Proton Transfer Facilitated by Ligand Binding. An Energetic Analysis of the Catalytic Mechanism of Trypanosoma cruzi Trans-Sialidase
Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas’ disease in humans. This enzyme catalyzes the transfer of sialic acids from mammalian host cells to parasitic cell surfaces in order to mask the infection from the host’s immune system. It...
Saved in:
Published in | Biochemistry (Easton) Vol. 50; no. 5; pp. 836 - 842 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.02.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas’ disease in humans. This enzyme catalyzes the transfer of sialic acids from mammalian host cells to parasitic cell surfaces in order to mask the infection from the host’s immune system. It represents a promising target for the development of therapeutics to treat the disease and has been subject of extensive structural studies. Elaborate experiments suggested formation of a long-lived covalent intermediate in the catalytic mechanism and identified a Tyr/Glu pair as an unusual catalytic couple. This requires that the tyrosine hydroxyl proton is transferred to the carboxylate group of glutamate before the nucleophilic attack. Since the solution pK as of tyrosine and glutamate are very different, this transfer can only be accomplished if the reaction environment selectively stabilizes the product state. We compute the free energy profile for the proton transfer in different environments, and our results indicate that it can take place in the active site of trans-sialidase, but only after substrate binding. By means of the energy decomposition method, we explain the influence that the active site residues exert on the reaction and how the pattern is changed when the substrate is present. This study represents an initial step that can shed light on our understanding of the catalytic mechanism of this reaction. |
---|---|
AbstractList | Trans-sialidase is a crucial enzyme for the infection of
Trypanosoma cruzi
, the protozoa responsible for Chagas’ disease in humans. This enzyme catalyzes the transfer of sialic acids from mammalian host cells to parasitic cell surfaces in order to mask the infection from the host’s immune system. It represents a promising target for the development of therapeutics to treat the disease and has been subject of extensive structural studies. Elaborate experiments suggested formation of a long-lived covalent intermediate in the catalytic mechanism and identified a Tyr/Glu pair as an unusual catalytic couple. This requires that the tyrosine hydroxyl proton is transferred to the carboxylate group of glutamate, before the nucleophilic attack. Since the solution pKas of Tyrosine and Glutamate are very different, this transfer can only be accomplished if the reaction environment selectively stabilizes the product state. We compute the free energy profile for the proton transfer in different environments and our results indicate that it can take place in the active site of trans-sialidase, but only after substrate binding. By means of the energy decomposition method, we explain the influence that the active site residues exert on the reaction, and how the pattern is changed when the substrate is present. This study represents an initial step that can shed light on our understanding of the catalytic mechanism of this reaction. Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas' disease in humans. This enzyme catalyzes the transfer of sialic acids from mammalian host cells to parasitic cell surfaces in order to mask the infection from the host's immune system. It represents a promising target for the development of therapeutics to treat the disease and has been subject of extensive structural studies. Elaborate experiments suggested formation of a long-lived covalent intermediate in the catalytic mechanism and identified a Tyr/Glu pair as an unusual catalytic couple. This requires that the tyrosine hydroxyl proton is transferred to the carboxylate group of glutamate before the nucleophilic attack. Since the solution pK(a)s of tyrosine and glutamate are very different, this transfer can only be accomplished if the reaction environment selectively stabilizes the product state. We compute the free energy profile for the proton transfer in different environments, and our results indicate that it can take place in the active site of trans-sialidase, but only after substrate binding. By means of the energy decomposition method, we explain the influence that the active site residues exert on the reaction and how the pattern is changed when the substrate is present. This study represents an initial step that can shed light on our understanding of the catalytic mechanism of this reaction.Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas' disease in humans. This enzyme catalyzes the transfer of sialic acids from mammalian host cells to parasitic cell surfaces in order to mask the infection from the host's immune system. It represents a promising target for the development of therapeutics to treat the disease and has been subject of extensive structural studies. Elaborate experiments suggested formation of a long-lived covalent intermediate in the catalytic mechanism and identified a Tyr/Glu pair as an unusual catalytic couple. This requires that the tyrosine hydroxyl proton is transferred to the carboxylate group of glutamate before the nucleophilic attack. Since the solution pK(a)s of tyrosine and glutamate are very different, this transfer can only be accomplished if the reaction environment selectively stabilizes the product state. We compute the free energy profile for the proton transfer in different environments, and our results indicate that it can take place in the active site of trans-sialidase, but only after substrate binding. By means of the energy decomposition method, we explain the influence that the active site residues exert on the reaction and how the pattern is changed when the substrate is present. This study represents an initial step that can shed light on our understanding of the catalytic mechanism of this reaction. Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas’ disease in humans. This enzyme catalyzes the transfer of sialic acids from mammalian host cells to parasitic cell surfaces in order to mask the infection from the host’s immune system. It represents a promising target for the development of therapeutics to treat the disease and has been subject of extensive structural studies. Elaborate experiments suggested formation of a long-lived covalent intermediate in the catalytic mechanism and identified a Tyr/Glu pair as an unusual catalytic couple. This requires that the tyrosine hydroxyl proton is transferred to the carboxylate group of glutamate before the nucleophilic attack. Since the solution pK as of tyrosine and glutamate are very different, this transfer can only be accomplished if the reaction environment selectively stabilizes the product state. We compute the free energy profile for the proton transfer in different environments, and our results indicate that it can take place in the active site of trans-sialidase, but only after substrate binding. By means of the energy decomposition method, we explain the influence that the active site residues exert on the reaction and how the pattern is changed when the substrate is present. This study represents an initial step that can shed light on our understanding of the catalytic mechanism of this reaction. Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas' disease in humans. This enzyme catalyzes the transfer of sialic acids from mammalian host cells to parasitic cell surfaces in order to mask the infection from the host's immune system. It represents a promising target for the development of therapeutics to treat the disease and has been subject of extensive structural studies. Elaborate experiments suggested formation of a long-lived covalent intermediate in the catalytic mechanism and identified a Tyr/Glu pair as an unusual catalytic couple. This requires that the tyrosine hydroxyl proton is transferred to the carboxylate group of glutamate before the nucleophilic attack. Since the solution pK(a)s of tyrosine and glutamate are very different, this transfer can only be accomplished if the reaction environment selectively stabilizes the product state. We compute the free energy profile for the proton transfer in different environments, and our results indicate that it can take place in the active site of trans-sialidase, but only after substrate binding. By means of the energy decomposition method, we explain the influence that the active site residues exert on the reaction and how the pattern is changed when the substrate is present. This study represents an initial step that can shed light on our understanding of the catalytic mechanism of this reaction. |
Author | Roitberg, Adrian E Pierdominici-Sottile, Gustavo |
Author_xml | – sequence: 1 givenname: Gustavo surname: Pierdominici-Sottile fullname: Pierdominici-Sottile, Gustavo – sequence: 2 givenname: Adrian E surname: Roitberg fullname: Roitberg, Adrian E email: roitberg@ufl.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21162542$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUFv1DAQhS1URLeFA38A-YIQh7S24zjJBaldtQVpEUgsZ2viTHZdJfZiO0jbMz-8ibatAPU0mnnfvCfNnJAj5x0S8pazM84EP28sZ1zJ6u4FWfBCsEzWdXFEFowxlYlasWNyEuPt1EpWylfkWHCuRCHFgvz5Hnzyjq4DuNhhoNdgbG8TJGxps6cruwHX0kvrWus2Z_TC0SuHYYPJmqmBfh9tpL6jaYt0CWkazMpXNFtwNg6ztA77HTgf_QDUhPHOHtKyHxZ620LE1-RlB33ENw_1lPy8vlovP2erbzdflherDHJVp8wgr8pGCjSqY1gYQGGaqlCNqQsGpiu7gkNdll0uO2RCSW6mMSsaVrU5QJmfkk8H393YDNgadClAr3fBDhD22oPV_yrObvXG_9Y5y3Mp1WTw4cEg-F8jxqQHGw32PTj0Y9SVrCohhJrJd39HPWU8Xn4Czg-ACT7GgJ0289Wtn5NtrznT82_102-njY__bTyaPse-P7Bgor71Y5g-FZ_h7gEk67M_ |
CitedBy_id | crossref_primary_10_1371_journal_pone_0109559 crossref_primary_10_1021_bi201019n crossref_primary_10_1021_bi2009618 crossref_primary_10_1016_j_ijbiomac_2020_01_123 crossref_primary_10_1039_c4cp00351a crossref_primary_10_1074_jbc_M112_399303 crossref_primary_10_1021_ci5003069 crossref_primary_10_1128_AEM_01465_14 crossref_primary_10_1039_C5CP02016F crossref_primary_10_1021_acs_biochem_6b00461 crossref_primary_10_1021_jp512860r crossref_primary_10_4155_fmc_13_129 crossref_primary_10_1016_j_jmgm_2013_08_009 crossref_primary_10_1021_acs_jcim_9b01079 crossref_primary_10_1021_acs_biochem_8b00323 crossref_primary_10_1021_jp412294r crossref_primary_10_1002_cbic_201100421 crossref_primary_10_1016_j_carres_2019_05_004 crossref_primary_10_1002_prot_24408 crossref_primary_10_1016_j_bbapap_2014_02_011 crossref_primary_10_1073_pnas_1310964110 crossref_primary_10_1016_j_molstruc_2020_129459 crossref_primary_10_3390_ijms23010300 crossref_primary_10_1021_bi500589x crossref_primary_10_1021_acsomega_1c00096 crossref_primary_10_1021_ct400471m crossref_primary_10_1371_journal_pone_0201298 crossref_primary_10_1080_1061186X_2017_1289539 |
Cites_doi | 10.1021/bi000061+ 10.1038/35090602 10.1038/35099587 10.1021/jm0497343 10.1021/ja00138a016 10.1021/bi700460c 10.1016/S0021-9258(18)98428-0 10.1021/ar950140r 10.1073/pnas.57.3.483 10.1021/bi9613234 10.1073/pnas.052496399 10.1021/bi802230y 10.1016/S0959-440X(96)80014-5 10.1096/fasebj.11.4.9068613 10.1021/ja066334r 10.1146/annurev.ge.18.120184.002521 10.1002/jcc.10162 10.1016/S0166-1280(96)04875-0 10.1021/bi962734n 10.1002/(SICI)1097-0134(20000701)40:1<23::AID-PROT40>3.0.CO;2-7 10.1021/cr000407m 10.1021/ar900171c 10.1021/bi970071j 10.1002/1096-987X(200012)21:16<1458::AID-JCC4>3.0.CO;2-2 10.1016/j.zool.2003.10.002 10.1021/bi901790e 10.1016/0092-8674(91)90008-M 10.1016/j.str.2004.02.036 10.1021/ja0344967 10.1016/S0022-2836(03)00123-2 10.1002/prot.21123 10.1073/pnas.75.11.5250 10.1016/S0021-9258(17)37146-6 10.1021/bi00514a028 10.1021/ja00124a002 10.1021/bi034824f 10.1073/pnas.93.24.13665 10.1063/1.469348 10.1111/j.1432-1033.1993.tb17818.x 10.1002/jcc.540130812 10.1021/bi00238a002 10.1126/science.1411573 10.1063/1.448118 10.1080/15216540211468 10.1063/1.464397 10.1021/bi00084a012 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/bi101648z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 842 |
ExternalDocumentID | PMC3033446 21162542 10_1021_bi101648z b323257592 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation | This work was funded by the National Institutes of Health (NIH 1R01AI073674-01). |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: 1R01AI073674-01 – fundername: NIAID NIH HHS grantid: R01 AI073674 |
GroupedDBID | - .K2 02 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS ADBIT AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK XSW ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a369t-ce187b42ec6f0e5cae2cb856bc950acf7f51a977f34fe02641c0ac05b08d3aa73 |
IEDL.DBID | ACS |
ISSN | 0006-2960 1520-4995 |
IngestDate | Thu Aug 21 18:32:46 EDT 2025 Fri Jul 11 13:39:21 EDT 2025 Mon Jul 21 06:06:51 EDT 2025 Thu Apr 24 23:03:31 EDT 2025 Tue Jul 01 02:05:53 EDT 2025 Thu Feb 04 21:42:53 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a369t-ce187b42ec6f0e5cae2cb856bc950acf7f51a977f34fe02641c0ac05b08d3aa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21162542 |
PQID | 848822266 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3033446 proquest_miscellaneous_848822266 pubmed_primary_21162542 crossref_citationtrail_10_1021_bi101648z crossref_primary_10_1021_bi101648z acs_journals_10_1021_bi101648z |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-08 |
PublicationDateYYYYMMDD | 2011-02-08 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Gao J. (ref46/cit46) 1995; 117 Garcia-Viloca M. (ref38/cit38) 2003; 42 Varki A. (ref10/cit10) 1997; 11 Garcia-Viloca M. (ref43/cit43) 2003; 327 Phillips D. C. (ref24/cit24) 1967; 57 Zhou M. M. (ref49/cit49) 1993; 32 Wong K. (ref41/cit41) 2007; 46 Vocadlo D. J. (ref3/cit3) 2001; 412 Mucci J. (ref14/cit14) 2002; 99 Darden T. (ref30/cit30) 1993; 98 Stanley P. (ref17/cit17) 1984; 18 Schauer R. (ref9/cit9) 2004; 107 Hensen C. (ref39/cit39) 2004; 47 Schenkman S. (ref15/cit15) 1994; 269 Kirby A. J. (ref23/cit23) 1987; 22 Warshel A. (ref7/cit7) 1978; 75 Horenstein B. (ref22/cit22) 2002; 47 Acevedo O. (ref48/cit48) 2009; 43 Cornell W. D. (ref29/cit29) 1995; 117 Gao J. (ref45/cit45) 1996; 29 Chatfield D. C. (ref34/cit34) 1998; 423 Demir O. z. (ref21/cit21) 2009; 48 Warshel A. (ref5/cit5) 1996; 93 Taylor G. (ref11/cit11) 1996; 6 Dinner A. R. (ref37/cit37) 2001; 413 ref25/cit25 Warshel A. (ref6/cit6) 1991; 20 Mo Y. (ref47/cit47) 2000; 21 Harris T. K. (ref1/cit1) 2002; 53 Chivers P. T. (ref51/cit51) 1997; 36 Nielsen E. J. (ref4/cit4) 2003; 12 Lin Y. (ref33/cit33) 2010; 49 ref26/cit26 Davenport R. C. (ref36/cit36) 1991; 30 Schenkman S. (ref16/cit16) 1991; 65 McIntosh L. P. (ref2/cit2) 1991; 35 Lamotte-Brasseur J. (ref50/cit50) 2000; 40 Cunningham M. A. (ref35/cit35) 1997; 36 Kumar S. (ref32/cit32) 1992; 13 Gao J. (ref42/cit42) 1992; 258 Watts A. G. (ref19/cit19) 2003; 125 Major D. T. (ref40/cit40) 2006; 128 Amaya M. (ref20/cit20) 2004; 12 Hornak V. (ref28/cit28) 2006; 65 Angata T. (ref8/cit8) 2002; 102 Orozco M. (ref44/cit44) 1995; 102 Scudder P. (ref13/cit13) 1993; 268 Repasky M. P. (ref27/cit27) 2002; 23 Ferrero-Garcia M. A. (ref12/cit12) 1993; 213 Yang J. (ref18/cit18) 2000; 39 Berendsen H. J. C. (ref31/cit31) 1984; 81 |
References_xml | – volume: 39 start-page: 5902 year: 2000 ident: ref18/cit18 publication-title: Biochemistry doi: 10.1021/bi000061+ – volume: 412 start-page: 835 year: 2001 ident: ref3/cit3 publication-title: Nature doi: 10.1038/35090602 – volume: 413 start-page: 752 year: 2001 ident: ref37/cit37 publication-title: Nature doi: 10.1038/35099587 – ident: ref25/cit25 – volume: 47 start-page: 6673 year: 2004 ident: ref39/cit39 publication-title: J. Med. Chem. doi: 10.1021/jm0497343 – volume: 117 start-page: 8600 year: 1995 ident: ref46/cit46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00138a016 – volume: 46 start-page: 13352 year: 2007 ident: ref41/cit41 publication-title: Biochemistry doi: 10.1021/bi700460c – volume: 268 start-page: 9886 year: 1993 ident: ref13/cit13 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)98428-0 – volume: 29 start-page: 298 year: 1996 ident: ref45/cit45 publication-title: Acc. Chem. Res. doi: 10.1021/ar950140r – volume: 57 start-page: 483 year: 1967 ident: ref24/cit24 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.57.3.483 – volume: 35 start-page: 9958 year: 1991 ident: ref2/cit2 publication-title: Biochemistry doi: 10.1021/bi9613234 – volume: 99 start-page: 3896 year: 2002 ident: ref14/cit14 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.052496399 – volume: 48 start-page: 3398 year: 2009 ident: ref21/cit21 publication-title: Biochemistry doi: 10.1021/bi802230y – volume: 6 start-page: 830 year: 1996 ident: ref11/cit11 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(96)80014-5 – volume: 11 start-page: 248 year: 1997 ident: ref10/cit10 publication-title: FASEB J. doi: 10.1096/fasebj.11.4.9068613 – volume: 128 start-page: 16345 year: 2006 ident: ref40/cit40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja066334r – volume: 18 start-page: 525 year: 1984 ident: ref17/cit17 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.ge.18.120184.002521 – volume: 23 start-page: 1601 year: 2002 ident: ref27/cit27 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10162 – volume: 47 start-page: S25 issue: 1 year: 2002 ident: ref22/cit22 publication-title: Nukleonika – volume: 22 start-page: 283 year: 1987 ident: ref23/cit23 publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 423 start-page: 79 year: 1998 ident: ref34/cit34 publication-title: J. Mol. Struct.: THEOCHEM doi: 10.1016/S0166-1280(96)04875-0 – volume: 36 start-page: 4800 year: 1997 ident: ref35/cit35 publication-title: Biochemistry doi: 10.1021/bi962734n – volume: 40 start-page: 23 year: 2000 ident: ref50/cit50 publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/(SICI)1097-0134(20000701)40:1<23::AID-PROT40>3.0.CO;2-7 – volume: 102 start-page: 439 year: 2002 ident: ref8/cit8 publication-title: Chem. Rev. doi: 10.1021/cr000407m – volume: 43 start-page: 142 year: 2009 ident: ref48/cit48 publication-title: Acc. Chem. Res. doi: 10.1021/ar900171c – volume: 36 start-page: 14985 year: 1997 ident: ref51/cit51 publication-title: Biochemistry doi: 10.1021/bi970071j – volume: 21 start-page: 1458 year: 2000 ident: ref47/cit47 publication-title: J. Comput. Chem. doi: 10.1002/1096-987X(200012)21:16<1458::AID-JCC4>3.0.CO;2-2 – volume: 107 start-page: 49 year: 2004 ident: ref9/cit9 publication-title: Zoology doi: 10.1016/j.zool.2003.10.002 – volume: 49 start-page: 84 year: 2010 ident: ref33/cit33 publication-title: Biochemistry doi: 10.1021/bi901790e – volume: 65 start-page: 1117 year: 1991 ident: ref16/cit16 publication-title: Cell doi: 10.1016/0092-8674(91)90008-M – volume: 12 start-page: 775 year: 2004 ident: ref20/cit20 publication-title: Structure doi: 10.1016/j.str.2004.02.036 – volume: 12 volume-title: Calculating pKa values in enzyme active sites year: 2003 ident: ref4/cit4 – volume: 125 start-page: 7532 year: 2003 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0344967 – ident: ref26/cit26 – volume: 327 start-page: 549 year: 2003 ident: ref43/cit43 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00123-2 – volume: 65 start-page: 712 year: 2006 ident: ref28/cit28 publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.21123 – volume: 75 start-page: 5250 year: 1978 ident: ref7/cit7 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.75.11.5250 – volume: 269 start-page: 7970 year: 1994 ident: ref15/cit15 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)37146-6 – volume: 20 start-page: 3167 year: 1991 ident: ref6/cit6 publication-title: Biochemistry doi: 10.1021/bi00514a028 – volume: 117 start-page: 5179 year: 1995 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00124a002 – volume: 42 start-page: 13558 year: 2003 ident: ref38/cit38 publication-title: Biochemistry doi: 10.1021/bi034824f – volume: 93 start-page: 13665 year: 1996 ident: ref5/cit5 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.24.13665 – volume: 102 start-page: 6145 year: 1995 ident: ref44/cit44 publication-title: J. Chem. Phys. doi: 10.1063/1.469348 – volume: 213 start-page: 765 year: 1993 ident: ref12/cit12 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1993.tb17818.x – volume: 13 start-page: 1011 year: 1992 ident: ref32/cit32 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130812 – volume: 30 start-page: 5821 year: 1991 ident: ref36/cit36 publication-title: Biochemistry doi: 10.1021/bi00238a002 – volume: 258 start-page: 631 year: 1992 ident: ref42/cit42 publication-title: Science doi: 10.1126/science.1411573 – volume: 81 start-page: 3684 year: 1984 ident: ref31/cit31 publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 53 start-page: 85 year: 2002 ident: ref1/cit1 publication-title: IUBMB Life doi: 10.1080/15216540211468 – volume: 98 start-page: 10089 year: 1993 ident: ref30/cit30 publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 32 start-page: 8479 year: 1993 ident: ref49/cit49 publication-title: Biochemistry doi: 10.1021/bi00084a012 |
SSID | ssj0004074 |
Score | 2.1669314 |
Snippet | Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas’ disease in humans. This enzyme catalyzes the... Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas' disease in humans. This enzyme catalyzes the... Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi , the protozoa responsible for Chagas’ disease in humans. This enzyme catalyzes the... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 836 |
SubjectTerms | Catalysis Catalytic Domain Energy Transfer Glycoproteins - chemistry Kinetics Ligands Models, Molecular Neuraminidase - chemistry Protein Binding Protons Protozoan Proteins - chemistry Trypanosoma cruzi - chemistry Trypanosoma cruzi - enzymology |
Title | Proton Transfer Facilitated by Ligand Binding. An Energetic Analysis of the Catalytic Mechanism of Trypanosoma cruzi Trans-Sialidase |
URI | http://dx.doi.org/10.1021/bi101648z https://www.ncbi.nlm.nih.gov/pubmed/21162542 https://www.proquest.com/docview/848822266 https://pubmed.ncbi.nlm.nih.gov/PMC3033446 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9lAuUFoeC6WyAFW9eEkcx0mPy9JVhShCaiv1FvkJEWyCkt3D7pkfzjiPpUsfXMeTRI4f83225zPAO8GdMDJIqOZpRDlCZqqwrakxKdoTDOiN8PzZF3F6yT9dxVcb8PaOHXwWvle5J5g8XT6ALSZw8Hr8Mz7_m_wYdFLLSI0Z4vFePuj6oz706Ho99NzAk_8ei7wWZyaP4WOfrdMeL_kxnM_UUC9vijfeV4UdeNThTDJqO8YT2LDFLuyNCuTY0wU5JM3Jz2ZJfRe2x_2tb3vw-2tVIhwkTQxztiITqVshb2uIWpDP-TdZGPIhb7JhhmRUkBOfPuhzIUmvcEJKRxBYkrFfG1r4kjPrM4zzeuqLLqoFzkFlXU4l0dV8mbdfo-c4FnKDYfUpXE5OLsantLupgcpIHM-otmGaKM6sFi6wsZaWaZXGQunjOJDaJS4OJSJNF3FnkfXxUKM5iFWQmkjKJHoGm0VZ2BdA0BJrbSUCGe13qBUSJGVCZoLEosUN4ACbMutGWp01m-gszFb_eABHfStnutM599dt_LzN9c3K9Vcr7nGbE-m7SoZt4fdTZGHLeZ2lOPkhvBJiAM_bnrN6C9JqJJacDSBZ61MrB6_qvV5S5N8bdW_EFBFy9Jf_q-creNiubzMapPuwOavm9jUCpJk6aAbIH2QMDRQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BOZQLj5ZHgBYLIcTF6T68jx5D1ChAUiE1lXpb-QkryC7aTQ7JuT-8Y-9u2rSV4Gp7vX6MPd94PJ8BPsbMxIp7CZUsDSlDyEwFzjVVKsX0BBW6I56fnsbjc_btIrpoaXJsLAw2osaaaufEv2YX8I9Ebu1Mlq4fwiMEIYGV5sHw7DoG0msZl9FCDhCWdyxCNz-1GkjW2xroDqy8fTvyhroZPW3eLXINdbdMfveXC9GX61scjv_Xk2fwpEWdZNCIyXN4oIs92B8UaHHPV-QTcfdA3QH7HuwOuzfg9uHyR1UiOCROoxldkRGXDa23VkSsyCT_yQtFvuQuNqZPBgU5scGENjKSdHwnpDQEYSYZ2pOilc2ZahtvnNdzmzWrVrgjlXU550RWy3Xe_I2e4crIFSrZF3A-OpkNx7R9t4HyMD5eUKn9NBEs0DI2no4k14EUaRQLeRx5XJrERD5H3GlCZjTagMyXmOxFwktVyHkSvoSdoiz0ayCYEkmpOcIaaf3VAs0lofxAeYnGFNODQxzirF13deZc6oGfbca4B5-7yc5ky3puH9_4c1_RD5uifxuqj_sKkU5iMpwL613hhS6XdZbiVohgK4578KoRoE0taGSjmcmCHiRborUpYDm-t3OK_Jfj-kaEEaLF_uZf_XwPu-PZdJJNvp5-fwuPm5PvgHrpO9hZVEt9gNBpIQ7dmrkCp8sVdQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH6CIkEvLC2UKVAshBAXD1mcpcdh6KhAWyq1lXqLvLYRTFIlM4eZc384z85Cp1SCq-0sjp_zvs_P7zPA-5iZWHEvoZKlIWUImanAsaZKpVieoEN3wvOHR_H-Gft2Hp23RNHmwuBL1Hin2gXx7ay-UqZVGPA_idxyTZYu78MDG66zFj0an_zJg_Ra1WVkyQFC805J6Oal1gvJetUL_QUtb--QvOFyJk_gR_-ybqfJz-F8JoZyeUvH8f978xQet-iTjBpzeQb3dLEBm6MCmfd0QT4Qtx_ULbRvwKNxdxbcJlwfVyWCROI8m9EVmXDZyHtrRcSCHOQXvFDkc-5yZIZkVJA9m1RoMyRJp3tCSkMQbpKxXTFa2JpDbfOO83pqq06rBf6ZyrqcciKr-TJvnkZPcIbkCp3tczib7J2O92l7fgPlYbw7o1L7aSJYoGVsPB1JrgMp0igWcjfyuDSJiXyO-NOEzGjkgsyXWOxFwktVyHkSvoC1oiz0SyBYEkmpOcIbaePWAmmTUH6gvERjiRnADn7mrJ1_deZC64Gf9d94AB-7Ac9kq35uD-H4dVfTd33Tq0by465GpLOaDMfCRll4oct5naX4S0TQFccD2GqMqL8Lkm2kmywYQLJiXn0Dq_W9WlPkl07zG5FGiMx9-1_9fAsPj79MsoOvR99fwXqzAB5QL30Na7Nqrt8ggpqJHTdtfgOCZRf4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proton+Transfer+Facilitated+by+Ligand+Binding.+An+Energetic+Analysis+of+the+Catalytic+Mechanism+of+Trypanosoma+cruzi+Trans-Sialidase&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Pierdominici-Sottile%2C+Gustavo&rft.au=Roitberg%2C+Adrian+E&rft.date=2011-02-08&rft.pub=American+Chemical+Society&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=50&rft.issue=5&rft.spage=836&rft.epage=842&rft_id=info:doi/10.1021%2Fbi101648z&rft.externalDocID=b323257592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |