Time Resolved Studies of Interfacial Reactions of Ozone with Pulmonary Phospholipid Surfactants Using Field Induced Droplet Ionization Mass Spectrometry
Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submi...
Saved in:
Published in | The journal of physical chemistry. B Vol. 114; no. 29; pp. 9496 - 9503 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
29.07.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air−liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air−liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air−liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when subject to oxidative stress. |
---|---|
AbstractList | Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air-liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air-liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air-liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when subject to oxidative stress.Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air-liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air-liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air-liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when subject to oxidative stress. Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air−liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air−liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air−liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when subject to oxidative stress. Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl- sn -phosphatidylglycerol (POPG) at the air–liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air–liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air–liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl- sn -phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl- sn -phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl- sn -phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when subject to oxidative stress. Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air-liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air-liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air-liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when subject to oxidative stress. |
Author | Kim, Hyungjun Kim, Hugh I Shin, Young Shik Kanik, Isik Beegle, Luther W Goddard, William A Beauchamp, J. L Heath, James R |
AuthorAffiliation | Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 Republic of Korea, Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125 Republic of Korea, Graduate School of EEWS, Korea Advanced Institute of Science and Technology, Daejeon 305-701 Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125 |
AuthorAffiliation_xml | – name: Republic of Korea, Graduate School of EEWS, Korea Advanced Institute of Science and Technology, Daejeon 305-701 – name: Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125 – name: Republic of Korea, Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125 – name: Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 – name: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 |
