Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms

The Maharloo watershed has witnessed many gullies in the recent due to the specific topo-climatic conditions and man-made activities in that area. The present study is set out to address this issue by producing gully erosion prediction maps via three machine learning algorithms including RF, SVM and...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 340; pp. 55 - 69
Main Authors Amiri, Mahdis, Pourghasemi, Hamid Reza, Ghanbarian, Gholam Abbas, Afzali, Sayed Fakhreddin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Maharloo watershed has witnessed many gullies in the recent due to the specific topo-climatic conditions and man-made activities in that area. The present study is set out to address this issue by producing gully erosion prediction maps via three machine learning algorithms including RF, SVM and BRT in Maharloo watershed, Fars province, Iran. Also, this research attempted to consider the importance of effective factors in the occurrence of gully erosion using Boruta algorithm. To this end, gully erosion locations were identified by extensive field surveys as well as the use of already prepared gully raster map of Maharloo watershed. Then, sixteen causative factors of gully erosion such as elevation, slope degree, slope aspect, plan curvature, TWI, distance from rivers, distance from roads, drainage density, lithology, annual mean rainfall, NDVI, land use and some soil characteristics (pH, clay percent, electrical conductivity-EC, and silt percent) were identified and their maps were produced and classified in the GIS. In this study, the relationships among each agent and gully erosion were defined employing the evidential belief function (EBF) algorithm and the weight of each factor's classes was determined. On the other hand, the results of the collinearity test among the factors showed that sand percentage agent had a VIF > 5; therefore, this covariate was removed from the model. Also, the results of the importance of effective factors using Boruta algorithm indicated that three factors including land use, distance from river, and clay percent had the most noticeable importance in the occurrence of gully erosion in the study area. Finally, the gully erosion susceptibility maps were produced using the RF, BRT, and SVM models in the R statistical software. The results of machine learning techniques were evaluated employing 30% of unused locations in the modeling process as well as the receiver operating characteristic (ROC) curve. Also, in the current research, try to assess the fitting performance of models and their robustness using sensitivity rate, specificity rate, Cohen's Kappa, and 4-fold cross-validation measures. Results showed that the final gully erosion susceptibility maps had an excellent accuracy with AUC values of validation data sets by scenarios 7 and 9 independent factors on gully erosion, respectively (SVM = 0.957, 0.975, RF = 0.991, 0.986, BRT = 0.913, 0.913). The fitting performance measures and robustness technique (4-fold cross-validation) also confirmed the achieved validation results. In order to control and prevent this type of erosion in the Maharloo watershed, there should be protective actions and watershed management measures in place at the primary stages, especially at the beginning of the gully erosion, to control the development of the gully erosion. •Introducing Boruta algorithm in order to consider importance of effective factors in environmental and earth sciences•Modeling gully erosion susceptibility using machine learning techniques•Investigation of spatial relationship between effective factors and gully erosion using EBF model
AbstractList The Maharloo watershed has witnessed many gullies in the recent due to the specific topo-climatic conditions and man-made activities in that area. The present study is set out to address this issue by producing gully erosion prediction maps via three machine learning algorithms including RF, SVM and BRT in Maharloo watershed, Fars province, Iran. Also, this research attempted to consider the importance of effective factors in the occurrence of gully erosion using Boruta algorithm. To this end, gully erosion locations were identified by extensive field surveys as well as the use of already prepared gully raster map of Maharloo watershed. Then, sixteen causative factors of gully erosion such as elevation, slope degree, slope aspect, plan curvature, TWI, distance from rivers, distance from roads, drainage density, lithology, annual mean rainfall, NDVI, land use and some soil characteristics (pH, clay percent, electrical conductivity-EC, and silt percent) were identified and their maps were produced and classified in the GIS. In this study, the relationships among each agent and gully erosion were defined employing the evidential belief function (EBF) algorithm and the weight of each factor's classes was determined. On the other hand, the results of the collinearity test among the factors showed that sand percentage agent had a VIF > 5; therefore, this covariate was removed from the model. Also, the results of the importance of effective factors using Boruta algorithm indicated that three factors including land use, distance from river, and clay percent had the most noticeable importance in the occurrence of gully erosion in the study area. Finally, the gully erosion susceptibility maps were produced using the RF, BRT, and SVM models in the R statistical software. The results of machine learning techniques were evaluated employing 30% of unused locations in the modeling process as well as the receiver operating characteristic (ROC) curve. Also, in the current research, try to assess the fitting performance of models and their robustness using sensitivity rate, specificity rate, Cohen's Kappa, and 4-fold cross-validation measures. Results showed that the final gully erosion susceptibility maps had an excellent accuracy with AUC values of validation data sets by scenarios 7 and 9 independent factors on gully erosion, respectively (SVM = 0.957, 0.975, RF = 0.991, 0.986, BRT = 0.913, 0.913). The fitting performance measures and robustness technique (4-fold cross-validation) also confirmed the achieved validation results. In order to control and prevent this type of erosion in the Maharloo watershed, there should be protective actions and watershed management measures in place at the primary stages, especially at the beginning of the gully erosion, to control the development of the gully erosion.
The Maharloo watershed has witnessed many gullies in the recent due to the specific topo-climatic conditions and man-made activities in that area. The present study is set out to address this issue by producing gully erosion prediction maps via three machine learning algorithms including RF, SVM and BRT in Maharloo watershed, Fars province, Iran. Also, this research attempted to consider the importance of effective factors in the occurrence of gully erosion using Boruta algorithm. To this end, gully erosion locations were identified by extensive field surveys as well as the use of already prepared gully raster map of Maharloo watershed. Then, sixteen causative factors of gully erosion such as elevation, slope degree, slope aspect, plan curvature, TWI, distance from rivers, distance from roads, drainage density, lithology, annual mean rainfall, NDVI, land use and some soil characteristics (pH, clay percent, electrical conductivity-EC, and silt percent) were identified and their maps were produced and classified in the GIS. In this study, the relationships among each agent and gully erosion were defined employing the evidential belief function (EBF) algorithm and the weight of each factor's classes was determined. On the other hand, the results of the collinearity test among the factors showed that sand percentage agent had a VIF > 5; therefore, this covariate was removed from the model. Also, the results of the importance of effective factors using Boruta algorithm indicated that three factors including land use, distance from river, and clay percent had the most noticeable importance in the occurrence of gully erosion in the study area. Finally, the gully erosion susceptibility maps were produced using the RF, BRT, and SVM models in the R statistical software. The results of machine learning techniques were evaluated employing 30% of unused locations in the modeling process as well as the receiver operating characteristic (ROC) curve. Also, in the current research, try to assess the fitting performance of models and their robustness using sensitivity rate, specificity rate, Cohen's Kappa, and 4-fold cross-validation measures. Results showed that the final gully erosion susceptibility maps had an excellent accuracy with AUC values of validation data sets by scenarios 7 and 9 independent factors on gully erosion, respectively (SVM = 0.957, 0.975, RF = 0.991, 0.986, BRT = 0.913, 0.913). The fitting performance measures and robustness technique (4-fold cross-validation) also confirmed the achieved validation results. In order to control and prevent this type of erosion in the Maharloo watershed, there should be protective actions and watershed management measures in place at the primary stages, especially at the beginning of the gully erosion, to control the development of the gully erosion. •Introducing Boruta algorithm in order to consider importance of effective factors in environmental and earth sciences•Modeling gully erosion susceptibility using machine learning techniques•Investigation of spatial relationship between effective factors and gully erosion using EBF model
Author Pourghasemi, Hamid Reza
Amiri, Mahdis
Ghanbarian, Gholam Abbas
Afzali, Sayed Fakhreddin
Author_xml – sequence: 1
  givenname: Mahdis
  surname: Amiri
  fullname: Amiri, Mahdis
– sequence: 2
  givenname: Hamid Reza
  orcidid: 0000-0003-2328-2998
  surname: Pourghasemi
  fullname: Pourghasemi, Hamid Reza
  email: hr.pourghasemi@shirazu.ac.ir
– sequence: 3
  givenname: Gholam Abbas
  orcidid: 0000-0002-0428-9601
  surname: Ghanbarian
  fullname: Ghanbarian, Gholam Abbas
– sequence: 4
  givenname: Sayed Fakhreddin
  surname: Afzali
  fullname: Afzali, Sayed Fakhreddin
BookMark eNqFkcFu3CAURVGVSJ0k_YWKZTd2AdsMlrpoGqVNpUjdpGv0Bj_PMMLgAo6U78mPFmeaTTdZAY97r57uuSBnPngk5CNnNWdcfj7WewwDxglqwbiquahZK96RDVdbUUnR9Wdkw4qy2jLJ35OLlI7luWWCbcjzdUqY0oQ-0zDSfEBqpznEDN7gOtkvzj1RjCHZ4CmOI5psH5GOYHKIiS7J-j39FuKSgYLbh2jzYaLgB2pzommGbMHRqWzoVuX6McE8r_eTNx8iYpmZg_VIHUL0L8LXrHRFzkdwCT_8Oy_J7--3Dzd31f2vHz9vru8raKTKFbYDNB32Yztsu9aIngnZIReNEt2uU6bvh13XcZCGw471wBSDViqOg2wk9rvmknw65c4x_FkwZT3ZZNA58BiWpIUQTLWt4qxI5UlqSjEp4qjnaCeIT5ozvVLRR_1KRa9UNBe6UCnGL_8Zjc2louBzBOvetn892bH08Ggx6mQsFlSDjQWMHoJ9K-IvuR-z1Q
CitedBy_id crossref_primary_10_1016_j_geomorph_2023_108949
crossref_primary_10_1109_TIA_2023_3238005
crossref_primary_10_1016_j_still_2020_104857
crossref_primary_10_3390_su16156569
crossref_primary_10_52547_jwmr_12_23_75
crossref_primary_10_1007_s12665_021_09631_5
crossref_primary_10_1007_s10668_022_02890_7
crossref_primary_10_1016_j_iswcr_2022_04_001
crossref_primary_10_1080_10106049_2022_2091042
crossref_primary_10_1038_s41598_022_26526_y
crossref_primary_10_3390_rs15082017
crossref_primary_10_3390_w11061129
crossref_primary_10_1016_j_scitotenv_2024_174949
crossref_primary_10_3390_land12040890
crossref_primary_10_1016_j_scitotenv_2020_139954
crossref_primary_10_1016_j_iswcr_2020_08_004
crossref_primary_10_1038_s41598_020_69233_2
crossref_primary_10_1016_j_geomorph_2021_108027
crossref_primary_10_1080_19475683_2022_2040587
crossref_primary_10_1016_j_gsf_2020_03_005
crossref_primary_10_3799_dqkx_2022_309
crossref_primary_10_1016_j_landusepol_2023_106959
crossref_primary_10_1016_j_scitotenv_2022_153721
crossref_primary_10_1016_j_catena_2020_104769
crossref_primary_10_1177_0309133320979897
crossref_primary_10_1016_j_ecoleng_2025_107600
crossref_primary_10_1016_j_ecolind_2022_109376
crossref_primary_10_1016_j_eiar_2024_107692
crossref_primary_10_1155_2021_6665485
crossref_primary_10_1016_j_gsf_2020_09_006
crossref_primary_10_1007_s12665_021_10033_w
crossref_primary_10_1080_10106049_2021_2022016
crossref_primary_10_1016_j_jclepro_2022_132428
crossref_primary_10_1016_j_foreco_2020_118338
crossref_primary_10_1016_j_geoderma_2021_115379
crossref_primary_10_1038_s41598_025_90823_5
crossref_primary_10_1016_j_catena_2022_106798
crossref_primary_10_5194_soil_9_411_2023
crossref_primary_10_1016_j_jenvman_2020_110525
crossref_primary_10_1016_j_envres_2025_121090
crossref_primary_10_1016_j_geomorph_2022_108159
crossref_primary_10_1016_j_jhydrol_2019_124527
crossref_primary_10_3390_ijgi10100680
crossref_primary_10_1007_s11356_020_10168_6
crossref_primary_10_1016_j_apr_2020_05_009
crossref_primary_10_3390_ijgi9090507
crossref_primary_10_1007_s11356_022_25090_2
crossref_primary_10_1177_03091333241228147
crossref_primary_10_1002_ldr_3397
crossref_primary_10_1007_s12665_019_8658_5
crossref_primary_10_3390_app10062039
crossref_primary_10_1002_ldr_3794
crossref_primary_10_15446_esrj_v25n4_95748
crossref_primary_10_1016_j_scitotenv_2022_158652
crossref_primary_10_1155_2020_8824943
crossref_primary_10_1080_19475683_2025_2473596
crossref_primary_10_3390_su15031939
crossref_primary_10_1016_j_ecoinf_2021_101291
crossref_primary_10_1007_s41748_022_00317_x
crossref_primary_10_1016_j_catena_2023_107756
crossref_primary_10_1016_j_asr_2023_10_051
crossref_primary_10_3390_s20020335
crossref_primary_10_1111_sjtg_12348
crossref_primary_10_3390_land13101583
crossref_primary_10_1016_j_catena_2020_104545
crossref_primary_10_1038_s41598_020_60191_3
crossref_primary_10_2166_hydro_2023_327
crossref_primary_10_1016_j_scitotenv_2019_06_205
crossref_primary_10_3389_fenvs_2023_1207027
crossref_primary_10_1016_j_jhydrol_2020_125241
crossref_primary_10_1186_s12302_025_01079_9
crossref_primary_10_1007_s11069_024_07026_w
crossref_primary_10_1016_j_catena_2024_108590
crossref_primary_10_1002_esp_6059
crossref_primary_10_1016_j_still_2024_106275
crossref_primary_10_1016_j_scitotenv_2021_148738
crossref_primary_10_3390_rs14112580
crossref_primary_10_1007_s10661_025_13806_z
crossref_primary_10_1080_10106049_2021_1892209
crossref_primary_10_1016_j_catena_2023_107364
crossref_primary_10_1016_j_catena_2021_105261
crossref_primary_10_3390_rs12152478
crossref_primary_10_3390_rs16244742
crossref_primary_10_1016_j_iswcr_2023_09_008
crossref_primary_10_1016_j_scitotenv_2021_150648
crossref_primary_10_1007_s12517_022_10566_9
crossref_primary_10_1016_j_iswcr_2025_01_004
crossref_primary_10_1007_s12665_023_10901_7
crossref_primary_10_1016_j_geomorph_2023_108671
crossref_primary_10_1016_j_aej_2021_04_026
crossref_primary_10_1080_17538947_2020_1718785
crossref_primary_10_3390_rs15205033
crossref_primary_10_1002_gj_4932
crossref_primary_10_1080_15324982_2024_2390477
crossref_primary_10_3390_rs15112915
crossref_primary_10_1007_s11356_021_13229_6
crossref_primary_10_1007_s12517_021_08377_5
crossref_primary_10_1088_1755_1315_1064_1_012031
crossref_primary_10_3390_geosciences12120429
crossref_primary_10_1016_j_rsase_2023_100939
crossref_primary_10_1007_s11356_021_17265_0
crossref_primary_10_1016_j_catena_2023_107695
crossref_primary_10_1016_j_geoderma_2022_115869
crossref_primary_10_1007_s11069_019_03785_z
crossref_primary_10_1016_j_compag_2025_109970
crossref_primary_10_1016_j_iswcr_2023_07_006
crossref_primary_10_2478_logi_2024_0008
crossref_primary_10_1002_eco_2339
crossref_primary_10_1080_10106049_2022_2071473
crossref_primary_10_3390_rs12172833
crossref_primary_10_1007_s11442_024_2234_y
crossref_primary_10_1016_j_heliyon_2022_e08916
crossref_primary_10_1016_j_nhres_2024_05_001
crossref_primary_10_1139_cjss_2019_0041
crossref_primary_10_1029_2021RG000761
crossref_primary_10_3390_rs12213620
crossref_primary_10_3390_land9100346
crossref_primary_10_1007_s00168_021_01101_x
crossref_primary_10_1109_JSTARS_2020_3045278
crossref_primary_10_1007_s12665_019_8518_3
crossref_primary_10_1016_j_ecolind_2021_107499
crossref_primary_10_1007_s11069_021_04986_1
crossref_primary_10_3390_land13091456
crossref_primary_10_1007_s10064_020_01915_7
crossref_primary_10_1016_j_geoderma_2023_116383
crossref_primary_10_3390_s20051313
crossref_primary_10_3390_su14105840
crossref_primary_10_1016_j_envres_2020_109321
crossref_primary_10_3389_fenvs_2024_1410741
crossref_primary_10_1007_s10661_023_11197_7
crossref_primary_10_1016_j_aap_2021_106409
crossref_primary_10_1007_s12665_025_12140_4
crossref_primary_10_3390_rs12111890
crossref_primary_10_3390_land13122110
crossref_primary_10_1007_s43217_024_00181_x
crossref_primary_10_1016_j_ejrh_2022_101196
crossref_primary_10_1016_j_jenvman_2021_112284
crossref_primary_10_3390_su131810110
crossref_primary_10_1016_j_asr_2024_06_030
crossref_primary_10_1016_j_scs_2021_103185
crossref_primary_10_1016_j_jobe_2023_106051
crossref_primary_10_1016_j_gsf_2019_11_005
crossref_primary_10_1002_ldr_4721
crossref_primary_10_1007_s13132_024_02081_x
crossref_primary_10_1016_j_catena_2021_105178
crossref_primary_10_1007_s12524_024_01901_6
crossref_primary_10_3389_feart_2023_1187384
crossref_primary_10_3389_feart_2023_1184038
crossref_primary_10_1007_s12665_021_09599_2
crossref_primary_10_1007_s12303_024_0045_x
crossref_primary_10_3390_rs13122367
crossref_primary_10_1007_s11069_023_06377_0
crossref_primary_10_3390_rs12223675
crossref_primary_10_1080_19475705_2021_1968510
crossref_primary_10_3390_w12092529
crossref_primary_10_1002_ece3_9110
crossref_primary_10_1016_j_iswcr_2019_10_001
crossref_primary_10_1038_s41598_021_82527_3
crossref_primary_10_3390_ijgi11070401
crossref_primary_10_3390_w12010016
crossref_primary_10_1016_j_iswcr_2024_07_004
crossref_primary_10_1016_j_atmosres_2019_104716
crossref_primary_10_1016_j_catena_2019_104150
crossref_primary_10_3390_app14010240
crossref_primary_10_1007_s11356_022_22118_5
crossref_primary_10_3389_feart_2022_835142
crossref_primary_10_1016_j_rvsc_2024_105201
crossref_primary_10_3390_rs12203284
crossref_primary_10_1016_j_catena_2024_108275
crossref_primary_10_1016_j_ecolind_2025_113313
crossref_primary_10_1016_j_scitotenv_2021_147040
crossref_primary_10_1016_j_rsase_2021_100651
Cites_doi 10.1007/s11069-010-9598-2
10.1016/j.geomorph.2012.10.031
10.1016/j.geomorph.2016.02.012
10.1016/j.geomorph.2017.12.032
10.1016/j.catena.2005.06.003
10.1016/S0341-8162(02)00129-7
10.1007/s12665-011-1477-y
10.1214/aos/1013203451
10.1007/s11135-006-9018-6
10.1127/0372-8854/2008/0052-0225
10.1016/j.geoderma.2017.06.020
10.1016/j.ecolmodel.2009.06.020
10.1016/j.catena.2015.05.015
10.1007/s11069-015-1915-3
10.1016/j.enggeo.2011.09.006
10.1002/ldr.2772
10.1016/j.geoderma.2005.04.025
10.1016/j.pce.2014.02.002
10.1016/S0169-1368(02)00111-7
10.1002/env.999
10.3390/app8081369
10.1016/j.catena.2017.10.010
10.1007/s12665-010-0531-5
10.5194/hess-18-1995-2014
10.1016/j.catena.2013.10.011
10.1214/aoms/1177698950
10.1016/j.geomorph.2010.10.022
10.1016/j.pce.2009.12.002
10.1016/j.scitotenv.2017.07.198
10.1002/esp.1501
10.1080/01431161.2012.700133
10.1007/s11069-013-0728-5
10.1002/2013JF002962
10.1007/s10040-012-0894-7
10.1016/j.catena.2016.04.018
10.1051/animres:2000134
10.1002/hyp.3360050103
10.18637/jss.v036.i11
10.1007/s11053-005-4678-9
10.1023/A:1010933404324
10.1016/j.cageo.2012.08.023
10.5194/gmd-9-3533-2016
10.1007/s00477-018-1518-0
10.1111/j.1365-2656.2008.01390.x
10.1016/j.geomorph.2008.05.047
10.1002/ldr.3151
10.1007/s11069-016-2239-7
10.1016/j.geomorph.2009.06.020
10.1007/s10661-015-5049-6
10.1016/j.ecolmodel.2010.01.007
10.1016/j.geoderma.2018.05.027
10.1007/s12517-012-0825-x
10.1016/j.icarus.2006.11.020
10.1016/S0341-8162(99)00028-4
10.1029/WR022i008p01350
10.3233/FI-2010-288
10.1016/j.geomorph.2013.08.021
10.1890/07-0539.1
10.1016/S0341-8162(02)00143-1
10.1016/j.jclinepi.2009.11.020
10.1016/j.scitotenv.2017.09.262
10.1016/j.eswa.2010.12.167
10.1029/2004JF000145
10.1002/ldr.931
10.1080/10106049.2014.966161
10.1016/S0304-3800(02)00195-3
10.1016/j.catena.2005.06.008
10.1016/j.geomorph.2017.09.006
10.1002/sim.1501
10.1007/s11104-010-0425-z
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2018.12.042
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 69
ExternalDocumentID 10_1016_j_geoderma_2018_12_042
S0016706118314836
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-e4da35e9f4d754c290265e123825b58c99db551a6c1ab09a080a4681ed636e9b3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 07:50:23 EDT 2025
Thu Apr 24 22:50:32 EDT 2025
Tue Jul 01 04:04:48 EDT 2025
Fri Feb 23 02:49:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Integrating GIS and R
Evidential belief function
Boruta algorithm
Gully erosion
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-e4da35e9f4d754c290265e123825b58c99db551a6c1ab09a080a4681ed636e9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0428-9601
0000-0003-2328-2998
PQID 2220844810
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2220844810
crossref_primary_10_1016_j_geoderma_2018_12_042
crossref_citationtrail_10_1016_j_geoderma_2018_12_042
elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_12_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-15
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dempster (bb0125) 1967; 38
Gutiérrez, Amaro, Martin-Gonzalez (bb0180) 2015; 6
Karatzoglou, Smola, Hornik (bb0210) 2016
Pourghasemi, Beheshtirad (bb0350) 2015; 30
Tang, Zhang, Lei (bb0435) 1998
Garosi, Sheklabadi, Pourghasemi, Besalatpour, Conoscenti, Van Oost (bb0155) 2018; 330
Kumar Shit, Rumpa, GouriSankar, Ramkrishna (bb0230) 2015; 2
Yesilnacar (bb0455) 2005
Poesen, Nachtergaele, Verstraeten, Valentin (bb0345) 2003; 50
Ingrid, Arpita, Spiegel (bb0195) 2015; 133
Achten, Dondeyne, Mugogo, Kafiriti, Poesen, Deckers, Muys (bb0005) 2008; 52
Rossi, Guzzetti, Reichenbach, Cesare Mondini, Peruccacci (bb0410) 2010; 114
Bou Kheir, Wilson, Deng (bb0045) 2007; 32
Conoscenti, Angileri, Cappadonia, Rotigliano, Agnesi, Märker (bb0110) 2014; 204
Boser, Guyon, Vapnik (bb0040) 1992
Carranza, Woldai, Chikambwe (bb0070) 2005; 14
Hong, Pourghasemi, Pourtaghi (bb0190) 2016; 259
Carty (bb0075) 2011
Poesen (bb0340) 1993
Breiman (bb0050) 2001; 45
Westreich, Lessler, Funk (bb0445) 2010; 63
Bednarik, Magulova, Matys, Marschalko (bb0035) 2010; 35
Kursa, Rudnicki (bb0235) 2010; 36
Sezer, Pradhan, Gokceoglu (bb0415) 2011; 38
Shahin, Hassan (bb0425) 2000; 49
Lehmann, McC Overton, Leathwick (bb0255) 2002; 157
Park (bb0335) 2011; 62
Knisel (bb0215) 1980
Bastola, Dialynas, Bras, Noto, Istanbulluoglu (bb0030) 2018
Mclean (bb9010) 1982
Kotsiantis, Pintelas (bb0220) 2004; 1
Pourghasemi, Moradi, Fatemi Aghda, Gokceoglu, Pradhan (bb0365) 2014; 7
Rengers, Tucker (bb0390) 2014; 119
Vapnik (bb0440) 1995
Wiesmeier, Barthold, Blank, Kogel-Knabner (bb9005) 2011; 340
Shafer (bb0420) 1976
Istanbullouglu, Rafael, Floes-Cervantes (bb0200) 2005; 110
Rhoades (bb0395) 1982
O'Brien (bb0330) 2007; 41
Pourghasemi, Moradi, Fatemi Aghda (bb0360) 2013; 69
Märker, Pelacani, Schröder (bb0285) 2011; 125
Chaplot, Le Brozec, Silvera, Valentin (bb0090) 2005; 63
Gutiérrez, Schnabel, Contador (bb0170) 2009; 20
Carey, Gray, Seagrave (bb0060) 2001
Flanagan, Nearing (bb0140) 1995; vol. 10
Arabameri, Pradhan, Rezaei, Yamani, Pourghasemi, Lombardo (bb0020) 2018; 29
Pourghasemi, Yousefi, Kornejady, Cerda (bb0355) 2017; 609
Aertsen, Kint, Orshoven, Özkan, Muys (bb0010) 2010; 221
Woodward (bb0450) 1999; 37
Brown, Shepherd, Walsh, Mays, Reinsch (bb0055) 2006; 132
Naghibi, Pourghasemi, Dixon (bb0320) 2016
Chaplot, Giboire, Marchand, Valentin (bb0085) 2005; 63
Hamel (bb0185) 2009
Lombardo, Cama, Conoscenti, Märker, Rotigliano (bb0270) 2015; 79
Rahmati, Tahmasebipour, Haghizadeh, Pourghasemi, Feizizadeh (bb0380) 2017; 298
Kuhnert, Henderson, Bartley, Herr (bb0225) 2010; 21
Friedman (bb0145) 2001; 29
Razavi Termeh, Kornejady, Pourghasemi, Keesstra (bb0385) 2018; 615
Morgan (bb0310) 2009
Chen, Pourghasemi, Kornejady, Zhang (bb0095) 2017; 305
Morgan, Morgan Zulu (bb0315) 2003; 50
Rijkee, Keesstra, Mekonnen (bb0400) 2015; 5(1)
Althuwaynee, Pradhan, Park, Lee (bb0015) 2014; 114
Rahmati, Haghizadeh, Pourghasemi, Noormohamadi (bb0375) 2016; 82
Arabameri, Pradhan, Pourghasemi, Rezaei, Kerle (bb0025) 2018; 8
Cutler, Edwards, Beard, Cutler, Hess (bb0120) 2007; 88
Moore, Burch (bb0300) 1986; 22
Rossi, Reichenbach (bb0405) 2016; 9
Greene (bb0165) 2000
Friedman, Meulman (bb0150) 2003; 22
Kursa, Jankowski, Rudnicki (bb0240) 2010; 101
Lee, Song, Kim, Park (bb0250) 2012; 20
Conforti, Aucelli, Robustelli, Scarciglia (bb0105) 2010; 56
Dube, Nhapi, Murwira, Gumindoga, Goldin, Mashauri (bb0130) 2014; 67
Marjanović, Kovačević, Bajat, Voženílek (bb0280) 2011; 123
Moore, Grayson, Ladson (bb0305) 1991; 5
Li, Zhang, Zhu, Yang, Li, Ma (bb0260) 2017; 148
Dickson, Head, Kreslavsky (bb9000) 2007; 188
Khalighi Sigaroodi, Chen, Ebrahimi, Nazari, Choobin (bb9015) 2014; 18
Lombardo, Opitz, Huser (bb0275) 2018; 32
Niu, Ban (bb0325) 2013; 34
Chaplot (bb0080) 2013; 186
Zabihi, Mirchooli, Motevalli, Darvishan, Pourghasemi, Zakeri, Sadighi (bb0460) 2018; 161
Shary, Sharaya, Mitusov (bb0430) 2002; 30
Gee, Bauder (bb0160) 2002; 5
Liaw, Wiener (bb0265) 2002; 2
Lee, Choi, Oh, Won, Park, Lee (bb0245) 2012; 67
Conoscenti, Agnesi, Cama, Caraballo-Arias, Rotigliano (bb0115) 2018; 29
Marzolff, Poesen (bb0290) 2009; 111
Carranza, Hale (bb0065) 2002; 22
Gutiérrez, Schnabel, Contador (bb0175) 2009; 220
Joachims (bb0205) 1997
Pradhan (bb0370) 2013; 51
Elith, Leathwick, Hastie (bb0135) 2008; 77
Rahmati (10.1016/j.geoderma.2018.12.042_bb0380) 2017; 298
Sezer (10.1016/j.geoderma.2018.12.042_bb0415) 2011; 38
Dempster (10.1016/j.geoderma.2018.12.042_bb0125) 1967; 38
Lehmann (10.1016/j.geoderma.2018.12.042_bb0255) 2002; 157
Tang (10.1016/j.geoderma.2018.12.042_bb0435) 1998
Hamel (10.1016/j.geoderma.2018.12.042_bb0185) 2009
Cutler (10.1016/j.geoderma.2018.12.042_bb0120) 2007; 88
Chaplot (10.1016/j.geoderma.2018.12.042_bb0090) 2005; 63
Pourghasemi (10.1016/j.geoderma.2018.12.042_bb0350) 2015; 30
Vapnik (10.1016/j.geoderma.2018.12.042_bb0440) 1995
Marjanović (10.1016/j.geoderma.2018.12.042_bb0280) 2011; 123
Razavi Termeh (10.1016/j.geoderma.2018.12.042_bb0385) 2018; 615
Khalighi Sigaroodi (10.1016/j.geoderma.2018.12.042_bb9015) 2014; 18
Rhoades (10.1016/j.geoderma.2018.12.042_bb0395) 1982
Friedman (10.1016/j.geoderma.2018.12.042_bb0145) 2001; 29
Kursa (10.1016/j.geoderma.2018.12.042_bb0240) 2010; 101
Gee (10.1016/j.geoderma.2018.12.042_bb0160) 2002; 5
Lombardo (10.1016/j.geoderma.2018.12.042_bb0270) 2015; 79
Westreich (10.1016/j.geoderma.2018.12.042_bb0445) 2010; 63
O'Brien (10.1016/j.geoderma.2018.12.042_bb0330) 2007; 41
Moore (10.1016/j.geoderma.2018.12.042_bb0300) 1986; 22
Knisel (10.1016/j.geoderma.2018.12.042_bb0215) 1980
Chen (10.1016/j.geoderma.2018.12.042_bb0095) 2017; 305
Gutiérrez (10.1016/j.geoderma.2018.12.042_bb0180) 2015; 6
Liaw (10.1016/j.geoderma.2018.12.042_bb0265) 2002; 2
Pourghasemi (10.1016/j.geoderma.2018.12.042_bb0355) 2017; 609
Naghibi (10.1016/j.geoderma.2018.12.042_bb0320) 2016
Kuhnert (10.1016/j.geoderma.2018.12.042_bb0225) 2010; 21
Rossi (10.1016/j.geoderma.2018.12.042_bb0405) 2016; 9
Poesen (10.1016/j.geoderma.2018.12.042_bb0345) 2003; 50
Joachims (10.1016/j.geoderma.2018.12.042_bb0205) 1997
Garosi (10.1016/j.geoderma.2018.12.042_bb0155) 2018; 330
Achten (10.1016/j.geoderma.2018.12.042_bb0005) 2008; 52
Elith (10.1016/j.geoderma.2018.12.042_bb0135) 2008; 77
Brown (10.1016/j.geoderma.2018.12.042_bb0055) 2006; 132
Mclean (10.1016/j.geoderma.2018.12.042_bb9010) 1982
Arabameri (10.1016/j.geoderma.2018.12.042_bb0020) 2018; 29
Dube (10.1016/j.geoderma.2018.12.042_bb0130) 2014; 67
Kursa (10.1016/j.geoderma.2018.12.042_bb0235) 2010; 36
Moore (10.1016/j.geoderma.2018.12.042_bb0305) 1991; 5
Park (10.1016/j.geoderma.2018.12.042_bb0335) 2011; 62
Istanbullouglu (10.1016/j.geoderma.2018.12.042_bb0200) 2005; 110
Marzolff (10.1016/j.geoderma.2018.12.042_bb0290) 2009; 111
Lee (10.1016/j.geoderma.2018.12.042_bb0250) 2012; 20
Bednarik (10.1016/j.geoderma.2018.12.042_bb0035) 2010; 35
Yesilnacar (10.1016/j.geoderma.2018.12.042_bb0455) 2005
Chaplot (10.1016/j.geoderma.2018.12.042_bb0080) 2013; 186
Pradhan (10.1016/j.geoderma.2018.12.042_bb0370) 2013; 51
Friedman (10.1016/j.geoderma.2018.12.042_bb0150) 2003; 22
Li (10.1016/j.geoderma.2018.12.042_bb0260) 2017; 148
Flanagan (10.1016/j.geoderma.2018.12.042_bb0140) 1995; vol. 10
Niu (10.1016/j.geoderma.2018.12.042_bb0325) 2013; 34
Shary (10.1016/j.geoderma.2018.12.042_bb0430) 2002; 30
Morgan (10.1016/j.geoderma.2018.12.042_bb0315) 2003; 50
Breiman (10.1016/j.geoderma.2018.12.042_bb0050) 2001; 45
Greene (10.1016/j.geoderma.2018.12.042_bb0165) 2000
Pourghasemi (10.1016/j.geoderma.2018.12.042_bb0365) 2014; 7
Woodward (10.1016/j.geoderma.2018.12.042_bb0450) 1999; 37
Rengers (10.1016/j.geoderma.2018.12.042_bb0390) 2014; 119
Carranza (10.1016/j.geoderma.2018.12.042_bb0065) 2002; 22
Chaplot (10.1016/j.geoderma.2018.12.042_bb0085) 2005; 63
Conoscenti (10.1016/j.geoderma.2018.12.042_bb0115) 2018; 29
Boser (10.1016/j.geoderma.2018.12.042_bb0040) 1992
Lombardo (10.1016/j.geoderma.2018.12.042_bb0275) 2018; 32
Carty (10.1016/j.geoderma.2018.12.042_bb0075) 2011
Zabihi (10.1016/j.geoderma.2018.12.042_bb0460) 2018; 161
Karatzoglou (10.1016/j.geoderma.2018.12.042_bb0210) 2016
Aertsen (10.1016/j.geoderma.2018.12.042_bb0010) 2010; 221
Bou Kheir (10.1016/j.geoderma.2018.12.042_bb0045) 2007; 32
Ingrid (10.1016/j.geoderma.2018.12.042_bb0195) 2015; 133
Kumar Shit (10.1016/j.geoderma.2018.12.042_bb0230) 2015; 2
Pourghasemi (10.1016/j.geoderma.2018.12.042_bb0360) 2013; 69
Althuwaynee (10.1016/j.geoderma.2018.12.042_bb0015) 2014; 114
Lee (10.1016/j.geoderma.2018.12.042_bb0245) 2012; 67
Poesen (10.1016/j.geoderma.2018.12.042_bb0340) 1993
Rijkee (10.1016/j.geoderma.2018.12.042_bb0400) 2015; 5(1)
Conoscenti (10.1016/j.geoderma.2018.12.042_bb0110) 2014; 204
Gutiérrez (10.1016/j.geoderma.2018.12.042_bb0175) 2009; 220
Wiesmeier (10.1016/j.geoderma.2018.12.042_bb9005) 2011; 340
Hong (10.1016/j.geoderma.2018.12.042_bb0190) 2016; 259
Kotsiantis (10.1016/j.geoderma.2018.12.042_bb0220) 2004; 1
Arabameri (10.1016/j.geoderma.2018.12.042_bb0025) 2018; 8
Shahin (10.1016/j.geoderma.2018.12.042_bb0425) 2000; 49
Conforti (10.1016/j.geoderma.2018.12.042_bb0105) 2010; 56
Märker (10.1016/j.geoderma.2018.12.042_bb0285) 2011; 125
Gutiérrez (10.1016/j.geoderma.2018.12.042_bb0170) 2009; 20
Bastola (10.1016/j.geoderma.2018.12.042_bb0030) 2018
Rossi (10.1016/j.geoderma.2018.12.042_bb0410) 2010; 114
Carey (10.1016/j.geoderma.2018.12.042_bb0060) 2001
Shafer (10.1016/j.geoderma.2018.12.042_bb0420) 1976
Rahmati (10.1016/j.geoderma.2018.12.042_bb0375) 2016; 82
Dickson (10.1016/j.geoderma.2018.12.042_bb9000) 2007; 188
Morgan (10.1016/j.geoderma.2018.12.042_bb0310) 2009
Carranza (10.1016/j.geoderma.2018.12.042_bb0070) 2005; 14
References_xml – year: 1998
  ident: bb0435
  article-title: Critical slope gradient for compulsory abandonment of USDA-SCS. Procedure for determining rates of land damage, land depreciation, and volume of sediment produced by gully erosion
  publication-title: Technical Release No. 32. US GPO 1990-261-419:20727/SCS
– volume: 2
  year: 2015
  ident: bb0230
  article-title: Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India
  publication-title: Modell. Earth Syst. Environ.
– volume: 51
  start-page: 350
  year: 2013
  end-page: 365
  ident: bb0370
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
– volume: 259
  start-page: 105
  year: 2016
  end-page: 118
  ident: bb0190
  article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical
  publication-title: Geomorphology
– volume: 14
  start-page: 47
  year: 2005
  end-page: 63
  ident: bb0070
  article-title: Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia
  publication-title: Nat. Resour. Res.
– volume: 30
  start-page: 1925
  year: 2002
  end-page: 1932
  ident: bb0430
  article-title: Fundamental quantitative methods of slope instability
  publication-title: Water Resour. Res.
– start-page: 167
  year: 1982
  end-page: 179
  ident: bb0395
  publication-title: Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Monograph Number 9, Soluble salts
– volume: 132
  start-page: 273
  year: 2006
  end-page: 290
  ident: bb0055
  article-title: Global soil characterization with VNIR diffuses reflectance spectroscopy
  publication-title: Geoderma
– volume: 1
  start-page: 324
  year: 2004
  end-page: 333
  ident: bb0220
  article-title: Combining bagging and boosting
  publication-title: Int. J. Comput. Intell.
– volume: 50
  start-page: 401
  year: 2003
  end-page: 411
  ident: bb0315
  article-title: Threshold conditions for initiation of valley-side gullies in the Middle West of Switzerland
  publication-title: Catena
– volume: 9
  start-page: 3533
  year: 2016
  end-page: 3543
  ident: bb0405
  article-title: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0
  publication-title: Geosci. Model Dev.
– volume: 186
  start-page: 1
  year: 2013
  end-page: 11
  ident: bb0080
  article-title: Impact of terrain attributes, parent material and soil types on gully erosion
  publication-title: Geomorphology
– volume: 330
  start-page: 65
  year: 2018
  end-page: 78
  ident: bb0155
  article-title: Comparison of the different resolution and source of controlling factors for gully erosion susceptibility mapping
  publication-title: Geoderma
– volume: 123
  start-page: 225
  year: 2011
  end-page: 234
  ident: bb0280
  article-title: Landslide susceptibility assessment using SVM machine learning algorithm
  publication-title: Eng. Geol.
– year: 2009
  ident: bb0185
  article-title: Knowledge Discovery with Support Vector Machines, Hoboken
– volume: 36
  start-page: 1
  year: 2010
  end-page: 13
  ident: bb0235
  article-title: Feature selection with the Boruta package
  publication-title: J. Stat. Softw.
– volume: 52
  start-page: 225
  year: 2008
  end-page: 235
  ident: bb0005
  article-title: Gully erosion in South Eastern Tanzania: spatial distribution and topographic thresholds
  publication-title: Z. Geomorphol.
– year: 2000
  ident: bb0165
  article-title: Econometric Analysis
– volume: 29
  start-page: 724
  year: 2018
  end-page: 736
  ident: bb0115
  article-title: Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity
  publication-title: Land Degrad. Dev.
– volume: 161
  start-page: 1
  year: 2018
  end-page: 13
  ident: bb0460
  article-title: Spatial modelling of gully erosion in Mazandaran Province, northern Iran
  publication-title: Catena
– volume: 305
  start-page: 314
  year: 2017
  end-page: 327
  ident: bb0095
  article-title: Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques
  publication-title: Geoderma
– volume: 114
  start-page: 129
  year: 2010
  end-page: 142
  ident: bb0410
  article-title: Optimal landslide susceptibility zonation based on multiple forecasts
  publication-title: Geomorphology
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0050
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2001
  ident: bb0060
  article-title: Gully Erosion
– volume: 101
  start-page: 271
  year: 2010
  end-page: 285
  ident: bb0240
  article-title: Boruta–a system for feature selection
  publication-title: Fundam. Inform.
– volume: 82
  start-page: 1231
  year: 2016
  end-page: 1258
  ident: bb0375
  article-title: Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison
  publication-title: Nat. Hazards
– volume: 22
  start-page: 1350
  year: 1986
  end-page: 1360
  ident: bb0300
  article-title: Sediment transport capacity of sheet and rill flow: application of unit stream power theory
  publication-title: Water Resour. Res.
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: bb0135
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– volume: 63
  start-page: 318
  year: 2005
  end-page: 328
  ident: bb0085
  article-title: Dynamic modelling for linear erosion initiation and development under climate and land-use changes in northern Laos
  publication-title: Catena
– volume: 119
  start-page: 983
  year: 2014
  end-page: 1003
  ident: bb0390
  article-title: Analysis and modeling of gully head-cut dynamics, North American high plains
  publication-title: J. Geophys. Res. Earth
– volume: 20
  start-page: 1511
  year: 2012
  end-page: 1527
  ident: bb0250
  article-title: Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model
  publication-title: Hydrogeol. J.
– volume: 38
  start-page: 8208
  year: 2011
  end-page: 8219
  ident: bb0415
  article-title: Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia
  publication-title: Expert Syst. Appl.
– volume: 56
  start-page: 881
  year: 2010
  end-page: 898
  ident: bb0105
  article-title: Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)
  publication-title: Nat. Hazards
– volume: 5
  start-page: 255
  year: 2002
  end-page: 293
  ident: bb0160
  article-title: Particle size analysis
  publication-title: Methods of Soil Analysis. Part 4, Physical Methods
– start-page: 423
  year: 2005
  ident: bb0455
  article-title: The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey
– volume: 8
  start-page: 1369
  year: 2018
  ident: bb0025
  article-title: Spatial modelling of gully erosion using GIS and R programing: a comparison among three data mining algorithms
  publication-title: Appl. Sci.
– volume: 63
  start-page: 167
  year: 2005
  end-page: 184
  ident: bb0090
  article-title: Spatial and temporal assessment of linear erosion in catchments under sloping lands of northern Laos
  publication-title: Catena
– volume: 221
  start-page: 1119
  year: 2010
  end-page: 1130
  ident: bb0010
  article-title: Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests
  publication-title: Ecol. Model.
– volume: 69
  start-page: 749
  year: 2013
  end-page: 777
  ident: bb0360
  article-title: Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances
  publication-title: Nat. Hazards
– year: 2018
  ident: bb0030
  article-title: The role of vegetation on gully erosion stabilization at a severely degraded landscape a case study from Calhoun Experimental Critical Zone Observatory
  publication-title: Geomorphology
– volume: 5
  start-page: 3
  year: 1991
  end-page: 30
  ident: bb0305
  article-title: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Proced.
– volume: 220
  start-page: 3630
  year: 2009
  end-page: 3637
  ident: bb0175
  article-title: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies
  publication-title: Ecol. Model.
– volume: 110
  start-page: 1014
  year: 2005
  end-page: 1029
  ident: bb0200
  article-title: Implication of bank failures and fluvial erosion for gully development: field observation and modeling
  publication-title: J. Geophys. Res.
– start-page: 108
  year: 2016
  ident: bb0210
  article-title: Package ‘kernlab’
– start-page: 144
  year: 1992
  end-page: 152
  ident: bb0040
  article-title: A training algorithm for optimal margin classifiers, 1992
  publication-title: Proceedings of the Fifth Annual Workshop on Computational Learning Theory
– volume: 20
  start-page: 535
  year: 2009
  end-page: 550
  ident: bb0170
  article-title: Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain
  publication-title: Land Degrad. Dev.
– volume: 133
  start-page: 221
  year: 2015
  end-page: 232
  ident: bb0195
  article-title: Gully morphology, hillslope erosion, and precipitation characteristics in the Appalachian Valley and Ridge province, southeastern USA
  publication-title: Catena
– volume: 298
  start-page: 118
  year: 2017
  end-page: 137
  ident: bb0380
  article-title: Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion
  publication-title: Geomorphology
– volume: 188
  start-page: 315
  year: 2007
  end-page: 323
  ident: bb9000
  article-title: Martian gullies in the southern mid-latitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography
  publication-title: Icarus
– start-page: 143
  year: 1997
  end-page: 151
  ident: bb0205
  article-title: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization
– volume: 6
  start-page: 48
  year: 2015
  ident: bb0180
  article-title: Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review
  publication-title: Front. Microbiol.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0265
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 32
  start-page: 1770
  year: 2007
  end-page: 1782
  ident: bb0045
  article-title: Use of terrain variables for mapping gully erosion susceptibility in Lebanon
  publication-title: Earth Surf. Process. Landf.
– volume: 62
  start-page: 367
  year: 2011
  end-page: 376
  ident: bb0335
  article-title: Application of Dempster-Shafer theory of evidence to GIS-based land slide susceptibility analysis
  publication-title: Environ. Earth Sci.
– volume: 5(1)
  start-page: 21
  year: 2015
  end-page: 29
  ident: bb0400
  article-title: Low-land gully formation in the Amhara
  publication-title: Comparison of Kriging and Inverse Distance Weighted (IDW) Interpolation Methods in Lineament Extraction and Analysis
– volume: 125
  start-page: 530
  year: 2011
  end-page: 540
  ident: bb0285
  article-title: A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy
  publication-title: Geomorphology
– volume: 34
  start-page: 1
  year: 2013
  end-page: 26
  ident: bb0325
  article-title: Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach
  publication-title: Int. J. Remote Sens.
– year: 1995
  ident: bb0440
  article-title: The Nature of Statistical Learning Theory
– volume: 29
  start-page: 4035
  year: 2018
  end-page: 4049
  ident: bb0020
  article-title: Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm
  publication-title: Land Degrad. Dev.
– volume: 22
  start-page: 117
  year: 2002
  end-page: 132
  ident: bb0065
  article-title: Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines
  publication-title: Ore Geol. Rev.
– volume: 30
  start-page: 662
  year: 2015
  end-page: 685
  ident: bb0350
  article-title: Assessment of a data driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran
  publication-title: Geocarto Int.
– year: 1976
  ident: bb0420
  article-title: A Mathematical Theory of Evidence
– volume: 50
  start-page: 91
  year: 2003
  end-page: 133
  ident: bb0345
  article-title: Gully erosion and environmental change: importance and research needs
  publication-title: Catena
– volume: 111
  start-page: 48
  year: 2009
  end-page: 60
  ident: bb0290
  article-title: The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system
  publication-title: Geomorphology
– volume: 67
  start-page: 23
  year: 2012
  end-page: 37
  ident: bb0245
  article-title: Ensemble based landslide susceptibility maps in Jinbu area, Korea
  publication-title: Environ. Earth Sci.
– volume: 148
  start-page: 195
  year: 2017
  end-page: 203
  ident: bb0260
  article-title: A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area
  publication-title: Catena
– volume: 49
  start-page: 435
  year: 2000
  end-page: 445
  ident: bb0425
  article-title: Sources of shared variability among body shape characters at marketing age in New Zealand White and Egyptian rabbit breeds
  publication-title: Ann. Zootech.
– volume: 157
  start-page: 189
  year: 2002
  end-page: 207
  ident: bb0255
  article-title: GRASP: generalized regression analysis and spatial prediction
  publication-title: Ecol. Model.
– volume: 63
  start-page: 826
  year: 2010
  end-page: 833
  ident: bb0445
  article-title: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
  publication-title: J. Clin. Epidemiol.
– volume: 114
  start-page: 21
  year: 2014
  end-page: 36
  ident: bb0015
  article-title: A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping
  publication-title: Catena
– volume: 88
  start-page: 2783
  year: 2007
  end-page: 2792
  ident: bb0120
  article-title: Random forest for classification in ecology
  publication-title: Ecology
– volume: vol. 10
  year: 1995
  ident: bb0140
  article-title: USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation
– volume: 37
  start-page: 393
  year: 1999
  end-page: 399
  ident: bb0450
  article-title: Method to predict cropland ephemeral gully erosion
  publication-title: Catena
– volume: 22
  start-page: 1365
  year: 2003
  end-page: 1381
  ident: bb0150
  article-title: Multiple additive regression trees with application in epidemiology
  publication-title: Stat. Med.
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bb0145
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 609
  start-page: 764
  year: 2017
  end-page: 775
  ident: bb0355
  article-title: Applying different new ensemble data mining techniques for Gully erosion mapping with Geographical Information Systems
  publication-title: Sci. Total Environ.
– volume: 340
  start-page: 7
  year: 2011
  end-page: 24
  ident: bb9005
  article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem
  publication-title: Plant Soil
– start-page: 199
  year: 1982
  end-page: 224
  ident: bb9010
  article-title: Soil pH and Lime Requirement
  publication-title: Methods of Soil Analysis. Part 2
– volume: 32
  start-page: 2179
  year: 2018
  end-page: 2198
  ident: bb0275
  article-title: Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster
  publication-title: Stoch. Env. Res. Risk A.
– start-page: 221
  year: 1993
  end-page: 239
  ident: bb0340
  article-title: Gully typology and gully control measures in the European loess belt
  publication-title: Farm Land Erosion in Temperate Plains Environment and Hills
– volume: 79
  start-page: 1621
  year: 2015
  end-page: 1648
  ident: bb0270
  article-title: Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy)
  publication-title: Nat. Hazards
– volume: 204
  start-page: 399
  year: 2014
  end-page: 411
  ident: bb0110
  article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy)
  publication-title: Geomorphology
– year: 1980
  ident: bb0215
  article-title: CREAMS: a field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems [USA]
  publication-title: Conservation Research Report (USA)
– year: 2016
  ident: bb0320
  article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environ. Monit. Assess.
– volume: 18
  start-page: 1995
  year: 2014
  end-page: 2006
  ident: bb9015
  article-title: Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharloo Basin in Iran
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2009
  ident: bb0310
  article-title: Soil Erosion and Conservation
– year: 2011
  ident: bb0075
  article-title: An Analysis of Boosted Regression Trees to Predict the Strength Properties of Wood Composites
– volume: 41
  start-page: 673
  year: 2007
  end-page: 690
  ident: bb0330
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual. Quant.
– volume: 35
  start-page: 162
  year: 2010
  end-page: 171
  ident: bb0035
  article-title: Landslide susceptibility assessment of the Kralovany-Liptovsky Mikulas railway case study
  publication-title: Phys. Chem. Earth
– volume: 7
  start-page: 1857
  year: 2014
  end-page: 1878
  ident: bb0365
  article-title: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran)
  publication-title: Arab. J. Geosci.
– volume: 21
  start-page: 493
  year: 2010
  end-page: 509
  ident: bb0225
  article-title: Incorporating uncertainty in gully erosion calculations using the random forests modelling approach
  publication-title: Environmetrics
– volume: 38
  start-page: 325
  year: 1967
  end-page: 339
  ident: bb0125
  article-title: Upper and lower probabilities induced by a multivalued mapping
  publication-title: Ann. Math. Stat.
– volume: 67
  start-page: 145
  year: 2014
  end-page: 152
  ident: bb0130
  article-title: Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District–Zimbabwe
  publication-title: Phys. Chem. Earth
– volume: 615
  start-page: 438
  year: 2018
  end-page: 451
  ident: bb0385
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
– volume: 56
  start-page: 881
  year: 2010
  ident: 10.1016/j.geoderma.2018.12.042_bb0105
  article-title: Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-010-9598-2
– volume: 186
  start-page: 1
  year: 2013
  ident: 10.1016/j.geoderma.2018.12.042_bb0080
  article-title: Impact of terrain attributes, parent material and soil types on gully erosion
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.10.031
– volume: 259
  start-page: 105
  year: 2016
  ident: 10.1016/j.geoderma.2018.12.042_bb0190
  article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– year: 2018
  ident: 10.1016/j.geoderma.2018.12.042_bb0030
  article-title: The role of vegetation on gully erosion stabilization at a severely degraded landscape a case study from Calhoun Experimental Critical Zone Observatory
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.12.032
– start-page: 423
  year: 2005
  ident: 10.1016/j.geoderma.2018.12.042_bb0455
– volume: 5(1)
  start-page: 21
  year: 2015
  ident: 10.1016/j.geoderma.2018.12.042_bb0400
  article-title: Low-land gully formation in the Amhara
– year: 2001
  ident: 10.1016/j.geoderma.2018.12.042_bb0060
– volume: 63
  start-page: 167
  issue: 2–3
  year: 2005
  ident: 10.1016/j.geoderma.2018.12.042_bb0090
  article-title: Spatial and temporal assessment of linear erosion in catchments under sloping lands of northern Laos
  publication-title: Catena
  doi: 10.1016/j.catena.2005.06.003
– volume: 50
  start-page: 401
  year: 2003
  ident: 10.1016/j.geoderma.2018.12.042_bb0315
  article-title: Threshold conditions for initiation of valley-side gullies in the Middle West of Switzerland
  publication-title: Catena
  doi: 10.1016/S0341-8162(02)00129-7
– volume: 5
  start-page: 255
  year: 2002
  ident: 10.1016/j.geoderma.2018.12.042_bb0160
  article-title: Particle size analysis
– volume: 67
  start-page: 23
  issue: 1
  year: 2012
  ident: 10.1016/j.geoderma.2018.12.042_bb0245
  article-title: Ensemble based landslide susceptibility maps in Jinbu area, Korea
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1477-y
– volume: 29
  start-page: 1189
  year: 2001
  ident: 10.1016/j.geoderma.2018.12.042_bb0145
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 41
  start-page: 673
  issue: 5
  year: 2007
  ident: 10.1016/j.geoderma.2018.12.042_bb0330
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual. Quant.
  doi: 10.1007/s11135-006-9018-6
– volume: 52
  start-page: 225
  issue: 2
  year: 2008
  ident: 10.1016/j.geoderma.2018.12.042_bb0005
  article-title: Gully erosion in South Eastern Tanzania: spatial distribution and topographic thresholds
  publication-title: Z. Geomorphol.
  doi: 10.1127/0372-8854/2008/0052-0225
– volume: 305
  start-page: 314
  year: 2017
  ident: 10.1016/j.geoderma.2018.12.042_bb0095
  article-title: Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.06.020
– volume: 220
  start-page: 3630
  issue: 24
  year: 2009
  ident: 10.1016/j.geoderma.2018.12.042_bb0175
  article-title: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.06.020
– volume: 133
  start-page: 221
  year: 2015
  ident: 10.1016/j.geoderma.2018.12.042_bb0195
  article-title: Gully morphology, hillslope erosion, and precipitation characteristics in the Appalachian Valley and Ridge province, southeastern USA
  publication-title: Catena
  doi: 10.1016/j.catena.2015.05.015
– start-page: 108
  year: 2016
  ident: 10.1016/j.geoderma.2018.12.042_bb0210
– volume: 79
  start-page: 1621
  issue: 3
  year: 2015
  ident: 10.1016/j.geoderma.2018.12.042_bb0270
  article-title: Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy)
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1915-3
– volume: 123
  start-page: 225
  issue: 3
  year: 2011
  ident: 10.1016/j.geoderma.2018.12.042_bb0280
  article-title: Landslide susceptibility assessment using SVM machine learning algorithm
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2011.09.006
– volume: 29
  start-page: 724
  issue: 3
  year: 2018
  ident: 10.1016/j.geoderma.2018.12.042_bb0115
  article-title: Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2772
– year: 2009
  ident: 10.1016/j.geoderma.2018.12.042_bb0185
– start-page: 199
  year: 1982
  ident: 10.1016/j.geoderma.2018.12.042_bb9010
  article-title: Soil pH and Lime Requirement
– volume: 132
  start-page: 273
  year: 2006
  ident: 10.1016/j.geoderma.2018.12.042_bb0055
  article-title: Global soil characterization with VNIR diffuses reflectance spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.04.025
– volume: 67
  start-page: 145
  year: 2014
  ident: 10.1016/j.geoderma.2018.12.042_bb0130
  article-title: Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District–Zimbabwe
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2014.02.002
– volume: 22
  start-page: 117
  year: 2002
  ident: 10.1016/j.geoderma.2018.12.042_bb0065
  article-title: Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines
  publication-title: Ore Geol. Rev.
  doi: 10.1016/S0169-1368(02)00111-7
– volume: 21
  start-page: 493
  issue: 5
  year: 2010
  ident: 10.1016/j.geoderma.2018.12.042_bb0225
  article-title: Incorporating uncertainty in gully erosion calculations using the random forests modelling approach
  publication-title: Environmetrics
  doi: 10.1002/env.999
– volume: 8
  start-page: 1369
  issue: 8
  year: 2018
  ident: 10.1016/j.geoderma.2018.12.042_bb0025
  article-title: Spatial modelling of gully erosion using GIS and R programing: a comparison among three data mining algorithms
  publication-title: Appl. Sci.
  doi: 10.3390/app8081369
– volume: 161
  start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2018.12.042_bb0460
  article-title: Spatial modelling of gully erosion in Mazandaran Province, northern Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2017.10.010
– volume: 62
  start-page: 367
  year: 2011
  ident: 10.1016/j.geoderma.2018.12.042_bb0335
  article-title: Application of Dempster-Shafer theory of evidence to GIS-based land slide susceptibility analysis
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-010-0531-5
– volume: 18
  start-page: 1995
  year: 2014
  ident: 10.1016/j.geoderma.2018.12.042_bb9015
  article-title: Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharloo Basin in Iran
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-1995-2014
– year: 1995
  ident: 10.1016/j.geoderma.2018.12.042_bb0440
– start-page: 144
  year: 1992
  ident: 10.1016/j.geoderma.2018.12.042_bb0040
  article-title: A training algorithm for optimal margin classifiers, 1992
– volume: vol. 10
  year: 1995
  ident: 10.1016/j.geoderma.2018.12.042_bb0140
– volume: 114
  start-page: 21
  year: 2014
  ident: 10.1016/j.geoderma.2018.12.042_bb0015
  article-title: A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2013.10.011
– volume: 38
  start-page: 325
  year: 1967
  ident: 10.1016/j.geoderma.2018.12.042_bb0125
  article-title: Upper and lower probabilities induced by a multivalued mapping
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177698950
– volume: 125
  start-page: 530
  issue: 4
  year: 2011
  ident: 10.1016/j.geoderma.2018.12.042_bb0285
  article-title: A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.10.022
– volume: 35
  start-page: 162
  issue: 3–5
  year: 2010
  ident: 10.1016/j.geoderma.2018.12.042_bb0035
  article-title: Landslide susceptibility assessment of the Kralovany-Liptovsky Mikulas railway case study
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2009.12.002
– year: 1976
  ident: 10.1016/j.geoderma.2018.12.042_bb0420
– volume: 609
  start-page: 764
  year: 2017
  ident: 10.1016/j.geoderma.2018.12.042_bb0355
  article-title: Applying different new ensemble data mining techniques for Gully erosion mapping with Geographical Information Systems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.198
– volume: 32
  start-page: 1770
  issue: 12
  year: 2007
  ident: 10.1016/j.geoderma.2018.12.042_bb0045
  article-title: Use of terrain variables for mapping gully erosion susceptibility in Lebanon
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.1501
– year: 1980
  ident: 10.1016/j.geoderma.2018.12.042_bb0215
  article-title: CREAMS: a field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems [USA]
– volume: 34
  start-page: 1
  year: 2013
  ident: 10.1016/j.geoderma.2018.12.042_bb0325
  article-title: Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.700133
– volume: 69
  start-page: 749
  year: 2013
  ident: 10.1016/j.geoderma.2018.12.042_bb0360
  article-title: Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0728-5
– volume: 119
  start-page: 983
  year: 2014
  ident: 10.1016/j.geoderma.2018.12.042_bb0390
  article-title: Analysis and modeling of gully head-cut dynamics, North American high plains
  publication-title: J. Geophys. Res. Earth
  doi: 10.1002/2013JF002962
– volume: 20
  start-page: 1511
  year: 2012
  ident: 10.1016/j.geoderma.2018.12.042_bb0250
  article-title: Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-012-0894-7
– volume: 148
  start-page: 195
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2018.12.042_bb0260
  article-title: A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area
  publication-title: Catena
  doi: 10.1016/j.catena.2016.04.018
– volume: 49
  start-page: 435
  year: 2000
  ident: 10.1016/j.geoderma.2018.12.042_bb0425
  article-title: Sources of shared variability among body shape characters at marketing age in New Zealand White and Egyptian rabbit breeds
  publication-title: Ann. Zootech.
  doi: 10.1051/animres:2000134
– year: 1998
  ident: 10.1016/j.geoderma.2018.12.042_bb0435
  article-title: Critical slope gradient for compulsory abandonment of USDA-SCS. Procedure for determining rates of land damage, land depreciation, and volume of sediment produced by gully erosion
– start-page: 221
  year: 1993
  ident: 10.1016/j.geoderma.2018.12.042_bb0340
  article-title: Gully typology and gully control measures in the European loess belt
– year: 2000
  ident: 10.1016/j.geoderma.2018.12.042_bb0165
– volume: 5
  start-page: 3
  issue: 1
  year: 1991
  ident: 10.1016/j.geoderma.2018.12.042_bb0305
  article-title: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Proced.
  doi: 10.1002/hyp.3360050103
– volume: 36
  start-page: 1
  issue: 11
  year: 2010
  ident: 10.1016/j.geoderma.2018.12.042_bb0235
  article-title: Feature selection with the Boruta package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i11
– volume: 14
  start-page: 47
  year: 2005
  ident: 10.1016/j.geoderma.2018.12.042_bb0070
  article-title: Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-005-4678-9
– volume: 45
  start-page: 5
  issue: l
  year: 2001
  ident: 10.1016/j.geoderma.2018.12.042_bb0050
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 51
  start-page: 350
  year: 2013
  ident: 10.1016/j.geoderma.2018.12.042_bb0370
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.023
– volume: 9
  start-page: 3533
  year: 2016
  ident: 10.1016/j.geoderma.2018.12.042_bb0405
  article-title: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-3533-2016
– volume: 32
  start-page: 2179
  issue: 7
  year: 2018
  ident: 10.1016/j.geoderma.2018.12.042_bb0275
  article-title: Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-018-1518-0
– start-page: 167
  year: 1982
  ident: 10.1016/j.geoderma.2018.12.042_bb0395
– volume: 77
  start-page: 802
  year: 2008
  ident: 10.1016/j.geoderma.2018.12.042_bb0135
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 111
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2018.12.042_bb0290
  article-title: The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.05.047
– volume: 29
  start-page: 4035
  issue: 11
  year: 2018
  ident: 10.1016/j.geoderma.2018.12.042_bb0020
  article-title: Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3151
– volume: 82
  start-page: 1231
  issue: 2
  year: 2016
  ident: 10.1016/j.geoderma.2018.12.042_bb0375
  article-title: Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2239-7
– volume: 114
  start-page: 129
  year: 2010
  ident: 10.1016/j.geoderma.2018.12.042_bb0410
  article-title: Optimal landslide susceptibility zonation based on multiple forecasts
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.06.020
– year: 2016
  ident: 10.1016/j.geoderma.2018.12.042_bb0320
  article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-5049-6
– year: 2011
  ident: 10.1016/j.geoderma.2018.12.042_bb0075
– volume: 221
  start-page: 1119
  issue: 8
  year: 2010
  ident: 10.1016/j.geoderma.2018.12.042_bb0010
  article-title: Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2010.01.007
– volume: 330
  start-page: 65
  year: 2018
  ident: 10.1016/j.geoderma.2018.12.042_bb0155
  article-title: Comparison of the different resolution and source of controlling factors for gully erosion susceptibility mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.027
– volume: 7
  start-page: 1857
  year: 2014
  ident: 10.1016/j.geoderma.2018.12.042_bb0365
  article-title: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran)
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0825-x
– volume: 188
  start-page: 315
  year: 2007
  ident: 10.1016/j.geoderma.2018.12.042_bb9000
  article-title: Martian gullies in the southern mid-latitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography
  publication-title: Icarus
  doi: 10.1016/j.icarus.2006.11.020
– volume: 2
  issue: 1
  year: 2015
  ident: 10.1016/j.geoderma.2018.12.042_bb0230
  article-title: Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India
  publication-title: Modell. Earth Syst. Environ.
– volume: 37
  start-page: 393
  issue: 3–4
  year: 1999
  ident: 10.1016/j.geoderma.2018.12.042_bb0450
  article-title: Method to predict cropland ephemeral gully erosion
  publication-title: Catena
  doi: 10.1016/S0341-8162(99)00028-4
– volume: 22
  start-page: 1350
  year: 1986
  ident: 10.1016/j.geoderma.2018.12.042_bb0300
  article-title: Sediment transport capacity of sheet and rill flow: application of unit stream power theory
  publication-title: Water Resour. Res.
  doi: 10.1029/WR022i008p01350
– volume: 101
  start-page: 271
  issue: 4
  year: 2010
  ident: 10.1016/j.geoderma.2018.12.042_bb0240
  article-title: Boruta–a system for feature selection
  publication-title: Fundam. Inform.
  doi: 10.3233/FI-2010-288
– volume: 204
  start-page: 399
  year: 2014
  ident: 10.1016/j.geoderma.2018.12.042_bb0110
  article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.021
– volume: 88
  start-page: 2783
  year: 2007
  ident: 10.1016/j.geoderma.2018.12.042_bb0120
  article-title: Random forest for classification in ecology
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– year: 2009
  ident: 10.1016/j.geoderma.2018.12.042_bb0310
– volume: 1
  start-page: 324
  issue: 4
  year: 2004
  ident: 10.1016/j.geoderma.2018.12.042_bb0220
  article-title: Combining bagging and boosting
  publication-title: Int. J. Comput. Intell.
– volume: 50
  start-page: 91
  issue: 2–4
  year: 2003
  ident: 10.1016/j.geoderma.2018.12.042_bb0345
  article-title: Gully erosion and environmental change: importance and research needs
  publication-title: Catena
  doi: 10.1016/S0341-8162(02)00143-1
– volume: 63
  start-page: 826
  year: 2010
  ident: 10.1016/j.geoderma.2018.12.042_bb0445
  article-title: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/j.jclinepi.2009.11.020
– volume: 615
  start-page: 438
  year: 2018
  ident: 10.1016/j.geoderma.2018.12.042_bb0385
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.262
– volume: 38
  start-page: 8208
  year: 2011
  ident: 10.1016/j.geoderma.2018.12.042_bb0415
  article-title: Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.167
– volume: 110
  start-page: 1014
  year: 2005
  ident: 10.1016/j.geoderma.2018.12.042_bb0200
  article-title: Implication of bank failures and fluvial erosion for gully development: field observation and modeling
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JF000145
– volume: 20
  start-page: 535
  issue: 5
  year: 2009
  ident: 10.1016/j.geoderma.2018.12.042_bb0170
  article-title: Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.931
– volume: 30
  start-page: 662
  issue: 6
  year: 2015
  ident: 10.1016/j.geoderma.2018.12.042_bb0350
  article-title: Assessment of a data driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2014.966161
– volume: 157
  start-page: 189
  year: 2002
  ident: 10.1016/j.geoderma.2018.12.042_bb0255
  article-title: GRASP: generalized regression analysis and spatial prediction
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(02)00195-3
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.geoderma.2018.12.042_bb0265
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 63
  start-page: 318
  issue: 2–3
  year: 2005
  ident: 10.1016/j.geoderma.2018.12.042_bb0085
  article-title: Dynamic modelling for linear erosion initiation and development under climate and land-use changes in northern Laos
  publication-title: Catena
  doi: 10.1016/j.catena.2005.06.008
– volume: 298
  start-page: 118
  year: 2017
  ident: 10.1016/j.geoderma.2018.12.042_bb0380
  article-title: Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.09.006
– volume: 30
  start-page: 1925
  year: 2002
  ident: 10.1016/j.geoderma.2018.12.042_bb0430
  article-title: Fundamental quantitative methods of slope instability
  publication-title: Water Resour. Res.
– volume: 22
  start-page: 1365
  issue: 9
  year: 2003
  ident: 10.1016/j.geoderma.2018.12.042_bb0150
  article-title: Multiple additive regression trees with application in epidemiology
  publication-title: Stat. Med.
  doi: 10.1002/sim.1501
– volume: 6
  start-page: 48
  year: 2015
  ident: 10.1016/j.geoderma.2018.12.042_bb0180
  article-title: Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review
  publication-title: Front. Microbiol.
– start-page: 143
  year: 1997
  ident: 10.1016/j.geoderma.2018.12.042_bb0205
  article-title: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization
– volume: 340
  start-page: 7
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2018.12.042_bb9005
  article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0425-z
SSID ssj0017020
Score 2.6189613
Snippet The Maharloo watershed has witnessed many gullies in the recent due to the specific topo-climatic conditions and man-made activities in that area. The present...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 55
SubjectTerms algorithms
artificial intelligence
Boruta algorithm
clay
computer software
data collection
drainage
Evidential belief function
geographic information systems
Gully erosion
Integrating GIS and R
Iran
land use
Machine learning
normalized difference vegetation index
prediction
rain
ravines
rivers
roads
sand
silt
soil properties
surveys
watershed management
watersheds
Title Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms
URI https://dx.doi.org/10.1016/j.geoderma.2018.12.042
https://www.proquest.com/docview/2220844810
Volume 340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqcoED4lcUaGUkrmHjxHbs47ZqtYDoiUq9WXYyCam6SbWbPXDpy_RFmck6W0BCPXCM40kcz3jmm3g8w9hHVemQhUokXkOdSF96XHMQklrpOiMbXgE5it_O9eJCfrlUl3vsZDoLQ2GVUfdvdfqorWPLLM7m7KZt6Yyv0AWaIxRKxPQ5pd2WsiAp_3S7C_MQRRpTMwqdUO_fTglfIY-o4NiYf0iY8begzP5loP5S1aP9OXvGnkbgyOfbsT1ne9C9YE_mzSomz4CX7G6-S7PJ-5ojtOPtcsTX-FXU0qC_-ZMDvhe5wbehHKjteCy6wykIvuHH_WozeO6vm37VDj-W3HcVb4c1X1P0NY5hrJ5DPenG0lOGhybSDigagG0UoQk8lqRo7p-1fsUuzk6_nyySWIQh8bk2QwKy8rkCW8uqULLMLDptCpCJ6FoGZUprq4Coy-tS-JBajwjUS20EVDrXYEP-mu13fQdvGA-oT6yxWSprKW0KpigQ7xhtSjpBDOKAqWnmXRkzlFOhjGs3haJduYljjjjmROaQYwdstqO72eboeJDCTox1f0ibQ0PyIO2HSRIcLkXaX_Ed9Ju1Q6iVGnR3Rfr2P57_jj3Gq3HHSqj3bH9YbeAQgc8QjkbJPmKP5p-_Ls5_AXU6Bxc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFOU8jASHMPGie3YBw7Lo9rSx6mVejN2Mgmpukm1yarqhT_DT-APMs46y0NCPaBenYxjzYxnvonHM4S8FoV0iStYZCWUEbe5xT0HLiqFLBPvwwvwgeLBoZwd888n4mSD_Bjvwvi0ymD7VzZ9sNZhZBK4OTmva3_Hl8kM3REqJWL6VIbMyj24vMC4rXu3-xGF_CZJdj4dfZhFobVAZFOp-gh4YVMBuuRFJnieaAxFBODSMGByQuVaFw6xhJU5sy7WFnGV5VIxKGQqQbsU571BbnI0F75twttv67wSlsWhFiSTkV_eb9eST1EpfIezoeARU8N_SJ78yyP-5RsGh7dzj9wNSJVOV8y4TzageUDuTKtFqNYBD8n36bquJ21LiliS1vMB0CMb_UiFAe4lBfwuip-uckfQvNLQ5Yf6rPuKvm8Xy95Se1a1i7r_Oqe2KWjdd7Tz6d64hqFdj3_TP5hbX1KiCrQ96iLgmE8JBRp6YFS_5uoekeNrEc1jstm0DTwh1KEB00onMS851zGoLEOApaTK_ZVlYFtEjJw3eSiJ7jtznJkx9-3UjBIzXmKGJQYltkUma7rzVVGQKyn0KFjzh3ob9FxX0r4aNcHg3vcHOraBdtkZxHaxwviaxU__Y_6X5Nbs6GDf7O8e7m2T2_hkOC5j4hnZ7BdLeI6oq3cvBi2n5Mt1b6ufu29ByQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+importance+of+gully+erosion+effective+factors+using+Boruta+algorithm+and+its+spatial+modeling+and+mapping+using+three+machine+learning+algorithms&rft.jtitle=Geoderma&rft.au=Amiri%2C+Mahdis&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Ghanbarian%2C+Gholam+Abbas&rft.au=Afzali%2C+Sayed+Fakhreddin&rft.date=2019-04-15&rft.issn=0016-7061&rft.volume=340+p.55-69&rft.spage=55&rft.epage=69&rft_id=info:doi/10.1016%2Fj.geoderma.2018.12.042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon