Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms
The Maharloo watershed has witnessed many gullies in the recent due to the specific topo-climatic conditions and man-made activities in that area. The present study is set out to address this issue by producing gully erosion prediction maps via three machine learning algorithms including RF, SVM and...
Saved in:
Published in | Geoderma Vol. 340; pp. 55 - 69 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Maharloo watershed has witnessed many gullies in the recent due to the specific topo-climatic conditions and man-made activities in that area. The present study is set out to address this issue by producing gully erosion prediction maps via three machine learning algorithms including RF, SVM and BRT in Maharloo watershed, Fars province, Iran. Also, this research attempted to consider the importance of effective factors in the occurrence of gully erosion using Boruta algorithm. To this end, gully erosion locations were identified by extensive field surveys as well as the use of already prepared gully raster map of Maharloo watershed. Then, sixteen causative factors of gully erosion such as elevation, slope degree, slope aspect, plan curvature, TWI, distance from rivers, distance from roads, drainage density, lithology, annual mean rainfall, NDVI, land use and some soil characteristics (pH, clay percent, electrical conductivity-EC, and silt percent) were identified and their maps were produced and classified in the GIS. In this study, the relationships among each agent and gully erosion were defined employing the evidential belief function (EBF) algorithm and the weight of each factor's classes was determined. On the other hand, the results of the collinearity test among the factors showed that sand percentage agent had a VIF > 5; therefore, this covariate was removed from the model. Also, the results of the importance of effective factors using Boruta algorithm indicated that three factors including land use, distance from river, and clay percent had the most noticeable importance in the occurrence of gully erosion in the study area. Finally, the gully erosion susceptibility maps were produced using the RF, BRT, and SVM models in the R statistical software. The results of machine learning techniques were evaluated employing 30% of unused locations in the modeling process as well as the receiver operating characteristic (ROC) curve. Also, in the current research, try to assess the fitting performance of models and their robustness using sensitivity rate, specificity rate, Cohen's Kappa, and 4-fold cross-validation measures. Results showed that the final gully erosion susceptibility maps had an excellent accuracy with AUC values of validation data sets by scenarios 7 and 9 independent factors on gully erosion, respectively (SVM = 0.957, 0.975, RF = 0.991, 0.986, BRT = 0.913, 0.913). The fitting performance measures and robustness technique (4-fold cross-validation) also confirmed the achieved validation results. In order to control and prevent this type of erosion in the Maharloo watershed, there should be protective actions and watershed management measures in place at the primary stages, especially at the beginning of the gully erosion, to control the development of the gully erosion.
•Introducing Boruta algorithm in order to consider importance of effective factors in environmental and earth sciences•Modeling gully erosion susceptibility using machine learning techniques•Investigation of spatial relationship between effective factors and gully erosion using EBF model |
---|---|
AbstractList | The Maharloo watershed has witnessed many gullies in the recent due to the specific topo-climatic conditions and man-made activities in that area. The present study is set out to address this issue by producing gully erosion prediction maps via three machine learning algorithms including RF, SVM and BRT in Maharloo watershed, Fars province, Iran. Also, this research attempted to consider the importance of effective factors in the occurrence of gully erosion using Boruta algorithm. To this end, gully erosion locations were identified by extensive field surveys as well as the use of already prepared gully raster map of Maharloo watershed. Then, sixteen causative factors of gully erosion such as elevation, slope degree, slope aspect, plan curvature, TWI, distance from rivers, distance from roads, drainage density, lithology, annual mean rainfall, NDVI, land use and some soil characteristics (pH, clay percent, electrical conductivity-EC, and silt percent) were identified and their maps were produced and classified in the GIS. In this study, the relationships among each agent and gully erosion were defined employing the evidential belief function (EBF) algorithm and the weight of each factor's classes was determined. On the other hand, the results of the collinearity test among the factors showed that sand percentage agent had a VIF > 5; therefore, this covariate was removed from the model. Also, the results of the importance of effective factors using Boruta algorithm indicated that three factors including land use, distance from river, and clay percent had the most noticeable importance in the occurrence of gully erosion in the study area. Finally, the gully erosion susceptibility maps were produced using the RF, BRT, and SVM models in the R statistical software. The results of machine learning techniques were evaluated employing 30% of unused locations in the modeling process as well as the receiver operating characteristic (ROC) curve. Also, in the current research, try to assess the fitting performance of models and their robustness using sensitivity rate, specificity rate, Cohen's Kappa, and 4-fold cross-validation measures. Results showed that the final gully erosion susceptibility maps had an excellent accuracy with AUC values of validation data sets by scenarios 7 and 9 independent factors on gully erosion, respectively (SVM = 0.957, 0.975, RF = 0.991, 0.986, BRT = 0.913, 0.913). The fitting performance measures and robustness technique (4-fold cross-validation) also confirmed the achieved validation results. In order to control and prevent this type of erosion in the Maharloo watershed, there should be protective actions and watershed management measures in place at the primary stages, especially at the beginning of the gully erosion, to control the development of the gully erosion. The Maharloo watershed has witnessed many gullies in the recent due to the specific topo-climatic conditions and man-made activities in that area. The present study is set out to address this issue by producing gully erosion prediction maps via three machine learning algorithms including RF, SVM and BRT in Maharloo watershed, Fars province, Iran. Also, this research attempted to consider the importance of effective factors in the occurrence of gully erosion using Boruta algorithm. To this end, gully erosion locations were identified by extensive field surveys as well as the use of already prepared gully raster map of Maharloo watershed. Then, sixteen causative factors of gully erosion such as elevation, slope degree, slope aspect, plan curvature, TWI, distance from rivers, distance from roads, drainage density, lithology, annual mean rainfall, NDVI, land use and some soil characteristics (pH, clay percent, electrical conductivity-EC, and silt percent) were identified and their maps were produced and classified in the GIS. In this study, the relationships among each agent and gully erosion were defined employing the evidential belief function (EBF) algorithm and the weight of each factor's classes was determined. On the other hand, the results of the collinearity test among the factors showed that sand percentage agent had a VIF > 5; therefore, this covariate was removed from the model. Also, the results of the importance of effective factors using Boruta algorithm indicated that three factors including land use, distance from river, and clay percent had the most noticeable importance in the occurrence of gully erosion in the study area. Finally, the gully erosion susceptibility maps were produced using the RF, BRT, and SVM models in the R statistical software. The results of machine learning techniques were evaluated employing 30% of unused locations in the modeling process as well as the receiver operating characteristic (ROC) curve. Also, in the current research, try to assess the fitting performance of models and their robustness using sensitivity rate, specificity rate, Cohen's Kappa, and 4-fold cross-validation measures. Results showed that the final gully erosion susceptibility maps had an excellent accuracy with AUC values of validation data sets by scenarios 7 and 9 independent factors on gully erosion, respectively (SVM = 0.957, 0.975, RF = 0.991, 0.986, BRT = 0.913, 0.913). The fitting performance measures and robustness technique (4-fold cross-validation) also confirmed the achieved validation results. In order to control and prevent this type of erosion in the Maharloo watershed, there should be protective actions and watershed management measures in place at the primary stages, especially at the beginning of the gully erosion, to control the development of the gully erosion. •Introducing Boruta algorithm in order to consider importance of effective factors in environmental and earth sciences•Modeling gully erosion susceptibility using machine learning techniques•Investigation of spatial relationship between effective factors and gully erosion using EBF model |
Author | Pourghasemi, Hamid Reza Amiri, Mahdis Ghanbarian, Gholam Abbas Afzali, Sayed Fakhreddin |
Author_xml | – sequence: 1 givenname: Mahdis surname: Amiri fullname: Amiri, Mahdis – sequence: 2 givenname: Hamid Reza orcidid: 0000-0003-2328-2998 surname: Pourghasemi fullname: Pourghasemi, Hamid Reza email: hr.pourghasemi@shirazu.ac.ir – sequence: 3 givenname: Gholam Abbas orcidid: 0000-0002-0428-9601 surname: Ghanbarian fullname: Ghanbarian, Gholam Abbas – sequence: 4 givenname: Sayed Fakhreddin surname: Afzali fullname: Afzali, Sayed Fakhreddin |
BookMark | eNqFkcFu3CAURVGVSJ0k_YWKZTd2AdsMlrpoGqVNpUjdpGv0Bj_PMMLgAo6U78mPFmeaTTdZAY97r57uuSBnPngk5CNnNWdcfj7WewwDxglqwbiquahZK96RDVdbUUnR9Wdkw4qy2jLJ35OLlI7luWWCbcjzdUqY0oQ-0zDSfEBqpznEDN7gOtkvzj1RjCHZ4CmOI5psH5GOYHKIiS7J-j39FuKSgYLbh2jzYaLgB2pzommGbMHRqWzoVuX6McE8r_eTNx8iYpmZg_VIHUL0L8LXrHRFzkdwCT_8Oy_J7--3Dzd31f2vHz9vru8raKTKFbYDNB32Yztsu9aIngnZIReNEt2uU6bvh13XcZCGw471wBSDViqOg2wk9rvmknw65c4x_FkwZT3ZZNA58BiWpIUQTLWt4qxI5UlqSjEp4qjnaCeIT5ozvVLRR_1KRa9UNBe6UCnGL_8Zjc2louBzBOvetn892bH08Ggx6mQsFlSDjQWMHoJ9K-IvuR-z1Q |
CitedBy_id | crossref_primary_10_1016_j_geomorph_2023_108949 crossref_primary_10_1109_TIA_2023_3238005 crossref_primary_10_1016_j_still_2020_104857 crossref_primary_10_3390_su16156569 crossref_primary_10_52547_jwmr_12_23_75 crossref_primary_10_1007_s12665_021_09631_5 crossref_primary_10_1007_s10668_022_02890_7 crossref_primary_10_1016_j_iswcr_2022_04_001 crossref_primary_10_1080_10106049_2022_2091042 crossref_primary_10_1038_s41598_022_26526_y crossref_primary_10_3390_rs15082017 crossref_primary_10_3390_w11061129 crossref_primary_10_1016_j_scitotenv_2024_174949 crossref_primary_10_3390_land12040890 crossref_primary_10_1016_j_scitotenv_2020_139954 crossref_primary_10_1016_j_iswcr_2020_08_004 crossref_primary_10_1038_s41598_020_69233_2 crossref_primary_10_1016_j_geomorph_2021_108027 crossref_primary_10_1080_19475683_2022_2040587 crossref_primary_10_1016_j_gsf_2020_03_005 crossref_primary_10_3799_dqkx_2022_309 crossref_primary_10_1016_j_landusepol_2023_106959 crossref_primary_10_1016_j_scitotenv_2022_153721 crossref_primary_10_1016_j_catena_2020_104769 crossref_primary_10_1177_0309133320979897 crossref_primary_10_1016_j_ecoleng_2025_107600 crossref_primary_10_1016_j_ecolind_2022_109376 crossref_primary_10_1016_j_eiar_2024_107692 crossref_primary_10_1155_2021_6665485 crossref_primary_10_1016_j_gsf_2020_09_006 crossref_primary_10_1007_s12665_021_10033_w crossref_primary_10_1080_10106049_2021_2022016 crossref_primary_10_1016_j_jclepro_2022_132428 crossref_primary_10_1016_j_foreco_2020_118338 crossref_primary_10_1016_j_geoderma_2021_115379 crossref_primary_10_1038_s41598_025_90823_5 crossref_primary_10_1016_j_catena_2022_106798 crossref_primary_10_5194_soil_9_411_2023 crossref_primary_10_1016_j_jenvman_2020_110525 crossref_primary_10_1016_j_envres_2025_121090 crossref_primary_10_1016_j_geomorph_2022_108159 crossref_primary_10_1016_j_jhydrol_2019_124527 crossref_primary_10_3390_ijgi10100680 crossref_primary_10_1007_s11356_020_10168_6 crossref_primary_10_1016_j_apr_2020_05_009 crossref_primary_10_3390_ijgi9090507 crossref_primary_10_1007_s11356_022_25090_2 crossref_primary_10_1177_03091333241228147 crossref_primary_10_1002_ldr_3397 crossref_primary_10_1007_s12665_019_8658_5 crossref_primary_10_3390_app10062039 crossref_primary_10_1002_ldr_3794 crossref_primary_10_15446_esrj_v25n4_95748 crossref_primary_10_1016_j_scitotenv_2022_158652 crossref_primary_10_1155_2020_8824943 crossref_primary_10_1080_19475683_2025_2473596 crossref_primary_10_3390_su15031939 crossref_primary_10_1016_j_ecoinf_2021_101291 crossref_primary_10_1007_s41748_022_00317_x crossref_primary_10_1016_j_catena_2023_107756 crossref_primary_10_1016_j_asr_2023_10_051 crossref_primary_10_3390_s20020335 crossref_primary_10_1111_sjtg_12348 crossref_primary_10_3390_land13101583 crossref_primary_10_1016_j_catena_2020_104545 crossref_primary_10_1038_s41598_020_60191_3 crossref_primary_10_2166_hydro_2023_327 crossref_primary_10_1016_j_scitotenv_2019_06_205 crossref_primary_10_3389_fenvs_2023_1207027 crossref_primary_10_1016_j_jhydrol_2020_125241 crossref_primary_10_1186_s12302_025_01079_9 crossref_primary_10_1007_s11069_024_07026_w crossref_primary_10_1016_j_catena_2024_108590 crossref_primary_10_1002_esp_6059 crossref_primary_10_1016_j_still_2024_106275 crossref_primary_10_1016_j_scitotenv_2021_148738 crossref_primary_10_3390_rs14112580 crossref_primary_10_1007_s10661_025_13806_z crossref_primary_10_1080_10106049_2021_1892209 crossref_primary_10_1016_j_catena_2023_107364 crossref_primary_10_1016_j_catena_2021_105261 crossref_primary_10_3390_rs12152478 crossref_primary_10_3390_rs16244742 crossref_primary_10_1016_j_iswcr_2023_09_008 crossref_primary_10_1016_j_scitotenv_2021_150648 crossref_primary_10_1007_s12517_022_10566_9 crossref_primary_10_1016_j_iswcr_2025_01_004 crossref_primary_10_1007_s12665_023_10901_7 crossref_primary_10_1016_j_geomorph_2023_108671 crossref_primary_10_1016_j_aej_2021_04_026 crossref_primary_10_1080_17538947_2020_1718785 crossref_primary_10_3390_rs15205033 crossref_primary_10_1002_gj_4932 crossref_primary_10_1080_15324982_2024_2390477 crossref_primary_10_3390_rs15112915 crossref_primary_10_1007_s11356_021_13229_6 crossref_primary_10_1007_s12517_021_08377_5 crossref_primary_10_1088_1755_1315_1064_1_012031 crossref_primary_10_3390_geosciences12120429 crossref_primary_10_1016_j_rsase_2023_100939 crossref_primary_10_1007_s11356_021_17265_0 crossref_primary_10_1016_j_catena_2023_107695 crossref_primary_10_1016_j_geoderma_2022_115869 crossref_primary_10_1007_s11069_019_03785_z crossref_primary_10_1016_j_compag_2025_109970 crossref_primary_10_1016_j_iswcr_2023_07_006 crossref_primary_10_2478_logi_2024_0008 crossref_primary_10_1002_eco_2339 crossref_primary_10_1080_10106049_2022_2071473 crossref_primary_10_3390_rs12172833 crossref_primary_10_1007_s11442_024_2234_y crossref_primary_10_1016_j_heliyon_2022_e08916 crossref_primary_10_1016_j_nhres_2024_05_001 crossref_primary_10_1139_cjss_2019_0041 crossref_primary_10_1029_2021RG000761 crossref_primary_10_3390_rs12213620 crossref_primary_10_3390_land9100346 crossref_primary_10_1007_s00168_021_01101_x crossref_primary_10_1109_JSTARS_2020_3045278 crossref_primary_10_1007_s12665_019_8518_3 crossref_primary_10_1016_j_ecolind_2021_107499 crossref_primary_10_1007_s11069_021_04986_1 crossref_primary_10_3390_land13091456 crossref_primary_10_1007_s10064_020_01915_7 crossref_primary_10_1016_j_geoderma_2023_116383 crossref_primary_10_3390_s20051313 crossref_primary_10_3390_su14105840 crossref_primary_10_1016_j_envres_2020_109321 crossref_primary_10_3389_fenvs_2024_1410741 crossref_primary_10_1007_s10661_023_11197_7 crossref_primary_10_1016_j_aap_2021_106409 crossref_primary_10_1007_s12665_025_12140_4 crossref_primary_10_3390_rs12111890 crossref_primary_10_3390_land13122110 crossref_primary_10_1007_s43217_024_00181_x crossref_primary_10_1016_j_ejrh_2022_101196 crossref_primary_10_1016_j_jenvman_2021_112284 crossref_primary_10_3390_su131810110 crossref_primary_10_1016_j_asr_2024_06_030 crossref_primary_10_1016_j_scs_2021_103185 crossref_primary_10_1016_j_jobe_2023_106051 crossref_primary_10_1016_j_gsf_2019_11_005 crossref_primary_10_1002_ldr_4721 crossref_primary_10_1007_s13132_024_02081_x crossref_primary_10_1016_j_catena_2021_105178 crossref_primary_10_1007_s12524_024_01901_6 crossref_primary_10_3389_feart_2023_1187384 crossref_primary_10_3389_feart_2023_1184038 crossref_primary_10_1007_s12665_021_09599_2 crossref_primary_10_1007_s12303_024_0045_x crossref_primary_10_3390_rs13122367 crossref_primary_10_1007_s11069_023_06377_0 crossref_primary_10_3390_rs12223675 crossref_primary_10_1080_19475705_2021_1968510 crossref_primary_10_3390_w12092529 crossref_primary_10_1002_ece3_9110 crossref_primary_10_1016_j_iswcr_2019_10_001 crossref_primary_10_1038_s41598_021_82527_3 crossref_primary_10_3390_ijgi11070401 crossref_primary_10_3390_w12010016 crossref_primary_10_1016_j_iswcr_2024_07_004 crossref_primary_10_1016_j_atmosres_2019_104716 crossref_primary_10_1016_j_catena_2019_104150 crossref_primary_10_3390_app14010240 crossref_primary_10_1007_s11356_022_22118_5 crossref_primary_10_3389_feart_2022_835142 crossref_primary_10_1016_j_rvsc_2024_105201 crossref_primary_10_3390_rs12203284 crossref_primary_10_1016_j_catena_2024_108275 crossref_primary_10_1016_j_ecolind_2025_113313 crossref_primary_10_1016_j_scitotenv_2021_147040 crossref_primary_10_1016_j_rsase_2021_100651 |
Cites_doi | 10.1007/s11069-010-9598-2 10.1016/j.geomorph.2012.10.031 10.1016/j.geomorph.2016.02.012 10.1016/j.geomorph.2017.12.032 10.1016/j.catena.2005.06.003 10.1016/S0341-8162(02)00129-7 10.1007/s12665-011-1477-y 10.1214/aos/1013203451 10.1007/s11135-006-9018-6 10.1127/0372-8854/2008/0052-0225 10.1016/j.geoderma.2017.06.020 10.1016/j.ecolmodel.2009.06.020 10.1016/j.catena.2015.05.015 10.1007/s11069-015-1915-3 10.1016/j.enggeo.2011.09.006 10.1002/ldr.2772 10.1016/j.geoderma.2005.04.025 10.1016/j.pce.2014.02.002 10.1016/S0169-1368(02)00111-7 10.1002/env.999 10.3390/app8081369 10.1016/j.catena.2017.10.010 10.1007/s12665-010-0531-5 10.5194/hess-18-1995-2014 10.1016/j.catena.2013.10.011 10.1214/aoms/1177698950 10.1016/j.geomorph.2010.10.022 10.1016/j.pce.2009.12.002 10.1016/j.scitotenv.2017.07.198 10.1002/esp.1501 10.1080/01431161.2012.700133 10.1007/s11069-013-0728-5 10.1002/2013JF002962 10.1007/s10040-012-0894-7 10.1016/j.catena.2016.04.018 10.1051/animres:2000134 10.1002/hyp.3360050103 10.18637/jss.v036.i11 10.1007/s11053-005-4678-9 10.1023/A:1010933404324 10.1016/j.cageo.2012.08.023 10.5194/gmd-9-3533-2016 10.1007/s00477-018-1518-0 10.1111/j.1365-2656.2008.01390.x 10.1016/j.geomorph.2008.05.047 10.1002/ldr.3151 10.1007/s11069-016-2239-7 10.1016/j.geomorph.2009.06.020 10.1007/s10661-015-5049-6 10.1016/j.ecolmodel.2010.01.007 10.1016/j.geoderma.2018.05.027 10.1007/s12517-012-0825-x 10.1016/j.icarus.2006.11.020 10.1016/S0341-8162(99)00028-4 10.1029/WR022i008p01350 10.3233/FI-2010-288 10.1016/j.geomorph.2013.08.021 10.1890/07-0539.1 10.1016/S0341-8162(02)00143-1 10.1016/j.jclinepi.2009.11.020 10.1016/j.scitotenv.2017.09.262 10.1016/j.eswa.2010.12.167 10.1029/2004JF000145 10.1002/ldr.931 10.1080/10106049.2014.966161 10.1016/S0304-3800(02)00195-3 10.1016/j.catena.2005.06.008 10.1016/j.geomorph.2017.09.006 10.1002/sim.1501 10.1007/s11104-010-0425-z |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2018.12.042 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 69 |
ExternalDocumentID | 10_1016_j_geoderma_2018_12_042 S0016706118314836 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-e4da35e9f4d754c290265e123825b58c99db551a6c1ab09a080a4681ed636e9b3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 07:50:23 EDT 2025 Thu Apr 24 22:50:32 EDT 2025 Tue Jul 01 04:04:48 EDT 2025 Fri Feb 23 02:49:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Integrating GIS and R Evidential belief function Boruta algorithm Gully erosion Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-e4da35e9f4d754c290265e123825b58c99db551a6c1ab09a080a4681ed636e9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0428-9601 0000-0003-2328-2998 |
PQID | 2220844810 |
PQPubID | 24069 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2220844810 crossref_primary_10_1016_j_geoderma_2018_12_042 crossref_citationtrail_10_1016_j_geoderma_2018_12_042 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_12_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-15 |
PublicationDateYYYYMMDD | 2019-04-15 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dempster (bb0125) 1967; 38 Gutiérrez, Amaro, Martin-Gonzalez (bb0180) 2015; 6 Karatzoglou, Smola, Hornik (bb0210) 2016 Pourghasemi, Beheshtirad (bb0350) 2015; 30 Tang, Zhang, Lei (bb0435) 1998 Garosi, Sheklabadi, Pourghasemi, Besalatpour, Conoscenti, Van Oost (bb0155) 2018; 330 Kumar Shit, Rumpa, GouriSankar, Ramkrishna (bb0230) 2015; 2 Yesilnacar (bb0455) 2005 Poesen, Nachtergaele, Verstraeten, Valentin (bb0345) 2003; 50 Ingrid, Arpita, Spiegel (bb0195) 2015; 133 Achten, Dondeyne, Mugogo, Kafiriti, Poesen, Deckers, Muys (bb0005) 2008; 52 Rossi, Guzzetti, Reichenbach, Cesare Mondini, Peruccacci (bb0410) 2010; 114 Bou Kheir, Wilson, Deng (bb0045) 2007; 32 Conoscenti, Angileri, Cappadonia, Rotigliano, Agnesi, Märker (bb0110) 2014; 204 Boser, Guyon, Vapnik (bb0040) 1992 Carranza, Woldai, Chikambwe (bb0070) 2005; 14 Hong, Pourghasemi, Pourtaghi (bb0190) 2016; 259 Carty (bb0075) 2011 Poesen (bb0340) 1993 Breiman (bb0050) 2001; 45 Westreich, Lessler, Funk (bb0445) 2010; 63 Bednarik, Magulova, Matys, Marschalko (bb0035) 2010; 35 Kursa, Rudnicki (bb0235) 2010; 36 Sezer, Pradhan, Gokceoglu (bb0415) 2011; 38 Shahin, Hassan (bb0425) 2000; 49 Lehmann, McC Overton, Leathwick (bb0255) 2002; 157 Park (bb0335) 2011; 62 Knisel (bb0215) 1980 Bastola, Dialynas, Bras, Noto, Istanbulluoglu (bb0030) 2018 Mclean (bb9010) 1982 Kotsiantis, Pintelas (bb0220) 2004; 1 Pourghasemi, Moradi, Fatemi Aghda, Gokceoglu, Pradhan (bb0365) 2014; 7 Rengers, Tucker (bb0390) 2014; 119 Vapnik (bb0440) 1995 Wiesmeier, Barthold, Blank, Kogel-Knabner (bb9005) 2011; 340 Shafer (bb0420) 1976 Istanbullouglu, Rafael, Floes-Cervantes (bb0200) 2005; 110 Rhoades (bb0395) 1982 O'Brien (bb0330) 2007; 41 Pourghasemi, Moradi, Fatemi Aghda (bb0360) 2013; 69 Märker, Pelacani, Schröder (bb0285) 2011; 125 Chaplot, Le Brozec, Silvera, Valentin (bb0090) 2005; 63 Gutiérrez, Schnabel, Contador (bb0170) 2009; 20 Carey, Gray, Seagrave (bb0060) 2001 Flanagan, Nearing (bb0140) 1995; vol. 10 Arabameri, Pradhan, Rezaei, Yamani, Pourghasemi, Lombardo (bb0020) 2018; 29 Pourghasemi, Yousefi, Kornejady, Cerda (bb0355) 2017; 609 Aertsen, Kint, Orshoven, Özkan, Muys (bb0010) 2010; 221 Woodward (bb0450) 1999; 37 Brown, Shepherd, Walsh, Mays, Reinsch (bb0055) 2006; 132 Naghibi, Pourghasemi, Dixon (bb0320) 2016 Chaplot, Giboire, Marchand, Valentin (bb0085) 2005; 63 Hamel (bb0185) 2009 Lombardo, Cama, Conoscenti, Märker, Rotigliano (bb0270) 2015; 79 Rahmati, Tahmasebipour, Haghizadeh, Pourghasemi, Feizizadeh (bb0380) 2017; 298 Kuhnert, Henderson, Bartley, Herr (bb0225) 2010; 21 Friedman (bb0145) 2001; 29 Razavi Termeh, Kornejady, Pourghasemi, Keesstra (bb0385) 2018; 615 Morgan (bb0310) 2009 Chen, Pourghasemi, Kornejady, Zhang (bb0095) 2017; 305 Morgan, Morgan Zulu (bb0315) 2003; 50 Rijkee, Keesstra, Mekonnen (bb0400) 2015; 5(1) Althuwaynee, Pradhan, Park, Lee (bb0015) 2014; 114 Rahmati, Haghizadeh, Pourghasemi, Noormohamadi (bb0375) 2016; 82 Arabameri, Pradhan, Pourghasemi, Rezaei, Kerle (bb0025) 2018; 8 Cutler, Edwards, Beard, Cutler, Hess (bb0120) 2007; 88 Moore, Burch (bb0300) 1986; 22 Rossi, Reichenbach (bb0405) 2016; 9 Greene (bb0165) 2000 Friedman, Meulman (bb0150) 2003; 22 Kursa, Jankowski, Rudnicki (bb0240) 2010; 101 Lee, Song, Kim, Park (bb0250) 2012; 20 Conforti, Aucelli, Robustelli, Scarciglia (bb0105) 2010; 56 Dube, Nhapi, Murwira, Gumindoga, Goldin, Mashauri (bb0130) 2014; 67 Marjanović, Kovačević, Bajat, Voženílek (bb0280) 2011; 123 Moore, Grayson, Ladson (bb0305) 1991; 5 Li, Zhang, Zhu, Yang, Li, Ma (bb0260) 2017; 148 Dickson, Head, Kreslavsky (bb9000) 2007; 188 Khalighi Sigaroodi, Chen, Ebrahimi, Nazari, Choobin (bb9015) 2014; 18 Lombardo, Opitz, Huser (bb0275) 2018; 32 Niu, Ban (bb0325) 2013; 34 Chaplot (bb0080) 2013; 186 Zabihi, Mirchooli, Motevalli, Darvishan, Pourghasemi, Zakeri, Sadighi (bb0460) 2018; 161 Shary, Sharaya, Mitusov (bb0430) 2002; 30 Gee, Bauder (bb0160) 2002; 5 Liaw, Wiener (bb0265) 2002; 2 Lee, Choi, Oh, Won, Park, Lee (bb0245) 2012; 67 Conoscenti, Agnesi, Cama, Caraballo-Arias, Rotigliano (bb0115) 2018; 29 Marzolff, Poesen (bb0290) 2009; 111 Carranza, Hale (bb0065) 2002; 22 Gutiérrez, Schnabel, Contador (bb0175) 2009; 220 Joachims (bb0205) 1997 Pradhan (bb0370) 2013; 51 Elith, Leathwick, Hastie (bb0135) 2008; 77 Rahmati (10.1016/j.geoderma.2018.12.042_bb0380) 2017; 298 Sezer (10.1016/j.geoderma.2018.12.042_bb0415) 2011; 38 Dempster (10.1016/j.geoderma.2018.12.042_bb0125) 1967; 38 Lehmann (10.1016/j.geoderma.2018.12.042_bb0255) 2002; 157 Tang (10.1016/j.geoderma.2018.12.042_bb0435) 1998 Hamel (10.1016/j.geoderma.2018.12.042_bb0185) 2009 Cutler (10.1016/j.geoderma.2018.12.042_bb0120) 2007; 88 Chaplot (10.1016/j.geoderma.2018.12.042_bb0090) 2005; 63 Pourghasemi (10.1016/j.geoderma.2018.12.042_bb0350) 2015; 30 Vapnik (10.1016/j.geoderma.2018.12.042_bb0440) 1995 Marjanović (10.1016/j.geoderma.2018.12.042_bb0280) 2011; 123 Razavi Termeh (10.1016/j.geoderma.2018.12.042_bb0385) 2018; 615 Khalighi Sigaroodi (10.1016/j.geoderma.2018.12.042_bb9015) 2014; 18 Rhoades (10.1016/j.geoderma.2018.12.042_bb0395) 1982 Friedman (10.1016/j.geoderma.2018.12.042_bb0145) 2001; 29 Kursa (10.1016/j.geoderma.2018.12.042_bb0240) 2010; 101 Gee (10.1016/j.geoderma.2018.12.042_bb0160) 2002; 5 Lombardo (10.1016/j.geoderma.2018.12.042_bb0270) 2015; 79 Westreich (10.1016/j.geoderma.2018.12.042_bb0445) 2010; 63 O'Brien (10.1016/j.geoderma.2018.12.042_bb0330) 2007; 41 Moore (10.1016/j.geoderma.2018.12.042_bb0300) 1986; 22 Knisel (10.1016/j.geoderma.2018.12.042_bb0215) 1980 Chen (10.1016/j.geoderma.2018.12.042_bb0095) 2017; 305 Gutiérrez (10.1016/j.geoderma.2018.12.042_bb0180) 2015; 6 Liaw (10.1016/j.geoderma.2018.12.042_bb0265) 2002; 2 Pourghasemi (10.1016/j.geoderma.2018.12.042_bb0355) 2017; 609 Naghibi (10.1016/j.geoderma.2018.12.042_bb0320) 2016 Kuhnert (10.1016/j.geoderma.2018.12.042_bb0225) 2010; 21 Rossi (10.1016/j.geoderma.2018.12.042_bb0405) 2016; 9 Poesen (10.1016/j.geoderma.2018.12.042_bb0345) 2003; 50 Joachims (10.1016/j.geoderma.2018.12.042_bb0205) 1997 Garosi (10.1016/j.geoderma.2018.12.042_bb0155) 2018; 330 Achten (10.1016/j.geoderma.2018.12.042_bb0005) 2008; 52 Elith (10.1016/j.geoderma.2018.12.042_bb0135) 2008; 77 Brown (10.1016/j.geoderma.2018.12.042_bb0055) 2006; 132 Mclean (10.1016/j.geoderma.2018.12.042_bb9010) 1982 Arabameri (10.1016/j.geoderma.2018.12.042_bb0020) 2018; 29 Dube (10.1016/j.geoderma.2018.12.042_bb0130) 2014; 67 Kursa (10.1016/j.geoderma.2018.12.042_bb0235) 2010; 36 Moore (10.1016/j.geoderma.2018.12.042_bb0305) 1991; 5 Park (10.1016/j.geoderma.2018.12.042_bb0335) 2011; 62 Istanbullouglu (10.1016/j.geoderma.2018.12.042_bb0200) 2005; 110 Marzolff (10.1016/j.geoderma.2018.12.042_bb0290) 2009; 111 Lee (10.1016/j.geoderma.2018.12.042_bb0250) 2012; 20 Bednarik (10.1016/j.geoderma.2018.12.042_bb0035) 2010; 35 Yesilnacar (10.1016/j.geoderma.2018.12.042_bb0455) 2005 Chaplot (10.1016/j.geoderma.2018.12.042_bb0080) 2013; 186 Pradhan (10.1016/j.geoderma.2018.12.042_bb0370) 2013; 51 Friedman (10.1016/j.geoderma.2018.12.042_bb0150) 2003; 22 Li (10.1016/j.geoderma.2018.12.042_bb0260) 2017; 148 Flanagan (10.1016/j.geoderma.2018.12.042_bb0140) 1995; vol. 10 Niu (10.1016/j.geoderma.2018.12.042_bb0325) 2013; 34 Shary (10.1016/j.geoderma.2018.12.042_bb0430) 2002; 30 Morgan (10.1016/j.geoderma.2018.12.042_bb0315) 2003; 50 Breiman (10.1016/j.geoderma.2018.12.042_bb0050) 2001; 45 Greene (10.1016/j.geoderma.2018.12.042_bb0165) 2000 Pourghasemi (10.1016/j.geoderma.2018.12.042_bb0365) 2014; 7 Woodward (10.1016/j.geoderma.2018.12.042_bb0450) 1999; 37 Rengers (10.1016/j.geoderma.2018.12.042_bb0390) 2014; 119 Carranza (10.1016/j.geoderma.2018.12.042_bb0065) 2002; 22 Chaplot (10.1016/j.geoderma.2018.12.042_bb0085) 2005; 63 Conoscenti (10.1016/j.geoderma.2018.12.042_bb0115) 2018; 29 Boser (10.1016/j.geoderma.2018.12.042_bb0040) 1992 Lombardo (10.1016/j.geoderma.2018.12.042_bb0275) 2018; 32 Carty (10.1016/j.geoderma.2018.12.042_bb0075) 2011 Zabihi (10.1016/j.geoderma.2018.12.042_bb0460) 2018; 161 Karatzoglou (10.1016/j.geoderma.2018.12.042_bb0210) 2016 Aertsen (10.1016/j.geoderma.2018.12.042_bb0010) 2010; 221 Bou Kheir (10.1016/j.geoderma.2018.12.042_bb0045) 2007; 32 Ingrid (10.1016/j.geoderma.2018.12.042_bb0195) 2015; 133 Kumar Shit (10.1016/j.geoderma.2018.12.042_bb0230) 2015; 2 Pourghasemi (10.1016/j.geoderma.2018.12.042_bb0360) 2013; 69 Althuwaynee (10.1016/j.geoderma.2018.12.042_bb0015) 2014; 114 Lee (10.1016/j.geoderma.2018.12.042_bb0245) 2012; 67 Poesen (10.1016/j.geoderma.2018.12.042_bb0340) 1993 Rijkee (10.1016/j.geoderma.2018.12.042_bb0400) 2015; 5(1) Conoscenti (10.1016/j.geoderma.2018.12.042_bb0110) 2014; 204 Gutiérrez (10.1016/j.geoderma.2018.12.042_bb0175) 2009; 220 Wiesmeier (10.1016/j.geoderma.2018.12.042_bb9005) 2011; 340 Hong (10.1016/j.geoderma.2018.12.042_bb0190) 2016; 259 Kotsiantis (10.1016/j.geoderma.2018.12.042_bb0220) 2004; 1 Arabameri (10.1016/j.geoderma.2018.12.042_bb0025) 2018; 8 Shahin (10.1016/j.geoderma.2018.12.042_bb0425) 2000; 49 Conforti (10.1016/j.geoderma.2018.12.042_bb0105) 2010; 56 Märker (10.1016/j.geoderma.2018.12.042_bb0285) 2011; 125 Gutiérrez (10.1016/j.geoderma.2018.12.042_bb0170) 2009; 20 Bastola (10.1016/j.geoderma.2018.12.042_bb0030) 2018 Rossi (10.1016/j.geoderma.2018.12.042_bb0410) 2010; 114 Carey (10.1016/j.geoderma.2018.12.042_bb0060) 2001 Shafer (10.1016/j.geoderma.2018.12.042_bb0420) 1976 Rahmati (10.1016/j.geoderma.2018.12.042_bb0375) 2016; 82 Dickson (10.1016/j.geoderma.2018.12.042_bb9000) 2007; 188 Morgan (10.1016/j.geoderma.2018.12.042_bb0310) 2009 Carranza (10.1016/j.geoderma.2018.12.042_bb0070) 2005; 14 |
References_xml | – year: 1998 ident: bb0435 article-title: Critical slope gradient for compulsory abandonment of USDA-SCS. Procedure for determining rates of land damage, land depreciation, and volume of sediment produced by gully erosion publication-title: Technical Release No. 32. US GPO 1990-261-419:20727/SCS – volume: 2 year: 2015 ident: bb0230 article-title: Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India publication-title: Modell. Earth Syst. Environ. – volume: 51 start-page: 350 year: 2013 end-page: 365 ident: bb0370 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. – volume: 259 start-page: 105 year: 2016 end-page: 118 ident: bb0190 article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical publication-title: Geomorphology – volume: 14 start-page: 47 year: 2005 end-page: 63 ident: bb0070 article-title: Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia publication-title: Nat. Resour. Res. – volume: 30 start-page: 1925 year: 2002 end-page: 1932 ident: bb0430 article-title: Fundamental quantitative methods of slope instability publication-title: Water Resour. Res. – start-page: 167 year: 1982 end-page: 179 ident: bb0395 publication-title: Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Monograph Number 9, Soluble salts – volume: 132 start-page: 273 year: 2006 end-page: 290 ident: bb0055 article-title: Global soil characterization with VNIR diffuses reflectance spectroscopy publication-title: Geoderma – volume: 1 start-page: 324 year: 2004 end-page: 333 ident: bb0220 article-title: Combining bagging and boosting publication-title: Int. J. Comput. Intell. – volume: 50 start-page: 401 year: 2003 end-page: 411 ident: bb0315 article-title: Threshold conditions for initiation of valley-side gullies in the Middle West of Switzerland publication-title: Catena – volume: 9 start-page: 3533 year: 2016 end-page: 3543 ident: bb0405 article-title: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0 publication-title: Geosci. Model Dev. – volume: 186 start-page: 1 year: 2013 end-page: 11 ident: bb0080 article-title: Impact of terrain attributes, parent material and soil types on gully erosion publication-title: Geomorphology – volume: 330 start-page: 65 year: 2018 end-page: 78 ident: bb0155 article-title: Comparison of the different resolution and source of controlling factors for gully erosion susceptibility mapping publication-title: Geoderma – volume: 123 start-page: 225 year: 2011 end-page: 234 ident: bb0280 article-title: Landslide susceptibility assessment using SVM machine learning algorithm publication-title: Eng. Geol. – year: 2009 ident: bb0185 article-title: Knowledge Discovery with Support Vector Machines, Hoboken – volume: 36 start-page: 1 year: 2010 end-page: 13 ident: bb0235 article-title: Feature selection with the Boruta package publication-title: J. Stat. Softw. – volume: 52 start-page: 225 year: 2008 end-page: 235 ident: bb0005 article-title: Gully erosion in South Eastern Tanzania: spatial distribution and topographic thresholds publication-title: Z. Geomorphol. – year: 2000 ident: bb0165 article-title: Econometric Analysis – volume: 29 start-page: 724 year: 2018 end-page: 736 ident: bb0115 article-title: Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity publication-title: Land Degrad. Dev. – volume: 161 start-page: 1 year: 2018 end-page: 13 ident: bb0460 article-title: Spatial modelling of gully erosion in Mazandaran Province, northern Iran publication-title: Catena – volume: 305 start-page: 314 year: 2017 end-page: 327 ident: bb0095 article-title: Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques publication-title: Geoderma – volume: 114 start-page: 129 year: 2010 end-page: 142 ident: bb0410 article-title: Optimal landslide susceptibility zonation based on multiple forecasts publication-title: Geomorphology – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0050 article-title: Random forests publication-title: Mach. Learn. – year: 2001 ident: bb0060 article-title: Gully Erosion – volume: 101 start-page: 271 year: 2010 end-page: 285 ident: bb0240 article-title: Boruta–a system for feature selection publication-title: Fundam. Inform. – volume: 82 start-page: 1231 year: 2016 end-page: 1258 ident: bb0375 article-title: Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison publication-title: Nat. Hazards – volume: 22 start-page: 1350 year: 1986 end-page: 1360 ident: bb0300 article-title: Sediment transport capacity of sheet and rill flow: application of unit stream power theory publication-title: Water Resour. Res. – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: bb0135 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. – volume: 63 start-page: 318 year: 2005 end-page: 328 ident: bb0085 article-title: Dynamic modelling for linear erosion initiation and development under climate and land-use changes in northern Laos publication-title: Catena – volume: 119 start-page: 983 year: 2014 end-page: 1003 ident: bb0390 article-title: Analysis and modeling of gully head-cut dynamics, North American high plains publication-title: J. Geophys. Res. Earth – volume: 20 start-page: 1511 year: 2012 end-page: 1527 ident: bb0250 article-title: Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model publication-title: Hydrogeol. J. – volume: 38 start-page: 8208 year: 2011 end-page: 8219 ident: bb0415 article-title: Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia publication-title: Expert Syst. Appl. – volume: 56 start-page: 881 year: 2010 end-page: 898 ident: bb0105 article-title: Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy) publication-title: Nat. Hazards – volume: 5 start-page: 255 year: 2002 end-page: 293 ident: bb0160 article-title: Particle size analysis publication-title: Methods of Soil Analysis. Part 4, Physical Methods – start-page: 423 year: 2005 ident: bb0455 article-title: The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey – volume: 8 start-page: 1369 year: 2018 ident: bb0025 article-title: Spatial modelling of gully erosion using GIS and R programing: a comparison among three data mining algorithms publication-title: Appl. Sci. – volume: 63 start-page: 167 year: 2005 end-page: 184 ident: bb0090 article-title: Spatial and temporal assessment of linear erosion in catchments under sloping lands of northern Laos publication-title: Catena – volume: 221 start-page: 1119 year: 2010 end-page: 1130 ident: bb0010 article-title: Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests publication-title: Ecol. Model. – volume: 69 start-page: 749 year: 2013 end-page: 777 ident: bb0360 article-title: Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances publication-title: Nat. Hazards – year: 2018 ident: bb0030 article-title: The role of vegetation on gully erosion stabilization at a severely degraded landscape a case study from Calhoun Experimental Critical Zone Observatory publication-title: Geomorphology – volume: 5 start-page: 3 year: 1991 end-page: 30 ident: bb0305 article-title: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications publication-title: Hydrol. Proced. – volume: 220 start-page: 3630 year: 2009 end-page: 3637 ident: bb0175 article-title: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies publication-title: Ecol. Model. – volume: 110 start-page: 1014 year: 2005 end-page: 1029 ident: bb0200 article-title: Implication of bank failures and fluvial erosion for gully development: field observation and modeling publication-title: J. Geophys. Res. – start-page: 108 year: 2016 ident: bb0210 article-title: Package ‘kernlab’ – start-page: 144 year: 1992 end-page: 152 ident: bb0040 article-title: A training algorithm for optimal margin classifiers, 1992 publication-title: Proceedings of the Fifth Annual Workshop on Computational Learning Theory – volume: 20 start-page: 535 year: 2009 end-page: 550 ident: bb0170 article-title: Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain publication-title: Land Degrad. Dev. – volume: 133 start-page: 221 year: 2015 end-page: 232 ident: bb0195 article-title: Gully morphology, hillslope erosion, and precipitation characteristics in the Appalachian Valley and Ridge province, southeastern USA publication-title: Catena – volume: 298 start-page: 118 year: 2017 end-page: 137 ident: bb0380 article-title: Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion publication-title: Geomorphology – volume: 188 start-page: 315 year: 2007 end-page: 323 ident: bb9000 article-title: Martian gullies in the southern mid-latitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography publication-title: Icarus – start-page: 143 year: 1997 end-page: 151 ident: bb0205 article-title: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization – volume: 6 start-page: 48 year: 2015 ident: bb0180 article-title: Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review publication-title: Front. Microbiol. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0265 article-title: Classification and regression by randomForest publication-title: R News – volume: 32 start-page: 1770 year: 2007 end-page: 1782 ident: bb0045 article-title: Use of terrain variables for mapping gully erosion susceptibility in Lebanon publication-title: Earth Surf. Process. Landf. – volume: 62 start-page: 367 year: 2011 end-page: 376 ident: bb0335 article-title: Application of Dempster-Shafer theory of evidence to GIS-based land slide susceptibility analysis publication-title: Environ. Earth Sci. – volume: 5(1) start-page: 21 year: 2015 end-page: 29 ident: bb0400 article-title: Low-land gully formation in the Amhara publication-title: Comparison of Kriging and Inverse Distance Weighted (IDW) Interpolation Methods in Lineament Extraction and Analysis – volume: 125 start-page: 530 year: 2011 end-page: 540 ident: bb0285 article-title: A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy publication-title: Geomorphology – volume: 34 start-page: 1 year: 2013 end-page: 26 ident: bb0325 article-title: Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach publication-title: Int. J. Remote Sens. – year: 1995 ident: bb0440 article-title: The Nature of Statistical Learning Theory – volume: 29 start-page: 4035 year: 2018 end-page: 4049 ident: bb0020 article-title: Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm publication-title: Land Degrad. Dev. – volume: 22 start-page: 117 year: 2002 end-page: 132 ident: bb0065 article-title: Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines publication-title: Ore Geol. Rev. – volume: 30 start-page: 662 year: 2015 end-page: 685 ident: bb0350 article-title: Assessment of a data driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran publication-title: Geocarto Int. – year: 1976 ident: bb0420 article-title: A Mathematical Theory of Evidence – volume: 50 start-page: 91 year: 2003 end-page: 133 ident: bb0345 article-title: Gully erosion and environmental change: importance and research needs publication-title: Catena – volume: 111 start-page: 48 year: 2009 end-page: 60 ident: bb0290 article-title: The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system publication-title: Geomorphology – volume: 67 start-page: 23 year: 2012 end-page: 37 ident: bb0245 article-title: Ensemble based landslide susceptibility maps in Jinbu area, Korea publication-title: Environ. Earth Sci. – volume: 148 start-page: 195 year: 2017 end-page: 203 ident: bb0260 article-title: A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area publication-title: Catena – volume: 49 start-page: 435 year: 2000 end-page: 445 ident: bb0425 article-title: Sources of shared variability among body shape characters at marketing age in New Zealand White and Egyptian rabbit breeds publication-title: Ann. Zootech. – volume: 157 start-page: 189 year: 2002 end-page: 207 ident: bb0255 article-title: GRASP: generalized regression analysis and spatial prediction publication-title: Ecol. Model. – volume: 63 start-page: 826 year: 2010 end-page: 833 ident: bb0445 article-title: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression publication-title: J. Clin. Epidemiol. – volume: 114 start-page: 21 year: 2014 end-page: 36 ident: bb0015 article-title: A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping publication-title: Catena – volume: 88 start-page: 2783 year: 2007 end-page: 2792 ident: bb0120 article-title: Random forest for classification in ecology publication-title: Ecology – volume: vol. 10 year: 1995 ident: bb0140 article-title: USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation – volume: 37 start-page: 393 year: 1999 end-page: 399 ident: bb0450 article-title: Method to predict cropland ephemeral gully erosion publication-title: Catena – volume: 22 start-page: 1365 year: 2003 end-page: 1381 ident: bb0150 article-title: Multiple additive regression trees with application in epidemiology publication-title: Stat. Med. – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: bb0145 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 609 start-page: 764 year: 2017 end-page: 775 ident: bb0355 article-title: Applying different new ensemble data mining techniques for Gully erosion mapping with Geographical Information Systems publication-title: Sci. Total Environ. – volume: 340 start-page: 7 year: 2011 end-page: 24 ident: bb9005 article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem publication-title: Plant Soil – start-page: 199 year: 1982 end-page: 224 ident: bb9010 article-title: Soil pH and Lime Requirement publication-title: Methods of Soil Analysis. Part 2 – volume: 32 start-page: 2179 year: 2018 end-page: 2198 ident: bb0275 article-title: Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster publication-title: Stoch. Env. Res. Risk A. – start-page: 221 year: 1993 end-page: 239 ident: bb0340 article-title: Gully typology and gully control measures in the European loess belt publication-title: Farm Land Erosion in Temperate Plains Environment and Hills – volume: 79 start-page: 1621 year: 2015 end-page: 1648 ident: bb0270 article-title: Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy) publication-title: Nat. Hazards – volume: 204 start-page: 399 year: 2014 end-page: 411 ident: bb0110 article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy) publication-title: Geomorphology – year: 1980 ident: bb0215 article-title: CREAMS: a field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems [USA] publication-title: Conservation Research Report (USA) – year: 2016 ident: bb0320 article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran publication-title: Environ. Monit. Assess. – volume: 18 start-page: 1995 year: 2014 end-page: 2006 ident: bb9015 article-title: Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharloo Basin in Iran publication-title: Hydrol. Earth Syst. Sci. – year: 2009 ident: bb0310 article-title: Soil Erosion and Conservation – year: 2011 ident: bb0075 article-title: An Analysis of Boosted Regression Trees to Predict the Strength Properties of Wood Composites – volume: 41 start-page: 673 year: 2007 end-page: 690 ident: bb0330 article-title: A caution regarding rules of thumb for variance inflation factors publication-title: Qual. Quant. – volume: 35 start-page: 162 year: 2010 end-page: 171 ident: bb0035 article-title: Landslide susceptibility assessment of the Kralovany-Liptovsky Mikulas railway case study publication-title: Phys. Chem. Earth – volume: 7 start-page: 1857 year: 2014 end-page: 1878 ident: bb0365 article-title: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran) publication-title: Arab. J. Geosci. – volume: 21 start-page: 493 year: 2010 end-page: 509 ident: bb0225 article-title: Incorporating uncertainty in gully erosion calculations using the random forests modelling approach publication-title: Environmetrics – volume: 38 start-page: 325 year: 1967 end-page: 339 ident: bb0125 article-title: Upper and lower probabilities induced by a multivalued mapping publication-title: Ann. Math. Stat. – volume: 67 start-page: 145 year: 2014 end-page: 152 ident: bb0130 article-title: Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District–Zimbabwe publication-title: Phys. Chem. Earth – volume: 615 start-page: 438 year: 2018 end-page: 451 ident: bb0385 article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms publication-title: Sci. Total Environ. – volume: 56 start-page: 881 year: 2010 ident: 10.1016/j.geoderma.2018.12.042_bb0105 article-title: Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy) publication-title: Nat. Hazards doi: 10.1007/s11069-010-9598-2 – volume: 186 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2018.12.042_bb0080 article-title: Impact of terrain attributes, parent material and soil types on gully erosion publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.10.031 – volume: 259 start-page: 105 year: 2016 ident: 10.1016/j.geoderma.2018.12.042_bb0190 article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.02.012 – year: 2018 ident: 10.1016/j.geoderma.2018.12.042_bb0030 article-title: The role of vegetation on gully erosion stabilization at a severely degraded landscape a case study from Calhoun Experimental Critical Zone Observatory publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.12.032 – start-page: 423 year: 2005 ident: 10.1016/j.geoderma.2018.12.042_bb0455 – volume: 5(1) start-page: 21 year: 2015 ident: 10.1016/j.geoderma.2018.12.042_bb0400 article-title: Low-land gully formation in the Amhara – year: 2001 ident: 10.1016/j.geoderma.2018.12.042_bb0060 – volume: 63 start-page: 167 issue: 2–3 year: 2005 ident: 10.1016/j.geoderma.2018.12.042_bb0090 article-title: Spatial and temporal assessment of linear erosion in catchments under sloping lands of northern Laos publication-title: Catena doi: 10.1016/j.catena.2005.06.003 – volume: 50 start-page: 401 year: 2003 ident: 10.1016/j.geoderma.2018.12.042_bb0315 article-title: Threshold conditions for initiation of valley-side gullies in the Middle West of Switzerland publication-title: Catena doi: 10.1016/S0341-8162(02)00129-7 – volume: 5 start-page: 255 year: 2002 ident: 10.1016/j.geoderma.2018.12.042_bb0160 article-title: Particle size analysis – volume: 67 start-page: 23 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2018.12.042_bb0245 article-title: Ensemble based landslide susceptibility maps in Jinbu area, Korea publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1477-y – volume: 29 start-page: 1189 year: 2001 ident: 10.1016/j.geoderma.2018.12.042_bb0145 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 41 start-page: 673 issue: 5 year: 2007 ident: 10.1016/j.geoderma.2018.12.042_bb0330 article-title: A caution regarding rules of thumb for variance inflation factors publication-title: Qual. Quant. doi: 10.1007/s11135-006-9018-6 – volume: 52 start-page: 225 issue: 2 year: 2008 ident: 10.1016/j.geoderma.2018.12.042_bb0005 article-title: Gully erosion in South Eastern Tanzania: spatial distribution and topographic thresholds publication-title: Z. Geomorphol. doi: 10.1127/0372-8854/2008/0052-0225 – volume: 305 start-page: 314 year: 2017 ident: 10.1016/j.geoderma.2018.12.042_bb0095 article-title: Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques publication-title: Geoderma doi: 10.1016/j.geoderma.2017.06.020 – volume: 220 start-page: 3630 issue: 24 year: 2009 ident: 10.1016/j.geoderma.2018.12.042_bb0175 article-title: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.06.020 – volume: 133 start-page: 221 year: 2015 ident: 10.1016/j.geoderma.2018.12.042_bb0195 article-title: Gully morphology, hillslope erosion, and precipitation characteristics in the Appalachian Valley and Ridge province, southeastern USA publication-title: Catena doi: 10.1016/j.catena.2015.05.015 – start-page: 108 year: 2016 ident: 10.1016/j.geoderma.2018.12.042_bb0210 – volume: 79 start-page: 1621 issue: 3 year: 2015 ident: 10.1016/j.geoderma.2018.12.042_bb0270 article-title: Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy) publication-title: Nat. Hazards doi: 10.1007/s11069-015-1915-3 – volume: 123 start-page: 225 issue: 3 year: 2011 ident: 10.1016/j.geoderma.2018.12.042_bb0280 article-title: Landslide susceptibility assessment using SVM machine learning algorithm publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2011.09.006 – volume: 29 start-page: 724 issue: 3 year: 2018 ident: 10.1016/j.geoderma.2018.12.042_bb0115 article-title: Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2772 – year: 2009 ident: 10.1016/j.geoderma.2018.12.042_bb0185 – start-page: 199 year: 1982 ident: 10.1016/j.geoderma.2018.12.042_bb9010 article-title: Soil pH and Lime Requirement – volume: 132 start-page: 273 year: 2006 ident: 10.1016/j.geoderma.2018.12.042_bb0055 article-title: Global soil characterization with VNIR diffuses reflectance spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2005.04.025 – volume: 67 start-page: 145 year: 2014 ident: 10.1016/j.geoderma.2018.12.042_bb0130 article-title: Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District–Zimbabwe publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2014.02.002 – volume: 22 start-page: 117 year: 2002 ident: 10.1016/j.geoderma.2018.12.042_bb0065 article-title: Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines publication-title: Ore Geol. Rev. doi: 10.1016/S0169-1368(02)00111-7 – volume: 21 start-page: 493 issue: 5 year: 2010 ident: 10.1016/j.geoderma.2018.12.042_bb0225 article-title: Incorporating uncertainty in gully erosion calculations using the random forests modelling approach publication-title: Environmetrics doi: 10.1002/env.999 – volume: 8 start-page: 1369 issue: 8 year: 2018 ident: 10.1016/j.geoderma.2018.12.042_bb0025 article-title: Spatial modelling of gully erosion using GIS and R programing: a comparison among three data mining algorithms publication-title: Appl. Sci. doi: 10.3390/app8081369 – volume: 161 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2018.12.042_bb0460 article-title: Spatial modelling of gully erosion in Mazandaran Province, northern Iran publication-title: Catena doi: 10.1016/j.catena.2017.10.010 – volume: 62 start-page: 367 year: 2011 ident: 10.1016/j.geoderma.2018.12.042_bb0335 article-title: Application of Dempster-Shafer theory of evidence to GIS-based land slide susceptibility analysis publication-title: Environ. Earth Sci. doi: 10.1007/s12665-010-0531-5 – volume: 18 start-page: 1995 year: 2014 ident: 10.1016/j.geoderma.2018.12.042_bb9015 article-title: Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharloo Basin in Iran publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-1995-2014 – year: 1995 ident: 10.1016/j.geoderma.2018.12.042_bb0440 – start-page: 144 year: 1992 ident: 10.1016/j.geoderma.2018.12.042_bb0040 article-title: A training algorithm for optimal margin classifiers, 1992 – volume: vol. 10 year: 1995 ident: 10.1016/j.geoderma.2018.12.042_bb0140 – volume: 114 start-page: 21 year: 2014 ident: 10.1016/j.geoderma.2018.12.042_bb0015 article-title: A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2013.10.011 – volume: 38 start-page: 325 year: 1967 ident: 10.1016/j.geoderma.2018.12.042_bb0125 article-title: Upper and lower probabilities induced by a multivalued mapping publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177698950 – volume: 125 start-page: 530 issue: 4 year: 2011 ident: 10.1016/j.geoderma.2018.12.042_bb0285 article-title: A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.10.022 – volume: 35 start-page: 162 issue: 3–5 year: 2010 ident: 10.1016/j.geoderma.2018.12.042_bb0035 article-title: Landslide susceptibility assessment of the Kralovany-Liptovsky Mikulas railway case study publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2009.12.002 – year: 1976 ident: 10.1016/j.geoderma.2018.12.042_bb0420 – volume: 609 start-page: 764 year: 2017 ident: 10.1016/j.geoderma.2018.12.042_bb0355 article-title: Applying different new ensemble data mining techniques for Gully erosion mapping with Geographical Information Systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.07.198 – volume: 32 start-page: 1770 issue: 12 year: 2007 ident: 10.1016/j.geoderma.2018.12.042_bb0045 article-title: Use of terrain variables for mapping gully erosion susceptibility in Lebanon publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.1501 – year: 1980 ident: 10.1016/j.geoderma.2018.12.042_bb0215 article-title: CREAMS: a field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems [USA] – volume: 34 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2018.12.042_bb0325 article-title: Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.700133 – volume: 69 start-page: 749 year: 2013 ident: 10.1016/j.geoderma.2018.12.042_bb0360 article-title: Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances publication-title: Nat. Hazards doi: 10.1007/s11069-013-0728-5 – volume: 119 start-page: 983 year: 2014 ident: 10.1016/j.geoderma.2018.12.042_bb0390 article-title: Analysis and modeling of gully head-cut dynamics, North American high plains publication-title: J. Geophys. Res. Earth doi: 10.1002/2013JF002962 – volume: 20 start-page: 1511 year: 2012 ident: 10.1016/j.geoderma.2018.12.042_bb0250 article-title: Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model publication-title: Hydrogeol. J. doi: 10.1007/s10040-012-0894-7 – volume: 148 start-page: 195 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2018.12.042_bb0260 article-title: A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area publication-title: Catena doi: 10.1016/j.catena.2016.04.018 – volume: 49 start-page: 435 year: 2000 ident: 10.1016/j.geoderma.2018.12.042_bb0425 article-title: Sources of shared variability among body shape characters at marketing age in New Zealand White and Egyptian rabbit breeds publication-title: Ann. Zootech. doi: 10.1051/animres:2000134 – year: 1998 ident: 10.1016/j.geoderma.2018.12.042_bb0435 article-title: Critical slope gradient for compulsory abandonment of USDA-SCS. Procedure for determining rates of land damage, land depreciation, and volume of sediment produced by gully erosion – start-page: 221 year: 1993 ident: 10.1016/j.geoderma.2018.12.042_bb0340 article-title: Gully typology and gully control measures in the European loess belt – year: 2000 ident: 10.1016/j.geoderma.2018.12.042_bb0165 – volume: 5 start-page: 3 issue: 1 year: 1991 ident: 10.1016/j.geoderma.2018.12.042_bb0305 article-title: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications publication-title: Hydrol. Proced. doi: 10.1002/hyp.3360050103 – volume: 36 start-page: 1 issue: 11 year: 2010 ident: 10.1016/j.geoderma.2018.12.042_bb0235 article-title: Feature selection with the Boruta package publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i11 – volume: 14 start-page: 47 year: 2005 ident: 10.1016/j.geoderma.2018.12.042_bb0070 article-title: Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia publication-title: Nat. Resour. Res. doi: 10.1007/s11053-005-4678-9 – volume: 45 start-page: 5 issue: l year: 2001 ident: 10.1016/j.geoderma.2018.12.042_bb0050 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 51 start-page: 350 year: 2013 ident: 10.1016/j.geoderma.2018.12.042_bb0370 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.023 – volume: 9 start-page: 3533 year: 2016 ident: 10.1016/j.geoderma.2018.12.042_bb0405 article-title: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-3533-2016 – volume: 32 start-page: 2179 issue: 7 year: 2018 ident: 10.1016/j.geoderma.2018.12.042_bb0275 article-title: Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-018-1518-0 – start-page: 167 year: 1982 ident: 10.1016/j.geoderma.2018.12.042_bb0395 – volume: 77 start-page: 802 year: 2008 ident: 10.1016/j.geoderma.2018.12.042_bb0135 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – volume: 111 start-page: 48 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2018.12.042_bb0290 article-title: The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.05.047 – volume: 29 start-page: 4035 issue: 11 year: 2018 ident: 10.1016/j.geoderma.2018.12.042_bb0020 article-title: Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3151 – volume: 82 start-page: 1231 issue: 2 year: 2016 ident: 10.1016/j.geoderma.2018.12.042_bb0375 article-title: Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison publication-title: Nat. Hazards doi: 10.1007/s11069-016-2239-7 – volume: 114 start-page: 129 year: 2010 ident: 10.1016/j.geoderma.2018.12.042_bb0410 article-title: Optimal landslide susceptibility zonation based on multiple forecasts publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.06.020 – year: 2016 ident: 10.1016/j.geoderma.2018.12.042_bb0320 article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-5049-6 – year: 2011 ident: 10.1016/j.geoderma.2018.12.042_bb0075 – volume: 221 start-page: 1119 issue: 8 year: 2010 ident: 10.1016/j.geoderma.2018.12.042_bb0010 article-title: Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2010.01.007 – volume: 330 start-page: 65 year: 2018 ident: 10.1016/j.geoderma.2018.12.042_bb0155 article-title: Comparison of the different resolution and source of controlling factors for gully erosion susceptibility mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.027 – volume: 7 start-page: 1857 year: 2014 ident: 10.1016/j.geoderma.2018.12.042_bb0365 article-title: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran) publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0825-x – volume: 188 start-page: 315 year: 2007 ident: 10.1016/j.geoderma.2018.12.042_bb9000 article-title: Martian gullies in the southern mid-latitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography publication-title: Icarus doi: 10.1016/j.icarus.2006.11.020 – volume: 2 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2018.12.042_bb0230 article-title: Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India publication-title: Modell. Earth Syst. Environ. – volume: 37 start-page: 393 issue: 3–4 year: 1999 ident: 10.1016/j.geoderma.2018.12.042_bb0450 article-title: Method to predict cropland ephemeral gully erosion publication-title: Catena doi: 10.1016/S0341-8162(99)00028-4 – volume: 22 start-page: 1350 year: 1986 ident: 10.1016/j.geoderma.2018.12.042_bb0300 article-title: Sediment transport capacity of sheet and rill flow: application of unit stream power theory publication-title: Water Resour. Res. doi: 10.1029/WR022i008p01350 – volume: 101 start-page: 271 issue: 4 year: 2010 ident: 10.1016/j.geoderma.2018.12.042_bb0240 article-title: Boruta–a system for feature selection publication-title: Fundam. Inform. doi: 10.3233/FI-2010-288 – volume: 204 start-page: 399 year: 2014 ident: 10.1016/j.geoderma.2018.12.042_bb0110 article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.021 – volume: 88 start-page: 2783 year: 2007 ident: 10.1016/j.geoderma.2018.12.042_bb0120 article-title: Random forest for classification in ecology publication-title: Ecology doi: 10.1890/07-0539.1 – year: 2009 ident: 10.1016/j.geoderma.2018.12.042_bb0310 – volume: 1 start-page: 324 issue: 4 year: 2004 ident: 10.1016/j.geoderma.2018.12.042_bb0220 article-title: Combining bagging and boosting publication-title: Int. J. Comput. Intell. – volume: 50 start-page: 91 issue: 2–4 year: 2003 ident: 10.1016/j.geoderma.2018.12.042_bb0345 article-title: Gully erosion and environmental change: importance and research needs publication-title: Catena doi: 10.1016/S0341-8162(02)00143-1 – volume: 63 start-page: 826 year: 2010 ident: 10.1016/j.geoderma.2018.12.042_bb0445 article-title: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression publication-title: J. Clin. Epidemiol. doi: 10.1016/j.jclinepi.2009.11.020 – volume: 615 start-page: 438 year: 2018 ident: 10.1016/j.geoderma.2018.12.042_bb0385 article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.262 – volume: 38 start-page: 8208 year: 2011 ident: 10.1016/j.geoderma.2018.12.042_bb0415 article-title: Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.167 – volume: 110 start-page: 1014 year: 2005 ident: 10.1016/j.geoderma.2018.12.042_bb0200 article-title: Implication of bank failures and fluvial erosion for gully development: field observation and modeling publication-title: J. Geophys. Res. doi: 10.1029/2004JF000145 – volume: 20 start-page: 535 issue: 5 year: 2009 ident: 10.1016/j.geoderma.2018.12.042_bb0170 article-title: Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain publication-title: Land Degrad. Dev. doi: 10.1002/ldr.931 – volume: 30 start-page: 662 issue: 6 year: 2015 ident: 10.1016/j.geoderma.2018.12.042_bb0350 article-title: Assessment of a data driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran publication-title: Geocarto Int. doi: 10.1080/10106049.2014.966161 – volume: 157 start-page: 189 year: 2002 ident: 10.1016/j.geoderma.2018.12.042_bb0255 article-title: GRASP: generalized regression analysis and spatial prediction publication-title: Ecol. Model. doi: 10.1016/S0304-3800(02)00195-3 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.geoderma.2018.12.042_bb0265 article-title: Classification and regression by randomForest publication-title: R News – volume: 63 start-page: 318 issue: 2–3 year: 2005 ident: 10.1016/j.geoderma.2018.12.042_bb0085 article-title: Dynamic modelling for linear erosion initiation and development under climate and land-use changes in northern Laos publication-title: Catena doi: 10.1016/j.catena.2005.06.008 – volume: 298 start-page: 118 year: 2017 ident: 10.1016/j.geoderma.2018.12.042_bb0380 article-title: Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.09.006 – volume: 30 start-page: 1925 year: 2002 ident: 10.1016/j.geoderma.2018.12.042_bb0430 article-title: Fundamental quantitative methods of slope instability publication-title: Water Resour. Res. – volume: 22 start-page: 1365 issue: 9 year: 2003 ident: 10.1016/j.geoderma.2018.12.042_bb0150 article-title: Multiple additive regression trees with application in epidemiology publication-title: Stat. Med. doi: 10.1002/sim.1501 – volume: 6 start-page: 48 year: 2015 ident: 10.1016/j.geoderma.2018.12.042_bb0180 article-title: Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review publication-title: Front. Microbiol. – start-page: 143 year: 1997 ident: 10.1016/j.geoderma.2018.12.042_bb0205 article-title: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization – volume: 340 start-page: 7 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2018.12.042_bb9005 article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem publication-title: Plant Soil doi: 10.1007/s11104-010-0425-z |
SSID | ssj0017020 |
Score | 2.6189613 |
Snippet | The Maharloo watershed has witnessed many gullies in the recent due to the specific topo-climatic conditions and man-made activities in that area. The present... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 55 |
SubjectTerms | algorithms artificial intelligence Boruta algorithm clay computer software data collection drainage Evidential belief function geographic information systems Gully erosion Integrating GIS and R Iran land use Machine learning normalized difference vegetation index prediction rain ravines rivers roads sand silt soil properties surveys watershed management watersheds |
Title | Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.12.042 https://www.proquest.com/docview/2220844810 |
Volume | 340 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqcoED4lcUaGUkrmHjxHbs47ZqtYDoiUq9WXYyCam6SbWbPXDpy_RFmck6W0BCPXCM40kcz3jmm3g8w9hHVemQhUokXkOdSF96XHMQklrpOiMbXgE5it_O9eJCfrlUl3vsZDoLQ2GVUfdvdfqorWPLLM7m7KZt6Yyv0AWaIxRKxPQ5pd2WsiAp_3S7C_MQRRpTMwqdUO_fTglfIY-o4NiYf0iY8begzP5loP5S1aP9OXvGnkbgyOfbsT1ne9C9YE_mzSomz4CX7G6-S7PJ-5ojtOPtcsTX-FXU0qC_-ZMDvhe5wbehHKjteCy6wykIvuHH_WozeO6vm37VDj-W3HcVb4c1X1P0NY5hrJ5DPenG0lOGhybSDigagG0UoQk8lqRo7p-1fsUuzk6_nyySWIQh8bk2QwKy8rkCW8uqULLMLDptCpCJ6FoGZUprq4Coy-tS-JBajwjUS20EVDrXYEP-mu13fQdvGA-oT6yxWSprKW0KpigQ7xhtSjpBDOKAqWnmXRkzlFOhjGs3haJduYljjjjmROaQYwdstqO72eboeJDCTox1f0ibQ0PyIO2HSRIcLkXaX_Ed9Ju1Q6iVGnR3Rfr2P57_jj3Gq3HHSqj3bH9YbeAQgc8QjkbJPmKP5p-_Ls5_AXU6Bxc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFOU8jASHMPGie3YBw7Lo9rSx6mVejN2Mgmpukm1yarqhT_DT-APMs46y0NCPaBenYxjzYxnvonHM4S8FoV0iStYZCWUEbe5xT0HLiqFLBPvwwvwgeLBoZwd888n4mSD_Bjvwvi0ymD7VzZ9sNZhZBK4OTmva3_Hl8kM3REqJWL6VIbMyj24vMC4rXu3-xGF_CZJdj4dfZhFobVAZFOp-gh4YVMBuuRFJnieaAxFBODSMGByQuVaFw6xhJU5sy7WFnGV5VIxKGQqQbsU571BbnI0F75twttv67wSlsWhFiSTkV_eb9eST1EpfIezoeARU8N_SJ78yyP-5RsGh7dzj9wNSJVOV8y4TzageUDuTKtFqNYBD8n36bquJ21LiliS1vMB0CMb_UiFAe4lBfwuip-uckfQvNLQ5Yf6rPuKvm8Xy95Se1a1i7r_Oqe2KWjdd7Tz6d64hqFdj3_TP5hbX1KiCrQ96iLgmE8JBRp6YFS_5uoekeNrEc1jstm0DTwh1KEB00onMS851zGoLEOApaTK_ZVlYFtEjJw3eSiJ7jtznJkx9-3UjBIzXmKGJQYltkUma7rzVVGQKyn0KFjzh3ob9FxX0r4aNcHg3vcHOraBdtkZxHaxwviaxU__Y_6X5Nbs6GDf7O8e7m2T2_hkOC5j4hnZ7BdLeI6oq3cvBi2n5Mt1b6ufu29ByQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+importance+of+gully+erosion+effective+factors+using+Boruta+algorithm+and+its+spatial+modeling+and+mapping+using+three+machine+learning+algorithms&rft.jtitle=Geoderma&rft.au=Amiri%2C+Mahdis&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Ghanbarian%2C+Gholam+Abbas&rft.au=Afzali%2C+Sayed+Fakhreddin&rft.date=2019-04-15&rft.issn=0016-7061&rft.volume=340+p.55-69&rft.spage=55&rft.epage=69&rft_id=info:doi/10.1016%2Fj.geoderma.2018.12.042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |