Tautomer Structures in Ketose–Aldose Transformation of 1,3-Dihydroxyacetone Studied by Infrared Electroabsorption Spectroscopy
The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose–aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we inv...
Saved in:
Published in | The journal of physical chemistry. B Vol. 123; no. 50; pp. 10663 - 10671 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose–aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose–aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose–aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μP, an angle η between μP and μT (the transition moment of the molecular vibration), and the equilibrium constants. The ketose–aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, E-enediols, Z-enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose–aldose transformation of acyclic saccharides and the effects of the basic catalyst. |
---|---|
AbstractList | The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose–aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose–aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose–aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μP, an angle η between μP and μT (the transition moment of the molecular vibration), and the equilibrium constants. The ketose–aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, E-enediols, Z-enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose–aldose transformation of acyclic saccharides and the effects of the basic catalyst. The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose-aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose-aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose-aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μP, an angle η between μP and μT (the transition moment of the molecular vibration), and the equilibrium constants. The ketose-aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, E-enediols, Z-enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose-aldose transformation of acyclic saccharides and the effects of the basic catalyst.The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose-aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose-aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose-aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μP, an angle η between μP and μT (the transition moment of the molecular vibration), and the equilibrium constants. The ketose-aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, E-enediols, Z-enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose-aldose transformation of acyclic saccharides and the effects of the basic catalyst. The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose-aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose-aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose-aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μ , an angle η between μ and μ (the transition moment of the molecular vibration), and the equilibrium constants. The ketose-aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, -enediols, -enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose-aldose transformation of acyclic saccharides and the effects of the basic catalyst. |
Author | Chen, Szu-Hua Hiramatsu, Hirotsugu |
AuthorAffiliation | National Chiao Tung University Center for Emergent Functional Matter Science Department of Applied Chemistry and Institute of Molecular Science |
AuthorAffiliation_xml | – name: National Chiao Tung University – name: Department of Applied Chemistry and Institute of Molecular Science – name: Center for Emergent Functional Matter Science |
Author_xml | – sequence: 1 givenname: Szu-Hua surname: Chen fullname: Chen, Szu-Hua organization: Department of Applied Chemistry and Institute of Molecular Science – sequence: 2 givenname: Hirotsugu orcidid: 0000-0002-5239-3032 surname: Hiramatsu fullname: Hiramatsu, Hirotsugu email: hiramatu@nctu.edu.tw organization: National Chiao Tung University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31765151$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1TAQhS1URH9gzwplyaK5eGzHiZdVKVBRiUUv68hxxiJVYgfbkciu78Ab8iT4_sACCVhYPhp_ZySfc05OnHdIyEugG6AM3mgTNw-z6Taqo01V1U_IGVSMlvnUJ0ctgcpTch7jA6WsYo18Rk451LKCCs7I41YvyU8YivsUFpOWgLEYXPERk4_44_H71dhnUWyDdtH6MOk0eFd4W8AlL98OX9Y--G-rNpl3mJcs_YB90a3FrbNBh6xvRjQpeN1FH-a9-37eT6Lx8_qcPLV6jPjieF-Qz-9uttcfyrtP72-vr-5KzaVKJes61RvFJFUotLEc-roGAabuGNbGsjyvdGMF7wX0SkhsmGASaWOM5sLyC_L6sHcO_uuCMbXTEA2Oo3bol9gywUEBCCX_j3Joas4V3aGvjujSTdi3cxgmHdb2V8AZoAfA5P_GgPY3ArTdddjmDttdh-2xw2yRf1jMkPaxp6CH8V_Gy4Nx_-KX4HKgf8d_AutRtQY |
CitedBy_id | crossref_primary_10_1021_acs_chemrestox_1c00403 crossref_primary_10_1002_ange_202401602 crossref_primary_10_1038_s41467_021_27240_5 crossref_primary_10_1002_anie_202401602 crossref_primary_10_1021_acscatal_0c04131 crossref_primary_10_3390_molecules28062724 crossref_primary_10_1021_acs_accounts_1c00359 |
Cites_doi | 10.1366/000370204773580176 10.1021/acs.jpcb.6b05119 10.1021/acs.jpcb.6b08133 10.1016/S0008-6215(00)84773-4 10.1021/acs.jpcc.9b02946 10.1016/S0040-4039(01)83376-1 10.1146/annurev.physchem.48.1.213 10.1039/C8PY00256H 10.1021/acs.analchem.5b03437 10.1023/B:RUGC.0000007604.91106.60 10.1016/j.tet.2009.10.047 10.1007/3-540-44422-X_1 10.1016/j.cbpa.2004.10.004 10.1021/jp073974n 10.1021/acs.biochem.8b00283 10.1016/S0008-6215(00)83168-7 10.1016/j.cplett.2008.10.035 10.1021/acs.jpcb.6b09007 10.1007/s00449-003-0338-9 10.1016/0008-6215(89)84020-0 10.1021/ar00156a004 10.1246/cl.2002.68 10.1002/anie.200400659 10.1021/acs.jpcb.7b02171 10.1016/j.theochem.2008.01.026 10.1021/acs.jpcb.8b03870 10.1021/jf9812836 10.1021/jp072122k 10.1016/S0009-2614(02)00917-X 10.1016/j.molstruc.2009.07.030 10.1016/0045-2068(73)90023-0 10.1021/acs.jpcb.8b11458 10.1021/jacs.6b06843 10.1021/jacs.6b02156 10.1366/000370294774368947 10.1016/j.tetlet.2015.05.108 10.1021/jf0726785 10.1021/jp055082y 10.1021/acs.jpcb.6b02732 10.1016/S0009-2614(01)00991-5 10.1016/j.cplett.2018.10.064 10.1021/acs.jpclett.9b00999 10.1021/ar500464j 10.1021/acs.jpcc.9b00564 10.1021/ja512302c 10.1021/ja00109a038 10.1016/j.tetlet.2013.02.013 10.1021/acs.jpcc.7b12025 10.1021/acs.jpcc.8b08464 10.1016/j.jaad.2017.04.1117 10.1016/0008-6215(95)00188-Y 10.1016/0584-8539(79)80186-5 10.1073/pnas.1503739112 10.1016/j.foodchem.2005.03.041 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.jpcb.9b08557 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 10671 |
ExternalDocumentID | 31765151 10_1021_acs_jpcb_9b08557 g5565788 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F20 F5P GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a369t-2bb9dc92609e4acf31d77141c7b2e7cf209e5a8f43d41d946e82426e08cca34f3 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Thu Jul 10 22:26:49 EDT 2025 Fri Jul 11 00:48:40 EDT 2025 Mon Jul 21 05:37:07 EDT 2025 Tue Jul 01 01:00:33 EDT 2025 Thu Apr 24 22:59:42 EDT 2025 Thu Aug 27 13:41:55 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a369t-2bb9dc92609e4acf31d77141c7b2e7cf209e5a8f43d41d946e82426e08cca34f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5239-3032 |
PMID | 31765151 |
PQID | 2318733906 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2431911496 proquest_miscellaneous_2318733906 pubmed_primary_31765151 crossref_primary_10_1021_acs_jpcb_9b08557 crossref_citationtrail_10_1021_acs_jpcb_9b08557 acs_journals_10_1021_acs_jpcb_9b08557 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-19 |
PublicationDateYYYYMMDD | 2019-12-19 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref35/cit35 doi: 10.1366/000370204773580176 – ident: ref28/cit28 doi: 10.1021/acs.jpcb.6b05119 – ident: ref29/cit29 doi: 10.1021/acs.jpcb.6b08133 – ident: ref4/cit4 doi: 10.1016/S0008-6215(00)84773-4 – ident: ref17/cit17 doi: 10.1021/acs.jpcc.9b02946 – ident: ref48/cit48 doi: 10.1016/S0040-4039(01)83376-1 – ident: ref21/cit21 doi: 10.1146/annurev.physchem.48.1.213 – ident: ref10/cit10 doi: 10.1039/C8PY00256H – ident: ref32/cit32 doi: 10.1021/acs.analchem.5b03437 – ident: ref55/cit55 doi: 10.1023/B:RUGC.0000007604.91106.60 – ident: ref51/cit51 doi: 10.1016/j.tet.2009.10.047 – ident: ref2/cit2 doi: 10.1007/3-540-44422-X_1 – ident: ref1/cit1 doi: 10.1016/j.cbpa.2004.10.004 – ident: ref46/cit46 doi: 10.1021/jp073974n – ident: ref27/cit27 doi: 10.1021/acs.biochem.8b00283 – ident: ref47/cit47 doi: 10.1016/S0008-6215(00)83168-7 – ident: ref42/cit42 doi: 10.1016/j.cplett.2008.10.035 – ident: ref25/cit25 doi: 10.1021/acs.jpcb.6b09007 – ident: ref12/cit12 doi: 10.1007/s00449-003-0338-9 – ident: ref3/cit3 doi: 10.1016/0008-6215(89)84020-0 – ident: ref49/cit49 doi: 10.1021/ar00156a004 – ident: ref40/cit40 doi: 10.1246/cl.2002.68 – ident: ref9/cit9 doi: 10.1002/anie.200400659 – ident: ref38/cit38 doi: 10.1021/acs.jpcb.7b02171 – ident: ref50/cit50 doi: 10.1016/j.theochem.2008.01.026 – ident: ref26/cit26 doi: 10.1021/acs.jpcb.8b03870 – ident: ref16/cit16 doi: 10.1021/jf9812836 – ident: ref13/cit13 doi: 10.1021/jp072122k – ident: ref36/cit36 doi: 10.1016/S0009-2614(02)00917-X – ident: ref14/cit14 doi: 10.1016/j.molstruc.2009.07.030 – ident: ref53/cit53 doi: 10.1016/0045-2068(73)90023-0 – ident: ref31/cit31 doi: 10.1021/acs.jpcb.8b11458 – ident: ref30/cit30 doi: 10.1021/jacs.6b06843 – ident: ref24/cit24 doi: 10.1021/jacs.6b02156 – ident: ref44/cit44 doi: 10.1366/000370294774368947 – ident: ref7/cit7 doi: 10.1016/j.tetlet.2015.05.108 – ident: ref6/cit6 doi: 10.1021/jf0726785 – ident: ref37/cit37 doi: 10.1021/jp055082y – ident: ref23/cit23 doi: 10.1021/acs.jpcb.6b02732 – ident: ref41/cit41 doi: 10.1016/S0009-2614(01)00991-5 – ident: ref43/cit43 doi: 10.1016/j.cplett.2018.10.064 – ident: ref18/cit18 doi: 10.1021/acs.jpclett.9b00999 – ident: ref45/cit45 – ident: ref34/cit34 doi: 10.1021/ar500464j – ident: ref33/cit33 doi: 10.1021/acs.jpcc.9b00564 – ident: ref22/cit22 doi: 10.1021/ja512302c – ident: ref20/cit20 doi: 10.1021/ja00109a038 – ident: ref52/cit52 doi: 10.1016/j.tetlet.2013.02.013 – ident: ref19/cit19 doi: 10.1021/acs.jpcc.7b12025 – ident: ref39/cit39 doi: 10.1021/acs.jpcc.8b08464 – ident: ref11/cit11 doi: 10.1016/j.jaad.2017.04.1117 – ident: ref15/cit15 doi: 10.1016/0008-6215(95)00188-Y – ident: ref54/cit54 doi: 10.1016/0584-8539(79)80186-5 – ident: ref5/cit5 doi: 10.1073/pnas.1503739112 – ident: ref8/cit8 doi: 10.1016/j.foodchem.2005.03.041 |
SSID | ssj0025286 |
Score | 2.3494284 |
Snippet | The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose–aldose... The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose-aldose... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10663 |
SubjectTerms | absorption catalysts electric field glyceraldehyde physicochemical properties piperidines spectroscopy tautomers vibration |
Title | Tautomer Structures in Ketose–Aldose Transformation of 1,3-Dihydroxyacetone Studied by Infrared Electroabsorption Spectroscopy |
URI | http://dx.doi.org/10.1021/acs.jpcb.9b08557 https://www.ncbi.nlm.nih.gov/pubmed/31765151 https://www.proquest.com/docview/2318733906 https://www.proquest.com/docview/2431911496 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swECYad2iWpI-kebQFC7RDgcoWRVoSR8O14SZoF9uAN4EvIU4TybDkwZn8H_oP-0typGS3aVrDgAaBICWSd8f7Dkfch9AHGTIOfkl5vjC-x4jiXky19mRgfKmojqTjT_n2PRyM2cWkPfldJufvDH5AWkIVzeuZkk0u7Z2qaA89DUKwYQuDusNNcNUOHKsjuCMbDvnrlOS_vmAdkSoeOqL_oEvnZfqHFV1R4YoT2sslP5qLUjbV3ePSjTss4Dk6qMEm7lTa8QI9MdlL9Ky75nh7hVYjsSjzWzPHQ1dHdgHBN55m-NKUeWF-rX52bjS84NEf8DbPcJ5i8pl6X6ZXS21nKpSxNb1xdSlRY7nEX7N0bu-2417FsyNkkc_d8YQt5X1pi2jms-URGvd7o-7AqzkZPEFDXnqBlFwrDlEQN0yolBIdRQRkHIF0I5UG0N4WccqoZkRzFprYggDjx6AqlKX0GDUymNEJwinXUcyofUIGB480qeLaRjCKc63JKfoIW5fUNlUkLl0ekMQ1wn4m9X6eotZakImqC5tbfo2bLSM-bUbMqqIeW_q-X-tGAsKx6RSRmXxRJICM44hS7odb-oAdgDthHPq8rhRr80dAbpaHnpztuM5ztA9ozZFXEP4GNUAvzFtARKV850zhHtZMCaE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONALLX1QCqWu1B4qNUsce5P4uNqCluehu0jcovgRAYVktckelhP_of-wv4Sxk2xp1a6KlENk2c7YM858oxnPAHyUIReol5Tnp8b3OFXCi5nWngyMLxXTkXT1U05Ow8EZPzzvni8Bbe_CIBElzlQ6J_6v7AJ017ZdjZXsCGlDq6InsIJYJLBC3esP5zZWN3DFHVErWavIbz2Tf5vB6iNV_q6P_gEynbLZfwbf5mS6GJPvnWklO-r2jwyOj1rHc1hroCfp1bKyDksmfwGr_bbi20u4G6XTqrgxEzJ0WWWnaIqTy5wcmaoozc-7H71rjS9k9ADsFjkpMkK_MO_r5cVMW4JTZWyGb1KHKGoiZ-QgzyY20p3s1VV3UlkWE_ezIsOxa7G3Y2av4Gx_b9QfeE2FBi9loai8QEqhlUCbSBieqoxRHUUUOR4hryOVBdjeTeOMM82pFjw0sYUExo9RcBjP2GtYzpGiN0AyoaOYM_uEHH9D0mRKaGvPKCG0ppvwCbcuaU5YmTjneUAT14j7mTT7uQm7LT8T1aQ5t9U2rheM-DwfMa5TfCzo-6EVkQSZY50raW6KaZkgTo4jxoQfLuiDpwKVCxfYZ6OWr_kXEcfZqvT07X-u8z2sDkYnx8nxwenRFjxFHOfKWlCxDcsoI-YdYqVK7rjTcQ-otRIC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9QwLBqbBLyM8b3xFSR4QKK3psm1zePpttPGYEK6G9pb1XyJwWhP197D7Wn_Yf-QX4KdtieGxgmkPlRWkjqxXduyYxPyRsVCgl7SQZjbMBBMyyDlxgQqsqHS3CTK90_5dBwfnIgPp_3TNdLv7sIAEhWsVPkgPkr11Li2wgDbRfi3qVY9qTC9KrlFNjBqh4w9GI6XflY_8g0eQTOhZxR20cmbVkCdpKvrOukvhqZXOKN75MsSVZ9n8r03r1VPX_xRxfG_97JFNlsTlA4anrlP1mzxgNwZdp3fHpLLST6vyx92Rse-uuwcXHJ6VtAjW5eV_Xl5NTg38EInvxm9ZUFLR9l7HuydfV0YRDrXFit90yZV0VC1oIeFm2HGO91vuu_kqipn_qdFx1MPwVsyi0fkZLQ_GR4EbaeGIOexrINIKWm0BN9IWpFrx5lJEgaUT4DmiXYRwPt56gQ3ghkpYpuiaWDDFBiIC8cfk_UCMHpKqJMmSQXHJxbwO1LWaWnQr9FSGsO2yVs4uqyVtCrzQfSIZR4I55m157lNdjuaZrotd45dN85XzHi3nDFtSn2sGPu6Y5MMiINBlryw5bzKwF5OE85lGK8YA9IBSkZIGPOk4bHlF8Gew-70bOcf9_mK3P68N8o-Hh4fPSN3wZzz3S2YfE7WgUXsCzCZavXSC8gvYUMUhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tautomer+Structures+in+Ketose%E2%80%93Aldose+Transformation+of+1%2C3-Dihydroxyacetone+Studied+by+Infrared+Electroabsorption+Spectroscopy&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Chen%2C+Szu-Hua&rft.au=Hiramatsu%2C+Hirotsugu&rft.date=2019-12-19&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=123&rft.issue=50&rft.spage=10663&rft.epage=10671&rft_id=info:doi/10.1021%2Facs.jpcb.9b08557&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcb_9b08557 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |