuaiMWKHmMhvWVkmUUCvGsWQNs9J0XXYoJKJq5DE52e2dgv82Y0zt4KLZehjRz7GVrGSZbSr5X1SscpyCl1Wd0Vd7dNYDdu0U3ABh0_4ONwNsB5jgYwxoHxHO2m1_be6v3fbX7vvLEvWHJLeQ0_RjCuD6fwlf74QPL34OYw707_gvM5Cx7g |
CitedBy_id | crossref_primary_10_1021_acs_jafc_4c06927 crossref_primary_10_1016_j_aac_2023_07_002 crossref_primary_10_1021_acs_jafc_4c01049 crossref_primary_10_3389_fphar_2025_1449639 crossref_primary_10_1016_j_biortech_2023_128705 crossref_primary_10_1016_j_foodchem_2024_142656 crossref_primary_10_1016_j_jhazmat_2024_136640 crossref_primary_10_3390_agronomy13051315 crossref_primary_10_1016_j_aac_2024_04_002 |
Cites_doi | 10.1016/j.scitotenv.2021.145170 10.1002/ps.449 10.1038/s41598-020-58796-9 10.1186/s12986-016-0080-3 10.1093/jisesa/ieaa049 10.1021/acs.jafc.8b03183 10.1002/ps.5226 10.1007/s12274-020-2700-5 10.1016/j.ibmb.2015.09.009 10.1021/acs.jafc.2c03821 10.1016/j.pestbp.2005.03.003 10.1016/0014-2999(85)90427-3 10.1016/j.nbt.2016.06.800 10.1016/j.vetpar.2005.11.001 10.1111/j.1600-0854.2007.00689.x 10.1021/cr078215f 10.1016/j.pestbp.2021.104801 10.1016/j.pt.2012.05.005 10.1021/acs.jafc.8b06511 10.1002/ps.946 10.1002/ps.1596 10.1146/annurev-ento-010715-023622 10.1074/jbc.M310207200 10.1021/jf5034575 10.1002/ps.6009 10.1002/biof.25 10.1016/j.cmet.2012.12.003 10.1111/1744-7917.12963 10.1111/j.1471-4159.2010.07022.x 10.1016/j.bioorg.2020.104493 10.1074/jbc.274.5.2625 10.1016/j.neuro.2013.04.006 10.1016/j.scitotenv.2021.151116 10.1016/j.jclepro.2020.124657 10.1194/jlr.M076745 10.1007/s11427-020-1834-9 10.3390/metabo12020158 10.1007/s00216-018-1355-5 10.1111/1744-7917.12038 10.1002/anie.201813744 10.1146/annurev-ento-011019-025010 10.1021/acs.analchem.9b04067 10.1021/acs.jafc.2c01867 10.1016/j.ecoenv.2020.111033 10.1042/bst0220230 10.1021/acs.jafc.2c00468 10.1021/acs.jafc.2c00635 10.1016/j.ecoenv.2018.06.084 10.1002/ps.1747 10.1016/j.ecoenv.2019.110020 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.jafc.2c06292 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1520-5118 |
EndPage | 222 |
ExternalDocumentID | 36538414 10_1021_acs_jafc_2c06292 b092043281 |
Genre | Journal Article |
GroupedDBID | --- -~X .K2 4.4 55A 5GY 5VS 7~N 85S 8W4 AABXI ABFLS ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED~ F5P GGK GNL GX1 IH9 JG~ LG6 P2P ROL TWZ UI2 VF5 VG9 W1F WH7 AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a369t-f94ff464eaba2fb8bbb9f125c27eb13520bf63e3a8601e4090f3cdd38423ee693 |
IEDL.DBID | ACS |
ISSN | 0021-8561 1520-5118 |
IngestDate | Fri Jul 11 08:02:19 EDT 2025 Fri Jul 11 12:25:51 EDT 2025 Thu Jan 02 22:53:46 EST 2025 Thu Apr 24 23:08:33 EDT 2025 Tue Jul 01 01:40:16 EDT 2025 Fri Jan 13 03:10:46 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | rotenone Plutella xylostella mass spectrometry imaging metabolomics lipidomics |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a369t-f94ff464eaba2fb8bbb9f125c27eb13520bf63e3a8601e4090f3cdd38423ee693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7841-2396 0000-0001-5079-4994 |
PMID | 36538414 |
PQID | 2756121458 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3040423953 proquest_miscellaneous_2756121458 pubmed_primary_36538414 crossref_primary_10_1021_acs_jafc_2c06292 crossref_citationtrail_10_1021_acs_jafc_2c06292 acs_journals_10_1021_acs_jafc_2c06292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-11 |
PublicationDateYYYYMMDD | 2023-01-11 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of agricultural and food chemistry |
PublicationTitleAlternate | J. Agric. Food Chem |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1016/j.scitotenv.2021.145170 – ident: ref43/cit43 doi: 10.1002/ps.449 – ident: ref20/cit20 doi: 10.1038/s41598-020-58796-9 – ident: ref40/cit40 doi: 10.1186/s12986-016-0080-3 – ident: ref36/cit36 doi: 10.1093/jisesa/ieaa049 – ident: ref3/cit3 doi: 10.1021/acs.jafc.8b03183 – ident: ref31/cit31 doi: 10.1002/ps.5226 – ident: ref32/cit32 doi: 10.1007/s12274-020-2700-5 – ident: ref42/cit42 doi: 10.1016/j.ibmb.2015.09.009 – ident: ref2/cit2 doi: 10.1021/acs.jafc.2c03821 – ident: ref44/cit44 doi: 10.1016/j.pestbp.2005.03.003 – ident: ref39/cit39 doi: 10.1016/0014-2999(85)90427-3 – ident: ref27/cit27 doi: 10.1016/j.nbt.2016.06.800 – ident: ref14/cit14 doi: 10.1016/j.vetpar.2005.11.001 – ident: ref50/cit50 doi: 10.1111/j.1600-0854.2007.00689.x – ident: ref38/cit38 doi: 10.1021/cr078215f – ident: ref9/cit9 doi: 10.1016/j.pestbp.2021.104801 – ident: ref37/cit37 doi: 10.1016/j.pt.2012.05.005 – ident: ref6/cit6 doi: 10.1021/acs.jafc.8b06511 – ident: ref35/cit35 doi: 10.1002/ps.946 – ident: ref28/cit28 doi: 10.1002/ps.1596 – ident: ref7/cit7 doi: 10.1146/annurev-ento-010715-023622 – ident: ref47/cit47 doi: 10.1074/jbc.M310207200 – ident: ref33/cit33 doi: 10.1021/jf5034575 – ident: ref19/cit19 doi: 10.1002/ps.6009 – ident: ref45/cit45 doi: 10.1002/biof.25 – ident: ref49/cit49 doi: 10.1016/j.cmet.2012.12.003 – ident: ref17/cit17 doi: 10.1111/1744-7917.12963 – ident: ref46/cit46 doi: 10.1111/j.1471-4159.2010.07022.x – ident: ref13/cit13 doi: 10.1016/j.bioorg.2020.104493 – ident: ref11/cit11 doi: 10.1074/jbc.274.5.2625 – ident: ref12/cit12 doi: 10.1016/j.neuro.2013.04.006 – ident: ref30/cit30 doi: 10.1016/j.scitotenv.2021.151116 – ident: ref1/cit1 doi: 10.1016/j.jclepro.2020.124657 – ident: ref48/cit48 doi: 10.1194/jlr.M076745 – ident: ref23/cit23 doi: 10.1007/s11427-020-1834-9 – ident: ref22/cit22 doi: 10.3390/metabo12020158 – ident: ref34/cit34 doi: 10.1007/s00216-018-1355-5 – ident: ref41/cit41 doi: 10.1111/1744-7917.12038 – ident: ref26/cit26 doi: 10.1002/anie.201813744 – ident: ref5/cit5 doi: 10.1146/annurev-ento-011019-025010 – ident: ref25/cit25 doi: 10.1021/acs.analchem.9b04067 – ident: ref8/cit8 doi: 10.1021/acs.jafc.2c01867 – ident: ref16/cit16 doi: 10.1016/j.ecoenv.2020.111033 – ident: ref10/cit10 doi: 10.1042/bst0220230 – ident: ref24/cit24 doi: 10.1021/acs.jafc.2c00468 – ident: ref4/cit4 doi: 10.1021/acs.jafc.2c00635 – ident: ref18/cit18 doi: 10.1016/j.ecoenv.2018.06.084 – ident: ref15/cit15 doi: 10.1002/ps.1747 – ident: ref21/cit21 doi: 10.1016/j.ecoenv.2019.110020 |
SSID | ssj0008570 |
Score | 2.4756653 |
Snippet | The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella... The botanical pesticide rotenone can effectively control target pest , yet insights into metabolic regulation of toward rotenone remain limited. Herein, we... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 211 |
SubjectTerms | adenosine monophosphate Agricultural and Environmental Chemistry Amino Acids - metabolism Animals biosynthesis diacylglycerols energy fatty acids food chemistry glycerophospholipids guanosine inosine Insecticides - pharmacology Larva lipid metabolism Lipidomics Moths pesticides Pesticides - metabolism pests Plutella xylostella rotenone Rotenone - toxicity toxicity tryptophan |
Title | Mechanism of Rotenone Toxicity against Plutella xylostella: New Perspective from a Spatial Metabolomics and Lipidomics Study |
URI | http://dx.doi.org/10.1021/acs.jafc.2c06292 https://www.ncbi.nlm.nih.gov/pubmed/36538414 https://www.proquest.com/docview/2756121458 https://www.proquest.com/docview/3040423953 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQeIEHxjfdYPIkeOAhXf1R1-GtqpgqpKIJNmlvke2cp46SoCWVBtofz12Sdhpj1d7yYSeycz7_Lnf3O8bepzJYkNElOQiVaOFNYo2AxA8MAPGtuKbG0uyrmZ7oL6fD02uanH89-FIcuFD1z10MfRkGRqaobh9KY0dkaI0n39dal4ja23AOkVgEBZ1L8n9PoI0oVDc3ojvQZbPLHG635YqqhpyQgkt-9Je174c_t6kb7zGAp-xJBzb5uJWOZ-wBFM_Z4_HZRUe4AS_Y1Qwo93de_eRl5N9KhNBlAfy4vJwHBOjcnbk5Ikh-hBJKgVL8Ei38qjn8xFFD8qPrbE1OuSrccSpzjGLNZ1CjiC0o77nirsg5FcrO21OKX_z9kp0cfj6eTJOuIkPilEnrJKY6Rm00OO9k9NZ7n0aESEGOUOcjlhv4aBQoZ9HOAzQdB1GFPFcWQRuASdUrtkWjeMN4HqUEFfG-FDoi0ITREATkJtXGBit67ANOXNatqCprnOVSZM1FnM2sm80eO1h9xix0tOZUXWOxocfHdY9fLaXHhrb7K8nIcN2RM8UVUC6rjGjzBdG827vbKNSQRLA4VD32uhWr9RuVwa1GC71zz3HuskdU6Z7-_gjxlm3VF0t4h3io9nvNQvgLDjYHJA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqcgAOlDdbXkaiBw7Zru2s6yBxWBWqLe1WFWyl3oLtjKuFZYOarNqt-DP8FX4ZM0l2KxCtuFTilnfs2DPzTTzzDWMvE-kNyGCjDISKYuF0ZLSAyHU0APGt2KrG0mBP9w_i94fdwyX2Y54Lg40o8ElFtYh_zi4g1unYZxt8W_qOlols4ih3YHaCXlrxZvstDumalFvvhpv9qCkkEFmlkzIKSRxCrGOwzsrgjHMuCWjZvdxAVYUQpOOCVqCsQfcE0OPpBOWzTBnEGgCa-JZQy19D7CPJv-ttflwoe-KHr6NIRGQQizQroX9rMdk_X_xu_y4AtZVx21phPxefpYpp-dKelq7tz_5gjPyvv9ttdquB1rxXy8IdtgSTu-xm7-i4oReBe-z7ACjTeVR85XngH3J0GPIJ8GF-OvLojnB7ZEeIl_k-yiOFhfHT2ZiyYHDzNUd7wPfPc1M5ZeZwy6moMwoxH0CJAjWmLO-C20nGqSx4Vu9StObsPju4ku4_YMvUi0eMZ0FKUAHPSxEHhNWw0QUBmU5ibbwRLbaGA5U2-qNIq9AAKdLqII5e2oxei63PZ0_qGxJ3qiUyvuSOV4s7vtUEJpdc-2I-IVPUMrR0ZCeQT4uUigQIIrU3F1-j0B4QnWRXtdjDejYv3qg0GtZYxKv_2M_n7Hp_ONhNd7f3dh6zGxKRJf33EuIJWy6Pp_AUkWDpnlWyyNmnq57EvwAO3msQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqIiE4lDddnkaiBw7Zru2s6yBxWLWsWspWK2il3oLtjKuFZVM1WdFF_Tv9K_wuZpLsIhCtuFTilnfs2DPzTTzzDWMvE-kNyGCjDISKYuF0ZLSAyHU0APGt2KrG0mBPbx_E7w67h0vsfJ4Lg40o8ElFtYhPUn2chYZhQKzT8c82-Lb0HS0T2cRS7sLsG3pqxZudLRzWNSn7b_c3t6OmmEBklU7KKCRxCLGOwTorgzPOuSSgdfdyA9UVwpCOC1qBsgZdFECvpxOUzzJlEG8AaOJcQk1_jVYJycfrbX5cKHziiK8jSURkEI80q6F_azHZQF_8bgMvALaVgevfYj8Wn6aKa_nSnpau7b__wRr533-722ylgdi8V8vEHbYEk7vsZu_opKEZgXvsbACU8TwqvvI88A85Og75BPh-fjry6JZwe2RHiJv5EOWSwsP46WxM2TC4-ZqjXeDDXzmqnDJ0uOVU3BmFmQ-gRMEaU7Z3we0k41QePKt3KWpzdp8dXEn3H7Bl6sUq41mQElTA81LEAeE1bHRBQKaTWBtvRIut4UCljR4p0ipEQIq0Ooijlzaj12Lr8xmU-obMnWqKjC-549XijuOayOSSa1_MJ2WK2oaWkOwE8mmRUrEAQeT25uJrFNoFopXsqhZ7WM_oxRuVRgMbi_jRP_bzObs-3Oqn73f2dh-zGxIBJv3-EuIJWy5PpvAUAWHpnlXiyNmnq57DPwHg2W2T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Rotenone+Toxicity+against+Plutella+xylostella%3A+New+Perspective+from+a+Spatial+Metabolomics+and+Lipidomics+Study&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Li%2C+Ping&rft.au=Tian%2C+Yongqing&rft.au=Du%2C+Mingyi&rft.au=Xie%2C+Qingrong&rft.date=2023-01-11&rft.issn=1520-5118&rft.eissn=1520-5118&rft.volume=71&rft.issue=1&rft.spage=211&rft_id=info:doi/10.1021%2Facs.jafc.2c06292&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon |