Nonstoichiometric Protic Ionic Liquids: The Role of Excess Acid in Charge Transport Mechanisms
A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in combination with an excess of either trifluoroacetic acid (TFA) or trifluoromethanesulfonic acid (TfO). The addition of excess precursor acid add...
Saved in:
Published in | The journal of physical chemistry. B Vol. 128; no. 12; pp. 2939 - 2947 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1520-6106 1520-5207 1520-5207 |
DOI | 10.1021/acs.jpcb.3c08156 |
Cover
Loading…
Abstract | A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in combination with an excess of either trifluoroacetic acid (TFA) or trifluoromethanesulfonic acid (TfO). The addition of excess precursor acid adds proton-donor sites to the system to support potential structural proton transport, which could, for example, enable the use in fuel cells. Transport measurements by pulsed field gradient (PFG) NMR diffusion and, in particular, electrophoretic NMR (eNMR) are supported by NMR chemical shifts and Raman spectroscopy, where the latter techniques elucidate the local solvation structures. Migration of the acidic proton of the excess acid in the electric field occurs toward the cathode with a velocity larger than that of the anions. This intriguing feature of a rapid drift of a neutral molecule is explained by the interplay of strong correlations between anion and cation as well as between anion and acid. The neutral acid is subject to vehicular transport with the anion, while the anion is partitioning between anion–acid and anion–cation clusters, resulting in a lower average drift velocity. The negative drift direction of the neutral acid and its proton is superimposed to and thus counteracts the vehicular transport of protons with the cation. The study sheds light on the role of excess acid in PIL and reveals the versatile interactions between anion, cation, and excess acid within a PIL determining its charge transport properties. |
---|---|
AbstractList | A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in combination with an excess of either trifluoroacetic acid (TFA) or trifluoromethanesulfonic acid (TfO). The addition of excess precursor acid adds proton-donor sites to the system to support potential structural proton transport, which could, for example, enable the use in fuel cells. Transport measurements by pulsed field gradient (PFG) NMR diffusion and, in particular, electrophoretic NMR (eNMR) are supported by NMR chemical shifts and Raman spectroscopy, where the latter techniques elucidate the local solvation structures. Migration of the acidic proton of the excess acid in the electric field occurs toward the cathode with a velocity larger than that of the anions. This intriguing feature of a rapid drift of a neutral molecule is explained by the interplay of strong correlations between anion and cation as well as between anion and acid. The neutral acid is subject to vehicular transport with the anion, while the anion is partitioning between anion-acid and anion-cation clusters, resulting in a lower average drift velocity. The negative drift direction of the neutral acid and its proton is superimposed to and thus counteracts the vehicular transport of protons with the cation. The study sheds light on the role of excess acid in PIL and reveals the versatile interactions between anion, cation, and excess acid within a PIL determining its charge transport properties.A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in combination with an excess of either trifluoroacetic acid (TFA) or trifluoromethanesulfonic acid (TfO). The addition of excess precursor acid adds proton-donor sites to the system to support potential structural proton transport, which could, for example, enable the use in fuel cells. Transport measurements by pulsed field gradient (PFG) NMR diffusion and, in particular, electrophoretic NMR (eNMR) are supported by NMR chemical shifts and Raman spectroscopy, where the latter techniques elucidate the local solvation structures. Migration of the acidic proton of the excess acid in the electric field occurs toward the cathode with a velocity larger than that of the anions. This intriguing feature of a rapid drift of a neutral molecule is explained by the interplay of strong correlations between anion and cation as well as between anion and acid. The neutral acid is subject to vehicular transport with the anion, while the anion is partitioning between anion-acid and anion-cation clusters, resulting in a lower average drift velocity. The negative drift direction of the neutral acid and its proton is superimposed to and thus counteracts the vehicular transport of protons with the cation. The study sheds light on the role of excess acid in PIL and reveals the versatile interactions between anion, cation, and excess acid within a PIL determining its charge transport properties. A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in combination with an excess of either trifluoroacetic acid (TFA) or trifluoromethanesulfonic acid (TfO). The addition of excess precursor acid adds proton-donor sites to the system to support potential structural proton transport, which could, for example, enable the use in fuel cells. Transport measurements by pulsed field gradient (PFG) NMR diffusion and, in particular, electrophoretic NMR (eNMR) are supported by NMR chemical shifts and Raman spectroscopy, where the latter techniques elucidate the local solvation structures. Migration of the acidic proton of the excess acid in the electric field occurs toward the cathode with a velocity larger than that of the anions. This intriguing feature of a rapid drift of a neutral molecule is explained by the interplay of strong correlations between anion and cation as well as between anion and acid. The neutral acid is subject to vehicular transport with the anion, while the anion is partitioning between anion-acid and anion-cation clusters, resulting in a lower average drift velocity. The negative drift direction of the neutral acid and its proton is superimposed to and thus counteracts the vehicular transport of protons with the cation. The study sheds light on the role of excess acid in PIL and reveals the versatile interactions between anion, cation, and excess acid within a PIL determining its charge transport properties. |
Author | Middendorf, Maleen Schönhoff, Monika |
AuthorAffiliation | International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA) Institute of Physical Chemistry |
AuthorAffiliation_xml | – name: International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA) – name: Institute of Physical Chemistry |
Author_xml | – sequence: 1 givenname: Maleen surname: Middendorf fullname: Middendorf, Maleen organization: International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA) – sequence: 2 givenname: Monika orcidid: 0000-0002-5299-783X surname: Schönhoff fullname: Schönhoff, Monika email: schoenho@uni-muenster.de organization: International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38484313$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctLJDEQxoMovu-eJEcPO2MenXS3NxnUFcYHMl4N6XT1TqQ7GZM0rP-9cWe8LOx6qAfU7yuo-g7QtvMOEDqhZEoJo-faxOnryjRTbkhFhdxC-1QwMslRbm96SYncQwcxvhLCBKvkLtrjVVEVnPJ99HLvXUzemqX1A6RgDX4MPuVy613Oc_s22jZe4MUS8JPvAfsOX_02ECO-NLbF1uHZUodfgBdBu7jyIeE7MEvtbBziEdrpdB_heFMP0fP11WL2czJ_uLmdXc4nmss6TRoNJQVTMMlrJmojCW-7pgItadkQxjWVsmwLIpkodNV0QnKg-YauNKVpiOSH6Gy9dxX82wgxqcFGA32vHfgxKk4KUoi6ovRblNWiylEKltHTDTo2A7RqFeygw7v6el8G5BowwccYoFPGJp2sdylo2ytK1KdPKvukPn1SG5-ykPwl_Nr9H8mPteTPxI_B5Yf-G_8AaiWlFg |
CitedBy_id | crossref_primary_10_1002_cphc_202400849 crossref_primary_10_1021_acs_jpcb_4c07150 crossref_primary_10_1039_D4TA02880E |
Cites_doi | 10.1021/acs.jpcb.6b01203 10.1021/acs.jpcb.0c07706 10.1016/j.molliq.2020.115069 10.1063/1.1700229 10.1021/cr068040u 10.1039/C6CP03058K 10.1002/cssc.201800436 10.1021/acs.jpcb.9b03185 10.1002/batt.201800096 10.1039/b801405a 10.1002/chem.201601428 10.1021/acs.jpcb.1c00249 10.1021/jp711298g 10.1039/C4CP01177E 10.1021/ja035783d 10.1021/acsaem.8b01389 10.1039/C9CP03563J 10.1039/D0CP05440B 10.1021/jp9098842 10.1002/mrc.4978 10.5229/JECST.2014.5.2.37 10.1016/S0167-2738(01)00941-9 10.1039/D2CP00643J 10.15407/ujpe68.4.246 10.1039/C9CP04723A 10.1039/b921462n 10.1002/anie.201209609 10.1039/c2cp00007e 10.1002/cssc.201901283 10.1016/j.fluid.2020.112919 10.1002/anie.200806224 10.1016/j.ensm.2022.09.025 10.1149/1.1664051 10.1039/C5CP05753A 10.1016/j.electacta.2006.03.016 10.1039/D0RA08969A 10.1021/acs.jpclett.2c02398 10.1021/jp022347p 10.1002/fuce.201000026 10.1039/B315813F 10.1016/S0924-2031(00)00073-4 10.1021/jacs.2c00818 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.jpcb.3c08156 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 2947 |
ExternalDocumentID | 38484313 10_1021_acs_jpcb_3c08156 e74111587 |
Genre | Journal Article |
GroupedDBID | --- -~X .DC .K2 123 29L 4.4 55A 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABQRX ABUCX ACBEA ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ PZZ RNS TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZGI ~02 53G AAHBH AAYXX ABBLG ABLBI CITATION CUPRZ ROL NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a369t-bae71ec42639259c603dfb8ea617b023a1667d406254a8bf563e1848f7c7cb063 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Fri Jul 11 00:44:59 EDT 2025 Fri Jul 11 00:17:24 EDT 2025 Wed Feb 19 02:08:01 EST 2025 Tue Jul 01 04:29:18 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Fri Mar 29 03:34:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a369t-bae71ec42639259c603dfb8ea617b023a1667d406254a8bf563e1848f7c7cb063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5299-783X |
PMID | 38484313 |
PQID | 2958295752 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3040459811 proquest_miscellaneous_2958295752 pubmed_primary_38484313 crossref_citationtrail_10_1021_acs_jpcb_3c08156 crossref_primary_10_1021_acs_jpcb_3c08156 acs_journals_10_1021_acs_jpcb_3c08156 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-28 |
PublicationDateYYYYMMDD | 2024-03-28 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref12/cit12 doi: 10.1021/acs.jpcb.6b01203 – ident: ref18/cit18 doi: 10.1021/acs.jpcb.0c07706 – ident: ref26/cit26 doi: 10.1016/j.molliq.2020.115069 – ident: ref41/cit41 doi: 10.1063/1.1700229 – ident: ref6/cit6 doi: 10.1021/cr068040u – ident: ref22/cit22 doi: 10.1039/C6CP03058K – ident: ref15/cit15 doi: 10.1002/cssc.201800436 – ident: ref16/cit16 doi: 10.1021/acs.jpcb.9b03185 – ident: ref9/cit9 doi: 10.1002/batt.201800096 – ident: ref38/cit38 doi: 10.1039/b801405a – ident: ref17/cit17 doi: 10.1002/chem.201601428 – ident: ref27/cit27 doi: 10.1021/acs.jpcb.1c00249 – ident: ref30/cit30 doi: 10.1021/jp711298g – ident: ref35/cit35 doi: 10.1039/C4CP01177E – ident: ref11/cit11 doi: 10.1021/ja035783d – ident: ref23/cit23 doi: 10.1021/acsaem.8b01389 – ident: ref25/cit25 doi: 10.1039/C9CP03563J – ident: ref28/cit28 doi: 10.1039/D0CP05440B – ident: ref4/cit4 doi: 10.1021/jp9098842 – ident: ref32/cit32 doi: 10.1002/mrc.4978 – ident: ref3/cit3 doi: 10.5229/JECST.2014.5.2.37 – ident: ref24/cit24 doi: 10.1016/S0167-2738(01)00941-9 – ident: ref14/cit14 doi: 10.1039/D2CP00643J – ident: ref42/cit42 doi: 10.15407/ujpe68.4.246 – ident: ref20/cit20 doi: 10.1039/C9CP04723A – ident: ref34/cit34 doi: 10.1039/b921462n – ident: ref29/cit29 doi: 10.1002/anie.201209609 – ident: ref13/cit13 doi: 10.1039/c2cp00007e – ident: ref19/cit19 doi: 10.1002/cssc.201901283 – ident: ref39/cit39 doi: 10.1016/j.fluid.2020.112919 – ident: ref10/cit10 doi: 10.1002/anie.200806224 – ident: ref21/cit21 doi: 10.1016/j.ensm.2022.09.025 – ident: ref1/cit1 doi: 10.1149/1.1664051 – ident: ref31/cit31 doi: 10.1039/C5CP05753A – ident: ref2/cit2 doi: 10.1016/j.electacta.2006.03.016 – ident: ref7/cit7 doi: 10.1039/D0RA08969A – ident: ref37/cit37 doi: 10.1021/acs.jpclett.2c02398 – ident: ref5/cit5 doi: 10.1021/jp022347p – ident: ref8/cit8 doi: 10.1002/fuce.201000026 – ident: ref33/cit33 doi: 10.1039/B315813F – ident: ref40/cit40 doi: 10.1016/S0924-2031(00)00073-4 – ident: ref36/cit36 doi: 10.1021/jacs.2c00818 |
SSID | ssj0025286 |
Score | 2.463007 |
Snippet | A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2939 |
SubjectTerms | B: Liquids; Chemical and Dynamical Processes in Solution cathodes cations electric field electrophoresis fuels Raman spectroscopy solvation triethylamine |
Title | Nonstoichiometric Protic Ionic Liquids: The Role of Excess Acid in Charge Transport Mechanisms |
URI | http://dx.doi.org/10.1021/acs.jpcb.3c08156 https://www.ncbi.nlm.nih.gov/pubmed/38484313 https://www.proquest.com/docview/2958295752 https://www.proquest.com/docview/3040459811 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKPZQLpZTHFqiMBAcOWdZ2_Ai31WoRrQAhKBInIr8CAZpQsishfj3jbHZRaUF7yCWyE3k8yXyfxvMNQlsdTbOYuSzSQgJBETyOTOJElHitqFHKyToVc3QsDs7jnxf84kUm53UGn5Jdbav2zb01bWY7QdpkBn2kQsmgk9_tnU3IFad1V0cIR4EOdcYpyf89IQQiW_0diN5Al3WU2f88aldU1eKE4XDJbXs4MG379K904xQLWEDzDdjE3ZF3fEEffLGIPvXGPd6-osvjAA_L3F6HKvwg1o9PHkoYjX8EyVx8mP8Z5q7aw-BN-LS887jMcP8xlBbgrs0dzgscEvZXHk9U0vGRD9XEefW7WkLn-_1fvYOo6bgQaSaSQWS0l8TbIOKeAC-yogPbaJTXgHMMRHdNhJAOMADQSq1MxgXzQBFVJq20BtDOMpotysKvIkyIY0C9XaaYiA1xSmfgLE7amCvHuGmhbTBM2nwxVVonwylJ65tgrbSxVgvtjrcptY1seeiecffOjJ3JjPuRZMc7YzfHO5-C6UOyRBe-HFYpTbiCS3L69hgGf8CYJ4qQFloZuc3kjQzMAuCMfZtynWtojgJeCsfbqFpHs4OHod8AvDMw32tHfwbzXvnS |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigX3tDlaSQ4cMh2bceO09tq1WoLuytUWqknIr9CAyUpza6E-PUdZ5MgEK3gkItlO_Z4kvlG4_kG4PVIszzmLo-0TNBBkSKOTOpklHqtmFHKJU0oZr6Q0-P43Yk42QDa5cLgImqcqW6C-L_YBehOaPtybs2Q21FgOLkBNxGLsECXP5587H0swZrijmiVglc06iKTf5sh2CNb_26PrgCZjbHZvwOH_TKbOyZfh6ulGdqffzA4_tc-7sLtFnqS8VpX7sGGL-_D1qSr-PYAPi0CWKwKexpy8gN1P_lwUWFvchAIdMms-L4qXL1LULfIYXXmSZWTvR8h0YCMbeFIUZIQvv_sSc-ZTuY-5BYX9bf6IRzv7x1NplFbfyHSXKbLyGifUG8DpXuKXpKVIzxUo7xG1GPQ1msqZeIQEaCTqZXJheQeHUaVJzaxBrHPI9gsq9JvA6HUcXTEXa64jA11SueoOi6xsVCOCzOANyiYrP1-6qwJjTOaNY0orayV1gB2utPKbEtiHmppnF0z4m0_4nxN4HFN31edAmQo-hA60aWvVnXGUqHwSQS7ug_H_2EsUkXpAB6vtad_I0exIFTjT_5xny9ha3o0n2Wzg8X7p3CLIZIKF9-Yegaby4uVf45IaGleNLp_CUpmAkI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3o8tLyPBgUO2mzh2HG6rpasW2lUFFPVE5Ffa0DZZml2p4tczk00igWgFh1ws24nH48w3Gs83AK9HOspj7vJAywQdFCniwKROBqnXKjJKuaQJxezN5PZB_OFQHK6B6HJh8CNqnKlugvh0qucubxkGwk1q_z63ZsjtiFhOrsF1itoRZf548rn3s0TUFHhEy0Se0aiLTv5tBrJJtv7dJl0CNBuDM70DX_tPbe6ZnAyXCzO0P_9gcfzvtdyF2y0EZeOVztyDNV_eh5uTrvLbA_g2I9BYFfaYcvOJwp_tn1fYm-0QkS7bLX4sC1e_Y6hj7FN16lmVs60LSjhgY1s4VpSMwvhHnvXc6WzPU45xUZ_VD-FguvVlsh20dRgCzWW6CIz2SegtUbun6C1ZOcLNNcprRD8Gbb4OpUwcIgN0NrUyuZDco-Oo8sQm1iAGegTrZVX6J8DC0HF0yF2uuIxN6JTOUYVcYmOhHBdmAG9QMFl7juqsCZFHYdY0orSyVloD2Ox2LLMtmTnV1Di9YsTbfsR8ReRxRd9XnRJkKHoKoejSV8s6i1Kh8ElEdHkfjv_FWKQqDAfweKVB_Rs5igUhG9_4x3W-hBv776fZ7s7s41O4FSGgovtvkXoG64vzpX-OgGhhXjTq_wuuUwTF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonstoichiometric+Protic+Ionic+Liquids%3A+The+Role+of+Excess+Acid+in+Charge+Transport+Mechanisms&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Middendorf%2C+Maleen&rft.au=Scho%CC%88nhoff%2C+Monika&rft.date=2024-03-28&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=128&rft.issue=12&rft.spage=2939&rft.epage=2947&rft_id=info:doi/10.1021%2Facs.jpcb.3c08156&rft.externalDocID=e74111587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |