Nonstoichiometric Protic Ionic Liquids: The Role of Excess Acid in Charge Transport Mechanisms

A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in combination with an excess of either trifluoroacetic acid (TFA) or trifluoromethanesulfonic acid (TfO). The addition of excess precursor acid add...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 128; no. 12; pp. 2939 - 2947
Main Authors Middendorf, Maleen, Schönhoff, Monika
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.03.2024
Subjects
Online AccessGet full text
ISSN1520-6106
1520-5207
1520-5207
DOI10.1021/acs.jpcb.3c08156

Cover

Loading…
Abstract A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in combination with an excess of either trifluoroacetic acid (TFA) or trifluoromethanesulfonic acid (TfO). The addition of excess precursor acid adds proton-donor sites to the system to support potential structural proton transport, which could, for example, enable the use in fuel cells. Transport measurements by pulsed field gradient (PFG) NMR diffusion and, in particular, electrophoretic NMR (eNMR) are supported by NMR chemical shifts and Raman spectroscopy, where the latter techniques elucidate the local solvation structures. Migration of the acidic proton of the excess acid in the electric field occurs toward the cathode with a velocity larger than that of the anions. This intriguing feature of a rapid drift of a neutral molecule is explained by the interplay of strong correlations between anion and cation as well as between anion and acid. The neutral acid is subject to vehicular transport with the anion, while the anion is partitioning between anion–acid and anion–cation clusters, resulting in a lower average drift velocity. The negative drift direction of the neutral acid and its proton is superimposed to and thus counteracts the vehicular transport of protons with the cation. The study sheds light on the role of excess acid in PIL and reveals the versatile interactions between anion, cation, and excess acid within a PIL determining its charge transport properties.
AbstractList A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in combination with an excess of either trifluoroacetic acid (TFA) or trifluoromethanesulfonic acid (TfO). The addition of excess precursor acid adds proton-donor sites to the system to support potential structural proton transport, which could, for example, enable the use in fuel cells. Transport measurements by pulsed field gradient (PFG) NMR diffusion and, in particular, electrophoretic NMR (eNMR) are supported by NMR chemical shifts and Raman spectroscopy, where the latter techniques elucidate the local solvation structures. Migration of the acidic proton of the excess acid in the electric field occurs toward the cathode with a velocity larger than that of the anions. This intriguing feature of a rapid drift of a neutral molecule is explained by the interplay of strong correlations between anion and cation as well as between anion and acid. The neutral acid is subject to vehicular transport with the anion, while the anion is partitioning between anion-acid and anion-cation clusters, resulting in a lower average drift velocity. The negative drift direction of the neutral acid and its proton is superimposed to and thus counteracts the vehicular transport of protons with the cation. The study sheds light on the role of excess acid in PIL and reveals the versatile interactions between anion, cation, and excess acid within a PIL determining its charge transport properties.A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in combination with an excess of either trifluoroacetic acid (TFA) or trifluoromethanesulfonic acid (TfO). The addition of excess precursor acid adds proton-donor sites to the system to support potential structural proton transport, which could, for example, enable the use in fuel cells. Transport measurements by pulsed field gradient (PFG) NMR diffusion and, in particular, electrophoretic NMR (eNMR) are supported by NMR chemical shifts and Raman spectroscopy, where the latter techniques elucidate the local solvation structures. Migration of the acidic proton of the excess acid in the electric field occurs toward the cathode with a velocity larger than that of the anions. This intriguing feature of a rapid drift of a neutral molecule is explained by the interplay of strong correlations between anion and cation as well as between anion and acid. The neutral acid is subject to vehicular transport with the anion, while the anion is partitioning between anion-acid and anion-cation clusters, resulting in a lower average drift velocity. The negative drift direction of the neutral acid and its proton is superimposed to and thus counteracts the vehicular transport of protons with the cation. The study sheds light on the role of excess acid in PIL and reveals the versatile interactions between anion, cation, and excess acid within a PIL determining its charge transport properties.
A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in combination with an excess of either trifluoroacetic acid (TFA) or trifluoromethanesulfonic acid (TfO). The addition of excess precursor acid adds proton-donor sites to the system to support potential structural proton transport, which could, for example, enable the use in fuel cells. Transport measurements by pulsed field gradient (PFG) NMR diffusion and, in particular, electrophoretic NMR (eNMR) are supported by NMR chemical shifts and Raman spectroscopy, where the latter techniques elucidate the local solvation structures. Migration of the acidic proton of the excess acid in the electric field occurs toward the cathode with a velocity larger than that of the anions. This intriguing feature of a rapid drift of a neutral molecule is explained by the interplay of strong correlations between anion and cation as well as between anion and acid. The neutral acid is subject to vehicular transport with the anion, while the anion is partitioning between anion-acid and anion-cation clusters, resulting in a lower average drift velocity. The negative drift direction of the neutral acid and its proton is superimposed to and thus counteracts the vehicular transport of protons with the cation. The study sheds light on the role of excess acid in PIL and reveals the versatile interactions between anion, cation, and excess acid within a PIL determining its charge transport properties.
Author Middendorf, Maleen
Schönhoff, Monika
AuthorAffiliation International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA)
Institute of Physical Chemistry
AuthorAffiliation_xml – name: International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA)
– name: Institute of Physical Chemistry
Author_xml – sequence: 1
  givenname: Maleen
  surname: Middendorf
  fullname: Middendorf, Maleen
  organization: International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA)
– sequence: 2
  givenname: Monika
  orcidid: 0000-0002-5299-783X
  surname: Schönhoff
  fullname: Schönhoff, Monika
  email: schoenho@uni-muenster.de
  organization: International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38484313$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLJDEQxoMovu-eJEcPO2MenXS3NxnUFcYHMl4N6XT1TqQ7GZM0rP-9cWe8LOx6qAfU7yuo-g7QtvMOEDqhZEoJo-faxOnryjRTbkhFhdxC-1QwMslRbm96SYncQwcxvhLCBKvkLtrjVVEVnPJ99HLvXUzemqX1A6RgDX4MPuVy613Oc_s22jZe4MUS8JPvAfsOX_02ECO-NLbF1uHZUodfgBdBu7jyIeE7MEvtbBziEdrpdB_heFMP0fP11WL2czJ_uLmdXc4nmss6TRoNJQVTMMlrJmojCW-7pgItadkQxjWVsmwLIpkodNV0QnKg-YauNKVpiOSH6Gy9dxX82wgxqcFGA32vHfgxKk4KUoi6ovRblNWiylEKltHTDTo2A7RqFeygw7v6el8G5BowwccYoFPGJp2sdylo2ytK1KdPKvukPn1SG5-ykPwl_Nr9H8mPteTPxI_B5Yf-G_8AaiWlFg
CitedBy_id crossref_primary_10_1002_cphc_202400849
crossref_primary_10_1021_acs_jpcb_4c07150
crossref_primary_10_1039_D4TA02880E
Cites_doi 10.1021/acs.jpcb.6b01203
10.1021/acs.jpcb.0c07706
10.1016/j.molliq.2020.115069
10.1063/1.1700229
10.1021/cr068040u
10.1039/C6CP03058K
10.1002/cssc.201800436
10.1021/acs.jpcb.9b03185
10.1002/batt.201800096
10.1039/b801405a
10.1002/chem.201601428
10.1021/acs.jpcb.1c00249
10.1021/jp711298g
10.1039/C4CP01177E
10.1021/ja035783d
10.1021/acsaem.8b01389
10.1039/C9CP03563J
10.1039/D0CP05440B
10.1021/jp9098842
10.1002/mrc.4978
10.5229/JECST.2014.5.2.37
10.1016/S0167-2738(01)00941-9
10.1039/D2CP00643J
10.15407/ujpe68.4.246
10.1039/C9CP04723A
10.1039/b921462n
10.1002/anie.201209609
10.1039/c2cp00007e
10.1002/cssc.201901283
10.1016/j.fluid.2020.112919
10.1002/anie.200806224
10.1016/j.ensm.2022.09.025
10.1149/1.1664051
10.1039/C5CP05753A
10.1016/j.electacta.2006.03.016
10.1039/D0RA08969A
10.1021/acs.jpclett.2c02398
10.1021/jp022347p
10.1002/fuce.201000026
10.1039/B315813F
10.1016/S0924-2031(00)00073-4
10.1021/jacs.2c00818
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jpcb.3c08156
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 2947
ExternalDocumentID 38484313
10_1021_acs_jpcb_3c08156
e74111587
Genre Journal Article
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
55A
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PZZ
RNS
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZGI
~02
53G
AAHBH
AAYXX
ABBLG
ABLBI
CITATION
CUPRZ
ROL
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a369t-bae71ec42639259c603dfb8ea617b023a1667d406254a8bf563e1848f7c7cb063
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri Jul 11 00:44:59 EDT 2025
Fri Jul 11 00:17:24 EDT 2025
Wed Feb 19 02:08:01 EST 2025
Tue Jul 01 04:29:18 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Fri Mar 29 03:34:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-bae71ec42639259c603dfb8ea617b023a1667d406254a8bf563e1848f7c7cb063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5299-783X
PMID 38484313
PQID 2958295752
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_3040459811
proquest_miscellaneous_2958295752
pubmed_primary_38484313
crossref_citationtrail_10_1021_acs_jpcb_3c08156
crossref_primary_10_1021_acs_jpcb_3c08156
acs_journals_10_1021_acs_jpcb_3c08156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-28
PublicationDateYYYYMMDD 2024-03-28
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1021/acs.jpcb.6b01203
– ident: ref18/cit18
  doi: 10.1021/acs.jpcb.0c07706
– ident: ref26/cit26
  doi: 10.1016/j.molliq.2020.115069
– ident: ref41/cit41
  doi: 10.1063/1.1700229
– ident: ref6/cit6
  doi: 10.1021/cr068040u
– ident: ref22/cit22
  doi: 10.1039/C6CP03058K
– ident: ref15/cit15
  doi: 10.1002/cssc.201800436
– ident: ref16/cit16
  doi: 10.1021/acs.jpcb.9b03185
– ident: ref9/cit9
  doi: 10.1002/batt.201800096
– ident: ref38/cit38
  doi: 10.1039/b801405a
– ident: ref17/cit17
  doi: 10.1002/chem.201601428
– ident: ref27/cit27
  doi: 10.1021/acs.jpcb.1c00249
– ident: ref30/cit30
  doi: 10.1021/jp711298g
– ident: ref35/cit35
  doi: 10.1039/C4CP01177E
– ident: ref11/cit11
  doi: 10.1021/ja035783d
– ident: ref23/cit23
  doi: 10.1021/acsaem.8b01389
– ident: ref25/cit25
  doi: 10.1039/C9CP03563J
– ident: ref28/cit28
  doi: 10.1039/D0CP05440B
– ident: ref4/cit4
  doi: 10.1021/jp9098842
– ident: ref32/cit32
  doi: 10.1002/mrc.4978
– ident: ref3/cit3
  doi: 10.5229/JECST.2014.5.2.37
– ident: ref24/cit24
  doi: 10.1016/S0167-2738(01)00941-9
– ident: ref14/cit14
  doi: 10.1039/D2CP00643J
– ident: ref42/cit42
  doi: 10.15407/ujpe68.4.246
– ident: ref20/cit20
  doi: 10.1039/C9CP04723A
– ident: ref34/cit34
  doi: 10.1039/b921462n
– ident: ref29/cit29
  doi: 10.1002/anie.201209609
– ident: ref13/cit13
  doi: 10.1039/c2cp00007e
– ident: ref19/cit19
  doi: 10.1002/cssc.201901283
– ident: ref39/cit39
  doi: 10.1016/j.fluid.2020.112919
– ident: ref10/cit10
  doi: 10.1002/anie.200806224
– ident: ref21/cit21
  doi: 10.1016/j.ensm.2022.09.025
– ident: ref1/cit1
  doi: 10.1149/1.1664051
– ident: ref31/cit31
  doi: 10.1039/C5CP05753A
– ident: ref2/cit2
  doi: 10.1016/j.electacta.2006.03.016
– ident: ref7/cit7
  doi: 10.1039/D0RA08969A
– ident: ref37/cit37
  doi: 10.1021/acs.jpclett.2c02398
– ident: ref5/cit5
  doi: 10.1021/jp022347p
– ident: ref8/cit8
  doi: 10.1002/fuce.201000026
– ident: ref33/cit33
  doi: 10.1039/B315813F
– ident: ref40/cit40
  doi: 10.1016/S0924-2031(00)00073-4
– ident: ref36/cit36
  doi: 10.1021/jacs.2c00818
SSID ssj0025286
Score 2.463007
Snippet A study of charge transport mechanisms in an electric field was conducted on nonstoichiometric protic ionic liquids (PIL) based on triethylamine (TEA), in...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2939
SubjectTerms B: Liquids; Chemical and Dynamical Processes in Solution
cathodes
cations
electric field
electrophoresis
fuels
Raman spectroscopy
solvation
triethylamine
Title Nonstoichiometric Protic Ionic Liquids: The Role of Excess Acid in Charge Transport Mechanisms
URI http://dx.doi.org/10.1021/acs.jpcb.3c08156
https://www.ncbi.nlm.nih.gov/pubmed/38484313
https://www.proquest.com/docview/2958295752
https://www.proquest.com/docview/3040459811
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKPZQLpZTHFqiMBAcOWdZ2_Ai31WoRrQAhKBInIr8CAZpQsishfj3jbHZRaUF7yCWyE3k8yXyfxvMNQlsdTbOYuSzSQgJBETyOTOJElHitqFHKyToVc3QsDs7jnxf84kUm53UGn5Jdbav2zb01bWY7QdpkBn2kQsmgk9_tnU3IFad1V0cIR4EOdcYpyf89IQQiW_0diN5Al3WU2f88aldU1eKE4XDJbXs4MG379K904xQLWEDzDdjE3ZF3fEEffLGIPvXGPd6-osvjAA_L3F6HKvwg1o9PHkoYjX8EyVx8mP8Z5q7aw-BN-LS887jMcP8xlBbgrs0dzgscEvZXHk9U0vGRD9XEefW7WkLn-_1fvYOo6bgQaSaSQWS0l8TbIOKeAC-yogPbaJTXgHMMRHdNhJAOMADQSq1MxgXzQBFVJq20BtDOMpotysKvIkyIY0C9XaaYiA1xSmfgLE7amCvHuGmhbTBM2nwxVVonwylJ65tgrbSxVgvtjrcptY1seeiecffOjJ3JjPuRZMc7YzfHO5-C6UOyRBe-HFYpTbiCS3L69hgGf8CYJ4qQFloZuc3kjQzMAuCMfZtynWtojgJeCsfbqFpHs4OHod8AvDMw32tHfwbzXvnS
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigX3tDlaSQ4cMh2bceO09tq1WoLuytUWqknIr9CAyUpza6E-PUdZ5MgEK3gkItlO_Z4kvlG4_kG4PVIszzmLo-0TNBBkSKOTOpklHqtmFHKJU0oZr6Q0-P43Yk42QDa5cLgImqcqW6C-L_YBehOaPtybs2Q21FgOLkBNxGLsECXP5587H0swZrijmiVglc06iKTf5sh2CNb_26PrgCZjbHZvwOH_TKbOyZfh6ulGdqffzA4_tc-7sLtFnqS8VpX7sGGL-_D1qSr-PYAPi0CWKwKexpy8gN1P_lwUWFvchAIdMms-L4qXL1LULfIYXXmSZWTvR8h0YCMbeFIUZIQvv_sSc-ZTuY-5BYX9bf6IRzv7x1NplFbfyHSXKbLyGifUG8DpXuKXpKVIzxUo7xG1GPQ1msqZeIQEaCTqZXJheQeHUaVJzaxBrHPI9gsq9JvA6HUcXTEXa64jA11SueoOi6xsVCOCzOANyiYrP1-6qwJjTOaNY0orayV1gB2utPKbEtiHmppnF0z4m0_4nxN4HFN31edAmQo-hA60aWvVnXGUqHwSQS7ug_H_2EsUkXpAB6vtad_I0exIFTjT_5xny9ha3o0n2Wzg8X7p3CLIZIKF9-Yegaby4uVf45IaGleNLp_CUpmAkI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3o8tLyPBgUO2mzh2HG6rpasW2lUFFPVE5Ffa0DZZml2p4tczk00igWgFh1ws24nH48w3Gs83AK9HOspj7vJAywQdFCniwKROBqnXKjJKuaQJxezN5PZB_OFQHK6B6HJh8CNqnKlugvh0qucubxkGwk1q_z63ZsjtiFhOrsF1itoRZf548rn3s0TUFHhEy0Se0aiLTv5tBrJJtv7dJl0CNBuDM70DX_tPbe6ZnAyXCzO0P_9gcfzvtdyF2y0EZeOVztyDNV_eh5uTrvLbA_g2I9BYFfaYcvOJwp_tn1fYm-0QkS7bLX4sC1e_Y6hj7FN16lmVs60LSjhgY1s4VpSMwvhHnvXc6WzPU45xUZ_VD-FguvVlsh20dRgCzWW6CIz2SegtUbun6C1ZOcLNNcprRD8Gbb4OpUwcIgN0NrUyuZDco-Oo8sQm1iAGegTrZVX6J8DC0HF0yF2uuIxN6JTOUYVcYmOhHBdmAG9QMFl7juqsCZFHYdY0orSyVloD2Ox2LLMtmTnV1Di9YsTbfsR8ReRxRd9XnRJkKHoKoejSV8s6i1Kh8ElEdHkfjv_FWKQqDAfweKVB_Rs5igUhG9_4x3W-hBv776fZ7s7s41O4FSGgovtvkXoG64vzpX-OgGhhXjTq_wuuUwTF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonstoichiometric+Protic+Ionic+Liquids%3A+The+Role+of+Excess+Acid+in+Charge+Transport+Mechanisms&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Middendorf%2C+Maleen&rft.au=Scho%CC%88nhoff%2C+Monika&rft.date=2024-03-28&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=128&rft.issue=12&rft.spage=2939&rft.epage=2947&rft_id=info:doi/10.1021%2Facs.jpcb.3c08156&rft.externalDocID=e74111587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon