Tautomer Structures in Ketose–Aldose Transformation of 1,3-Dihydroxyacetone Studied by Infrared Electroabsorption Spectroscopy

The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose–aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we inv...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 123; no. 50; pp. 10663 - 10671
Main Authors Chen, Szu-Hua, Hiramatsu, Hirotsugu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose–aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose–aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose–aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μP, an angle η between μP and μT (the transition moment of the molecular vibration), and the equilibrium constants. The ketose–aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, E-enediols, Z-enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose–aldose transformation of acyclic saccharides and the effects of the basic catalyst.
AbstractList The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose–aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose–aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose–aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μP, an angle η between μP and μT (the transition moment of the molecular vibration), and the equilibrium constants. The ketose–aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, E-enediols, Z-enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose–aldose transformation of acyclic saccharides and the effects of the basic catalyst.
The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose-aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose-aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose-aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μP, an angle η between μP and μT (the transition moment of the molecular vibration), and the equilibrium constants. The ketose-aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, E-enediols, Z-enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose-aldose transformation of acyclic saccharides and the effects of the basic catalyst.The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose-aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose-aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose-aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μP, an angle η between μP and μT (the transition moment of the molecular vibration), and the equilibrium constants. The ketose-aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, E-enediols, Z-enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose-aldose transformation of acyclic saccharides and the effects of the basic catalyst.
The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose-aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose-aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose-aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μ , an angle η between μ and μ (the transition moment of the molecular vibration), and the equilibrium constants. The ketose-aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, -enediols, -enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose-aldose transformation of acyclic saccharides and the effects of the basic catalyst.
Author Chen, Szu-Hua
Hiramatsu, Hirotsugu
AuthorAffiliation National Chiao Tung University
Center for Emergent Functional Matter Science
Department of Applied Chemistry and Institute of Molecular Science
AuthorAffiliation_xml – name: National Chiao Tung University
– name: Department of Applied Chemistry and Institute of Molecular Science
– name: Center for Emergent Functional Matter Science
Author_xml – sequence: 1
  givenname: Szu-Hua
  surname: Chen
  fullname: Chen, Szu-Hua
  organization: Department of Applied Chemistry and Institute of Molecular Science
– sequence: 2
  givenname: Hirotsugu
  orcidid: 0000-0002-5239-3032
  surname: Hiramatsu
  fullname: Hiramatsu, Hirotsugu
  email: hiramatu@nctu.edu.tw
  organization: National Chiao Tung University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31765151$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1TAQhS1URH9gzwplyaK5eGzHiZdVKVBRiUUv68hxxiJVYgfbkciu78Ab8iT4_sACCVhYPhp_ZySfc05OnHdIyEugG6AM3mgTNw-z6Taqo01V1U_IGVSMlvnUJ0ctgcpTch7jA6WsYo18Rk451LKCCs7I41YvyU8YivsUFpOWgLEYXPERk4_44_H71dhnUWyDdtH6MOk0eFd4W8AlL98OX9Y--G-rNpl3mJcs_YB90a3FrbNBh6xvRjQpeN1FH-a9-37eT6Lx8_qcPLV6jPjieF-Qz-9uttcfyrtP72-vr-5KzaVKJes61RvFJFUotLEc-roGAabuGNbGsjyvdGMF7wX0SkhsmGASaWOM5sLyC_L6sHcO_uuCMbXTEA2Oo3bol9gywUEBCCX_j3Joas4V3aGvjujSTdi3cxgmHdb2V8AZoAfA5P_GgPY3ArTdddjmDttdh-2xw2yRf1jMkPaxp6CH8V_Gy4Nx_-KX4HKgf8d_AutRtQY
CitedBy_id crossref_primary_10_1021_acs_chemrestox_1c00403
crossref_primary_10_1002_ange_202401602
crossref_primary_10_1038_s41467_021_27240_5
crossref_primary_10_1002_anie_202401602
crossref_primary_10_1021_acscatal_0c04131
crossref_primary_10_3390_molecules28062724
crossref_primary_10_1021_acs_accounts_1c00359
Cites_doi 10.1366/000370204773580176
10.1021/acs.jpcb.6b05119
10.1021/acs.jpcb.6b08133
10.1016/S0008-6215(00)84773-4
10.1021/acs.jpcc.9b02946
10.1016/S0040-4039(01)83376-1
10.1146/annurev.physchem.48.1.213
10.1039/C8PY00256H
10.1021/acs.analchem.5b03437
10.1023/B:RUGC.0000007604.91106.60
10.1016/j.tet.2009.10.047
10.1007/3-540-44422-X_1
10.1016/j.cbpa.2004.10.004
10.1021/jp073974n
10.1021/acs.biochem.8b00283
10.1016/S0008-6215(00)83168-7
10.1016/j.cplett.2008.10.035
10.1021/acs.jpcb.6b09007
10.1007/s00449-003-0338-9
10.1016/0008-6215(89)84020-0
10.1021/ar00156a004
10.1246/cl.2002.68
10.1002/anie.200400659
10.1021/acs.jpcb.7b02171
10.1016/j.theochem.2008.01.026
10.1021/acs.jpcb.8b03870
10.1021/jf9812836
10.1021/jp072122k
10.1016/S0009-2614(02)00917-X
10.1016/j.molstruc.2009.07.030
10.1016/0045-2068(73)90023-0
10.1021/acs.jpcb.8b11458
10.1021/jacs.6b06843
10.1021/jacs.6b02156
10.1366/000370294774368947
10.1016/j.tetlet.2015.05.108
10.1021/jf0726785
10.1021/jp055082y
10.1021/acs.jpcb.6b02732
10.1016/S0009-2614(01)00991-5
10.1016/j.cplett.2018.10.064
10.1021/acs.jpclett.9b00999
10.1021/ar500464j
10.1021/acs.jpcc.9b00564
10.1021/ja512302c
10.1021/ja00109a038
10.1016/j.tetlet.2013.02.013
10.1021/acs.jpcc.7b12025
10.1021/acs.jpcc.8b08464
10.1016/j.jaad.2017.04.1117
10.1016/0008-6215(95)00188-Y
10.1016/0584-8539(79)80186-5
10.1073/pnas.1503739112
10.1016/j.foodchem.2005.03.041
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jpcb.9b08557
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 10671
ExternalDocumentID 31765151
10_1021_acs_jpcb_9b08557
g5565788
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a369t-2bb9dc92609e4acf31d77141c7b2e7cf209e5a8f43d41d946e82426e08cca34f3
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Thu Jul 10 22:26:49 EDT 2025
Fri Jul 11 00:48:40 EDT 2025
Mon Jul 21 05:37:07 EDT 2025
Tue Jul 01 01:00:33 EDT 2025
Thu Apr 24 22:59:42 EDT 2025
Thu Aug 27 13:41:55 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-2bb9dc92609e4acf31d77141c7b2e7cf209e5a8f43d41d946e82426e08cca34f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5239-3032
PMID 31765151
PQID 2318733906
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2431911496
proquest_miscellaneous_2318733906
pubmed_primary_31765151
crossref_primary_10_1021_acs_jpcb_9b08557
crossref_citationtrail_10_1021_acs_jpcb_9b08557
acs_journals_10_1021_acs_jpcb_9b08557
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-19
PublicationDateYYYYMMDD 2019-12-19
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1366/000370204773580176
– ident: ref28/cit28
  doi: 10.1021/acs.jpcb.6b05119
– ident: ref29/cit29
  doi: 10.1021/acs.jpcb.6b08133
– ident: ref4/cit4
  doi: 10.1016/S0008-6215(00)84773-4
– ident: ref17/cit17
  doi: 10.1021/acs.jpcc.9b02946
– ident: ref48/cit48
  doi: 10.1016/S0040-4039(01)83376-1
– ident: ref21/cit21
  doi: 10.1146/annurev.physchem.48.1.213
– ident: ref10/cit10
  doi: 10.1039/C8PY00256H
– ident: ref32/cit32
  doi: 10.1021/acs.analchem.5b03437
– ident: ref55/cit55
  doi: 10.1023/B:RUGC.0000007604.91106.60
– ident: ref51/cit51
  doi: 10.1016/j.tet.2009.10.047
– ident: ref2/cit2
  doi: 10.1007/3-540-44422-X_1
– ident: ref1/cit1
  doi: 10.1016/j.cbpa.2004.10.004
– ident: ref46/cit46
  doi: 10.1021/jp073974n
– ident: ref27/cit27
  doi: 10.1021/acs.biochem.8b00283
– ident: ref47/cit47
  doi: 10.1016/S0008-6215(00)83168-7
– ident: ref42/cit42
  doi: 10.1016/j.cplett.2008.10.035
– ident: ref25/cit25
  doi: 10.1021/acs.jpcb.6b09007
– ident: ref12/cit12
  doi: 10.1007/s00449-003-0338-9
– ident: ref3/cit3
  doi: 10.1016/0008-6215(89)84020-0
– ident: ref49/cit49
  doi: 10.1021/ar00156a004
– ident: ref40/cit40
  doi: 10.1246/cl.2002.68
– ident: ref9/cit9
  doi: 10.1002/anie.200400659
– ident: ref38/cit38
  doi: 10.1021/acs.jpcb.7b02171
– ident: ref50/cit50
  doi: 10.1016/j.theochem.2008.01.026
– ident: ref26/cit26
  doi: 10.1021/acs.jpcb.8b03870
– ident: ref16/cit16
  doi: 10.1021/jf9812836
– ident: ref13/cit13
  doi: 10.1021/jp072122k
– ident: ref36/cit36
  doi: 10.1016/S0009-2614(02)00917-X
– ident: ref14/cit14
  doi: 10.1016/j.molstruc.2009.07.030
– ident: ref53/cit53
  doi: 10.1016/0045-2068(73)90023-0
– ident: ref31/cit31
  doi: 10.1021/acs.jpcb.8b11458
– ident: ref30/cit30
  doi: 10.1021/jacs.6b06843
– ident: ref24/cit24
  doi: 10.1021/jacs.6b02156
– ident: ref44/cit44
  doi: 10.1366/000370294774368947
– ident: ref7/cit7
  doi: 10.1016/j.tetlet.2015.05.108
– ident: ref6/cit6
  doi: 10.1021/jf0726785
– ident: ref37/cit37
  doi: 10.1021/jp055082y
– ident: ref23/cit23
  doi: 10.1021/acs.jpcb.6b02732
– ident: ref41/cit41
  doi: 10.1016/S0009-2614(01)00991-5
– ident: ref43/cit43
  doi: 10.1016/j.cplett.2018.10.064
– ident: ref18/cit18
  doi: 10.1021/acs.jpclett.9b00999
– ident: ref45/cit45
– ident: ref34/cit34
  doi: 10.1021/ar500464j
– ident: ref33/cit33
  doi: 10.1021/acs.jpcc.9b00564
– ident: ref22/cit22
  doi: 10.1021/ja512302c
– ident: ref20/cit20
  doi: 10.1021/ja00109a038
– ident: ref52/cit52
  doi: 10.1016/j.tetlet.2013.02.013
– ident: ref19/cit19
  doi: 10.1021/acs.jpcc.7b12025
– ident: ref39/cit39
  doi: 10.1021/acs.jpcc.8b08464
– ident: ref11/cit11
  doi: 10.1016/j.jaad.2017.04.1117
– ident: ref15/cit15
  doi: 10.1016/0008-6215(95)00188-Y
– ident: ref54/cit54
  doi: 10.1016/0584-8539(79)80186-5
– ident: ref5/cit5
  doi: 10.1073/pnas.1503739112
– ident: ref8/cit8
  doi: 10.1016/j.foodchem.2005.03.041
SSID ssj0025286
Score 2.3494284
Snippet The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose–aldose...
The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose-aldose...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10663
SubjectTerms absorption
catalysts
electric field
glyceraldehyde
physicochemical properties
piperidines
spectroscopy
tautomers
vibration
Title Tautomer Structures in Ketose–Aldose Transformation of 1,3-Dihydroxyacetone Studied by Infrared Electroabsorption Spectroscopy
URI http://dx.doi.org/10.1021/acs.jpcb.9b08557
https://www.ncbi.nlm.nih.gov/pubmed/31765151
https://www.proquest.com/docview/2318733906
https://www.proquest.com/docview/2431911496
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swECYad2iWpI-kebQFC7RDgcoWRVoSR8O14SZoF9uAN4EvIU4TybDkwZn8H_oP-0typGS3aVrDgAaBICWSd8f7Dkfch9AHGTIOfkl5vjC-x4jiXky19mRgfKmojqTjT_n2PRyM2cWkPfldJufvDH5AWkIVzeuZkk0u7Z2qaA89DUKwYQuDusNNcNUOHKsjuCMbDvnrlOS_vmAdkSoeOqL_oEvnZfqHFV1R4YoT2sslP5qLUjbV3ePSjTss4Dk6qMEm7lTa8QI9MdlL9Ky75nh7hVYjsSjzWzPHQ1dHdgHBN55m-NKUeWF-rX52bjS84NEf8DbPcJ5i8pl6X6ZXS21nKpSxNb1xdSlRY7nEX7N0bu-2417FsyNkkc_d8YQt5X1pi2jms-URGvd7o-7AqzkZPEFDXnqBlFwrDlEQN0yolBIdRQRkHIF0I5UG0N4WccqoZkRzFprYggDjx6AqlKX0GDUymNEJwinXUcyofUIGB480qeLaRjCKc63JKfoIW5fUNlUkLl0ekMQ1wn4m9X6eotZakImqC5tbfo2bLSM-bUbMqqIeW_q-X-tGAsKx6RSRmXxRJICM44hS7odb-oAdgDthHPq8rhRr80dAbpaHnpztuM5ztA9ozZFXEP4GNUAvzFtARKV850zhHtZMCaE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONALLX1QCqWu1B4qNUsce5P4uNqCluehu0jcovgRAYVktckelhP_of-wv4Sxk2xp1a6KlENk2c7YM858oxnPAHyUIReol5Tnp8b3OFXCi5nWngyMLxXTkXT1U05Ow8EZPzzvni8Bbe_CIBElzlQ6J_6v7AJ017ZdjZXsCGlDq6InsIJYJLBC3esP5zZWN3DFHVErWavIbz2Tf5vB6iNV_q6P_gEynbLZfwbf5mS6GJPvnWklO-r2jwyOj1rHc1hroCfp1bKyDksmfwGr_bbi20u4G6XTqrgxEzJ0WWWnaIqTy5wcmaoozc-7H71rjS9k9ADsFjkpMkK_MO_r5cVMW4JTZWyGb1KHKGoiZ-QgzyY20p3s1VV3UlkWE_ezIsOxa7G3Y2av4Gx_b9QfeE2FBi9loai8QEqhlUCbSBieqoxRHUUUOR4hryOVBdjeTeOMM82pFjw0sYUExo9RcBjP2GtYzpGiN0AyoaOYM_uEHH9D0mRKaGvPKCG0ppvwCbcuaU5YmTjneUAT14j7mTT7uQm7LT8T1aQ5t9U2rheM-DwfMa5TfCzo-6EVkQSZY50raW6KaZkgTo4jxoQfLuiDpwKVCxfYZ6OWr_kXEcfZqvT07X-u8z2sDkYnx8nxwenRFjxFHOfKWlCxDcsoI-YdYqVK7rjTcQ-otRIC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9QwLBqbBLyM8b3xFSR4QKK3psm1zePpttPGYEK6G9pb1XyJwWhP197D7Wn_Yf-QX4KdtieGxgmkPlRWkjqxXduyYxPyRsVCgl7SQZjbMBBMyyDlxgQqsqHS3CTK90_5dBwfnIgPp_3TNdLv7sIAEhWsVPkgPkr11Li2wgDbRfi3qVY9qTC9KrlFNjBqh4w9GI6XflY_8g0eQTOhZxR20cmbVkCdpKvrOukvhqZXOKN75MsSVZ9n8r03r1VPX_xRxfG_97JFNlsTlA4anrlP1mzxgNwZdp3fHpLLST6vyx92Rse-uuwcXHJ6VtAjW5eV_Xl5NTg38EInvxm9ZUFLR9l7HuydfV0YRDrXFit90yZV0VC1oIeFm2HGO91vuu_kqipn_qdFx1MPwVsyi0fkZLQ_GR4EbaeGIOexrINIKWm0BN9IWpFrx5lJEgaUT4DmiXYRwPt56gQ3ghkpYpuiaWDDFBiIC8cfk_UCMHpKqJMmSQXHJxbwO1LWaWnQr9FSGsO2yVs4uqyVtCrzQfSIZR4I55m157lNdjuaZrotd45dN85XzHi3nDFtSn2sGPu6Y5MMiINBlryw5bzKwF5OE85lGK8YA9IBSkZIGPOk4bHlF8Gew-70bOcf9_mK3P68N8o-Hh4fPSN3wZzz3S2YfE7WgUXsCzCZavXSC8gvYUMUhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tautomer+Structures+in+Ketose%E2%80%93Aldose+Transformation+of+1%2C3-Dihydroxyacetone+Studied+by+Infrared+Electroabsorption+Spectroscopy&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Chen%2C+Szu-Hua&rft.au=Hiramatsu%2C+Hirotsugu&rft.date=2019-12-19&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=123&rft.issue=50&rft.spage=10663&rft.epage=10671&rft_id=info:doi/10.1021%2Facs.jpcb.9b08557&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcb_9b08557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon