Investigation of the Structure of Geological Process through Multivariate Statistical Analysis—The Creation of a Coal

The purpose of this study was to capture the structure of a geological process within a multivariate statistical framework by using geological data generated by that process and, where applicable, by associated processes. It is important to the practitioners of statistical analysis in geology to det...

Full description

Saved in:
Bibliographic Details
Published inMathematical geosciences Vol. 40; no. 7; pp. 789 - 811
Main Authors Drew, Lawrence J., Grunsky, Eric C., Schuenemeyer, John H.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.10.2008
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of this study was to capture the structure of a geological process within a multivariate statistical framework by using geological data generated by that process and, where applicable, by associated processes. It is important to the practitioners of statistical analysis in geology to determine the degree to which the geological process can be captured and explained by multivariate analysis by using sample data (for example, chemical analyses) taken from the geological entity created by that process. The process chosen for study here is the creation of a coal deposit. In this study, the data are chemical analyses expressed in weight percentage and parts per million, and therefore are subject to the affects of the constant sum phenomenon. The data array is the chemical composition of the whole coal. This restriction on the data imposed by the constant sum phenomenon was removed by using the centered logratio (clr) transformation. The use of scatter plots and principal component biplots applied to the raw and centered logratio (clr) transformed data arrays affects the interpretation and comprehension of the geological process of coalification.
AbstractList The purpose of this study was to capture the structure of a geological process within a multivariate statistical framework by using geological data generated by that process and, where applicable, by associated processes. It is important to the practitioners of statistical analysis in geology to determine the degree to which the geological process can be captured and explained by multivariate analysis by using sample data (for example, chemical analyses) taken from the geological entity created by that process. The process chosen for study here is the creation of a coal deposit. In this study, the data are chemical analyses expressed in weight percentage and parts per million, and therefore are subject to the affects of the constant sum phenomenon. The data array is the chemical composition of the whole coal. This restriction on the data imposed by the constant sum phenomenon was removed by using the centered logratio (clr) transformation. The use of scatter plots and principal component biplots applied to the raw and centered logratio (clr) transformed data arrays affects the interpretation and comprehension of the geological process of coalification.
The purpose of this study was to capture the structure of a geological process within a multivariate statistical framework by using geological data generated by that process and, where applicable, by associated processes. It is important to the practitioners of statistical analysis in geology to determine the degree to which the geological process can be captured and explained by multivariate analysis by using sample data (for example, chemical analyses) taken from the geological entity created by that process. The process chosen for study here is the creation of a coal deposit. In this study, the data are chemical analyses expressed in weight percentage and parts per million, and therefore are subject to the affects of the constant sum phenomenon. The data array is the chemical composition of the whole coal. This restriction on the data imposed by the constant sum phenomenon was removed by using the centered logratio (clr) transformation. The use of scatter plots and principal component biplots applied to the raw and centered logratio (clr) transformed data arrays affects the interpretation and comprehension of the geological process of coalification. [PUBLICATION ABSTRACT]
The purpose of this study was to capture the structure of a geological process within a multivariate statistical framework by using geological data generated by that process and, where applicable, by associated processes. It is important to the practitioners of statistical analysis in geology to determine the degree to which the geological process can be captured and explained by multivariate analysis by using sample data (for example, chemical analyses) taken from the geological entity created by that process. The process chosen for study here is the creation of a coal deposit.
Author Drew, Lawrence J.
Grunsky, Eric C.
Schuenemeyer, John H.
Author_xml – sequence: 1
  givenname: Lawrence J.
  surname: Drew
  fullname: Drew, Lawrence J.
  email: ldrew@usgs.gov
  organization: US Geological Survey
– sequence: 2
  givenname: Eric C.
  surname: Grunsky
  fullname: Grunsky, Eric C.
  organization: Geological Survey of Canada, Natural Resources Canada
– sequence: 3
  givenname: John H.
  surname: Schuenemeyer
  fullname: Schuenemeyer, John H.
  organization: Southwest Statistical Consulting, LLC
BookMark eNp9kU9KxDAUxoMoOKMewF1x4a6aP22aLKXoKCgKjuuQdtJOhkyjSSq68xAewLN4FE9i6sgIgq7e4_H7vpeXbww2O9spAPYRPEIQFscexZKlELKUo4KmeAOMECuylPGcbK57irbB2PsFhBSRHI3A00X3qHzQrQzadoltkjBXyW1wfR16p4bBRFljW11Lk9w4WyvvI-Ns386Tq94E_SidlmEQRY9oNYAnnTTPXvuPl9fpXL2_lU6tF8iktNLsgq1GGq_2vusOuDs7nZbn6eX15KI8uUwloTykFCJUF1mVsYpUGVdVRhvKVUFqhhHKOcUzJAtGJWSzpsoj3sAZnlWYc84wpGQHHK5875196OOpYql9rYyRnbK9FyQjDFHOI3jwC1zY3sU7vMCQ4CzHeHBDK6h21nunGnHv9FK6Z4GgGIIQqyBEDEIMQQgcNcUvTa3D128EJ7X5V4lXSh-3dK1yP0_6W_QJi6ug6w
CitedBy_id crossref_primary_10_1016_j_coal_2009_08_010
crossref_primary_10_1177_0144598719861272
crossref_primary_10_1016_j_coal_2013_02_008
crossref_primary_10_1016_j_coal_2017_12_007
crossref_primary_10_1016_j_coal_2021_103892
crossref_primary_10_1144_pygs2015_356
crossref_primary_10_1016_j_coal_2012_10_010
crossref_primary_10_1016_j_fuel_2012_08_004
crossref_primary_10_1016_j_apgeochem_2024_106161
crossref_primary_10_1016_j_coal_2021_103854
crossref_primary_10_1016_j_coal_2021_103846
crossref_primary_10_1016_j_gexplo_2014_02_025
crossref_primary_10_3390_min7080148
crossref_primary_10_1007_s10021_010_9339_0
crossref_primary_10_1007_s10661_023_11359_7
crossref_primary_10_1016_j_coal_2014_06_013
crossref_primary_10_1016_j_coal_2018_02_003
crossref_primary_10_1016_j_coal_2017_03_004
crossref_primary_10_1016_j_coal_2014_07_012
crossref_primary_10_1016_j_coal_2021_103691
crossref_primary_10_1016_j_coal_2022_104045
crossref_primary_10_1016_j_apgeochem_2016_05_008
crossref_primary_10_1016_j_coal_2019_103366
crossref_primary_10_1016_j_coal_2022_104010
Cites_doi 10.1023/A:1007568008032
10.1007/978-1-4615-8633-3_10
10.1016/0166-5162(85)90014-X
10.1098/rspl.1896.0076
10.1086/625606
10.1016/j.apgeochem.2006.08.001
10.1023/A:1023818214614
10.1093/biomet/58.3.453
10.1007/s11004-005-7383-7
10.1007/978-94-009-4109-0
10.3133/ofr81953B
ContentType Journal Article
Copyright International Association for Mathematical Geology 2008
International Association for Mathematical Geosciences 2008
Copyright_xml – notice: International Association for Mathematical Geology 2008
– notice: International Association for Mathematical Geosciences 2008
DBID AAYXX
CITATION
3V.
7SC
7TG
7UA
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H8D
H96
HCIFZ
JQ2
K7-
KL.
KR7
L.G
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1007/s11004-008-9176-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList
Computer Science Database
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Computer Science
EISSN 1874-8953
EndPage 811
ExternalDocumentID 1897142141
10_1007_s11004_008_9176_2
Genre Feature
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6NX
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ATCPS
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KOV
L6V
L8X
LK5
LLZTM
M0N
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
P2P
P62
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8R
Z8S
Z8T
Z8W
Z8Z
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TG
7UA
7XB
8AL
8FD
8FK
ABRTQ
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-a369t-6011c74b48b3b49eb46f69e73c82115962d1a786a08dfb5601f0d2db299982063
IEDL.DBID BENPR
ISSN 1874-8961
IngestDate Thu Jul 10 18:29:33 EDT 2025
Fri Jul 25 11:10:46 EDT 2025
Tue Jul 01 01:28:55 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Fri Feb 21 02:33:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Multivariate analysis
Coal geochemistry
Identification of a coal-forming process
Centered logratio (clr) transformation
Compositional data
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-6011c74b48b3b49eb46f69e73c82115962d1a786a08dfb5601f0d2db299982063
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 203245226
PQPubID 54390
PageCount 23
ParticipantIDs proquest_miscellaneous_34381699
proquest_journals_203245226
crossref_primary_10_1007_s11004_008_9176_2
crossref_citationtrail_10_1007_s11004_008_9176_2
springer_journals_10_1007_s11004_008_9176_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Mathematical geosciences
PublicationTitleAbbrev Math Geosci
PublicationYear 2008
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References KolkerASeniorCQuickJMercury in coal and the impact of coal quality on mercury emissions from combustion systemsAppl Geochem200621111821183610.1016/j.apgeochem.2006.08.001
BucciantiAMateu-FiguerasGPawlowsky-GlahnVCompositional data analysis in the geosciences: from theory to practice2006LondonGeological Soc212 p
ChayesFOn ratio correlation in petrographyJ Geol1949573239354
Northern and Central Appalachian Basin Coal Regions Assessment Team (2001, 2000) Resource assessment of selected coal beds and zones in the Northern and Central Appalachian Basin Coal regions. Professional paper 1625-C Discs 1 and 2, version 1.0
MieschAMerriamDFThe constant sum problem in geochemistryComputer applications in the earth sciences1969New YorkPlenum161176
Cecil C, Stanton R, Allshouse S, Finkelman R (1978) Geologic controls on mineral matter in the Upper Freeport coal bed. In: Proceedings of symposium on coal cleaning to achieve energy and environmental coals. US Environ Prot Agency, EPA 60017-79-0998a, vol 1, pp 110–125
EgozcueJPawlowsky-GlahnVMateu-FiguerasGBarceló-VidalCIsometric logratio transformations for compositional data analysisMath Geol200335327930010.1023/A:1023818214614
GabrielKThe bi-plot graphic display of matrices with application to principal component analysisBiometrika197158345346710.1093/biomet/58.3.453
Cecil B, Stanton R, Dulong F (1981) Geology of contaminants in coal: Phase I report of Investigations to the US environmental protection agency. US Geol Surv Open-file Rep 81-953-A, 92 p
AitchisonJThe statistical analysis of compositional data1986Boca RatonChapman and Hall416 p
Cecil B, Renton J, Stanton R, Finkelman R (1979) Mineral matter in coals of the central Appalachian basin. Ninth Int Congress Carboniferous Stratigraphy and Geology, Abstr Pap, p 32
SchweinfurthSCoal—A complex natural resourceUS Geol Surv Circ20021143137
ASTMAnnual book of ASTM standards, section five: Petroleum products, lubricants, and fossil fuels, vol 05.062001West ConshohockenASTM International628 p
AitchisonJThe statistical analysis of compositional data20032CardwellBlackburn416 p
AitchisonJEgozcueJCompositional data analysis: where are we and where should we be heading?Math Geol200537782985010.1007/s11004-005-7383-7
PawlowskyVEgozcueJBucciantiAMateu-FiguerasGPawlowskyVCompositional data and their analysisCompositional data analysis in the geosciences, from theory to practice2006LondonGeological Soc19212 p
AitchisonJPawlowsky-GlahnVThe one-hour course in compositional data analysis or compositional data analysis is simpleProceedings of IAMG’971997BarcelonaCIMNE335
AitchisonJLogratios and natural laws in compositional data analysisMath Geol199931556358010.1023/A:1007568008032
CecilBStantonRNeuzilSDulongFRuppertLPierceBPaleoclimate controls on Late Paleozoic sedimentation and peat formation in the Central Appalachian basins (USA)Int J Coal Geol1985519523010.1016/0166-5162(85)90014-X
RollinsonHUsing geochemical data: evaluation, presentation, interpretation1993HarlowLongman
ChayesFRatio correlation1971ChicagoThe University of Chicago Press99 p
PearsonKMathematical contributions to the theory of evolution: on a form of spurious correlation which may arise when indices are used in the measurement of organsProc R Soc18976048949810.1098/rspl.1896.0076
J Aitchison (9176_CR4) 2003
F Chayes (9176_CR12) 1949; 57
B Cecil (9176_CR11) 1985; 5
J Aitchison (9176_CR3) 1999; 31
J Aitchison (9176_CR5) 2005; 37
A Miesch (9176_CR17) 1969
F Chayes (9176_CR13) 1971
J Aitchison (9176_CR1) 1986
A Kolker (9176_CR16) 2006; 21
ASTM (9176_CR6) 2001
K Pearson (9176_CR20) 1897; 60
A Buccianti (9176_CR7) 2006
9176_CR18
9176_CR8
9176_CR9
J Aitchison (9176_CR2) 1997
H Rollinson (9176_CR21) 1993
J Egozcue (9176_CR14) 2003; 35
V Pawlowsky (9176_CR19) 2006
S Schweinfurth (9176_CR22) 2002; 1143
9176_CR10
K Gabriel (9176_CR15) 1971; 58
References_xml – reference: KolkerASeniorCQuickJMercury in coal and the impact of coal quality on mercury emissions from combustion systemsAppl Geochem200621111821183610.1016/j.apgeochem.2006.08.001
– reference: MieschAMerriamDFThe constant sum problem in geochemistryComputer applications in the earth sciences1969New YorkPlenum161176
– reference: AitchisonJPawlowsky-GlahnVThe one-hour course in compositional data analysis or compositional data analysis is simpleProceedings of IAMG’971997BarcelonaCIMNE335
– reference: AitchisonJThe statistical analysis of compositional data20032CardwellBlackburn416 p
– reference: ChayesFRatio correlation1971ChicagoThe University of Chicago Press99 p
– reference: RollinsonHUsing geochemical data: evaluation, presentation, interpretation1993HarlowLongman
– reference: ChayesFOn ratio correlation in petrographyJ Geol1949573239354
– reference: BucciantiAMateu-FiguerasGPawlowsky-GlahnVCompositional data analysis in the geosciences: from theory to practice2006LondonGeological Soc212 p
– reference: EgozcueJPawlowsky-GlahnVMateu-FiguerasGBarceló-VidalCIsometric logratio transformations for compositional data analysisMath Geol200335327930010.1023/A:1023818214614
– reference: Cecil B, Stanton R, Dulong F (1981) Geology of contaminants in coal: Phase I report of Investigations to the US environmental protection agency. US Geol Surv Open-file Rep 81-953-A, 92 p
– reference: AitchisonJThe statistical analysis of compositional data1986Boca RatonChapman and Hall416 p
– reference: GabrielKThe bi-plot graphic display of matrices with application to principal component analysisBiometrika197158345346710.1093/biomet/58.3.453
– reference: AitchisonJLogratios and natural laws in compositional data analysisMath Geol199931556358010.1023/A:1007568008032
– reference: Cecil C, Stanton R, Allshouse S, Finkelman R (1978) Geologic controls on mineral matter in the Upper Freeport coal bed. In: Proceedings of symposium on coal cleaning to achieve energy and environmental coals. US Environ Prot Agency, EPA 60017-79-0998a, vol 1, pp 110–125
– reference: SchweinfurthSCoal—A complex natural resourceUS Geol Surv Circ20021143137
– reference: Northern and Central Appalachian Basin Coal Regions Assessment Team (2001, 2000) Resource assessment of selected coal beds and zones in the Northern and Central Appalachian Basin Coal regions. Professional paper 1625-C Discs 1 and 2, version 1.0
– reference: ASTMAnnual book of ASTM standards, section five: Petroleum products, lubricants, and fossil fuels, vol 05.062001West ConshohockenASTM International628 p
– reference: CecilBStantonRNeuzilSDulongFRuppertLPierceBPaleoclimate controls on Late Paleozoic sedimentation and peat formation in the Central Appalachian basins (USA)Int J Coal Geol1985519523010.1016/0166-5162(85)90014-X
– reference: PawlowskyVEgozcueJBucciantiAMateu-FiguerasGPawlowskyVCompositional data and their analysisCompositional data analysis in the geosciences, from theory to practice2006LondonGeological Soc19212 p
– reference: PearsonKMathematical contributions to the theory of evolution: on a form of spurious correlation which may arise when indices are used in the measurement of organsProc R Soc18976048949810.1098/rspl.1896.0076
– reference: Cecil B, Renton J, Stanton R, Finkelman R (1979) Mineral matter in coals of the central Appalachian basin. Ninth Int Congress Carboniferous Stratigraphy and Geology, Abstr Pap, p 32
– reference: AitchisonJEgozcueJCompositional data analysis: where are we and where should we be heading?Math Geol200537782985010.1007/s11004-005-7383-7
– volume: 31
  start-page: 563
  issue: 5
  year: 1999
  ident: 9176_CR3
  publication-title: Math Geol
  doi: 10.1023/A:1007568008032
– volume-title: Using geochemical data: evaluation, presentation, interpretation
  year: 1993
  ident: 9176_CR21
– start-page: 161
  volume-title: Computer applications in the earth sciences
  year: 1969
  ident: 9176_CR17
  doi: 10.1007/978-1-4615-8633-3_10
– volume: 5
  start-page: 195
  year: 1985
  ident: 9176_CR11
  publication-title: Int J Coal Geol
  doi: 10.1016/0166-5162(85)90014-X
– start-page: 3
  volume-title: Proceedings of IAMG’97
  year: 1997
  ident: 9176_CR2
– volume: 60
  start-page: 489
  year: 1897
  ident: 9176_CR20
  publication-title: Proc R Soc
  doi: 10.1098/rspl.1896.0076
– volume: 57
  start-page: 239
  issue: 3
  year: 1949
  ident: 9176_CR12
  publication-title: J Geol
  doi: 10.1086/625606
– volume-title: Ratio correlation
  year: 1971
  ident: 9176_CR13
– volume: 21
  start-page: 1821
  issue: 11
  year: 2006
  ident: 9176_CR16
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2006.08.001
– volume-title: The statistical analysis of compositional data
  year: 2003
  ident: 9176_CR4
– volume: 1143
  start-page: 1
  year: 2002
  ident: 9176_CR22
  publication-title: US Geol Surv Circ
– volume: 35
  start-page: 279
  issue: 3
  year: 2003
  ident: 9176_CR14
  publication-title: Math Geol
  doi: 10.1023/A:1023818214614
– ident: 9176_CR18
– start-page: 1
  volume-title: Compositional data analysis in the geosciences, from theory to practice
  year: 2006
  ident: 9176_CR19
– volume: 58
  start-page: 453
  issue: 3
  year: 1971
  ident: 9176_CR15
  publication-title: Biometrika
  doi: 10.1093/biomet/58.3.453
– ident: 9176_CR9
– volume: 37
  start-page: 829
  issue: 7
  year: 2005
  ident: 9176_CR5
  publication-title: Math Geol
  doi: 10.1007/s11004-005-7383-7
– volume-title: The statistical analysis of compositional data
  year: 1986
  ident: 9176_CR1
  doi: 10.1007/978-94-009-4109-0
– ident: 9176_CR10
  doi: 10.3133/ofr81953B
– ident: 9176_CR8
– volume-title: Compositional data analysis in the geosciences: from theory to practice
  year: 2006
  ident: 9176_CR7
– volume-title: Annual book of ASTM standards, section five: Petroleum products, lubricants, and fossil fuels, vol 05.06
  year: 2001
  ident: 9176_CR6
SSID ssj0061351
Score 1.9630908
Snippet The purpose of this study was to capture the structure of a geological process within a multivariate statistical framework by using geological data generated...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 789
SubjectTerms Chemistry and Earth Sciences
Coal
Computer Science
Earth and Environmental Science
Earth Sciences
Geochemistry
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Multivariate analysis
Physics
Statistical analysis
Statistics for Engineering
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsUwEA2iCG58i_WZhSsl0KRt2izl4gNBN3rBXUnaZCWt2HtFd36EH-C3-Cl-iZncxKqo4K60SVo6mcwMM3MOQnvMGMYLqQjLGCepVhkRFU2ItWQUmB0q5kCSzi_46TA9u86ufR93F6rdQ0rSndR9sxt1RRMxKGjOiT13ZzIbukMd15AdhuOXA-UcRFlFnpJCcBpSmT8t8dUY9R7mt6SoszXHi2jeO4n4cCLVJTSlm2W0EAgYsNfHZTR74nh5H-2Vq-SsuhX08Ak5o21wa7B18fClg4kd32m4MZkF0sG-TwB7uh7s-nHvbfxsXVAMjqjDcYZv8eAlb0_Pdme9vgy8swnrSTxo5c0qGh4fXQ1OiadXIDLhYkRsKEarPFVpoRKVCq1SbrjQeVIVNioEVp6ayrzgMi5qoyByM3HNamUNmADU92QNTTdto9cRtl4M1VSbDOD0jMhkIWPpMEdlbdKkjlAc_nNZeexxoMC4KXvUZBBNCZyYIJqSRWj_Y8rtBHjjr8GbQXil18GuBG54wIvnEdr9eGqVBzIistHtuCsTADjjQkToIEi8n__r2zb-NXoTzbGAoUu30LSVt962jsxI7biN-w7vFun_
  priority: 102
  providerName: Springer Nature
Title Investigation of the Structure of Geological Process through Multivariate Statistical Analysis—The Creation of a Coal
URI https://link.springer.com/article/10.1007/s11004-008-9176-2
https://www.proquest.com/docview/203245226
https://www.proquest.com/docview/34381699
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pa9swFH6sCYNdxn6yLF2mQ08tYpZsy9KpJCFJ2Wgo6wLdyUi2dCp227SB_vfVU-RkG6wngyVZoCe99z1L-j6AI-4cF1IbynMuaGZNTlXFUuojGUNlh4oHkqTzpThbZd-v8qt4Nmcdj1V2PjE46rqt8B_5N1T6RvZvcXpzS1E0CjdXo4LGAfS9B5ayB_3JbHnxs3PFAuXnMOOSRUalEqzb1gx351g4g5Hgei8E5X8Hpj3a_GeDNMSd-Rt4HQEjGW8t_BZe2OYdvFwEQd7H97D5gyijbUjriEd05DKwwj7cWXyxrYvGIPFaAInqPCRcv934dNkjToK4M9A2Y3eRq4RSP4_INCJL_Jom01Zff4DVfPZrekajlgLVqVD31OddrCoyk0mTmkxZkwknlC3SSvoUECV4aqYLKXQia2cwTXNJzWvjo5VCivf0I_SatrGfgHjIwiyzLkfuPKdyLXWiA8Gorl2W1gNIuoEsq0g0jnoX1-WeIhnHvkQBTBz7kg_geNfkZsuy8VzlYWedMi64dbmbHgP4uiv1KwW3P3Rj24d1mSKbmVBqACedSfft_9vb52d7G8Ir3hHkskPoeevaLx6l3JsRHMj5YgT98XwyWeJz8fvHbBRnqC9d8fETpPHnHA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BFaKXikIrFgr4ABeQ1dhxnPhQIbR0WcrjAkjcUjuxTyihLFDxo_of6_HGu4AEN65JbEue8Twynu8D2OLOcVloQ3nGJRXWZFRVLKXekzFkdqh4AEk6PZPDS_HrKruagX-xFwavVUabGAx13Vb4j_w7Mn0j-rfcu_lDkTQKi6uRQWOsFcf28a_P2EY_jg68eLc5H_y86A9pRypAdSrVHfUJCKtyYURhUiOUNUI6qWyeVoXPhZCLpmY6L6ROitoZzFdcUvPaeLOtEOs89fPOwgeRekeOjemDw2j4JZLdYX5X5IIWSrJYRA2deizc-EjQuuSS8uducBrbvijHBi83WIRPXXhK9sf69BlmbLME84eB_vdxGR6ewHK0DWkd8fEjOQ8YtPe3Fh-Mv0XRk64JgXRcQCQ0-z745NzHtwSj3AASjct1yCiUeq0l_S6Oxdk06bf6-gtcvssmf4W5pm3sChAfIDHLrMsQqc-pTBc60QHOVNdOpHUPkriRZdXBmiO7xnU5BWTGvS-RbhP3vuQ92JkMuRljerz18VqUTtkd71E5UcYebE7e-nOJxRbd2PZ-VKaInSaV6sFuFOl0_Kurrb652iYsDC9OT8qTo7PjNfjIIzQv-wZzXtJ23cdHd2YjaCWB3-99DP4D0NYbyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlAv_LRUXQrUB7i0sho7jhMfOFRblpZChVRW6i3YiX2qkordAr3xEDxA36DvwKPwJHi8dhcQIHHoLUrsxMrM2DOame8DeMqd47LShvKCSyqsKahqWE79ScaQ2aHhASTpzaHcG4tXx8XxAlymXphQ7Z5SkrOeBkRp6qbbp63bnje-sVBAkaGxlpLyWFV5YM8_-Zht8nx_1wv4GeejF--GezTSClCdSzWlPgRhTSmMqExuhLJGSCeVLfOm8tEQstG0TJeV1FnVOoMRi8ta3hq_cStEO8_9e2_ATYHNx96Axnwnbf0S6e4wwqtKQSslWUqj_mnJvx6Ec-_2t4RsOOdG9-BOdFDJzkyj7sOC7ZbhbiJ_IHEvWIZbLwMn8Lm_ClWkzWQFPv-E2tF3pHfEu5fkKEDUnn2weGM2CzWDxB4FEqmCSOgF_uhjd-_-EnSCA4Y0riUCp3z_8tVr9beLYXR08X2aDHt98gDG1yKDVVjs-s6uAfEeFLPMugKh_JwqdKUzHfBOdetE3g4gS_-5biLuOdJvnNRzxGYUTY18nCiamg9g82rK6Qz041-D15Pw6mj_kxp56RGrXg5g4-qpN1zMxujO9meTOkdwNanUALaSxOfz__q1h_81egNuv90d1a_3Dw_WYYknKF_2CBa96O1j709NzZOgwwTeX7fR_ADjoSlE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+Structure+of+Geological+Process+through+Multivariate+Statistical+Analysis-The+Creation+of+a+Coal&rft.jtitle=Mathematical+geosciences&rft.au=Drew%2C+Lawrence+J&rft.au=Grunsky%2C+Eric+C&rft.au=Schuenemeyer%2C+John+H&rft.date=2008-10-01&rft.issn=1874-8961&rft.volume=40&rft.issue=7&rft.spage=789&rft.epage=811&rft_id=info:doi/10.1007%2Fs11004-008-9176-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-8961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-8961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-8961&client=summon