Author_xml | – sequence: 1 givenname: Hugh I surname: Kim fullname: Kim, Hugh I – sequence: 2 givenname: Hyungjun surname: Kim fullname: Kim, Hyungjun – sequence: 3 givenname: Young Shik surname: Shin fullname: Shin, Young Shik – sequence: 4 givenname: Luther W surname: Beegle fullname: Beegle, Luther W – sequence: 5 givenname: William A surname: Goddard fullname: Goddard, William A – sequence: 6 givenname: James R surname: Heath fullname: Heath, James R – sequence: 7 givenname: Isik surname: Kanik fullname: Kanik, Isik – sequence: 8 givenname: J. L surname: Beauchamp fullname: Beauchamp, J. L email: jlbchamp@caltech.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20608690$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1r3DAQhkVJaT4P_QNFl1Jy2EaSbdm-FEqatAspCfk4C6003tUiS44kpyS_pD-32ux2SUsOYgbmmfcdzeyjHecdIPSeks-UMHqyHHIoCjZ_g_Zoxcgkv3pnk3NK-C7aj3FJCKtYw9-hXUY4aXhL9tDvW9MDvobo7QNofJNGbSBi3-GpSxA6qYy0uS5VMt49Fy6fsjv-ZdICX422906GR3y18HFYeGsGk1XGVWOSLkV8F42b43MDVmdJPars8i34wULCU-_Mk1wJ458yRnwzgErB95DC4yF620kb4WgTD9Dd-dnt6Y_JxeX36enXi4kseJsmJauVbDvGJeEVJTPd0o5XrAPNuSplQxUrmxnVBWNalV2lqa6rLme0ZE3N2uIAfVnrDuOsB63ApSCtGILp87-El0b8W3FmIeb-QWT7ipMqC3zaCAR_P0JMojdRgbXSgR-jqMuWsIY1TSY_vLTaevy9RgaO14AKPsYA3RahRKwuLbaXzuzJf6wy6XmXeUpjX-34uO6QKoqlH4PLe32F-wMH-rq6 |
CitedBy_id | crossref_primary_10_1002_mas_21668 crossref_primary_10_1002_anie_201506019 crossref_primary_10_1021_acs_analchem_6b01519 crossref_primary_10_1039_C9AN01059A crossref_primary_10_1039_D2EA00032F crossref_primary_10_1039_C6SC02353C crossref_primary_10_1039_C2CP43665E crossref_primary_10_1021_ac403976q crossref_primary_10_5702_massspectrometry_S0077 crossref_primary_10_1021_acs_jpca_8b05353 crossref_primary_10_1007_s13361_011_0275_9 crossref_primary_10_1016_j_cplett_2017_05_051 crossref_primary_10_1016_j_talanta_2024_126278 crossref_primary_10_1016_j_teac_2022_e00182 crossref_primary_10_1080_0144235X_2012_752904 crossref_primary_10_1002_ange_201506019 crossref_primary_10_3389_fimmu_2021_730022 crossref_primary_10_1016_j_ab_2014_12_018 crossref_primary_10_1016_j_bbagen_2016_05_010 crossref_primary_10_1021_acs_energyfuels_3c04569 crossref_primary_10_1021_acs_analchem_2c00576 crossref_primary_10_1016_j_cis_2022_102659 crossref_primary_10_1021_ac504494t crossref_primary_10_1039_C5SC02740C crossref_primary_10_1016_j_jhazmat_2022_128466 crossref_primary_10_1021_acs_biochem_5b00308 crossref_primary_10_1016_j_ijms_2021_116527 crossref_primary_10_1016_j_bpj_2014_09_008 crossref_primary_10_1021_acs_analchem_2c05472 crossref_primary_10_1063_1_5004046 crossref_primary_10_1016_j_bbagen_2016_07_015 crossref_primary_10_1021_jp207996r crossref_primary_10_1039_c2lc40940b crossref_primary_10_1039_C5CS00375J |
Cites_doi | 10.1021/jp953087x 10.1021/tx00025a023 10.1016/S0925-4439(98)00068-4 10.1074/jbc.M111758200 10.1021/jp712010k 10.1063/1.2345063 10.1039/B712715D 10.1073/pnas.0711563105 10.1529/biophysj.103.037630 10.1152/physrev.1988.68.2.374 10.1016/S0006-3495(02)75525-2 10.1021/jp0450540 10.1093/ajcn/53.3.702 10.1016/S0022-2836(02)00774-X 10.1021/jp037099r 10.1103/PhysRevB.37.785 10.1021/ja00105a030 10.1006/jcph.1995.1039 10.1063/1.464913 10.1021/cr040375t 10.1021/ac0601922 10.1172/JCI117273 10.1016/S0043-1354(02)00457-8 10.1021/ja908477w 10.1021/jp973084f 10.1016/0891-5849(92)90060-T 10.1016/j.apsusc.2006.04.053 10.1042/bj2190001 10.1165/rcmb.2004-0365OC 10.1039/b707890k 10.1152/jappl.1981.51.2.509 10.1021/jp062595b 10.1529/biophysj.105.073106 10.1056/NEJMoa0803894 10.1021/ja073130h 10.1159/000056765 10.1021/la00024a041 10.1073/pnas.0710791105 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society XXXX American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: XXXX American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/jp102332g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Interfacial Reactions of Ozone |
EISSN | 1520-5207 |
EndPage | 9503 |
ExternalDocumentID | PMC3695605 20608690 10_1021_jp102332g a711194236 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: 5U54 CA119347 – fundername: NCI NIH HHS grantid: U54 CA119347 – fundername: National Cancer Institute : NCI grantid: U54 CA119347 || CA |
GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a369t-427ca9f26a06510bd91f652fed66c4a81c248b1d322dc4f5d1d75fc4f14287293 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Thu Aug 21 17:59:04 EDT 2025 Fri Jul 11 08:05:21 EDT 2025 Thu Jan 02 22:22:30 EST 2025 Thu Apr 24 23:00:39 EDT 2025 Tue Jul 01 00:21:23 EDT 2025 Thu Aug 27 13:50:16 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a369t-427ca9f26a06510bd91f652fed66c4a81c248b1d322dc4f5d1d75fc4f14287293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contribute equally. |
PMID | 20608690 |
PQID | 749028288 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695605 proquest_miscellaneous_749028288 pubmed_primary_20608690 crossref_primary_10_1021_jp102332g crossref_citationtrail_10_1021_jp102332g acs_journals_10_1021_jp102332g |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100729 2010-07-29 2010-Jul-29 |
PublicationDateYYYYMMDD | 2010-07-29 |
PublicationDate_xml | – month: 07 year: 2010 text: 20100729 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Lee C. T. (ref27/cit27) 1988; 37 Kaznessis Y. N. (ref35/cit35) 2002; 322 Plimpton S. (ref22/cit22) 1995; 117 Schram V. (ref7/cit7) 2004; 86 Perez-Gil J. (ref5/cit5) 1998; 1408 Halliwell B. (ref3/cit3) 1984; 219 Pryor W. A. (ref40/cit40) 1992; 12 Lambert M. G. (ref6/cit6) 1988; 68 Grimm R. L. (ref11/cit11) 2006; 78 Diemel R. V. (ref9/cit9) 2002; 277 Rivera J. L. (ref30/cit30) 2006; 125 von Gunten U. (ref39/cit39) 2003; 37 Gilliard N. (ref37/cit37) 1994; 93 Hockney R. W. (ref23/cit23) 1981 Stansfield A. D. (ref1/cit1) 2008 Tannor D. J. (ref24/cit24) 1994; 116 Hawco M. W. (ref8/cit8) 1981; 51 Baoukina S. (ref36/cit36) 2008; 105 Perez-Gil J. (ref10/cit10) 2002; 81 Santrock J. (ref29/cit29) 1992; 5 Anseth J. W. (ref2/cit2) 2005; 33 Gonzalez-Labrada E. (ref14/cit14) 2007; 9 Grimm R. L. (ref18/cit18) 2005; 109 Lai C. C. (ref32/cit32) 1994; 10 Enami S. (ref16/cit16) 2008; 112 Ghosh A. (ref31/cit31) 2007; 129 Jerrett M. (ref4/cit4) 2009; 360 Pryor W. A. (ref33/cit33) 1991; 53 Becke A. D. (ref26/cit26) 1993; 98 Marten B. (ref25/cit25) 1996; 100 Rodriguez-Capote K. (ref38/cit38) 2006; 90 Karagulian F. (ref28/cit28) 2008; 10 Grimm R. L. (ref17/cit17) 2003; 107 MacKerell A. D. (ref21/cit21) 1998; 102 Mundy C. J. (ref13/cit13) 2006; 106 Enami S. (ref15/cit15) 2008; 105 Kaznessis Y. N. (ref34/cit34) 2002; 82 Kim H. I. (ref19/cit19) 2010; 132 Weis M. (ref20/cit20) 2006; 253 Voss L. F. (ref12/cit12) 2006; 110 16443649 - Biophys J. 2006 Apr 15;90(8):2808-21 20121208 - J Am Chem Soc. 2010 Feb 24;132(7):2254-63 16608181 - Chem Rev. 2006 Apr;106(4):1282-304 12600374 - Water Res. 2003 Apr;37(7):1443-67 12225750 - J Mol Biol. 2002 Sep 20;322(3):569-82 19279340 - N Engl J Med. 2009 Mar 12;360(11):1085-95 6894918 - J Appl Physiol Respir Environ Exerc Physiol. 1981 Aug;51(2):509-15 18487455 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7365-9 1581530 - Chem Res Toxicol. 1992 Jan-Feb;5(1):134-41 15860796 - Am J Respir Cell Mol Biol. 2005 Aug;33(2):161-8 15189869 - Biophys J. 2004 Jun;86(6):3734-43 19462577 - Phys Chem Chem Phys. 2007 Nov 21;9(43):5814-21 17637056 - J Am Chem Soc. 2007 Aug 8;129(31):9608-9 11916834 - Biophys J. 2002 Apr;82(4):1731-42 1537573 - Free Radic Biol Med. 1992;12(1):83-8 12011560 - Biol Neonate. 2002;81 Suppl 1:6-15 18183314 - Phys Chem Chem Phys. 2008 Jan 28;10(4):528-41 17004809 - J Phys Chem B. 2006 Oct 5;110(39):19487-90 18669655 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10803-8 9944570 - Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 16851963 - J Phys Chem B. 2005 Apr 28;109(16):8244-50 24889800 - J Phys Chem B. 1998 Apr 30;102(18):3586-616 2000826 - Am J Clin Nutr. 1991 Mar;53(3):702-22 16737240 - Anal Chem. 2006 Jun 1;78(11):3800-6 6326753 - Biochem J. 1984 Apr 1;219(1):1-14 8200999 - J Clin Invest. 1994 Jun;93(6):2608-15 18324812 - J Phys Chem B. 2008 Apr 10;112(14):4153-6 16965110 - J Chem Phys. 2006 Sep 7;125(9):094712 3282243 - Physiol Rev. 1988 Apr;68(2):374-455 |
References_xml | – volume: 100 start-page: 11775 year: 1996 ident: ref25/cit25 publication-title: J. Phys. Chem. doi: 10.1021/jp953087x – volume: 5 start-page: 134 year: 1992 ident: ref29/cit29 publication-title: Chem. Res. Toxicol. doi: 10.1021/tx00025a023 – volume: 1408 start-page: 203 year: 1998 ident: ref5/cit5 publication-title: Biochim. Biophys. Acta-Mol. Basis Dis. doi: 10.1016/S0925-4439(98)00068-4 – volume: 277 start-page: 21179 year: 2002 ident: ref9/cit9 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111758200 – volume: 112 start-page: 4153 year: 2008 ident: ref16/cit16 publication-title: J. Phys. Chem. B doi: 10.1021/jp712010k – volume-title: Computer simulation using particles year: 1981 ident: ref23/cit23 – volume: 125 start-page: 8 year: 2006 ident: ref30/cit30 publication-title: J. Chem. Phys. doi: 10.1063/1.2345063 – volume: 10 start-page: 528 year: 2008 ident: ref28/cit28 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B712715D – volume: 105 start-page: 10803 year: 2008 ident: ref36/cit36 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0711563105 – volume: 86 start-page: 3734 year: 2004 ident: ref7/cit7 publication-title: Biophys. J. doi: 10.1529/biophysj.103.037630 – volume: 68 start-page: 374 year: 1988 ident: ref6/cit6 publication-title: Physiol. Rev. doi: 10.1152/physrev.1988.68.2.374 – volume: 82 start-page: 1731 year: 2002 ident: ref34/cit34 publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75525-2 – volume: 109 start-page: 8244 year: 2005 ident: ref18/cit18 publication-title: J. Phys. Chem. B doi: 10.1021/jp0450540 – volume: 53 start-page: 702 year: 1991 ident: ref33/cit33 publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/53.3.702 – volume: 322 start-page: 569 year: 2002 ident: ref35/cit35 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00774-X – volume: 107 start-page: 14161 year: 2003 ident: ref17/cit17 publication-title: J. Phys. Chem. B doi: 10.1021/jp037099r – volume: 37 start-page: 785 year: 1988 ident: ref27/cit27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 116 start-page: 11875 year: 1994 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00105a030 – volume: 117 start-page: 1 year: 1995 ident: ref22/cit22 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 98 start-page: 5648 year: 1993 ident: ref26/cit26 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 106 start-page: 1282 year: 2006 ident: ref13/cit13 publication-title: Chem. Rev. doi: 10.1021/cr040375t – volume: 78 start-page: 3800 year: 2006 ident: ref11/cit11 publication-title: Anal. Chem. doi: 10.1021/ac0601922 – volume: 93 start-page: 2608 year: 1994 ident: ref37/cit37 publication-title: J. Clin. Invest. doi: 10.1172/JCI117273 – volume: 37 start-page: 1443 year: 2003 ident: ref39/cit39 publication-title: Water Res. doi: 10.1016/S0043-1354(02)00457-8 – volume: 132 start-page: 2254 year: 2010 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908477w – volume: 102 start-page: 3586 year: 1998 ident: ref21/cit21 publication-title: J. Phys. Chem. B doi: 10.1021/jp973084f – volume: 12 start-page: 83 year: 1992 ident: ref40/cit40 publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(92)90060-T – volume: 253 start-page: 2425 year: 2006 ident: ref20/cit20 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.04.053 – volume-title: Lung disease data: 2008 year: 2008 ident: ref1/cit1 – volume: 219 start-page: 1 year: 1984 ident: ref3/cit3 publication-title: Biochem. J. doi: 10.1042/bj2190001 – volume: 33 start-page: 161 year: 2005 ident: ref2/cit2 publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2004-0365OC – volume: 9 start-page: 5814 year: 2007 ident: ref14/cit14 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b707890k – volume: 51 start-page: 509 year: 1981 ident: ref8/cit8 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1981.51.2.509 – volume: 110 start-page: 19487 year: 2006 ident: ref12/cit12 publication-title: J. Phys. Chem. B doi: 10.1021/jp062595b – volume: 90 start-page: 2808 year: 2006 ident: ref38/cit38 publication-title: Biophys. J. doi: 10.1529/biophysj.105.073106 – volume: 360 start-page: 1085 year: 2009 ident: ref4/cit4 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0803894 – volume: 129 start-page: 9608 year: 2007 ident: ref31/cit31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073130h – volume: 81 start-page: 6 year: 2002 ident: ref10/cit10 publication-title: Biol. Neonate doi: 10.1159/000056765 – volume: 10 start-page: 4637 year: 1994 ident: ref32/cit32 publication-title: Langmuir doi: 10.1021/la00024a041 – volume: 105 start-page: 7365 year: 2008 ident: ref15/cit15 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0710791105 – reference: 16608181 - Chem Rev. 2006 Apr;106(4):1282-304 – reference: 17637056 - J Am Chem Soc. 2007 Aug 8;129(31):9608-9 – reference: 6326753 - Biochem J. 1984 Apr 1;219(1):1-14 – reference: 16851963 - J Phys Chem B. 2005 Apr 28;109(16):8244-50 – reference: 15189869 - Biophys J. 2004 Jun;86(6):3734-43 – reference: 1537573 - Free Radic Biol Med. 1992;12(1):83-8 – reference: 8200999 - J Clin Invest. 1994 Jun;93(6):2608-15 – reference: 18183314 - Phys Chem Chem Phys. 2008 Jan 28;10(4):528-41 – reference: 18669655 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10803-8 – reference: 16443649 - Biophys J. 2006 Apr 15;90(8):2808-21 – reference: 15860796 - Am J Respir Cell Mol Biol. 2005 Aug;33(2):161-8 – reference: 12600374 - Water Res. 2003 Apr;37(7):1443-67 – reference: 9944570 - Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 – reference: 18487455 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7365-9 – reference: 11916834 - Biophys J. 2002 Apr;82(4):1731-42 – reference: 16737240 - Anal Chem. 2006 Jun 1;78(11):3800-6 – reference: 19279340 - N Engl J Med. 2009 Mar 12;360(11):1085-95 – reference: 12011560 - Biol Neonate. 2002;81 Suppl 1:6-15 – reference: 6894918 - J Appl Physiol Respir Environ Exerc Physiol. 1981 Aug;51(2):509-15 – reference: 17004809 - J Phys Chem B. 2006 Oct 5;110(39):19487-90 – reference: 24889800 - J Phys Chem B. 1998 Apr 30;102(18):3586-616 – reference: 2000826 - Am J Clin Nutr. 1991 Mar;53(3):702-22 – reference: 16965110 - J Chem Phys. 2006 Sep 7;125(9):094712 – reference: 12225750 - J Mol Biol. 2002 Sep 20;322(3):569-82 – reference: 19462577 - Phys Chem Chem Phys. 2007 Nov 21;9(43):5814-21 – reference: 1581530 - Chem Res Toxicol. 1992 Jan-Feb;5(1):134-41 – reference: 18324812 - J Phys Chem B. 2008 Apr 10;112(14):4153-6 – reference: 20121208 - J Am Chem Soc. 2010 Feb 24;132(7):2254-63 – reference: 3282243 - Physiol Rev. 1988 Apr;68(2):374-455 |
SSID | ssj0025286 |
Score | 2.1506224 |
Snippet | Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9496 |
SubjectTerms | 1,2-Dipalmitoylphosphatidylcholine - chemistry Air B: Surfactants, Membranes Oxidation-Reduction Ozone - chemistry Phosphatidylcholines - chemistry Phosphatidylglycerols - chemistry Phospholipids - chemistry Pulmonary Surfactants - chemistry Spectrometry, Mass, Electrospray Ionization Surface-Active Agents - chemistry Time Factors |
Title | Time Resolved Studies of Interfacial Reactions of Ozone with Pulmonary Phospholipid Surfactants Using Field Induced Droplet Ionization Mass Spectrometry |
URI | http://dx.doi.org/10.1021/jp102332g https://www.ncbi.nlm.nih.gov/pubmed/20608690 https://www.proquest.com/docview/749028288 https://pubmed.ncbi.nlm.nih.gov/PMC3695605 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcoALlGcX2soCDlxSYidxkmO17aogAZVKpd4ix47pwjaJNgkS_SX8XGacZNWlBW6R_IgfY8_DM98AvMkjqdMgUp7QxvdCoxWeOdRaJfIHbVJDQgp5W3ySx2fhh_PofANe_-UFX_B332pCFwjE1ztwV8gkJg3rYHq60qoi4dI5Ih8iPciXI3zQ9abEenSzznpuyJN_ukVe4zOzh3A4Ruv07iXf97s239dXN8Eb_zWFLXgwyJnsoCeMR7BRlI_h3nRM7_YEflHwByPr_eJHYdjgT8gqy5yR0CqypWN5H_jgCj5fVWXByHLLTroF0q9a_mQnF1VT4xU6r-fYS0cNKTFxw5wzApuRhxyjBCEa_3K4JH_1lr2vxvhP9hGld3Zau2Q8lwUO7SmczY6-TI-9IU2DpwKZtl4oYq1SK6RCcYb7uUm5lZGwhZFShyrhWoRJzg1eHUaHNjLcxJHFLwJ7Q9k-eAabJY5_G1iQW03ApEFBqDXGKN_ywBqf69AkseIT2MN9zIZj1mTuBV2gBjMu8ATejluc6QHknHJtLG6r-mpVte6RPW6rxEY6yXB_6DFFlUXVNVkcpk5dTSbwvCebVS_Clz4l-ppAvEZQqwoE6b1eUs4vHLQ3LiiKoNGL_83zJdzv3RhiT6Q7sNkuu2IXpaM233On4zdARA0b |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOZRL-abLR7EQBy4psZM4m2O1sNpCWyq1lXqLHDumC0sSbRIk-kv4ucw4ydItleC2kh2vY48zb-zxewBvskjqJIiUJ7TxvdBohWsOo1aJ_kGbxBBIoWyLIzk7Cz-eR-c9TQ7dhcFO1NhS7Q7x_7AL8HdfKyIZCMSX23AHQYigQGtvcrIKriLhVB3RHVE45MuBRejqo-SBdL3ugf6CldezI6-4m-m9TrfIddRlmXzbbZtsV19e43D8vze5D1s96mR7nZk8gFt58RA2J4PY2yP4RVdBGO3lL37khvXZhay0zG0ZWkU761jeXYNwBZ8vyyJntI_LjtsFWrNa_mTHF2Vd4Qd1Xs2xlZYeJJnimrnUBDalfDlGciEa_-X9krLXG7ZfDrdB2SFieXZSOWme7zl27TGcTT-cTmZeL9rgqUAmjReKWKvECqkQ3HA_Mwm3OF02N1LqUI25FuE44wY_JEaHNjLcxJHFX0T9hkg_eAIbBfZ_G1iQWU00pUFOHDbGKN_ywBqf69CMY8VHsIPjm_aLrk7debrAeGYY4BG8HWY61T3lOSlvLG6q-npVtep4Pm6qxAZzSXF-6GhFFXnZ1mkcJi54HY_gaWc9q1aEL32S_RpBvGZXqwpE8L1eUswvHNE3DigC0ujZv97zFWzOTg8P0oP9o0_P4W6X4BB7InkBG82yzV8ibmqyHbdgfgN27RV8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB5BkYAX7mM5ioV44CUldhJn81htWbUc7UqlUt8ix47pwpJEmwSJ_hJ-LjPOoW6pBG-RfMTHjGfGnvkG4E0WSZ0EkfKENr4XGq2Q59BqlSgftEkMKSnkbXEo90_CD6fRaW8oUiwMDqLGnmr3iE9cXRnbIwzwd98qAhoIxNfrcIOe68jY2p0djwZWJFxmRxRJZBL5ckASutiUpJCuN6XQX6rlZQ_JCyJnfheOxsE6T5PvO22T7ejzSziO_z-be3Cn1z7Zbkcu9-FaXjyAW7Mh6dtD-E0hIYzu9Fc_c8N6L0NWWuauDq2iG3Ys78IhXMHReVnkjO5z2aJdIVWr9S-2OCvrCg_WZbXEXlpqSOmKa-ZcFNic_OYYpQ3R-Je9NXmxN-ygHKJC2WfU6dlx5VL0_MhxaI_gZP7-y2zf65M3eCqQSeOFItYqsUIqVHK4n5mEWxkJmxspdaimXItwmnGDB4rRoY0MN3Fk8Ysg4FDjDx7DVoHjfwosyKwmuNIgJywbY5RveWCNz3VoprHiE9jGNU575qtT964u0K4ZFngCb4fdTnUPfU4ZOFZXVX09Vq06vI-rKrGBZFLcH3piUUVetnUah4kzYqcTeNJR0NiL8KVP6b8mEG_Q1liBgL43S4rlmQP8xgVFxTR69q95voKbi715-ung8ONzuN35OcSeSF7AVrNu85eoPjXZtuOZP0rOF_8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+Resolved+Studies+of+Interfacial+Reactions+of+Ozone+with+Pulmonary+Phospholipid+Surfactants+Using+Field+Induced+Droplet+Ionization+Mass+Spectrometry&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Kim%2C+Hugh+I&rft.au=Kim%2C+Hyungjun&rft.au=Shin%2C+Young+Shik&rft.au=Beegle%2C+Luther+W&rft.date=2010-07-29&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=114&rft.issue=29&rft.spage=9496&rft.epage=9503&rft_id=info:doi/10.1021%2Fjp102332g&rft.externalDocID=a711194236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |