Characterization of Surface-Exposed Reactive Cysteine Residues in Saccharomyces cerevisiae
Numerous cellular processes are subject to redox regulation, and thiol-dependent redox control, acting through reactive cysteine (Cys) residues, is among the major mechanisms of redox regulation. However, information on the sets of proteins that provide thiol-based redox regulation or are affected b...
Saved in:
Published in | Biochemistry (Easton) Vol. 49; no. 35; pp. 7709 - 7721 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.09.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Numerous cellular processes are subject to redox regulation, and thiol-dependent redox control, acting through reactive cysteine (Cys) residues, is among the major mechanisms of redox regulation. However, information on the sets of proteins that provide thiol-based redox regulation or are affected by it is limited. Here, we describe proteomic approaches to characterize proteins that contain reactive thiols and methods to identify redox Cys in these proteins. Using Saccharomyces cerevisiae as a eukaryotic model organism, we identified 284 proteins with exposed reactive Cys and determined the identities of 185 of these residues. We then characterized subsets of these proteins as in vitro targets of major cellular thiol oxidoreductases, thioredoxin and glutaredoxin, and found that these enzymes can control the redox state of a significant number of thiols in target proteins. We further examined common features of exposed reactive Cys and compared them with an unbiased control set of Cys using computational approaches. This analysis (i) validated the efficacy of targeting exposed Cys in proteins in their native, folded state, (ii) quantified the proportion of targets that can be redox regulated via thiol oxidoreductase systems, and (iii) revealed the theoretical range of the experimental approach with regard to protein abundance and physicochemical properties of reactive Cys. From these analyses, we estimate that approximately one-fourth of exposed Cys in the yeast proteome can be regarded as functional sites, either subject to regulation by thiol oxidoreductases or involved in structural disulfides and metal binding. |
---|---|
AbstractList | Numerous cellular processes are subject to redox regulation, and thiol-dependent redox control, acting through reactive cysteine (Cys) residues, is among the major mechanisms of redox regulation. However, information on the sets of proteins that provide thiol-based redox regulation or are affected by it is limited. Here, we describe proteomic approaches to characterize proteins that contain reactive thiols and methods to identify redox Cys in these proteins. Using Saccharomyces cerevisiae as a eukaryotic model organism, we identified 284 proteins with exposed reactive Cys and determined the identities of 185 of these residues. We then characterized subsets of these proteins as in vitro targets of major cellular thiol oxidoreductases, thioredoxin and glutaredoxin, and found that these enzymes can control the redox state of a significant number of thiols in target proteins. We further examined common features of exposed reactive Cys and compared them with an unbiased control set of Cys using computational approaches. This analysis (i) validated the efficacy of targeting exposed Cys in proteins in their native, folded state, (ii) quantified the proportion of targets that can be redox regulated via thiol oxidoreductase systems, and (iii) revealed the theoretical range of the experimental approach with regard to protein abundance and physicochemical properties of reactive Cys. From these analyses, we estimate that approximately one-fourth of exposed Cys in the yeast proteome can be regarded as functional sites, either subject to regulation by thiol oxidoreductases or involved in structural disulfides and metal binding. Numerous cellular processes are subject to redox regulation, and thiol-dependent redox control, acting through reactive cysteine (Cys) residues, is among the major mechanisms of redox regulation. However, information on the sets of proteins that provide thiol-based redox regulation or are affected by it is limited. Here, we describe proteomic approaches to characterize proteins that contain reactive thiols and methods to identify redox Cys in these proteins. Using Saccharomyces cerevisiae as a eukaryotic model organism, we identified 284 proteins with exposed reactive Cys and determined the identities of 185 of these residues. We then characterized subsets of these proteins as in vitro targets of major cellular thiol oxidoreductases, thioredoxin and glutaredoxin, and found that these enzymes can control the redox state of a significant number of thiols in target proteins. We further examined common features of exposed reactive Cys and compared them with an unbiased control set of Cys using computational approaches. This analysis (i) validated the efficacy of targeting exposed Cys in proteins in their native, folded state, (ii) quantified the proportion of targets that can be redox regulated via thiol oxidoreductase systems, and (iii) revealed the theoretical range of the experimental approach with regard to protein abundance and physico-chemical properties of reactive Cys. From these analyses, we estimate that approximately one fourth of exposed Cys in the yeast proteome can be regarded as functional sites, either subject to regulation by thiol oxidoreductases or involved in structural disulfides and metal binding. Numerous cellular processes are subject to redox regulation, and thiol-dependent redox control, acting through reactive cysteine (Cys) residues, is among the major mechanisms of redox regulation. However, information on the sets of proteins that provide thiol-based redox regulation or are affected by it is limited. Here, we describe proteomic approaches to characterize proteins that contain reactive thiols and methods to identify redox Cys in these proteins. Using Saccharomyces cerevisiae as a eukaryotic model organism, we identified 284 proteins with exposed reactive Cys and determined the identities of 185 of these residues. We then characterized subsets of these proteins as in vitro targets of major cellular thiol oxidoreductases, thioredoxin and glutaredoxin, and found that these enzymes can control the redox state of a significant number of thiols in target proteins. We further examined common features of exposed reactive Cys and compared them with an unbiased control set of Cys using computational approaches. This analysis (i) validated the efficacy of targeting exposed Cys in proteins in their native, folded state, (ii) quantified the proportion of targets that can be redox regulated via thiol oxidoreductase systems, and (iii) revealed the theoretical range of the experimental approach with regard to protein abundance and physicochemical properties of reactive Cys. From these analyses, we estimate that approximately one-fourth of exposed Cys in the yeast proteome can be regarded as functional sites, either subject to regulation by thiol oxidoreductases or involved in structural disulfides and metal binding.Numerous cellular processes are subject to redox regulation, and thiol-dependent redox control, acting through reactive cysteine (Cys) residues, is among the major mechanisms of redox regulation. However, information on the sets of proteins that provide thiol-based redox regulation or are affected by it is limited. Here, we describe proteomic approaches to characterize proteins that contain reactive thiols and methods to identify redox Cys in these proteins. Using Saccharomyces cerevisiae as a eukaryotic model organism, we identified 284 proteins with exposed reactive Cys and determined the identities of 185 of these residues. We then characterized subsets of these proteins as in vitro targets of major cellular thiol oxidoreductases, thioredoxin and glutaredoxin, and found that these enzymes can control the redox state of a significant number of thiols in target proteins. We further examined common features of exposed reactive Cys and compared them with an unbiased control set of Cys using computational approaches. This analysis (i) validated the efficacy of targeting exposed Cys in proteins in their native, folded state, (ii) quantified the proportion of targets that can be redox regulated via thiol oxidoreductase systems, and (iii) revealed the theoretical range of the experimental approach with regard to protein abundance and physicochemical properties of reactive Cys. From these analyses, we estimate that approximately one-fourth of exposed Cys in the yeast proteome can be regarded as functional sites, either subject to regulation by thiol oxidoreductases or involved in structural disulfides and metal binding. |
Author | Cerny, Ronald L Li, Yehua Gladyshev, Vadim N Fomenko, Dmitri E Marino, Stefano M Agisheva, Natalia |
AuthorAffiliation | 2 Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115 1 Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588 3 Department of Chemistry, University of Nebraska, Lincoln, NE 68588 |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588 – name: 2 Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115 – name: 3 Department of Chemistry, University of Nebraska, Lincoln, NE 68588 |
Author_xml | – sequence: 1 givenname: Stefano M surname: Marino fullname: Marino, Stefano M – sequence: 2 givenname: Yehua surname: Li fullname: Li, Yehua – sequence: 3 givenname: Dmitri E surname: Fomenko fullname: Fomenko, Dmitri E – sequence: 4 givenname: Natalia surname: Agisheva fullname: Agisheva, Natalia – sequence: 5 givenname: Ronald L surname: Cerny fullname: Cerny, Ronald L – sequence: 6 givenname: Vadim N surname: Gladyshev fullname: Gladyshev, Vadim N email: vgladyshev@rics.bwh.harvard.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20698499$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU9v1DAQxS3Uim4LB74AygWhHtJ6EuffBalatYBUqRKFCxdrMp5QV1l7sZMVy6fHZduqoJ4sP__mPfnNodhz3rEQb0CegCzgtLcgZd00-EIsoCpkrrqu2hMLmdS86Gp5IA5jvE1XJRv1UhwUsu7aBC3E9-UNBqSJg_2Nk_Uu80N2PYcBifPzX2sf2WRfOBF2w9lyGye2jpMSrZk5ZtZl10iUTPxqS0kgDryx0SK_EvsDjpFf359H4tvF-dflp_zy6uPn5dlljmXdTXnVmB5N27dIaKA21EJBqJpeUtmDbCo0xWAG7hGkKoBIcYNVBWWh6robVHkkPux813O_YkPspoCjXge7wrDVHq3-98XZG_3Db3Qpa2gBksH7e4Pgf6ZPTXplI_E4omM_R92oTkIFcBf19mnUY8ZDnwk43QEUfIyBB012-ttrSrajBqnvNqYfN5Ymjv-beDB9jn23Y5GivvVzcKnXZ7g_5fukfg |
CitedBy_id | crossref_primary_10_26508_lsa_202302300 crossref_primary_10_1016_j_freeradbiomed_2016_10_506 crossref_primary_10_1089_ars_2010_3551 crossref_primary_10_1371_journal_pone_0102340 crossref_primary_10_3390_biom10060914 crossref_primary_10_3390_fermentation8100505 crossref_primary_10_1021_cr300163e crossref_primary_10_1016_j_jprot_2011_04_018 crossref_primary_10_1038_s41538_024_00266_x crossref_primary_10_1155_2013_168765 crossref_primary_10_1016_j_yjmcc_2011_09_009 crossref_primary_10_1021_jacs_2c11325 crossref_primary_10_1074_jbc_M111_296236 crossref_primary_10_1080_10610278_2015_1129406 crossref_primary_10_1074_jbc_M111_240242 crossref_primary_10_1021_acs_chemrestox_2c00123 crossref_primary_10_1021_ac400166e crossref_primary_10_1242_bio_20148938 crossref_primary_10_1021_tx100413v crossref_primary_10_1002_cbdv_202000012 crossref_primary_10_1021_cr300073p crossref_primary_10_1146_annurev_biochem_060614_034018 crossref_primary_10_1074_jbc_M114_597245 crossref_primary_10_1089_ars_2011_4289 crossref_primary_10_1039_c2mt20156a crossref_primary_10_1021_acs_chemrestox_6b00428 crossref_primary_10_1021_tx400290j crossref_primary_10_1016_j_cbpa_2010_11_013 crossref_primary_10_1016_j_celrep_2024_115224 crossref_primary_10_1016_j_cbpa_2010_11_012 crossref_primary_10_1021_tx4000123 crossref_primary_10_1016_j_jbc_2024_107977 crossref_primary_10_3390_biom4010252 |
Cites_doi | 10.1073/pnas.071041998 10.1021/cb900105q 10.1038/nrm2256 10.1016/j.molmed.2009.06.007 10.1074/jbc.M109.000489 10.1007/978-1-59745-129-1_13 10.1146/annurev.micro.54.1.439 10.1073/pnas.052592699 10.1371/journal.pcbi.1000383 10.1146/annurev.bi.62.070193.004053 10.1038/11489 10.1073/pnas.2534397100 10.1038/sj.emboj.7600276 10.1089/152308603768295168 10.1016/j.pbi.2009.05.012 10.1074/jbc.M311391200 10.1046/j.1365-2958.2002.02795.x 10.1146/annurev.pharmtox.44.101802.121735 10.1016/j.jmb.2009.10.042 10.1038/nature02046 10.1128/MCB.01918-08 10.1016/j.cbpa.2008.07.028 10.1074/jbc.M312267200 10.1016/j.bbrc.2005.04.130 10.1016/j.sbi.2004.09.012 10.1073/pnas.191282098 10.1371/journal.pbio.0030309 10.1021/pr800633y 10.1007/s00726-003-0011-2 10.1152/ajpcell.00283.2008 10.1021/ac950914h 10.1093/pcp/pch019 10.1089/ars.2008.2285 10.1042/bj20030414 10.1074/jbc.M304258200 10.1146/annurev.immunol.15.1.351 10.1002/pmic.200300435 10.1021/bi9003556 10.1016/S0031-9422(97)00659-6 10.1089/ars.2006.8.1829 10.1002/yea.1016 10.1016/j.ceb.2005.02.004 10.1073/pnas.0402221101 10.1073/pnas.0707723105 10.1111/j.1365-2958.2005.04845.x 10.1038/nrm1569 10.1074/jbc.M513346200 10.1073/pnas.0900809106 10.1074/jbc.M705410200 10.1074/jbc.272.33.20313 10.1104/pp.122.2.573 10.1074/jbc.M406103200 10.1074/mcp.T300011-MCP200 10.1371/journal.pbio.0020400 10.1073/pnas.142310499 10.1016/S0003-9861(02)00468-X 10.1074/jbc.274.32.22283 10.1126/science.1091724 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/bi100677a |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 7721 |
ExternalDocumentID | PMC3061811 20698499 10_1021_bi100677a b54775753 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation | Supported by NIH Grant GM065204. |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM065204 – fundername: NIGMS NIH HHS grantid: R37 GM065204 – fundername: NIGMS NIH HHS grantid: GM065204 |
GroupedDBID | - .K2 02 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AJYGW ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK XSW ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a369t-57dbad8b8acad16dc812ca47b0c3b1075ad2fdfeba10421cc4e7a551324669f43 |
IEDL.DBID | ACS |
ISSN | 0006-2960 1520-4995 |
IngestDate | Thu Aug 21 17:52:04 EDT 2025 Fri Jul 11 06:28:34 EDT 2025 Mon Jul 21 06:01:07 EDT 2025 Tue Jul 01 02:05:50 EDT 2025 Thu Apr 24 23:08:12 EDT 2025 Thu Aug 27 13:42:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a369t-57dbad8b8acad16dc812ca47b0c3b1075ad2fdfeba10421cc4e7a551324669f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 equal contribution. |
PMID | 20698499 |
PQID | 749015114 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3061811 proquest_miscellaneous_749015114 pubmed_primary_20698499 crossref_citationtrail_10_1021_bi100677a crossref_primary_10_1021_bi100677a acs_journals_10_1021_bi100677a |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100907 2010-09-07 2010-Sep-07 |
PublicationDateYYYYMMDD | 2010-09-07 |
PublicationDate_xml | – month: 09 year: 2010 text: 20100907 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Reddie K. G. (ref13/cit13) 2008; 12 Shevchenko A. (ref33/cit33) 1996; 68 Balmer Y. (ref42/cit42) 2006; 8 Furukawa Y. (ref51/cit51) 2004; 23 Foster M. W. (ref18/cit18) 2009; 15 Le Moan N. (ref58/cit58) 2006; 281 Cumming R. C. (ref23/cit23) 2004; 279 Leichert L. I. (ref32/cit32) 2008; 105 Shenton D. (ref39/cit39) 2003; 374 Aachmann F. L. (ref46/cit46) 2007; 282 Poole L. B. (ref4/cit4) 2004; 44 Hess D. T. (ref9/cit9) 2005; 6 Anderson L. E. (ref40/cit40) 1998; 47 Lemaire S. D. (ref44/cit44) 2004; 101 D’Autréaux B. (ref15/cit15) 2007; 8 Brandes N. (ref16/cit16) 2009; 11 Leitner M. (ref19/cit19) 2009; 12 Moukadiri I. (ref47/cit47) 2001; 1 Hägglund P. (ref57/cit57) 2008; 7 Linke K. (ref8/cit8) 2003; 5 Rhee S. G. (ref14/cit14) 2005; 17 Yano H. (ref25/cit25) 2001; 98 Stadtman E. R. (ref2/cit2) 2003; 25 Stadtman E. R. (ref1/cit1) 1993; 62 Navarre D. A. (ref43/cit43) 2000; 122 Kiley P. J. (ref11/cit11) 2004; 2 Lamb A. L. (ref50/cit50) 1999; 6 Barford D. (ref5/cit5) 2004; 14 Lindahl M. (ref45/cit45) 2003; 100 Motohashi K. (ref24/cit24) 2001; 98 Kumsta C. (ref17/cit17) 2009; 48 Greetham D (ref60/cit60) 2009; 29 Koch M. R. (ref54/cit54) 2009; 106 Marino S. M. (ref10/cit10) 2009; 395 Berlett B. S. (ref3/cit3) 1997; 272 Castill L. (ref48/cit48) 2003; 20 Beeby M. (ref36/cit36) 2005; 3 Dua R. (ref49/cit49) 1999; 274 Hamnell-Pamment Y. (ref56/cit56) 2005; 332 Garrido E. O. (ref20/cit20) 2002; 43 Motohashi K. (ref53/cit53) 2003; 278 Lind C. (ref55/cit55) 2002; 406 Hiniker A. (ref27/cit27) 2004; 279 Sethuraman M. (ref30/cit30) 2004; 3 Leonard S. E. (ref7/cit7) 2009; 4 Ghaemmaghami S. (ref34/cit34) 2003; 425 Nakamura H. (ref12/cit12) 1997; 15 Fratelli M. (ref22/cit22) 2002; 99 Ghezzi P. (ref38/cit38) 2003; 3 Leichert L. I. (ref29/cit29) 2004; 2 Carmel-Harel O (ref21/cit21) 2000; 54 Mallick P. (ref35/cit35) 2002; 99 Leitch J. M. (ref52/cit52) 2009; 284 Marino S. M. (ref41/cit41) 2009; 5 Jones D. P. (ref6/cit6) 2008; 295 Le Moan N. (ref59/cit59) 2009; 476 Yamazaki D. (ref37/cit37) 2004; 45 Kumar J. K. (ref26/cit26) 2004; 279 Hochgräfe F. (ref31/cit31) 2005; 58 Kadokura H. (ref28/cit28) 2004; 303 |
References_xml | – volume: 98 start-page: 4794 year: 2001 ident: ref25/cit25 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.071041998 – volume: 4 start-page: 783 year: 2009 ident: ref7/cit7 publication-title: ACS Chem. Biol. doi: 10.1021/cb900105q – volume: 8 start-page: 813 year: 2007 ident: ref15/cit15 publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/nrm2256 – volume: 15 start-page: 391 year: 2009 ident: ref18/cit18 publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2009.06.007 – volume: 284 start-page: 21863 year: 2009 ident: ref52/cit52 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.000489 – volume: 476 start-page: 175 year: 2009 ident: ref59/cit59 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-129-1_13 – volume: 54 start-page: 439 year: 2000 ident: ref21/cit21 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.54.1.439 – volume: 99 start-page: 3505 year: 2002 ident: ref22/cit22 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.052592699 – volume: 5 start-page: e1000383 year: 2009 ident: ref41/cit41 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000383 – volume: 62 start-page: 797 year: 1993 ident: ref1/cit1 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.62.070193.004053 – volume: 6 start-page: 724 year: 1999 ident: ref50/cit50 publication-title: Nat. Struct. Biol. doi: 10.1038/11489 – volume: 100 start-page: 16107 year: 2003 ident: ref45/cit45 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2534397100 – volume: 23 start-page: 2872 year: 2004 ident: ref51/cit51 publication-title: EMBO J. doi: 10.1038/sj.emboj.7600276 – volume: 2 start-page: e333 year: 2004 ident: ref29/cit29 publication-title: PLoS Biol. 2004 – volume: 5 start-page: 425 year: 2003 ident: ref8/cit8 publication-title: Antioxid. Redox Signal. doi: 10.1089/152308603768295168 – volume: 12 start-page: 451 year: 2009 ident: ref19/cit19 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2009.05.012 – volume: 279 start-page: 12967 year: 2004 ident: ref27/cit27 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311391200 – volume: 43 start-page: 993 year: 2002 ident: ref20/cit20 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.02795.x – volume: 44 start-page: 325 year: 2004 ident: ref4/cit4 publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.44.101802.121735 – volume: 395 start-page: 844 year: 2009 ident: ref10/cit10 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.10.042 – volume: 425 start-page: 737 year: 2003 ident: ref34/cit34 publication-title: Nature doi: 10.1038/nature02046 – volume: 29 start-page: 3229 year: 2009 ident: ref60/cit60 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01918-08 – volume: 12 start-page: 746 year: 2008 ident: ref13/cit13 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2008.07.028 – volume: 279 start-page: 21749 year: 2004 ident: ref23/cit23 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M312267200 – volume: 332 start-page: 362 year: 2005 ident: ref56/cit56 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.04.130 – volume: 14 start-page: 679 year: 2004 ident: ref5/cit5 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2004.09.012 – volume: 98 start-page: 11224 year: 2001 ident: ref24/cit24 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.191282098 – volume: 3 start-page: e309 year: 2005 ident: ref36/cit36 publication-title: PloS Biol. doi: 10.1371/journal.pbio.0030309 – volume: 7 start-page: 5270 year: 2008 ident: ref57/cit57 publication-title: J. Proteome Res. doi: 10.1021/pr800633y – volume: 25 start-page: 207 year: 2003 ident: ref2/cit2 publication-title: Amino Acids doi: 10.1007/s00726-003-0011-2 – volume: 295 start-page: C849 year: 2008 ident: ref6/cit6 publication-title: Am. J. Physiol. Cell. Physiol. doi: 10.1152/ajpcell.00283.2008 – volume: 68 start-page: 850 year: 1996 ident: ref33/cit33 publication-title: Anal. Chem. doi: 10.1021/ac950914h – volume: 45 start-page: 18 year: 2004 ident: ref37/cit37 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pch019 – volume: 11 start-page: 997 year: 2009 ident: ref16/cit16 publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2008.2285 – volume: 374 start-page: 513 year: 2003 ident: ref39/cit39 publication-title: Biochem. J. doi: 10.1042/bj20030414 – volume: 278 start-page: 31848 year: 2003 ident: ref53/cit53 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M304258200 – volume: 15 start-page: 351 year: 1997 ident: ref12/cit12 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.15.1.351 – volume: 3 start-page: 1145 year: 2003 ident: ref38/cit38 publication-title: Proteomics doi: 10.1002/pmic.200300435 – volume: 48 start-page: 4666 year: 2009 ident: ref17/cit17 publication-title: Biochemistry doi: 10.1021/bi9003556 – volume: 47 start-page: 707 year: 1998 ident: ref40/cit40 publication-title: Phytochemistry doi: 10.1016/S0031-9422(97)00659-6 – volume: 8 start-page: 1829 year: 2006 ident: ref42/cit42 publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2006.8.1829 – volume: 20 start-page: 973 year: 2003 ident: ref48/cit48 publication-title: Yeast doi: 10.1002/yea.1016 – volume: 17 start-page: 183 year: 2005 ident: ref14/cit14 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2005.02.004 – volume: 101 start-page: 7475 year: 2004 ident: ref44/cit44 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0402221101 – volume: 105 start-page: 8197 year: 2008 ident: ref32/cit32 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0707723105 – volume: 58 start-page: 409 year: 2005 ident: ref31/cit31 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2005.04845.x – volume: 6 start-page: 150 year: 2005 ident: ref9/cit9 publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/nrm1569 – volume: 281 start-page: 10420 year: 2006 ident: ref58/cit58 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M513346200 – volume: 106 start-page: 11224 year: 2009 ident: ref54/cit54 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0900809106 – volume: 282 start-page: 37036 year: 2007 ident: ref46/cit46 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M705410200 – volume: 1 start-page: 241 year: 2001 ident: ref47/cit47 publication-title: FEMS Yeast Res. – volume: 272 start-page: 20313 year: 1997 ident: ref3/cit3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.33.20313 – volume: 122 start-page: 573 year: 2000 ident: ref43/cit43 publication-title: Plant Physiol. doi: 10.1104/pp.122.2.573 – volume: 279 start-page: 42018 year: 2004 ident: ref26/cit26 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M406103200 – volume: 3 start-page: 273 year: 2004 ident: ref30/cit30 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.T300011-MCP200 – volume: 2 start-page: e400 year: 2004 ident: ref11/cit11 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020400 – volume: 99 start-page: 9679 year: 2002 ident: ref35/cit35 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.142310499 – volume: 406 start-page: 229 year: 2002 ident: ref55/cit55 publication-title: Arch. Biochem. Biophys. doi: 10.1016/S0003-9861(02)00468-X – volume: 274 start-page: 22283 year: 1999 ident: ref49/cit49 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.32.22283 – volume: 303 start-page: 534 year: 2004 ident: ref28/cit28 publication-title: Science doi: 10.1126/science.1091724 |
SSID | ssj0004074 |
Score | 2.1682718 |
Snippet | Numerous cellular processes are subject to redox regulation, and thiol-dependent redox control, acting through reactive cysteine (Cys) residues, is among the... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7709 |
SubjectTerms | Cysteine - chemistry Cysteine - metabolism Glutaredoxins - chemistry Glutaredoxins - metabolism Hydrophobic and Hydrophilic Interactions Oxidation-Reduction Oxidoreductases - chemistry Oxidoreductases - metabolism Proteome - analysis Proteome - metabolism Proteomics - methods Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Sulfhydryl Compounds - chemistry Sulfhydryl Compounds - metabolism Surface Properties Thioredoxins - chemistry Thioredoxins - metabolism |
Title | Characterization of Surface-Exposed Reactive Cysteine Residues in Saccharomyces cerevisiae |
URI | http://dx.doi.org/10.1021/bi100677a https://www.ncbi.nlm.nih.gov/pubmed/20698499 https://www.proquest.com/docview/749015114 https://pubmed.ncbi.nlm.nih.gov/PMC3061811 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEB5ED3rx_VhfBBXxUt2mado9SlVE0IOrIF5KnrioXbG7oP56J33p-ry205Ykk-T7mplvAHaoplJIFnhWqthjVoae1EhWGMcNgspA-dIlJ59f8NNrdnYT3ozB9i8n-NQ_kD3fLakRgqAJynHyOvyTdD-SH9uV1DJSY4p4vJYP-vyo23pUPrr1fMOTX8MiP-0zJzNwVGfrlOEl9_vDgdxXb9_FG_9qwixMVziTHJaOMQdjJpuHhcMMOfbjK9klReRn8Ut9HiaTuurbAtwmjYJzmaBJ-pZ0h89WKOMdvzz1c6PJpRHFMkkSpwONOBWvoFdjO0kvI12hXC4XfgfXIKKKQOK8J8wiXJ8cXyWnXlV_wRMB7wy8MNJS6FjGQgntc60QDCjBItlWgUTaGApNrbZGCuR01FeKmUi4gjGUcd6xLFiC8ayfmRUgPLaRddQmUG1mfStiV_IjjNGPtUTG1oJNHKC0mj95WhyNUz9teq4Fe_XYpapSL3dFNB5-Mt1qTJ9KyY6fjEjtACn2sDslEZnpD_M0Yg4iIU1swXLpD81baJt3YqSILYhGPKUxcFrdo3ey3l2h2Y3MDLGUv_pfO9dgqoxPcKll6zA-eB6aDYQ9A7lZuP07wan-qw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD6a4AFegMFgBdZZaJp4CTSOc-ljFbXqxuVhLRLiJfJVVNvSqmmljV_PsZMGWpDgNXEc2zm2vy8-5zsA36iiggsWeEbIxGNGhJ5QSFZYhBsEFYH0hQ1OvrqO-jfs5214W8nk2FgYbESBNRXuEP9JXcA_FyPfrqwxYqF1BCHUWnMnHTzFQLYqxWVkyBRh-UJF6PmjdgeSxfIO9AJWrnpHPttuettl3iLXUOdl8vtsPhNn8mFFw_F9PdmBrQp1kk5pJh_hg853Ya-TI-P--598J84P1P1g34WNdJEDbg_u0lrPuQzXJGNDBvOp4VJ73X-TcaEV-aW5WzRJalWhEbXiFbRx7C4Z5WTApY3swvfgikSkcysuRlx_gpted5j2vSobg8eDqD3zwlgJrhKRcMmVHymJ0EByFouWDASSyJArapTRgiPDo76UTMfcpo-hLIrahgX7sJaPc_0ZSJSY2FiiE8gWM77hiU0AEiZo1Uogf2tAEwcuq2ZTkbmDcupn9cg14HTxCTNZaZnblBp_Xit6UhedlAIerxUiCzvIcITtmQnP9XheZDGzgAlJYwMOSrOoa6GtqJ0gYWxAvGQwdQGr3L18Jx_dOwVv5GmIrPzDt_r5FTb6w6vL7PLH9cURbJaeCzbo7BjWZtO5_oKAaCaabiY8AoBHBxs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD6aQBp7YQzY6MbAmtDES1jjOJc-VhkVuzFEh4T2EvkqKiCtSCux_fqd46QZZUjjNXEc2zm2vy8-5zsAe9xwJZWIAqd0Fgin4kAZJCsiwQ2Cq0iHioKTvx0nR2fi83l83hBFioXBRlRYU-UP8WlWT4xrFAbCD2oU0uqaIh5apuM6suh-PvwbB9ltVJeRJXOE5nMlobuP0i6kq8Vd6B9oed9D8s6WM3gO39vGek-Ty4PZVB3o3_d0HB_fmzVYbdAn69fm8gKe2HIdNvolMu_rX-w98_6g_kf7Oqzk81xwG_Azb3Wd67BNNnZsOLtxUtvg8HYyrqxhp1b6xZPlpA6N6BWvoK1jl9moZEOpKcIL34MrE9PevbgaSbsJZ4PDH_lR0GRlCGSU9KZBnBolTaYyqaUJE6MRImgpUtXVkUIyGUvDnXFWSWR6PNRa2FRSGhkukqTnRPQSlspxabeAJZlLHRGeSHeFC53MKBFInKF1G4U8rgM7OHhFM6uqwh-Y87BoR64D-_PPWOhG05xSa1w9VPRdW3RSC3k8VIjNbaHAEaazE1na8awqUkHACcljB17VptHWwrtJL0Pi2IF0wWjaAqTgvXinHF14JW_ka4iwwtf_6-cuPD35OCi-fjr-8gae1Q4MFHu2DUvTm5l9i7hoqnb8ZPgD9_sJng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Surface-Exposed+Reactive+Cysteine+Residues+in+Saccharomyces+cerevisiae&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Marino%2C+Stefano+M.&rft.au=Li%2C+Yehua&rft.au=Fomenko%2C+Dmitri+E.&rft.au=Agisheva%2C+Natalia&rft.date=2010-09-07&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=49&rft.issue=35&rft.spage=7709&rft.epage=7721&rft_id=info:doi/10.1021%2Fbi100677a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_bi100677a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |