Kinetics of Amyloid β Monomer-to-Oligomer Exchange by NMR Relaxation
Recent studies have implicated non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of...
Saved in:
Published in | Journal of the American Chemical Society Vol. 132; no. 29; pp. 9948 - 9951 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.07.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have implicated non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Aβ(1−40). 15N and 1HN R 2 data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in 15N and 1HN R 2 rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species (“dark” state). At a total Aβ(1−40) concentration of 300 μM, the apparent first-order rate constant for this process is ∼3 s−1. Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k off of 73 s−1 and transiently bound monomer 1HN R 2 rates of up to 42 000 s−1 in the tightly bound central hydrophobic region and ∼300 s−1 in the disordered regions, such as the first nine residues. The fraction of peptide within the “dark” oligomeric state undergoing exchange with free monomer is calculated to be ∼3%. |
---|---|
AbstractList | Recent studies have implicated non-fibrillar oligomers of the amyloid beta (Abeta) peptide as the primary toxic species in Alzheimer's disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Abeta(1-40). (15)N and (1)H(N) R(2) data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in (15)N and (1)H(N) R(2) rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species ("dark" state). At a total Abeta(1-40) concentration of 300 microM, the apparent first-order rate constant for this process is approximately 3 s(-1). Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k(off) of 73 s(-1) and transiently bound monomer (1)H(N) R(2) rates of up to 42,000 s(-1) in the tightly bound central hydrophobic region and approximately 300 s(-1) in the disordered regions, such as the first nine residues. The fraction of peptide within the "dark" oligomeric state undergoing exchange with free monomer is calculated to be approximately 3%.Recent studies have implicated non-fibrillar oligomers of the amyloid beta (Abeta) peptide as the primary toxic species in Alzheimer's disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Abeta(1-40). (15)N and (1)H(N) R(2) data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in (15)N and (1)H(N) R(2) rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species ("dark" state). At a total Abeta(1-40) concentration of 300 microM, the apparent first-order rate constant for this process is approximately 3 s(-1). Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k(off) of 73 s(-1) and transiently bound monomer (1)H(N) R(2) rates of up to 42,000 s(-1) in the tightly bound central hydrophobic region and approximately 300 s(-1) in the disordered regions, such as the first nine residues. The fraction of peptide within the "dark" oligomeric state undergoing exchange with free monomer is calculated to be approximately 3%. Recent studies have implicated non-fibrillar oligomers of the amyloid beta (Abeta) peptide as the primary toxic species in Alzheimer's disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Abeta(1-40). (15)N and (1)H(N) R(2) data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in (15)N and (1)H(N) R(2) rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species ("dark" state). At a total Abeta(1-40) concentration of 300 microM, the apparent first-order rate constant for this process is approximately 3 s(-1). Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k(off) of 73 s(-1) and transiently bound monomer (1)H(N) R(2) rates of up to 42,000 s(-1) in the tightly bound central hydrophobic region and approximately 300 s(-1) in the disordered regions, such as the first nine residues. The fraction of peptide within the "dark" oligomeric state undergoing exchange with free monomer is calculated to be approximately 3%. Recent studies have implicated non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Aβ(1−40). 15N and 1HN R 2 data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in 15N and 1HN R 2 rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species (“dark” state). At a total Aβ(1−40) concentration of 300 μM, the apparent first-order rate constant for this process is ∼3 s−1. Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k off of 73 s−1 and transiently bound monomer 1HN R 2 rates of up to 42 000 s−1 in the tightly bound central hydrophobic region and ∼300 s−1 in the disordered regions, such as the first nine residues. The fraction of peptide within the “dark” oligomeric state undergoing exchange with free monomer is calculated to be ∼3%. Recent studies implicating non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease have made Aβ oligomers the subject of intense study. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Aβ (1–40). 15 N-R 2 and 1 H N -R 2 data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR invisible soluble oligomeric species. The increase in 15 N- and 1 H N -R 2 rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR invisible oligomeric species (‘dark’ state). At a total Aβ(1–40) concentration of 300 µM, the apparent first order rate constant for this process is ~3 s −1 . Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k off of 73 s −1 and transiently-bound-monomer 1 H N -R 2 rates of up to 42,000 s −1 in the tightly bound central hydrophobic region and ~300 s −1 in the disordered regions such as the first nine residues. The fraction of peptide within the ‘dark’ oligomeric state undergoing exchange with free monomer is calculated to be ~3%. The relatively rapid exchange between the monomer and the polymorphic oligomeric form suggests that therapeutic efforts aimed at altering the equilibrium distribution between these species may be more successful than for the extremely stable fibril form. |
Author | Torchia, Dennis A Clore, G. Marius Fawzi, Nicolas L Ying, Jinfa |
Author_xml | – sequence: 1 givenname: Nicolas L surname: Fawzi fullname: Fawzi, Nicolas L – sequence: 2 givenname: Jinfa surname: Ying fullname: Ying, Jinfa – sequence: 3 givenname: Dennis A surname: Torchia fullname: Torchia, Dennis A – sequence: 4 givenname: G. Marius surname: Clore fullname: Clore, G. Marius email: mariusc@mail.nih.gov |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20604554$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd9OwjAUxhuDkT964QuY3RjjxaTt1q27MSEE_0SQhOh105UOSrYW183Aa_kgPpNFkKjhqqfp73xfz3faoKGNlgCcI3iDIEbdBUcwpJgER6CFCIY-QThqgBaEEPsxjYImaFu7cNcQU3QCmhhGMCQkbIHBk9KyUsJ6JvN6xTo3aup9fngjo00hS78y_jhXs03tDVZizvVMeunaex5NvInM-YpXyuhTcJzx3Mqz3dkBr3eDl_6DPxzfP_Z7Q58HUVL5wvmimGYIZyJ1_lKgmMsMJoIIjkIcTTGHUsRBRlOEJKQxTyiCJAlJQBI3RwfcbnWXdVrIqZC6KnnOlqUqeLlmhiv290WrOZuZd4YTRGiQOIGrnUBp3mppK1YoK2Secy1NbVkc0oTCgASOvPhttff4ic4B11tAlMbaUmZ7BEG2WQvbr8Wx3X-sUNV3cu6XKj_Ycbnt4MKyhalL7XI9wH0BPmqZzQ |
CitedBy_id | crossref_primary_10_3390_ijms24065191 crossref_primary_10_1039_D0MA00760A crossref_primary_10_1016_j_jmr_2020_106874 crossref_primary_10_1021_bi201435d crossref_primary_10_1021_jacs_7b05012 crossref_primary_10_1186_s12915_020_0751_4 crossref_primary_10_1021_jacs_6b04511 crossref_primary_10_1074_jbc_M117_792853 crossref_primary_10_1038_s41589_024_01806_y crossref_primary_10_1007_s10858_015_9925_8 crossref_primary_10_1146_annurev_biophys_090921_120150 crossref_primary_10_1021_bi500131a crossref_primary_10_1016_j_febslet_2011_03_014 crossref_primary_10_1016_j_febslet_2012_09_035 crossref_primary_10_1021_ac400023c crossref_primary_10_1073_pnas_2305823120 crossref_primary_10_1021_ja409801p crossref_primary_10_1007_s00018_014_1634_z crossref_primary_10_1016_j_pnmrs_2014_05_003 crossref_primary_10_1016_j_pnmrs_2015_05_002 crossref_primary_10_1002_pro_5178 crossref_primary_10_1002_anie_201308512 crossref_primary_10_1016_j_jbc_2022_102162 crossref_primary_10_1039_C5QI00219B crossref_primary_10_1039_D3CC01791E crossref_primary_10_1021_jp511758w crossref_primary_10_1007_s10858_011_9511_7 crossref_primary_10_1016_j_bpj_2017_06_067 crossref_primary_10_1007_s10858_019_00244_6 crossref_primary_10_1126_science_abh3602 crossref_primary_10_1002_ange_201007824 crossref_primary_10_1017_S0033583516000019 crossref_primary_10_1021_acsanm_0c02381 crossref_primary_10_1002_ange_201308512 crossref_primary_10_1016_j_dyepig_2020_108931 crossref_primary_10_1021_acs_jpcb_0c11162 crossref_primary_10_1021_acs_chemrev_3c00042 crossref_primary_10_1021_acs_analchem_9b00143 crossref_primary_10_1016_j_jbc_2021_101259 crossref_primary_10_1016_j_bbrc_2012_05_013 crossref_primary_10_1017_S0033583514000122 crossref_primary_10_1016_j_bbadis_2014_01_002 crossref_primary_10_1021_ja507310m crossref_primary_10_1038_s41467_019_11594_y crossref_primary_10_1074_jbc_M111_235762 crossref_primary_10_1021_ja405239v crossref_primary_10_1073_pnas_1222478110 crossref_primary_10_1021_acsmacrolett_1c00628 crossref_primary_10_1039_D1SC06337E crossref_primary_10_1016_j_bpj_2017_06_030 crossref_primary_10_1016_j_ejmech_2011_10_008 crossref_primary_10_1021_acs_jpclett_7b01019 crossref_primary_10_1021_acs_jpcb_8b07112 crossref_primary_10_1021_acs_langmuir_0c01256 crossref_primary_10_1007_s10858_023_00431_6 crossref_primary_10_1016_j_jmb_2012_05_034 crossref_primary_10_1016_j_pep_2011_05_012 crossref_primary_10_1021_acs_jpcb_2c03519 crossref_primary_10_1002_anie_201405180 crossref_primary_10_1073_pnas_1510083112 crossref_primary_10_1007_s00775_014_1131_8 crossref_primary_10_1007_s10858_014_9822_6 crossref_primary_10_1021_acs_jpcb_1c04853 crossref_primary_10_1016_j_pnmrs_2016_10_002 crossref_primary_10_1039_C7CP07516B crossref_primary_10_1016_j_abb_2017_05_016 crossref_primary_10_1007_s10858_016_0053_x crossref_primary_10_1021_acs_jpclett_7b03442 crossref_primary_10_1021_bi500910b crossref_primary_10_1021_acs_biochem_5b00467 crossref_primary_10_1038_s41594_021_00677_4 crossref_primary_10_1021_acschemneuro_5b00325 crossref_primary_10_1021_jp305279w crossref_primary_10_3390_molecules27154787 crossref_primary_10_1016_j_pep_2015_07_012 crossref_primary_10_1038_nprot_2012_077 crossref_primary_10_1021_acs_inorgchem_6b00525 crossref_primary_10_1016_j_bbapap_2015_04_024 crossref_primary_10_1016_j_bbagen_2016_03_010 crossref_primary_10_1016_j_molcel_2011_05_012 crossref_primary_10_1016_j_jbc_2022_102501 crossref_primary_10_1016_j_chemphyslip_2021_105062 crossref_primary_10_1039_C8CC00167G crossref_primary_10_1042_BST20130232 crossref_primary_10_1073_pnas_1305715110 crossref_primary_10_1016_j_bbrc_2011_06_133 crossref_primary_10_1021_acs_biochem_1c00781 crossref_primary_10_1021_acschemneuro_9b00015 crossref_primary_10_1016_j_bpc_2021_106665 crossref_primary_10_1038_s41598_023_29901_5 crossref_primary_10_1124_molpharm_123_000726 crossref_primary_10_1002_pro_576 crossref_primary_10_1042_BCJ20160098 crossref_primary_10_1002_ijch_201600105 crossref_primary_10_1007_s10867_016_9408_5 crossref_primary_10_1021_acs_biochem_6b01237 crossref_primary_10_1002_anie_201007824 crossref_primary_10_1021_jacs_0c13289 crossref_primary_10_1016_j_jbc_2022_101566 crossref_primary_10_1074_jbc_M113_470450 crossref_primary_10_1016_j_pnmrs_2024_07_001 crossref_primary_10_1073_pnas_1817477115 crossref_primary_10_1002_cbic_202200760 crossref_primary_10_1016_j_abb_2020_108304 crossref_primary_10_1021_acs_jpcb_8b00689 crossref_primary_10_1021_acs_jpclett_4c02509 crossref_primary_10_1039_C8CC01380B crossref_primary_10_1002_ijch_201900080 crossref_primary_10_15252_embj_201696394 crossref_primary_10_1002_cbic_201300262 crossref_primary_10_1039_C9CC01067J crossref_primary_10_1021_acs_biochem_5b01259 crossref_primary_10_1021_jacs_8b11441 crossref_primary_10_1016_j_bpc_2020_106531 crossref_primary_10_1021_acs_biochem_1c00147 crossref_primary_10_1038_srep17842 crossref_primary_10_1038_srep21826 crossref_primary_10_1016_j_ijbiomac_2016_09_074 crossref_primary_10_1021_bi400027y crossref_primary_10_1021_acschemneuro_7b00360 crossref_primary_10_1002_ange_201405180 crossref_primary_10_1039_D2NA00099G crossref_primary_10_1002_ange_201914559 crossref_primary_10_1002_chem_201203764 crossref_primary_10_1016_j_jmb_2011_12_023 crossref_primary_10_1016_j_molcel_2017_12_022 crossref_primary_10_1021_acschemneuro_3c00130 crossref_primary_10_1093_jb_mvx056 crossref_primary_10_1007_s10858_017_0099_4 crossref_primary_10_1248_bpb_b19_00115 crossref_primary_10_1038_s41594_019_0250_x crossref_primary_10_1021_acs_biochem_5b00670 crossref_primary_10_1002_cmdc_201500057 crossref_primary_10_1007_s10858_018_0193_2 crossref_primary_10_1074_jbc_M111_325456 crossref_primary_10_1002_anie_201704471 crossref_primary_10_1371_journal_pone_0170749 crossref_primary_10_1021_acs_jpclett_9b00985 crossref_primary_10_1021_bi3001616 crossref_primary_10_1016_j_jinorgbio_2016_04_022 crossref_primary_10_1002_anie_201914559 crossref_primary_10_1016_j_ijbiomac_2023_124470 crossref_primary_10_1021_acschemneuro_8b00733 crossref_primary_10_1016_j_bpj_2021_09_037 crossref_primary_10_1111_febs_17084 crossref_primary_10_1021_jp411543y crossref_primary_10_1016_j_pnmrs_2021_10_001 crossref_primary_10_1002_ange_201704471 crossref_primary_10_1016_j_bbrc_2012_04_043 crossref_primary_10_1021_bi5003579 crossref_primary_10_1039_C9SC01331H crossref_primary_10_1038_s41594_020_0399_3 crossref_primary_10_1038_nature10577 crossref_primary_10_1016_j_bbapap_2017_06_012 |
Cites_doi | 10.1023/A:1013328206498 10.1126/science.1105850 10.1103/PhysRevE.80.041906 10.1038/nature05201 10.1023/A:1008309220156 10.1021/ja9105495 10.1063/1.3216103 10.2174/156720508784533358 10.1016/j.jmb.2009.05.066 10.1021/ar050063s 10.1126/science.1124964 10.1073/pnas.0506723102 10.1021/bi802046n 10.1056/NEJMra0909142 10.1038/nchem.247 10.1021/ja046032u 10.1016/j.jmb.2006.09.046 10.1073/pnas.0812033106 10.1016/j.jmr.2006.10.003 10.1063/1.1744152 10.1126/science.1132814 10.1073/pnas.0907821106 10.1016/S0076-6879(99)09036-9 10.1021/ja710493m 10.1016/j.biocel.2008.12.015 10.1021/bi051952q 10.1111/j.1471-4159.2006.04426.x 10.1016/j.jmb.2007.04.014 10.1073/pnas.262663499 10.4161/pri.3.4.10112 10.1126/science.1178250 |
ContentType | Journal Article |
Copyright | Copyright © 2010 U.S. Government |
Copyright_xml | – notice: Copyright © 2010 U.S. Government |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/ja1048253 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 9951 |
ExternalDocumentID | PMC2915839 20604554 10_1021_ja1048253 b733841466 |
Genre | Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 DK029023 |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a369t-c206178f12fcb455ec17aef09c5ca1426d2a0ec73f8b11e087a98105945359863 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 18:43:23 EDT 2025 Mon Jul 21 09:25:01 EDT 2025 Mon Jul 21 05:16:52 EDT 2025 Tue Jul 01 04:15:02 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a369t-c206178f12fcb455ec17aef09c5ca1426d2a0ec73f8b11e087a98105945359863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20604554 |
PQID | 748980353 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2915839 proquest_miscellaneous_748980353 pubmed_primary_20604554 crossref_primary_10_1021_ja1048253 crossref_citationtrail_10_1021_ja1048253 acs_journals_10_1021_ja1048253 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100728 2010-07-28 2010-Jul-28 |
PublicationDateYYYYMMDD | 2010-07-28 |
PublicationDate_xml | – month: 07 year: 2010 text: 20100728 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Bernstein S. L. (ref10/cit10a) 2009; 1 McConnell H. M. (ref22/cit22a) 1958; 28 Petkova A. T. (ref7/cit7c) 2005; 307 Clore G. M. (ref20/cit20a) 2008; 4 Tang C. (ref20/cit20c) 2008; 130 Bellesia G. (ref12/cit12b) 2009; 131 Petkova A. T. (ref23/cit23) 2006; 45 Goedert M. (ref1/cit1) 2006; 314 Hou L. M. (ref13/cit13) 2006; 128 Pimplikar S. W. (ref5/cit5) 2009; 41 Luhrs T. (ref9/cit9) 2005; 102 Chen B. (ref8/cit8) 2009; 106 Iwahara J. (ref14/cit14) 2007; 184 Yan Y. (ref15/cit15) 2006; 364 Mittermaier A. (ref19/cit19) 2006; 312 Knowles T. P. (ref12/cit12a) 2009; 326 Helgstrand M. (ref22/cit22b) 2000; 18 Teplow D. B. (ref11/cit11) 2006; 39 Wu K. P. (ref24/cit24) 2010; 132 Serpell L. C. (ref6/cit6) 1999; 309 Lee C. F. (ref12/cit12v) 2009; 80 Querfurth H. W. (ref2/cit2) 2010; 362 Wang C. Y. (ref18/cit18) 2001; 21 Petkova A. T. (ref7/cit7b) 2002; 99 Bodner C. R. (ref21/cit21) 2009; 390 Tang C. (ref20/cit20b) 2006; 444 Paravastu A. K. (ref7/cit7a) 2009; 106 Almstedt K. (ref17/cit17) 2009; 3 Fukumoto H. (ref4/cit4) 2010 Rahimi F. (ref10/cit10b) 2008; 5 Walsh D. M. (ref3/cit3) 2007; 101 Yu L. (ref10/cit10c) 2009; 48 Yan Y. (ref16/cit16) 2007; 369 |
References_xml | – volume: 21 start-page: 361 year: 2001 ident: ref18/cit18 publication-title: J. Biomol. NMR doi: 10.1023/A:1013328206498 – volume: 307 start-page: 262 year: 2005 ident: ref7/cit7c publication-title: Science doi: 10.1126/science.1105850 – volume: 80 start-page: 041906 year: 2009 ident: ref12/cit12v publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. doi: 10.1103/PhysRevE.80.041906 – volume: 444 start-page: 383 year: 2006 ident: ref20/cit20b publication-title: Nature doi: 10.1038/nature05201 – volume: 18 start-page: 49 year: 2000 ident: ref22/cit22b publication-title: J. Biomol. NMR doi: 10.1023/A:1008309220156 – start-page: 0:fj.09-150359v year: 2010 ident: ref4/cit4 publication-title: FASEB J. – volume: 132 start-page: 5546 year: 2010 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9105495 – volume: 131 start-page: 111102 year: 2009 ident: ref12/cit12b publication-title: J. Chem. Phys. doi: 10.1063/1.3216103 – volume: 5 start-page: 319 year: 2008 ident: ref10/cit10b publication-title: Curr. Alzheimer Res. doi: 10.2174/156720508784533358 – volume: 4 start-page: 1058 year: 2008 ident: ref20/cit20a publication-title: Mol. Biophys. – volume: 390 start-page: 775 year: 2009 ident: ref21/cit21 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.05.066 – volume: 39 start-page: 635 year: 2006 ident: ref11/cit11 publication-title: Acc. Chem. Res. doi: 10.1021/ar050063s – volume: 312 start-page: 224 year: 2006 ident: ref19/cit19 publication-title: Science doi: 10.1126/science.1124964 – volume: 102 start-page: 17342 year: 2005 ident: ref9/cit9 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506723102 – volume: 48 start-page: 1870 year: 2009 ident: ref10/cit10c publication-title: Biochemistry doi: 10.1021/bi802046n – volume: 362 start-page: 329 year: 2010 ident: ref2/cit2 publication-title: New Engl. J. Med. doi: 10.1056/NEJMra0909142 – volume: 1 start-page: 326 year: 2009 ident: ref10/cit10a publication-title: Nature Chem. doi: 10.1038/nchem.247 – volume: 128 start-page: 9260 year: 2006 ident: ref13/cit13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046032u – volume: 364 start-page: 853 year: 2006 ident: ref15/cit15 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.09.046 – volume: 106 start-page: 7443 year: 2009 ident: ref7/cit7a publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0812033106 – volume: 184 start-page: 185 year: 2007 ident: ref14/cit14 publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2006.10.003 – volume: 28 start-page: 430 year: 1958 ident: ref22/cit22a publication-title: J. Chem. Phys. doi: 10.1063/1.1744152 – volume: 314 start-page: 777 year: 2006 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.1132814 – volume: 106 start-page: 14339 year: 2009 ident: ref8/cit8 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0907821106 – volume: 309 start-page: 526 year: 1999 ident: ref6/cit6 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(99)09036-9 – volume: 130 start-page: 4048 year: 2008 ident: ref20/cit20c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja710493m – volume: 41 start-page: 1261 year: 2009 ident: ref5/cit5 publication-title: Int. J. Biochem. Cell Biol. J doi: 10.1016/j.biocel.2008.12.015 – volume: 45 start-page: 498 year: 2006 ident: ref23/cit23 publication-title: Biochemistry doi: 10.1021/bi051952q – volume: 101 start-page: 1172 year: 2007 ident: ref3/cit3 publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2006.04426.x – volume: 369 start-page: 909 year: 2007 ident: ref16/cit16 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.04.014 – volume: 99 start-page: 16742 year: 2002 ident: ref7/cit7b publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.262663499 – volume: 3 start-page: 224 year: 2009 ident: ref17/cit17 publication-title: Prion doi: 10.4161/pri.3.4.10112 – volume: 326 start-page: 1533 year: 2009 ident: ref12/cit12a publication-title: Science doi: 10.1126/science.1178250 |
SSID | ssj0004281 |
Score | 2.407628 |
Snippet | Recent studies have implicated non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease. Detailed structural... Recent studies have implicated non-fibrillar oligomers of the amyloid beta (Abeta) peptide as the primary toxic species in Alzheimer's disease. Detailed... Recent studies implicating non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease have made Aβ oligomers the... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9948 |
SubjectTerms | Amyloid beta-Peptides - chemistry Amyloid beta-Peptides - metabolism Buffers Kinetics Models, Molecular Nuclear Magnetic Resonance, Biomolecular Peptide Fragments - chemistry Peptide Fragments - metabolism Protein Multimerization Protein Structure, Quaternary Solutions |
Title | Kinetics of Amyloid β Monomer-to-Oligomer Exchange by NMR Relaxation |
URI | http://dx.doi.org/10.1021/ja1048253 https://www.ncbi.nlm.nih.gov/pubmed/20604554 https://www.proquest.com/docview/748980353 https://pubmed.ncbi.nlm.nih.gov/PMC2915839 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xHODCvpRNFnDgEhQ7ceIcq1KEQC0Si8Qtsh0bKkqCaCoBn8WH8E3YSVMoZblZyjiSZ2zNG83MG4B97WKhg9AgN-aZAIUn0hGUCYcpRYWfBCQpimha7eDk2j-9oTcTsPdLBp9YfiATMZg4xpuEaRKw0EZY9cblZ_MjYbjCuCELvIo-6OtW63pkb9T1jOHJ72WRX_zM8TwcVd06ZXnJ_WE_F4fydZy88a8jLMDcAGeienkxFmFCpUsw06jGuy1D88zgS8vRjDKN6g8mbu8k6P0NtWyXg3py8sw573Zu7Ro1n8v-YCReULt1gWwF3XNh0hW4Pm5eNU6cwUwFh3tBlDuSWMzCNCZaCp9SJXHIlXYjSSXHxl0nhLtKhp5mAmPlspBHzGIwn1quv8Bbhak0S9U6oIAnLhfS5VxjX5t1IqVPI2w2Ui_CvAY7Runx4E304iLdTUy4UWmjBgeVPWI5YCS3gzG6P4nuDkUfSxqOn4RQZdTYKNNmPniqsn4vthQ7zPWsyFpp4-FfiGUPMpiqBuGI9YcCln979EvauSt4uEmEqcGXG_-dcxNmy5qD0CFsC6byp77aNlAmFzvFVf4A8fXsaQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcigX_qHLT7EQSFxSxU6cOAcOq2WrLdtdJGil3oLt2HTFkqAmK7o8Sh-jV96BZ2KcbLbdUolTJW6WMrHsyTjzjTzzDcAr61NloxiRmwgwQJGZ9hQXyhPGcBVmEcvqJJrROBochO8P-eEanLa1MLiIEmcq60v8c3YBRxOEgQOGM22j6qGZ_8DwrHy7-w6_5WvGdvr7vYG36CDgySBKKk8z56GFpcxqFXJuNI2lsX6iuZYUnVPGpG90HFihKDW-iGUiHOIIuWO2iwKc9wbcRNDDXGDX7X06r7lkgrbQOkbJlrXo4lKdx9Plqsf7C8Zezsa84N527sCvpWLqrJav27NKbeuflzgj_0_N3YXbC1RNus0xuAdrJr8PG722md0D6A8RTTtGalJY0v02nxaTjPw-IyNX02GOvarwPkwnX9yY9E-aamii5mQ8-khcvuBJbcAP4eBadvEI1vMiN5tAIpn5UmlfSktDi-NM65AnFF_kQUJlB7ZQ-eniD1Cm9eU-w-Cq1X4H3rRmkOoF_7prAzK9SvTlUvR7QzpylRBpbSlFZbp7HpmbYlamjlBI-IETedyY1nIW5riSEEF2IF4xuqWAYxtffZJPjmrWcZZQjmj6yb_2-QI2BvujvXRvdzx8CreabIvYY-IZrFfHM_McQVylturTRODzdRvhH4DNTRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIgEX_n-Wn2IhkLikip04cQ4cVttdtSy7IKBSb8F2bFixJFWTFV0ehofgBXgDnolxfpZuqcSpErdImVj2eJz5Rp75BuCp9amyUYzITQQYoMhMe4oL5QljuAqziGV1Es1kGu3uhy8P-MEGfO9qYXASJY5U1pf47lQfZrZlGHBUQRg8YEjTNasem-VXDNHKF3s7uJ_PGBsN3w92vbaLgCeDKKk8zZyXFpYyq1XIudE0lsb6ieZaUnRQGZO-0XFghaLU-CKWiXCoI-SO3S4KcNwLcNFdD7rgrj9496fukgnawesYJTvmopNTdV5Pl-te7y8oezoj84SLG12Dnyvl1Jktn7cXldrW307xRv6_2rsOV1t0TfrNcbgBGya_CZcHXVO7WzAcI6p2zNSksKT_ZTkvZhn59YNMXG2HOfKqwns9n310z2R43FRFE7Uk08lb4vIGj2tDvg3757KKO7CZF7m5BySSmS-V9qW0NLT4nGkd8oTihzxIqOzBFm5A2v4JyrS-5GcYZHXa78HzzhRS3fKwu3Yg87NEn6xEDxvykbOESGdPKSrT3ffI3BSLMnXEQsIPnMjdxrxWozDHmYRIsgfxmuGtBBzr-PqbfPapZh9nCeWIqu__a52P4dKbnVH6am86fgBXmqSL2GPiIWxWRwvzCLFcpbbqA0Xgw3nb4G-lZE-T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+Amyloid+%CE%B2+Monomer-to-Oligomer+Exchange+by+NMR+Relaxation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Fawzi%2C+Nicolas+L.&rft.au=Ying%2C+Jinfa&rft.au=Torchia%2C+Dennis+A.&rft.au=Clore%2C+G.+Marius&rft.date=2010-07-28&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=132&rft.issue=29&rft.spage=9948&rft.epage=9951&rft_id=info:doi/10.1021%2Fja1048253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ja1048253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |