Molecular Mechanism of Double-Displacement Retaining β‑Kdo Glycosyltransferase WbbB

Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 128; no. 31; pp. 7476 - 7485
Main Authors Rao, Deming, Zhu, Lin, Liu, Weiqiong, Guo, Zhiyong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common S N i-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.
AbstractList Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety's anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common SNi-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety's anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common SNi-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.
Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common SNi-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.
Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common S N i-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.
Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety's anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common S i-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.
Author Guo, Zhiyong
Liu, Weiqiong
Rao, Deming
Zhu, Lin
AuthorAffiliation State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences
State Key Laboratory of Food Science and Resources
School of Life Science and Technology
Jiangnan University
International Joint Laboratory on Food Safety
School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education
AuthorAffiliation_xml – name: Jiangnan University
– name: School of Life Science and Technology
– name: State Key Laboratory of Food Science and Resources
– name: International Joint Laboratory on Food Safety
– name: State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences
– name: School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education
Author_xml – sequence: 1
  givenname: Deming
  surname: Rao
  fullname: Rao, Deming
  organization: School of Life Science and Technology
– sequence: 2
  givenname: Lin
  surname: Zhu
  fullname: Zhu, Lin
  organization: School of Life Science and Technology
– sequence: 3
  givenname: Weiqiong
  surname: Liu
  fullname: Liu, Weiqiong
  organization: Jiangnan University
– sequence: 4
  givenname: Zhiyong
  orcidid: 0009-0003-4334-2713
  surname: Guo
  fullname: Guo, Zhiyong
  email: guozy@hubu.edu.cn
  organization: State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39051443$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtOHDEUhq0IFG7pU6EpKZiNb2N7SlgIiQJCQrmUozPeM8TIYy_2TLFdXiGvkgfJQ-RJMmSXFJEChXUsne87xf_vka0QAxLymtEZo5y9AZtnd0vbzqSlnGrxguyyitNyenpr81eMqh2yl_MdpbziRr0kO6KmFZNS7JLPV9GjHT2k4grtVwgu90XsirM4th7LM5eXHiz2GIbiBgdwwYXb4uePX9--f1jE4sKvbMwrPyQIucMEGYsvbXt6QLY78BlfbeY--fT2_OP8XXl5ffF-fnJZglD1UJoKQFTAOfIaazAWVAuVsBaE5nSBzLaglelqIxljKDvsmJYLrpVkta2M2CdH67vLFO9HzEPTu2zRewgYx9wIVgktmdHqeZQaqbUwlE7o4QYd2x4XzTK5HtKqeYxtAugasCnmnLD7izDaPDTTTM00D800m2YmRf2jWDfA4GKYsnP-KfF4Lf7ZxDGFKdD_478Bs4Gk5A
CitedBy_id crossref_primary_10_1128_mmbr_00090_23
Cites_doi 10.1002/anie.202211937
10.1103/PhysRevB.54.1703
10.1073/pnas.202427399
10.1002/anie.202006648
10.1002/1096-987X(20010415)22:5<501:AID-JCC1021>3.0.CO;2-V
10.1103/PhysRevLett.100.020603
10.1126/sciadv.abe2470
10.1021/acschembio.2c00408
10.1021/acscatal.1c05729
10.1103/PhysRevLett.77.3865
10.1371/journal.pcbi.1004061
10.1093/glycob/cwt101
10.1063/1.445869
10.1021/ct050123f
10.1002/bit.22838
10.1021/acs.jpcb.3c04293
10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H
10.1021/acscatal.9b05232
10.1021/ja210490f
10.1093/nar/gkab1045
10.1002/jcc.21759
10.1021/acs.jctc.5b00255
10.1126/sciadv.1601386
10.1063/5.0007045
10.1146/annurev.biochem.76.061005.092322
10.1002/anie.202113587
10.1080/08927022.2017.1422212
10.1021/acscatal.8b00710
10.1038/s41589-019-0350-2
10.1038/s41467-022-33988-1
10.1016/j.sbi.2012.06.007
10.1074/jbc.M116.719344
10.1073/pnas.1701785114
10.1002/chem.202301305
10.1039/c4ob00286e
10.1021/ct400314y
10.1021/acs.jpcb.2c08718
10.1016/S0959-440X(00)00124-X
10.1063/1.3382344
10.1111/j.1469-185X.1953.tb01386.x
10.1074/jbc.M400451200
10.1002/anie.201104623
10.1063/1.2408420
10.1158/0008-5472.CAN-15-2834
10.1002/jcc.20291
10.1002/cphc.202200649
10.1038/nsmb720
10.1038/nchembio.1927
10.1073/pnas.1603146113
10.1039/C5CS00600G
10.1063/1.464397
10.1016/j.cpc.2004.12.014
10.1016/j.cbpa.2010.11.022
10.1021/acs.jcim.0c01380
10.1021/ct400341p
10.1021/acscatal.0c04171
10.1002/wcms.1159
10.1063/1.1332996
10.1021/jacs.5b01156
10.1021/jacs.8b10836
10.1021/bi012031s
10.1002/anie.202401235
10.1002/anie.201707922
10.1021/ja972503j
10.1063/1.448118
10.1016/j.bbapap.2021.140699
10.1074/jbc.M507643200
10.1021/bi700346w
10.1002/chem.202101724
10.1016/j.cell.2007.12.016
10.1021/acs.jpclett.2c01136
10.1021/ct100578z
10.1038/nchembio.628
10.1021/acs.jcim.3c00635
10.1002/jcc.20035
10.1093/glycob/cwq190
10.1016/j.cpc.2013.09.018
10.1002/jcc.20820
10.1016/0263-7855(96)00018-5
10.1002/jcc.20495
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jpcb.4c02073
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 7485
ExternalDocumentID 39051443
10_1021_acs_jpcb_4c02073
b612810205
Genre Journal Article
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
53G
55A
5VS
7~N
85S
AABXI
AAHBH
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PZZ
RNS
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZGI
~02
AAYXX
ABBLG
ABLBI
CITATION
ROL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a369t-85aa35a22e29e9a8ca6ba53cca3720de1cba768f984111e4fef174d276419c583
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri Jul 11 03:04:14 EDT 2025
Fri Jul 11 08:18:04 EDT 2025
Thu Apr 03 06:59:19 EDT 2025
Tue Jul 01 04:29:19 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Fri Aug 09 03:10:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-85aa35a22e29e9a8ca6ba53cca3720de1cba768f984111e4fef174d276419c583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0003-4334-2713
PMID 39051443
PQID 3084773800
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3153741876
proquest_miscellaneous_3084773800
pubmed_primary_39051443
crossref_primary_10_1021_acs_jpcb_4c02073
crossref_citationtrail_10_1021_acs_jpcb_4c02073
acs_journals_10_1021_acs_jpcb_4c02073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-08
PublicationDateYYYYMMDD 2024-08-08
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref79/cit79
  doi: 10.1002/anie.202211937
– ident: ref62/cit62
  doi: 10.1103/PhysRevB.54.1703
– ident: ref64/cit64
  doi: 10.1073/pnas.202427399
– ident: ref7/cit7
  doi: 10.1002/anie.202006648
– ident: ref46/cit46
  doi: 10.1002/1096-987X(20010415)22:5<501:AID-JCC1021>3.0.CO;2-V
– ident: ref69/cit69
  doi: 10.1103/PhysRevLett.100.020603
– ident: ref14/cit14
  doi: 10.1126/sciadv.abe2470
– ident: ref25/cit25
  doi: 10.1021/acschembio.2c00408
– ident: ref9/cit9
  doi: 10.1021/acscatal.1c05729
– ident: ref58/cit58
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref26/cit26
  doi: 10.1371/journal.pcbi.1004061
– ident: ref35/cit35
  doi: 10.1093/glycob/cwt101
– ident: ref42/cit42
  doi: 10.1063/1.445869
– ident: ref57/cit57
  doi: 10.1021/ct050123f
– ident: ref36/cit36
  doi: 10.1002/bit.22838
– ident: ref73/cit73
  doi: 10.1021/acs.jpcb.3c04293
– ident: ref67/cit67
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H
– ident: ref11/cit11
  doi: 10.1021/acscatal.9b05232
– ident: ref19/cit19
  doi: 10.1021/ja210490f
– ident: ref1/cit1
  doi: 10.1093/nar/gkab1045
– ident: ref61/cit61
  doi: 10.1002/jcc.21759
– ident: ref41/cit41
  doi: 10.1021/acs.jctc.5b00255
– ident: ref38/cit38
  doi: 10.1126/sciadv.1601386
– ident: ref55/cit55
  doi: 10.1063/5.0007045
– ident: ref2/cit2
  doi: 10.1146/annurev.biochem.76.061005.092322
– ident: ref8/cit8
  doi: 10.1002/anie.202113587
– ident: ref37/cit37
  doi: 10.1080/08927022.2017.1422212
– ident: ref5/cit5
  doi: 10.1021/acscatal.8b00710
– ident: ref15/cit15
  doi: 10.1038/s41589-019-0350-2
– ident: ref32/cit32
  doi: 10.1038/s41467-022-33988-1
– ident: ref3/cit3
  doi: 10.1016/j.sbi.2012.06.007
– ident: ref34/cit34
  doi: 10.1074/jbc.M116.719344
– ident: ref12/cit12
  doi: 10.1073/pnas.1701785114
– ident: ref74/cit74
  doi: 10.1002/chem.202301305
– ident: ref23/cit23
  doi: 10.1039/c4ob00286e
– ident: ref49/cit49
  doi: 10.1021/ct400314y
– ident: ref53/cit53
  doi: 10.1021/acs.jpcb.2c08718
– ident: ref4/cit4
  doi: 10.1016/S0959-440X(00)00124-X
– ident: ref60/cit60
  doi: 10.1063/1.3382344
– ident: ref28/cit28
  doi: 10.1111/j.1469-185X.1953.tb01386.x
– ident: ref29/cit29
  doi: 10.1074/jbc.M400451200
– ident: ref27/cit27
  doi: 10.1002/anie.201104623
– ident: ref48/cit48
– ident: ref63/cit63
  doi: 10.1063/1.2408420
– ident: ref13/cit13
  doi: 10.1158/0008-5472.CAN-15-2834
– ident: ref66/cit66
  doi: 10.1002/jcc.20291
– ident: ref76/cit76
  doi: 10.1002/cphc.202200649
– ident: ref78/cit78
  doi: 10.1038/nsmb720
– ident: ref20/cit20
  doi: 10.1038/nchembio.1927
– ident: ref33/cit33
  doi: 10.1073/pnas.1603146113
– ident: ref17/cit17
  doi: 10.1039/C5CS00600G
– ident: ref47/cit47
  doi: 10.1063/1.464397
– ident: ref56/cit56
  doi: 10.1016/j.cpc.2004.12.014
– ident: ref6/cit6
  doi: 10.1016/j.cbpa.2010.11.022
– ident: ref18/cit18
  doi: 10.1021/acs.jcim.0c01380
– ident: ref51/cit51
  doi: 10.1021/ct400341p
– ident: ref10/cit10
  doi: 10.1021/acscatal.0c04171
– ident: ref54/cit54
  doi: 10.1002/wcms.1159
– ident: ref44/cit44
  doi: 10.1063/1.1332996
– ident: ref70/cit70
  doi: 10.1021/jacs.5b01156
– ident: ref80/cit80
  doi: 10.1021/jacs.8b10836
– ident: ref31/cit31
  doi: 10.1021/bi012031s
– ident: ref75/cit75
  doi: 10.1002/anie.202401235
– ident: ref24/cit24
  doi: 10.1002/anie.201707922
– ident: ref72/cit72
  doi: 10.1021/ja972503j
– ident: ref45/cit45
  doi: 10.1063/1.448118
– ident: ref81/cit81
  doi: 10.1016/j.bbapap.2021.140699
– ident: ref71/cit71
  doi: 10.1074/jbc.M507643200
– ident: ref77/cit77
  doi: 10.1021/bi700346w
– ident: ref22/cit22
  doi: 10.1002/chem.202101724
– ident: ref16/cit16
  doi: 10.1016/j.cell.2007.12.016
– ident: ref52/cit52
  doi: 10.1021/acs.jpclett.2c01136
– ident: ref39/cit39
  doi: 10.1021/ct100578z
– ident: ref21/cit21
  doi: 10.1038/nchembio.628
– ident: ref43/cit43
  doi: 10.1021/acs.jcim.3c00635
– ident: ref40/cit40
  doi: 10.1002/jcc.20035
– ident: ref30/cit30
  doi: 10.1093/glycob/cwq190
– ident: ref65/cit65
  doi: 10.1016/j.cpc.2013.09.018
– ident: ref68/cit68
  doi: 10.1002/jcc.20820
– ident: ref50/cit50
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref59/cit59
  doi: 10.1002/jcc.20495
SSID ssj0025286
Score 2.4675503
Snippet Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s...
Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety's...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7476
SubjectTerms B: Biophysical and Biochemical Systems and Processes
Biocatalysis
carbon
glycosides
glycosidic linkages
glycosylation
glycosyltransferases
Glycosyltransferases - chemistry
Glycosyltransferases - metabolism
Hydrogen Bonding
hydrolases
Lewis bases
moieties
Molecular Dynamics Simulation
phosphates
Quantum Theory
sugars
Title Molecular Mechanism of Double-Displacement Retaining β‑Kdo Glycosyltransferase WbbB
URI http://dx.doi.org/10.1021/acs.jpcb.4c02073
https://www.ncbi.nlm.nih.gov/pubmed/39051443
https://www.proquest.com/docview/3084773800
https://www.proquest.com/docview/3153741876
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NUhQxEE4pHvQCCP4sIBWq9OBhlt38TXKEVaSg1oOKcpvqZDJV6LJDMbMHPPkKvAoPwkPwJHayM0uJusV1KslUOpn5vi_d6SbkdQ7GFgJkokwOCSI-JMBAJVZxzsGlKEnCBefhR7V_JA6O5fFtmpy7HnzW3wZXdb-fOdsVDqlNyh-SR0zpNAitncHnmbiSLFZ1RDgKcqjXuiT_NUIAIlf9CUT_YZcRZfaWpuWKqpicMASX_OhOatt1P_9O3XiPCSyTxYZs0p3p7nhKHvjxCnk8aGu8rZKvw7Y6Lh36cAf4pDqlZUGRVtuRT96dVDFmK5wg0k8h2DScotDrq5tfl4d5ST-MLlxZXYzqyH79OSIi_Wbt7jNytPf-y2A_aSotJMCVqRMtAbgExjwz3oB2oCxIjqsbitjkvu8soC4pjBb4b_Si8AUqmZylSvSNk5o_JwvjcuxfEqrzcNXWOC98LnrcaG21DOOhUJTGsw55gwbJmi-lyqITnPWz-BCtlDVW6pDtdnky16QrD1UzRnN6vJ31OJum6pjTdqtd8QxNHpwkMPblpMp4D_E65cij57RBmAhZf1LVIS-m22X2Rh4SngnB1-45z3XyhCFPijGFeoMs1OcT_wp5Tm034wb_DfYY-XE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PUtQwGP8G8YAXVFRYFYkzevDQZZs_bXKERViE5YCg3DpJms6g65ah3QOefAVfxQfhIXgSvmTbdXR0R6-dJE2-pP39vnz_AF7lWpmCaxElKtcRIr6ONNVJZBLGmLYpqiQ-wHl4lAxO-bszcbYAcRsLg5OocKQqGPF_ZheIN_2zTxfWdLlFhpOyO3AXuQj1-tZW__1MxxI0FHdEVPJaUa-1TP5pBI9HtvoVj_5CMgPY7N6H49k0g4_J5-6kNl379bcMjv-1jgew3FBPsjU9Kw9hwY1XYKnfVnx7BB-Gba1cMnQ-Ivi8-kLKgiDJNiMX7ZxXwYPL3yeSY-966u9UyPWPm2_fD_KS7I2ubFldjerAhd0l4iP5aMz2YzjdfXvSH0RN3YVIs0TVkRRaM6EpdVQ5paXVidGC4V77kja5i63RqKUUSnL8UzpeuAL1mpymCY-VFZI9gcVxOXZrQGTuA2-VddzlvMeUlEYKPx6qjUI52oHXKJCs-W6qLJjEaZyFhyilrJFSBzbbXcpsk7zc19AYzenxZtbjYpq4Y07bl-3GZyhybzLRY1dOqoz1EL1Thqx6ThsEDZ8DKE06sDo9NbM3Mp_-jHP29B_XuQFLg5PhYXa4f3TwDO5RZFDB21A-h8X6cuLWkQHV5kU487cjvwHh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB6VIgEX_n_Cr5HgwGHTxD-79rGkhEJJhYCW3la21ysVQjbqbg7lxCvwKjwID8GTMOPsRgJBBFfL9tpje79vPOMZgEeFNa6UViWpKWyCiG8Ty22auFQIYX2GKgk9cJ7sp7sH8uWROtoA1b2FwUHU2FMdjfh0qudF2UYYGG5R-Ye5d33pkeVk4gycJasd6Vzbo7crPUvxmOARkYk0o0FnnfxTD4RJvv4Vk_5CNCPgjC_B4Wqo0c_kY3_RuL7__FsUx_-ey2W42FJQtr3cM1dgI8yuwvlRl_ntGhxOupy5bBLoZfBx_YlVJUOy7aYh2TmuoycX3SuyN-SCSncr7Pu3H1--7hUVez499VV9Om0iJw4niJPsvXNPr8PB-Nm70W7S5l9IrEhNk2hlrVCW88BNMFZ7mzqrBK45pbYpwtA7i9pKabTEP2aQZShRvyl4lsqh8UqLG7A5q2bhFjBd0ANc44MMhRwIo7XTivpD9VGZwHvwGAWSt-enzqNpnA_zWIhSylsp9WCrW6nct0HMKZfGdE2LJ6sW82UAjzV1H3aLn6PIyXRiZ6Fa1LkYIIpnAtn1mjoIHhQLKEt7cHO5c1ZfFBQGTUpx-x_n-QDOvd4Z569e7O_dgQsciVR0OtR3YbM5WYR7SIQadz9u-591HARk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Mechanism+of+Double-Displacement+Retaining+%CE%B2%E2%80%91Kdo+Glycosyltransferase+WbbB&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Rao%2C+Deming&rft.au=Zhu%2C+Lin&rft.au=Liu%2C+Weiqiong&rft.au=Guo%2C+Zhiyong&rft.date=2024-08-08&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=128&rft.issue=31&rft.spage=7476&rft.epage=7485&rft_id=info:doi/10.1021%2Facs.jpcb.4c02073&rft.externalDocID=b612810205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon