Molecular Mechanism of Double-Displacement Retaining β‑Kdo Glycosyltransferase WbbB
Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and...
Saved in:
Published in | The journal of physical chemistry. B Vol. 128; no. 31; pp. 7476 - 7485 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common S N i-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms. |
---|---|
AbstractList | Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety's anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common SNi-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety's anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common SNi-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms. Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common SNi-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms. Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common S N i-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms. Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety's anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common S i-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms. |
Author | Guo, Zhiyong Liu, Weiqiong Rao, Deming Zhu, Lin |
AuthorAffiliation | State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences State Key Laboratory of Food Science and Resources School of Life Science and Technology Jiangnan University International Joint Laboratory on Food Safety School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education |
AuthorAffiliation_xml | – name: Jiangnan University – name: School of Life Science and Technology – name: State Key Laboratory of Food Science and Resources – name: International Joint Laboratory on Food Safety – name: State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences – name: School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education |
Author_xml | – sequence: 1 givenname: Deming surname: Rao fullname: Rao, Deming organization: School of Life Science and Technology – sequence: 2 givenname: Lin surname: Zhu fullname: Zhu, Lin organization: School of Life Science and Technology – sequence: 3 givenname: Weiqiong surname: Liu fullname: Liu, Weiqiong organization: Jiangnan University – sequence: 4 givenname: Zhiyong orcidid: 0009-0003-4334-2713 surname: Guo fullname: Guo, Zhiyong email: guozy@hubu.edu.cn organization: State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39051443$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtOHDEUhq0IFG7pU6EpKZiNb2N7SlgIiQJCQrmUozPeM8TIYy_2TLFdXiGvkgfJQ-RJMmSXFJEChXUsne87xf_vka0QAxLymtEZo5y9AZtnd0vbzqSlnGrxguyyitNyenpr81eMqh2yl_MdpbziRr0kO6KmFZNS7JLPV9GjHT2k4grtVwgu90XsirM4th7LM5eXHiz2GIbiBgdwwYXb4uePX9--f1jE4sKvbMwrPyQIucMEGYsvbXt6QLY78BlfbeY--fT2_OP8XXl5ffF-fnJZglD1UJoKQFTAOfIaazAWVAuVsBaE5nSBzLaglelqIxljKDvsmJYLrpVkta2M2CdH67vLFO9HzEPTu2zRewgYx9wIVgktmdHqeZQaqbUwlE7o4QYd2x4XzTK5HtKqeYxtAugasCnmnLD7izDaPDTTTM00D800m2YmRf2jWDfA4GKYsnP-KfF4Lf7ZxDGFKdD_478Bs4Gk5A |
CitedBy_id | crossref_primary_10_1128_mmbr_00090_23 |
Cites_doi | 10.1002/anie.202211937 10.1103/PhysRevB.54.1703 10.1073/pnas.202427399 10.1002/anie.202006648 10.1002/1096-987X(20010415)22:5<501:AID-JCC1021>3.0.CO;2-V 10.1103/PhysRevLett.100.020603 10.1126/sciadv.abe2470 10.1021/acschembio.2c00408 10.1021/acscatal.1c05729 10.1103/PhysRevLett.77.3865 10.1371/journal.pcbi.1004061 10.1093/glycob/cwt101 10.1063/1.445869 10.1021/ct050123f 10.1002/bit.22838 10.1021/acs.jpcb.3c04293 10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H 10.1021/acscatal.9b05232 10.1021/ja210490f 10.1093/nar/gkab1045 10.1002/jcc.21759 10.1021/acs.jctc.5b00255 10.1126/sciadv.1601386 10.1063/5.0007045 10.1146/annurev.biochem.76.061005.092322 10.1002/anie.202113587 10.1080/08927022.2017.1422212 10.1021/acscatal.8b00710 10.1038/s41589-019-0350-2 10.1038/s41467-022-33988-1 10.1016/j.sbi.2012.06.007 10.1074/jbc.M116.719344 10.1073/pnas.1701785114 10.1002/chem.202301305 10.1039/c4ob00286e 10.1021/ct400314y 10.1021/acs.jpcb.2c08718 10.1016/S0959-440X(00)00124-X 10.1063/1.3382344 10.1111/j.1469-185X.1953.tb01386.x 10.1074/jbc.M400451200 10.1002/anie.201104623 10.1063/1.2408420 10.1158/0008-5472.CAN-15-2834 10.1002/jcc.20291 10.1002/cphc.202200649 10.1038/nsmb720 10.1038/nchembio.1927 10.1073/pnas.1603146113 10.1039/C5CS00600G 10.1063/1.464397 10.1016/j.cpc.2004.12.014 10.1016/j.cbpa.2010.11.022 10.1021/acs.jcim.0c01380 10.1021/ct400341p 10.1021/acscatal.0c04171 10.1002/wcms.1159 10.1063/1.1332996 10.1021/jacs.5b01156 10.1021/jacs.8b10836 10.1021/bi012031s 10.1002/anie.202401235 10.1002/anie.201707922 10.1021/ja972503j 10.1063/1.448118 10.1016/j.bbapap.2021.140699 10.1074/jbc.M507643200 10.1021/bi700346w 10.1002/chem.202101724 10.1016/j.cell.2007.12.016 10.1021/acs.jpclett.2c01136 10.1021/ct100578z 10.1038/nchembio.628 10.1021/acs.jcim.3c00635 10.1002/jcc.20035 10.1093/glycob/cwq190 10.1016/j.cpc.2013.09.018 10.1002/jcc.20820 10.1016/0263-7855(96)00018-5 10.1002/jcc.20495 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.jpcb.4c02073 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 7485 |
ExternalDocumentID | 39051443 10_1021_acs_jpcb_4c02073 b612810205 |
Genre | Journal Article |
GroupedDBID | --- -~X .DC .K2 123 29L 4.4 53G 55A 5VS 7~N 85S AABXI AAHBH ABFRP ABJNI ABMVS ABQRX ABUCX ACBEA ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ PZZ RNS TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZGI ~02 AAYXX ABBLG ABLBI CITATION ROL CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a369t-85aa35a22e29e9a8ca6ba53cca3720de1cba768f984111e4fef174d276419c583 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Fri Jul 11 03:04:14 EDT 2025 Fri Jul 11 08:18:04 EDT 2025 Thu Apr 03 06:59:19 EDT 2025 Tue Jul 01 04:29:19 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Fri Aug 09 03:10:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a369t-85aa35a22e29e9a8ca6ba53cca3720de1cba768f984111e4fef174d276419c583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0003-4334-2713 |
PMID | 39051443 |
PQID | 3084773800 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3153741876 proquest_miscellaneous_3084773800 pubmed_primary_39051443 crossref_primary_10_1021_acs_jpcb_4c02073 crossref_citationtrail_10_1021_acs_jpcb_4c02073 acs_journals_10_1021_acs_jpcb_4c02073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-08 |
PublicationDateYYYYMMDD | 2024-08-08 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref79/cit79 doi: 10.1002/anie.202211937 – ident: ref62/cit62 doi: 10.1103/PhysRevB.54.1703 – ident: ref64/cit64 doi: 10.1073/pnas.202427399 – ident: ref7/cit7 doi: 10.1002/anie.202006648 – ident: ref46/cit46 doi: 10.1002/1096-987X(20010415)22:5<501:AID-JCC1021>3.0.CO;2-V – ident: ref69/cit69 doi: 10.1103/PhysRevLett.100.020603 – ident: ref14/cit14 doi: 10.1126/sciadv.abe2470 – ident: ref25/cit25 doi: 10.1021/acschembio.2c00408 – ident: ref9/cit9 doi: 10.1021/acscatal.1c05729 – ident: ref58/cit58 doi: 10.1103/PhysRevLett.77.3865 – ident: ref26/cit26 doi: 10.1371/journal.pcbi.1004061 – ident: ref35/cit35 doi: 10.1093/glycob/cwt101 – ident: ref42/cit42 doi: 10.1063/1.445869 – ident: ref57/cit57 doi: 10.1021/ct050123f – ident: ref36/cit36 doi: 10.1002/bit.22838 – ident: ref73/cit73 doi: 10.1021/acs.jpcb.3c04293 – ident: ref67/cit67 doi: 10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H – ident: ref11/cit11 doi: 10.1021/acscatal.9b05232 – ident: ref19/cit19 doi: 10.1021/ja210490f – ident: ref1/cit1 doi: 10.1093/nar/gkab1045 – ident: ref61/cit61 doi: 10.1002/jcc.21759 – ident: ref41/cit41 doi: 10.1021/acs.jctc.5b00255 – ident: ref38/cit38 doi: 10.1126/sciadv.1601386 – ident: ref55/cit55 doi: 10.1063/5.0007045 – ident: ref2/cit2 doi: 10.1146/annurev.biochem.76.061005.092322 – ident: ref8/cit8 doi: 10.1002/anie.202113587 – ident: ref37/cit37 doi: 10.1080/08927022.2017.1422212 – ident: ref5/cit5 doi: 10.1021/acscatal.8b00710 – ident: ref15/cit15 doi: 10.1038/s41589-019-0350-2 – ident: ref32/cit32 doi: 10.1038/s41467-022-33988-1 – ident: ref3/cit3 doi: 10.1016/j.sbi.2012.06.007 – ident: ref34/cit34 doi: 10.1074/jbc.M116.719344 – ident: ref12/cit12 doi: 10.1073/pnas.1701785114 – ident: ref74/cit74 doi: 10.1002/chem.202301305 – ident: ref23/cit23 doi: 10.1039/c4ob00286e – ident: ref49/cit49 doi: 10.1021/ct400314y – ident: ref53/cit53 doi: 10.1021/acs.jpcb.2c08718 – ident: ref4/cit4 doi: 10.1016/S0959-440X(00)00124-X – ident: ref60/cit60 doi: 10.1063/1.3382344 – ident: ref28/cit28 doi: 10.1111/j.1469-185X.1953.tb01386.x – ident: ref29/cit29 doi: 10.1074/jbc.M400451200 – ident: ref27/cit27 doi: 10.1002/anie.201104623 – ident: ref48/cit48 – ident: ref63/cit63 doi: 10.1063/1.2408420 – ident: ref13/cit13 doi: 10.1158/0008-5472.CAN-15-2834 – ident: ref66/cit66 doi: 10.1002/jcc.20291 – ident: ref76/cit76 doi: 10.1002/cphc.202200649 – ident: ref78/cit78 doi: 10.1038/nsmb720 – ident: ref20/cit20 doi: 10.1038/nchembio.1927 – ident: ref33/cit33 doi: 10.1073/pnas.1603146113 – ident: ref17/cit17 doi: 10.1039/C5CS00600G – ident: ref47/cit47 doi: 10.1063/1.464397 – ident: ref56/cit56 doi: 10.1016/j.cpc.2004.12.014 – ident: ref6/cit6 doi: 10.1016/j.cbpa.2010.11.022 – ident: ref18/cit18 doi: 10.1021/acs.jcim.0c01380 – ident: ref51/cit51 doi: 10.1021/ct400341p – ident: ref10/cit10 doi: 10.1021/acscatal.0c04171 – ident: ref54/cit54 doi: 10.1002/wcms.1159 – ident: ref44/cit44 doi: 10.1063/1.1332996 – ident: ref70/cit70 doi: 10.1021/jacs.5b01156 – ident: ref80/cit80 doi: 10.1021/jacs.8b10836 – ident: ref31/cit31 doi: 10.1021/bi012031s – ident: ref75/cit75 doi: 10.1002/anie.202401235 – ident: ref24/cit24 doi: 10.1002/anie.201707922 – ident: ref72/cit72 doi: 10.1021/ja972503j – ident: ref45/cit45 doi: 10.1063/1.448118 – ident: ref81/cit81 doi: 10.1016/j.bbapap.2021.140699 – ident: ref71/cit71 doi: 10.1074/jbc.M507643200 – ident: ref77/cit77 doi: 10.1021/bi700346w – ident: ref22/cit22 doi: 10.1002/chem.202101724 – ident: ref16/cit16 doi: 10.1016/j.cell.2007.12.016 – ident: ref52/cit52 doi: 10.1021/acs.jpclett.2c01136 – ident: ref39/cit39 doi: 10.1021/ct100578z – ident: ref21/cit21 doi: 10.1038/nchembio.628 – ident: ref43/cit43 doi: 10.1021/acs.jcim.3c00635 – ident: ref40/cit40 doi: 10.1002/jcc.20035 – ident: ref30/cit30 doi: 10.1093/glycob/cwq190 – ident: ref65/cit65 doi: 10.1016/j.cpc.2013.09.018 – ident: ref68/cit68 doi: 10.1002/jcc.20820 – ident: ref50/cit50 doi: 10.1016/0263-7855(96)00018-5 – ident: ref59/cit59 doi: 10.1002/jcc.20495 |
SSID | ssj0025286 |
Score | 2.4675503 |
Snippet | Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s... Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety's... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7476 |
SubjectTerms | B: Biophysical and Biochemical Systems and Processes Biocatalysis carbon glycosides glycosidic linkages glycosylation glycosyltransferases Glycosyltransferases - chemistry Glycosyltransferases - metabolism Hydrogen Bonding hydrolases Lewis bases moieties Molecular Dynamics Simulation phosphates Quantum Theory sugars |
Title | Molecular Mechanism of Double-Displacement Retaining β‑Kdo Glycosyltransferase WbbB |
URI | http://dx.doi.org/10.1021/acs.jpcb.4c02073 https://www.ncbi.nlm.nih.gov/pubmed/39051443 https://www.proquest.com/docview/3084773800 https://www.proquest.com/docview/3153741876 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NUhQxEE4pHvQCCP4sIBWq9OBhlt38TXKEVaSg1oOKcpvqZDJV6LJDMbMHPPkKvAoPwkPwJHayM0uJusV1KslUOpn5vi_d6SbkdQ7GFgJkokwOCSI-JMBAJVZxzsGlKEnCBefhR7V_JA6O5fFtmpy7HnzW3wZXdb-fOdsVDqlNyh-SR0zpNAitncHnmbiSLFZ1RDgKcqjXuiT_NUIAIlf9CUT_YZcRZfaWpuWKqpicMASX_OhOatt1P_9O3XiPCSyTxYZs0p3p7nhKHvjxCnk8aGu8rZKvw7Y6Lh36cAf4pDqlZUGRVtuRT96dVDFmK5wg0k8h2DScotDrq5tfl4d5ST-MLlxZXYzqyH79OSIi_Wbt7jNytPf-y2A_aSotJMCVqRMtAbgExjwz3oB2oCxIjqsbitjkvu8soC4pjBb4b_Si8AUqmZylSvSNk5o_JwvjcuxfEqrzcNXWOC98LnrcaG21DOOhUJTGsw55gwbJmi-lyqITnPWz-BCtlDVW6pDtdnky16QrD1UzRnN6vJ31OJum6pjTdqtd8QxNHpwkMPblpMp4D_E65cij57RBmAhZf1LVIS-m22X2Rh4SngnB1-45z3XyhCFPijGFeoMs1OcT_wp5Tm034wb_DfYY-XE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PUtQwGP8G8YAXVFRYFYkzevDQZZs_bXKERViE5YCg3DpJms6g65ah3QOefAVfxQfhIXgSvmTbdXR0R6-dJE2-pP39vnz_AF7lWpmCaxElKtcRIr6ONNVJZBLGmLYpqiQ-wHl4lAxO-bszcbYAcRsLg5OocKQqGPF_ZheIN_2zTxfWdLlFhpOyO3AXuQj1-tZW__1MxxI0FHdEVPJaUa-1TP5pBI9HtvoVj_5CMgPY7N6H49k0g4_J5-6kNl379bcMjv-1jgew3FBPsjU9Kw9hwY1XYKnfVnx7BB-Gba1cMnQ-Ivi8-kLKgiDJNiMX7ZxXwYPL3yeSY-966u9UyPWPm2_fD_KS7I2ubFldjerAhd0l4iP5aMz2YzjdfXvSH0RN3YVIs0TVkRRaM6EpdVQ5paXVidGC4V77kja5i63RqKUUSnL8UzpeuAL1mpymCY-VFZI9gcVxOXZrQGTuA2-VddzlvMeUlEYKPx6qjUI52oHXKJCs-W6qLJjEaZyFhyilrJFSBzbbXcpsk7zc19AYzenxZtbjYpq4Y07bl-3GZyhybzLRY1dOqoz1EL1Thqx6ThsEDZ8DKE06sDo9NbM3Mp_-jHP29B_XuQFLg5PhYXa4f3TwDO5RZFDB21A-h8X6cuLWkQHV5kU487cjvwHh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB6VIgEX_n_Cr5HgwGHTxD-79rGkhEJJhYCW3la21ysVQjbqbg7lxCvwKjwID8GTMOPsRgJBBFfL9tpje79vPOMZgEeFNa6UViWpKWyCiG8Ty22auFQIYX2GKgk9cJ7sp7sH8uWROtoA1b2FwUHU2FMdjfh0qudF2UYYGG5R-Ye5d33pkeVk4gycJasd6Vzbo7crPUvxmOARkYk0o0FnnfxTD4RJvv4Vk_5CNCPgjC_B4Wqo0c_kY3_RuL7__FsUx_-ey2W42FJQtr3cM1dgI8yuwvlRl_ntGhxOupy5bBLoZfBx_YlVJUOy7aYh2TmuoycX3SuyN-SCSncr7Pu3H1--7hUVez499VV9Om0iJw4niJPsvXNPr8PB-Nm70W7S5l9IrEhNk2hlrVCW88BNMFZ7mzqrBK45pbYpwtA7i9pKabTEP2aQZShRvyl4lsqh8UqLG7A5q2bhFjBd0ANc44MMhRwIo7XTivpD9VGZwHvwGAWSt-enzqNpnA_zWIhSylsp9WCrW6nct0HMKZfGdE2LJ6sW82UAjzV1H3aLn6PIyXRiZ6Fa1LkYIIpnAtn1mjoIHhQLKEt7cHO5c1ZfFBQGTUpx-x_n-QDOvd4Z569e7O_dgQsciVR0OtR3YbM5WYR7SIQadz9u-591HARk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Mechanism+of+Double-Displacement+Retaining+%CE%B2%E2%80%91Kdo+Glycosyltransferase+WbbB&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Rao%2C+Deming&rft.au=Zhu%2C+Lin&rft.au=Liu%2C+Weiqiong&rft.au=Guo%2C+Zhiyong&rft.date=2024-08-08&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=128&rft.issue=31&rft.spage=7476&rft.epage=7485&rft_id=info:doi/10.1021%2Facs.jpcb.4c02073&rft.externalDocID=b612810205 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |