Kinetics of Amyloid β Monomer-to-Oligomer Exchange by NMR Relaxation

Recent studies have implicated non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 132; no. 29; pp. 9948 - 9951
Main Authors Fawzi, Nicolas L, Ying, Jinfa, Torchia, Dennis A, Clore, G. Marius
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.07.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have implicated non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Aβ(1−40). 15N and 1HN R 2 data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in 15N and 1HN R 2 rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species (“dark” state). At a total Aβ(1−40) concentration of 300 μM, the apparent first-order rate constant for this process is ∼3 s−1. Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k off of 73 s−1 and transiently bound monomer 1HN R 2 rates of up to 42 000 s−1 in the tightly bound central hydrophobic region and ∼300 s−1 in the disordered regions, such as the first nine residues. The fraction of peptide within the “dark” oligomeric state undergoing exchange with free monomer is calculated to be ∼3%.
AbstractList Recent studies have implicated non-fibrillar oligomers of the amyloid beta (Abeta) peptide as the primary toxic species in Alzheimer's disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Abeta(1-40). (15)N and (1)H(N) R(2) data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in (15)N and (1)H(N) R(2) rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species ("dark" state). At a total Abeta(1-40) concentration of 300 microM, the apparent first-order rate constant for this process is approximately 3 s(-1). Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k(off) of 73 s(-1) and transiently bound monomer (1)H(N) R(2) rates of up to 42,000 s(-1) in the tightly bound central hydrophobic region and approximately 300 s(-1) in the disordered regions, such as the first nine residues. The fraction of peptide within the "dark" oligomeric state undergoing exchange with free monomer is calculated to be approximately 3%.Recent studies have implicated non-fibrillar oligomers of the amyloid beta (Abeta) peptide as the primary toxic species in Alzheimer's disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Abeta(1-40). (15)N and (1)H(N) R(2) data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in (15)N and (1)H(N) R(2) rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species ("dark" state). At a total Abeta(1-40) concentration of 300 microM, the apparent first-order rate constant for this process is approximately 3 s(-1). Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k(off) of 73 s(-1) and transiently bound monomer (1)H(N) R(2) rates of up to 42,000 s(-1) in the tightly bound central hydrophobic region and approximately 300 s(-1) in the disordered regions, such as the first nine residues. The fraction of peptide within the "dark" oligomeric state undergoing exchange with free monomer is calculated to be approximately 3%.
Recent studies have implicated non-fibrillar oligomers of the amyloid beta (Abeta) peptide as the primary toxic species in Alzheimer's disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Abeta(1-40). (15)N and (1)H(N) R(2) data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in (15)N and (1)H(N) R(2) rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species ("dark" state). At a total Abeta(1-40) concentration of 300 microM, the apparent first-order rate constant for this process is approximately 3 s(-1). Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k(off) of 73 s(-1) and transiently bound monomer (1)H(N) R(2) rates of up to 42,000 s(-1) in the tightly bound central hydrophobic region and approximately 300 s(-1) in the disordered regions, such as the first nine residues. The fraction of peptide within the "dark" oligomeric state undergoing exchange with free monomer is calculated to be approximately 3%.
Recent studies have implicated non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Aβ(1−40). 15N and 1HN R 2 data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in 15N and 1HN R 2 rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species (“dark” state). At a total Aβ(1−40) concentration of 300 μM, the apparent first-order rate constant for this process is ∼3 s−1. Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k off of 73 s−1 and transiently bound monomer 1HN R 2 rates of up to 42 000 s−1 in the tightly bound central hydrophobic region and ∼300 s−1 in the disordered regions, such as the first nine residues. The fraction of peptide within the “dark” oligomeric state undergoing exchange with free monomer is calculated to be ∼3%.
Recent studies implicating non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease have made Aβ oligomers the subject of intense study. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Aβ (1–40). 15 N-R 2 and 1 H N -R 2 data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR invisible soluble oligomeric species. The increase in 15 N- and 1 H N -R 2 rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR invisible oligomeric species (‘dark’ state). At a total Aβ(1–40) concentration of 300 µM, the apparent first order rate constant for this process is ~3 s −1 . Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k off of 73 s −1 and transiently-bound-monomer 1 H N -R 2 rates of up to 42,000 s −1 in the tightly bound central hydrophobic region and ~300 s −1 in the disordered regions such as the first nine residues. The fraction of peptide within the ‘dark’ oligomeric state undergoing exchange with free monomer is calculated to be ~3%. The relatively rapid exchange between the monomer and the polymorphic oligomeric form suggests that therapeutic efforts aimed at altering the equilibrium distribution between these species may be more successful than for the extremely stable fibril form.
Author Torchia, Dennis A
Clore, G. Marius
Fawzi, Nicolas L
Ying, Jinfa
Author_xml – sequence: 1
  givenname: Nicolas L
  surname: Fawzi
  fullname: Fawzi, Nicolas L
– sequence: 2
  givenname: Jinfa
  surname: Ying
  fullname: Ying, Jinfa
– sequence: 3
  givenname: Dennis A
  surname: Torchia
  fullname: Torchia, Dennis A
– sequence: 4
  givenname: G. Marius
  surname: Clore
  fullname: Clore, G. Marius
  email: mariusc@mail.nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20604554$$D View this record in MEDLINE/PubMed
BookMark eNptkd9OwjAUxhuDkT964QuY3RjjxaTt1q27MSEE_0SQhOh105UOSrYW183Aa_kgPpNFkKjhqqfp73xfz3faoKGNlgCcI3iDIEbdBUcwpJgER6CFCIY-QThqgBaEEPsxjYImaFu7cNcQU3QCmhhGMCQkbIHBk9KyUsJ6JvN6xTo3aup9fngjo00hS78y_jhXs03tDVZizvVMeunaex5NvInM-YpXyuhTcJzx3Mqz3dkBr3eDl_6DPxzfP_Z7Q58HUVL5wvmimGYIZyJ1_lKgmMsMJoIIjkIcTTGHUsRBRlOEJKQxTyiCJAlJQBI3RwfcbnWXdVrIqZC6KnnOlqUqeLlmhiv290WrOZuZd4YTRGiQOIGrnUBp3mppK1YoK2Secy1NbVkc0oTCgASOvPhttff4ic4B11tAlMbaUmZ7BEG2WQvbr8Wx3X-sUNV3cu6XKj_Ycbnt4MKyhalL7XI9wH0BPmqZzQ
CitedBy_id crossref_primary_10_3390_ijms24065191
crossref_primary_10_1039_D0MA00760A
crossref_primary_10_1016_j_jmr_2020_106874
crossref_primary_10_1021_bi201435d
crossref_primary_10_1021_jacs_7b05012
crossref_primary_10_1186_s12915_020_0751_4
crossref_primary_10_1021_jacs_6b04511
crossref_primary_10_1074_jbc_M117_792853
crossref_primary_10_1038_s41589_024_01806_y
crossref_primary_10_1007_s10858_015_9925_8
crossref_primary_10_1146_annurev_biophys_090921_120150
crossref_primary_10_1021_bi500131a
crossref_primary_10_1016_j_febslet_2011_03_014
crossref_primary_10_1016_j_febslet_2012_09_035
crossref_primary_10_1021_ac400023c
crossref_primary_10_1073_pnas_2305823120
crossref_primary_10_1021_ja409801p
crossref_primary_10_1007_s00018_014_1634_z
crossref_primary_10_1016_j_pnmrs_2014_05_003
crossref_primary_10_1016_j_pnmrs_2015_05_002
crossref_primary_10_1002_pro_5178
crossref_primary_10_1002_anie_201308512
crossref_primary_10_1016_j_jbc_2022_102162
crossref_primary_10_1039_C5QI00219B
crossref_primary_10_1039_D3CC01791E
crossref_primary_10_1021_jp511758w
crossref_primary_10_1007_s10858_011_9511_7
crossref_primary_10_1016_j_bpj_2017_06_067
crossref_primary_10_1007_s10858_019_00244_6
crossref_primary_10_1126_science_abh3602
crossref_primary_10_1002_ange_201007824
crossref_primary_10_1017_S0033583516000019
crossref_primary_10_1021_acsanm_0c02381
crossref_primary_10_1002_ange_201308512
crossref_primary_10_1016_j_dyepig_2020_108931
crossref_primary_10_1021_acs_jpcb_0c11162
crossref_primary_10_1021_acs_chemrev_3c00042
crossref_primary_10_1021_acs_analchem_9b00143
crossref_primary_10_1016_j_jbc_2021_101259
crossref_primary_10_1016_j_bbrc_2012_05_013
crossref_primary_10_1017_S0033583514000122
crossref_primary_10_1016_j_bbadis_2014_01_002
crossref_primary_10_1021_ja507310m
crossref_primary_10_1038_s41467_019_11594_y
crossref_primary_10_1074_jbc_M111_235762
crossref_primary_10_1021_ja405239v
crossref_primary_10_1073_pnas_1222478110
crossref_primary_10_1021_acsmacrolett_1c00628
crossref_primary_10_1039_D1SC06337E
crossref_primary_10_1016_j_bpj_2017_06_030
crossref_primary_10_1016_j_ejmech_2011_10_008
crossref_primary_10_1021_acs_jpclett_7b01019
crossref_primary_10_1021_acs_jpcb_8b07112
crossref_primary_10_1021_acs_langmuir_0c01256
crossref_primary_10_1007_s10858_023_00431_6
crossref_primary_10_1016_j_jmb_2012_05_034
crossref_primary_10_1016_j_pep_2011_05_012
crossref_primary_10_1021_acs_jpcb_2c03519
crossref_primary_10_1002_anie_201405180
crossref_primary_10_1073_pnas_1510083112
crossref_primary_10_1007_s00775_014_1131_8
crossref_primary_10_1007_s10858_014_9822_6
crossref_primary_10_1021_acs_jpcb_1c04853
crossref_primary_10_1016_j_pnmrs_2016_10_002
crossref_primary_10_1039_C7CP07516B
crossref_primary_10_1016_j_abb_2017_05_016
crossref_primary_10_1007_s10858_016_0053_x
crossref_primary_10_1021_acs_jpclett_7b03442
crossref_primary_10_1021_bi500910b
crossref_primary_10_1021_acs_biochem_5b00467
crossref_primary_10_1038_s41594_021_00677_4
crossref_primary_10_1021_acschemneuro_5b00325
crossref_primary_10_1021_jp305279w
crossref_primary_10_3390_molecules27154787
crossref_primary_10_1016_j_pep_2015_07_012
crossref_primary_10_1038_nprot_2012_077
crossref_primary_10_1021_acs_inorgchem_6b00525
crossref_primary_10_1016_j_bbapap_2015_04_024
crossref_primary_10_1016_j_bbagen_2016_03_010
crossref_primary_10_1016_j_molcel_2011_05_012
crossref_primary_10_1016_j_jbc_2022_102501
crossref_primary_10_1016_j_chemphyslip_2021_105062
crossref_primary_10_1039_C8CC00167G
crossref_primary_10_1042_BST20130232
crossref_primary_10_1073_pnas_1305715110
crossref_primary_10_1016_j_bbrc_2011_06_133
crossref_primary_10_1021_acs_biochem_1c00781
crossref_primary_10_1021_acschemneuro_9b00015
crossref_primary_10_1016_j_bpc_2021_106665
crossref_primary_10_1038_s41598_023_29901_5
crossref_primary_10_1124_molpharm_123_000726
crossref_primary_10_1002_pro_576
crossref_primary_10_1042_BCJ20160098
crossref_primary_10_1002_ijch_201600105
crossref_primary_10_1007_s10867_016_9408_5
crossref_primary_10_1021_acs_biochem_6b01237
crossref_primary_10_1002_anie_201007824
crossref_primary_10_1021_jacs_0c13289
crossref_primary_10_1016_j_jbc_2022_101566
crossref_primary_10_1074_jbc_M113_470450
crossref_primary_10_1016_j_pnmrs_2024_07_001
crossref_primary_10_1073_pnas_1817477115
crossref_primary_10_1002_cbic_202200760
crossref_primary_10_1016_j_abb_2020_108304
crossref_primary_10_1021_acs_jpcb_8b00689
crossref_primary_10_1021_acs_jpclett_4c02509
crossref_primary_10_1039_C8CC01380B
crossref_primary_10_1002_ijch_201900080
crossref_primary_10_15252_embj_201696394
crossref_primary_10_1002_cbic_201300262
crossref_primary_10_1039_C9CC01067J
crossref_primary_10_1021_acs_biochem_5b01259
crossref_primary_10_1021_jacs_8b11441
crossref_primary_10_1016_j_bpc_2020_106531
crossref_primary_10_1021_acs_biochem_1c00147
crossref_primary_10_1038_srep17842
crossref_primary_10_1038_srep21826
crossref_primary_10_1016_j_ijbiomac_2016_09_074
crossref_primary_10_1021_bi400027y
crossref_primary_10_1021_acschemneuro_7b00360
crossref_primary_10_1002_ange_201405180
crossref_primary_10_1039_D2NA00099G
crossref_primary_10_1002_ange_201914559
crossref_primary_10_1002_chem_201203764
crossref_primary_10_1016_j_jmb_2011_12_023
crossref_primary_10_1016_j_molcel_2017_12_022
crossref_primary_10_1021_acschemneuro_3c00130
crossref_primary_10_1093_jb_mvx056
crossref_primary_10_1007_s10858_017_0099_4
crossref_primary_10_1248_bpb_b19_00115
crossref_primary_10_1038_s41594_019_0250_x
crossref_primary_10_1021_acs_biochem_5b00670
crossref_primary_10_1002_cmdc_201500057
crossref_primary_10_1007_s10858_018_0193_2
crossref_primary_10_1074_jbc_M111_325456
crossref_primary_10_1002_anie_201704471
crossref_primary_10_1371_journal_pone_0170749
crossref_primary_10_1021_acs_jpclett_9b00985
crossref_primary_10_1021_bi3001616
crossref_primary_10_1016_j_jinorgbio_2016_04_022
crossref_primary_10_1002_anie_201914559
crossref_primary_10_1016_j_ijbiomac_2023_124470
crossref_primary_10_1021_acschemneuro_8b00733
crossref_primary_10_1016_j_bpj_2021_09_037
crossref_primary_10_1111_febs_17084
crossref_primary_10_1021_jp411543y
crossref_primary_10_1016_j_pnmrs_2021_10_001
crossref_primary_10_1002_ange_201704471
crossref_primary_10_1016_j_bbrc_2012_04_043
crossref_primary_10_1021_bi5003579
crossref_primary_10_1039_C9SC01331H
crossref_primary_10_1038_s41594_020_0399_3
crossref_primary_10_1038_nature10577
crossref_primary_10_1016_j_bbapap_2017_06_012
Cites_doi 10.1023/A:1013328206498
10.1126/science.1105850
10.1103/PhysRevE.80.041906
10.1038/nature05201
10.1023/A:1008309220156
10.1021/ja9105495
10.1063/1.3216103
10.2174/156720508784533358
10.1016/j.jmb.2009.05.066
10.1021/ar050063s
10.1126/science.1124964
10.1073/pnas.0506723102
10.1021/bi802046n
10.1056/NEJMra0909142
10.1038/nchem.247
10.1021/ja046032u
10.1016/j.jmb.2006.09.046
10.1073/pnas.0812033106
10.1016/j.jmr.2006.10.003
10.1063/1.1744152
10.1126/science.1132814
10.1073/pnas.0907821106
10.1016/S0076-6879(99)09036-9
10.1021/ja710493m
10.1016/j.biocel.2008.12.015
10.1021/bi051952q
10.1111/j.1471-4159.2006.04426.x
10.1016/j.jmb.2007.04.014
10.1073/pnas.262663499
10.4161/pri.3.4.10112
10.1126/science.1178250
ContentType Journal Article
Copyright Copyright © 2010 U.S. Government
Copyright_xml – notice: Copyright © 2010 U.S. Government
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/ja1048253
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 9951
ExternalDocumentID PMC2915839
20604554
10_1021_ja1048253
b733841466
Genre Journal Article
Research Support, N.I.H., Intramural
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 DK029023
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a369t-c206178f12fcb455ec17aef09c5ca1426d2a0ec73f8b11e087a98105945359863
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 18:43:23 EDT 2025
Mon Jul 21 09:25:01 EDT 2025
Mon Jul 21 05:16:52 EDT 2025
Tue Jul 01 04:15:02 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-c206178f12fcb455ec17aef09c5ca1426d2a0ec73f8b11e087a98105945359863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20604554
PQID 748980353
PQPubID 23479
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2915839
proquest_miscellaneous_748980353
pubmed_primary_20604554
crossref_primary_10_1021_ja1048253
crossref_citationtrail_10_1021_ja1048253
acs_journals_10_1021_ja1048253
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100728
2010-07-28
2010-Jul-28
PublicationDateYYYYMMDD 2010-07-28
PublicationDate_xml – month: 07
  year: 2010
  text: 20100728
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Bernstein S. L. (ref10/cit10a) 2009; 1
McConnell H. M. (ref22/cit22a) 1958; 28
Petkova A. T. (ref7/cit7c) 2005; 307
Clore G. M. (ref20/cit20a) 2008; 4
Tang C. (ref20/cit20c) 2008; 130
Bellesia G. (ref12/cit12b) 2009; 131
Petkova A. T. (ref23/cit23) 2006; 45
Goedert M. (ref1/cit1) 2006; 314
Hou L. M. (ref13/cit13) 2006; 128
Pimplikar S. W. (ref5/cit5) 2009; 41
Luhrs T. (ref9/cit9) 2005; 102
Chen B. (ref8/cit8) 2009; 106
Iwahara J. (ref14/cit14) 2007; 184
Yan Y. (ref15/cit15) 2006; 364
Mittermaier A. (ref19/cit19) 2006; 312
Knowles T. P. (ref12/cit12a) 2009; 326
Helgstrand M. (ref22/cit22b) 2000; 18
Teplow D. B. (ref11/cit11) 2006; 39
Wu K. P. (ref24/cit24) 2010; 132
Serpell L. C. (ref6/cit6) 1999; 309
Lee C. F. (ref12/cit12v) 2009; 80
Querfurth H. W. (ref2/cit2) 2010; 362
Wang C. Y. (ref18/cit18) 2001; 21
Petkova A. T. (ref7/cit7b) 2002; 99
Bodner C. R. (ref21/cit21) 2009; 390
Tang C. (ref20/cit20b) 2006; 444
Paravastu A. K. (ref7/cit7a) 2009; 106
Almstedt K. (ref17/cit17) 2009; 3
Fukumoto H. (ref4/cit4) 2010
Rahimi F. (ref10/cit10b) 2008; 5
Walsh D. M. (ref3/cit3) 2007; 101
Yu L. (ref10/cit10c) 2009; 48
Yan Y. (ref16/cit16) 2007; 369
References_xml – volume: 21
  start-page: 361
  year: 2001
  ident: ref18/cit18
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1013328206498
– volume: 307
  start-page: 262
  year: 2005
  ident: ref7/cit7c
  publication-title: Science
  doi: 10.1126/science.1105850
– volume: 80
  start-page: 041906
  year: 2009
  ident: ref12/cit12v
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
  doi: 10.1103/PhysRevE.80.041906
– volume: 444
  start-page: 383
  year: 2006
  ident: ref20/cit20b
  publication-title: Nature
  doi: 10.1038/nature05201
– volume: 18
  start-page: 49
  year: 2000
  ident: ref22/cit22b
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1008309220156
– start-page: 0:fj.09-150359v
  year: 2010
  ident: ref4/cit4
  publication-title: FASEB J.
– volume: 132
  start-page: 5546
  year: 2010
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9105495
– volume: 131
  start-page: 111102
  year: 2009
  ident: ref12/cit12b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3216103
– volume: 5
  start-page: 319
  year: 2008
  ident: ref10/cit10b
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720508784533358
– volume: 4
  start-page: 1058
  year: 2008
  ident: ref20/cit20a
  publication-title: Mol. Biophys.
– volume: 390
  start-page: 775
  year: 2009
  ident: ref21/cit21
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.05.066
– volume: 39
  start-page: 635
  year: 2006
  ident: ref11/cit11
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar050063s
– volume: 312
  start-page: 224
  year: 2006
  ident: ref19/cit19
  publication-title: Science
  doi: 10.1126/science.1124964
– volume: 102
  start-page: 17342
  year: 2005
  ident: ref9/cit9
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0506723102
– volume: 48
  start-page: 1870
  year: 2009
  ident: ref10/cit10c
  publication-title: Biochemistry
  doi: 10.1021/bi802046n
– volume: 362
  start-page: 329
  year: 2010
  ident: ref2/cit2
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMra0909142
– volume: 1
  start-page: 326
  year: 2009
  ident: ref10/cit10a
  publication-title: Nature Chem.
  doi: 10.1038/nchem.247
– volume: 128
  start-page: 9260
  year: 2006
  ident: ref13/cit13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046032u
– volume: 364
  start-page: 853
  year: 2006
  ident: ref15/cit15
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.09.046
– volume: 106
  start-page: 7443
  year: 2009
  ident: ref7/cit7a
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0812033106
– volume: 184
  start-page: 185
  year: 2007
  ident: ref14/cit14
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2006.10.003
– volume: 28
  start-page: 430
  year: 1958
  ident: ref22/cit22a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744152
– volume: 314
  start-page: 777
  year: 2006
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1132814
– volume: 106
  start-page: 14339
  year: 2009
  ident: ref8/cit8
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0907821106
– volume: 309
  start-page: 526
  year: 1999
  ident: ref6/cit6
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(99)09036-9
– volume: 130
  start-page: 4048
  year: 2008
  ident: ref20/cit20c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja710493m
– volume: 41
  start-page: 1261
  year: 2009
  ident: ref5/cit5
  publication-title: Int. J. Biochem. Cell Biol. J
  doi: 10.1016/j.biocel.2008.12.015
– volume: 45
  start-page: 498
  year: 2006
  ident: ref23/cit23
  publication-title: Biochemistry
  doi: 10.1021/bi051952q
– volume: 101
  start-page: 1172
  year: 2007
  ident: ref3/cit3
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2006.04426.x
– volume: 369
  start-page: 909
  year: 2007
  ident: ref16/cit16
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.04.014
– volume: 99
  start-page: 16742
  year: 2002
  ident: ref7/cit7b
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.262663499
– volume: 3
  start-page: 224
  year: 2009
  ident: ref17/cit17
  publication-title: Prion
  doi: 10.4161/pri.3.4.10112
– volume: 326
  start-page: 1533
  year: 2009
  ident: ref12/cit12a
  publication-title: Science
  doi: 10.1126/science.1178250
SSID ssj0004281
Score 2.407628
Snippet Recent studies have implicated non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease. Detailed structural...
Recent studies have implicated non-fibrillar oligomers of the amyloid beta (Abeta) peptide as the primary toxic species in Alzheimer's disease. Detailed...
Recent studies implicating non-fibrillar oligomers of the amyloid β (Aβ) peptide as the primary toxic species in Alzheimer’s disease have made Aβ oligomers the...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9948
SubjectTerms Amyloid beta-Peptides - chemistry
Amyloid beta-Peptides - metabolism
Buffers
Kinetics
Models, Molecular
Nuclear Magnetic Resonance, Biomolecular
Peptide Fragments - chemistry
Peptide Fragments - metabolism
Protein Multimerization
Protein Structure, Quaternary
Solutions
Title Kinetics of Amyloid β Monomer-to-Oligomer Exchange by NMR Relaxation
URI http://dx.doi.org/10.1021/ja1048253
https://www.ncbi.nlm.nih.gov/pubmed/20604554
https://www.proquest.com/docview/748980353
https://pubmed.ncbi.nlm.nih.gov/PMC2915839
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xHODCvpRNFnDgEhQ7ceIcq1KEQC0Si8Qtsh0bKkqCaCoBn8WH8E3YSVMoZblZyjiSZ2zNG83MG4B97WKhg9AgN-aZAIUn0hGUCYcpRYWfBCQpimha7eDk2j-9oTcTsPdLBp9YfiATMZg4xpuEaRKw0EZY9cblZ_MjYbjCuCELvIo-6OtW63pkb9T1jOHJ72WRX_zM8TwcVd06ZXnJ_WE_F4fydZy88a8jLMDcAGeienkxFmFCpUsw06jGuy1D88zgS8vRjDKN6g8mbu8k6P0NtWyXg3py8sw573Zu7Ro1n8v-YCReULt1gWwF3XNh0hW4Pm5eNU6cwUwFh3tBlDuSWMzCNCZaCp9SJXHIlXYjSSXHxl0nhLtKhp5mAmPlspBHzGIwn1quv8Bbhak0S9U6oIAnLhfS5VxjX5t1IqVPI2w2Ui_CvAY7Runx4E304iLdTUy4UWmjBgeVPWI5YCS3gzG6P4nuDkUfSxqOn4RQZdTYKNNmPniqsn4vthQ7zPWsyFpp4-FfiGUPMpiqBuGI9YcCln979EvauSt4uEmEqcGXG_-dcxNmy5qD0CFsC6byp77aNlAmFzvFVf4A8fXsaQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcigX_qHLT7EQSFxSxU6cOAcOq2WrLdtdJGil3oLt2HTFkqAmK7o8Sh-jV96BZ2KcbLbdUolTJW6WMrHsyTjzjTzzDcAr61NloxiRmwgwQJGZ9hQXyhPGcBVmEcvqJJrROBochO8P-eEanLa1MLiIEmcq60v8c3YBRxOEgQOGM22j6qGZ_8DwrHy7-w6_5WvGdvr7vYG36CDgySBKKk8z56GFpcxqFXJuNI2lsX6iuZYUnVPGpG90HFihKDW-iGUiHOIIuWO2iwKc9wbcRNDDXGDX7X06r7lkgrbQOkbJlrXo4lKdx9Plqsf7C8Zezsa84N527sCvpWLqrJav27NKbeuflzgj_0_N3YXbC1RNus0xuAdrJr8PG722md0D6A8RTTtGalJY0v02nxaTjPw-IyNX02GOvarwPkwnX9yY9E-aamii5mQ8-khcvuBJbcAP4eBadvEI1vMiN5tAIpn5UmlfSktDi-NM65AnFF_kQUJlB7ZQ-eniD1Cm9eU-w-Cq1X4H3rRmkOoF_7prAzK9SvTlUvR7QzpylRBpbSlFZbp7HpmbYlamjlBI-IETedyY1nIW5riSEEF2IF4xuqWAYxtffZJPjmrWcZZQjmj6yb_2-QI2BvujvXRvdzx8CreabIvYY-IZrFfHM_McQVylturTRODzdRvhH4DNTRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIgEX_n-Wn2IhkLikip04cQ4cVttdtSy7IKBSb8F2bFixJFWTFV0ehofgBXgDnolxfpZuqcSpErdImVj2eJz5Rp75BuCp9amyUYzITQQYoMhMe4oL5QljuAqziGV1Es1kGu3uhy8P-MEGfO9qYXASJY5U1pf47lQfZrZlGHBUQRg8YEjTNasem-VXDNHKF3s7uJ_PGBsN3w92vbaLgCeDKKk8zZyXFpYyq1XIudE0lsb6ieZaUnRQGZO-0XFghaLU-CKWiXCoI-SO3S4KcNwLcNFdD7rgrj9496fukgnawesYJTvmopNTdV5Pl-te7y8oezoj84SLG12Dnyvl1Jktn7cXldrW307xRv6_2rsOV1t0TfrNcbgBGya_CZcHXVO7WzAcI6p2zNSksKT_ZTkvZhn59YNMXG2HOfKqwns9n310z2R43FRFE7Uk08lb4vIGj2tDvg3757KKO7CZF7m5BySSmS-V9qW0NLT4nGkd8oTihzxIqOzBFm5A2v4JyrS-5GcYZHXa78HzzhRS3fKwu3Yg87NEn6xEDxvykbOESGdPKSrT3ffI3BSLMnXEQsIPnMjdxrxWozDHmYRIsgfxmuGtBBzr-PqbfPapZh9nCeWIqu__a52P4dKbnVH6am86fgBXmqSL2GPiIWxWRwvzCLFcpbbqA0Xgw3nb4G-lZE-T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+Amyloid+%CE%B2+Monomer-to-Oligomer+Exchange+by+NMR+Relaxation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Fawzi%2C+Nicolas+L.&rft.au=Ying%2C+Jinfa&rft.au=Torchia%2C+Dennis+A.&rft.au=Clore%2C+G.+Marius&rft.date=2010-07-28&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=132&rft.issue=29&rft.spage=9948&rft.epage=9951&rft_id=info:doi/10.1021%2Fja1048253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ja1048253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon