Combination of Convolutional Neural Networks and Recurrent Neural Networks for predicting soil properties using Vis–NIR spectroscopy
•Combining the advantages of CNN and RNN for Vis-NIR spectral analysis.•Developing a joined CNN and RNN model called CCNVR for predicting soil properties.•CCNVR exhibits great superiority in the prediction accuracy and robustness to noise.•CCNVR shows good transferability across different soil types...
Saved in:
Published in | Geoderma Vol. 380; p. 114616 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Combining the advantages of CNN and RNN for Vis-NIR spectral analysis.•Developing a joined CNN and RNN model called CCNVR for predicting soil properties.•CCNVR exhibits great superiority in the prediction accuracy and robustness to noise.•CCNVR shows good transferability across different soil types and sample sizes.
Visible and Near-infrared diffuse reflectance spectroscopy (Vis–NIR) serves as a rapid and non-destructive technique to estimate various soil properties. Recently, there is a growing need for developing a more accurate and robust calibration model in large soil spectral libraries to support the implementation of effective soil quality assessments and digital soil maps at national, continental and even global scales. Traditional calibration methods, such as partial least squares regression (PLSR), support vector machines regression(SVMR), multivariate adaptive regression splines(MARS), random forests(RF), and artificial neural networks (ANN), may not be successfully applied in large spectral libraries due to their relatively weak generation performance in large regions. To overcome these weaknesses, we proposed a jointed Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) architecture called CCNVR, which combines the ability of CNN to extract the local and abstract features from the raw spectrum with the advantage of RNN to learn various dependencies of sequence features. We then compared the prediction accuracy of CCNVR with other conventional methods, namely, PLSR, SVMR, CNN, ANN, and RNN, on the selected soil properties of mineral soil samples in the Land Use/Land Cover Area Frame Survey (LUCAS) database. Of all calibration models, our proposed CCNVR achieved the best model performance with the lowest RMSE value (6.40, 0.45, 3.30, and 0.35 for OC, N, CEC, and pH, respectively) and the highest R2 (0.73, 0.70, 0.73, and 0.86 for OC, N, CEC, and pH, respectively) for the selected properties, indicating the outstanding prediction ability of our proposed model. Besides, to quantify the robustness of different calibration models, we added different levels of white noise on the original Vis–NIR spectra of the calibration set to observe how the prediction accuracy changes in the test set. The result showed that our proposed CCNVR model has a better resistance towards noise compared to other calibration models. Finally, we explored the transferability of our proposed CCNVR model. We extended the calibration model trained on the mineral samples to the organic samples through transfer learning. The result revealed that the transfer-based CCNVR fine-tuning model had a better prediction accuracy than that of the non-transfer CCNVR model with an improvement of R2 value from 0.79 to 0.84. The result demonstrated the excellent transferability of our proposed CCNVR model across different soil types and sample sizes. |
---|---|
AbstractList | Visible and Near-infrared diffuse reflectance spectroscopy (Vis–NIR) serves as a rapid and non-destructive technique to estimate various soil properties. Recently, there is a growing need for developing a more accurate and robust calibration model in large soil spectral libraries to support the implementation of effective soil quality assessments and digital soil maps at national, continental and even global scales. Traditional calibration methods, such as partial least squares regression (PLSR), support vector machines regression(SVMR), multivariate adaptive regression splines(MARS), random forests(RF), and artificial neural networks (ANN), may not be successfully applied in large spectral libraries due to their relatively weak generation performance in large regions. To overcome these weaknesses, we proposed a jointed Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) architecture called CCNVR, which combines the ability of CNN to extract the local and abstract features from the raw spectrum with the advantage of RNN to learn various dependencies of sequence features. We then compared the prediction accuracy of CCNVR with other conventional methods, namely, PLSR, SVMR, CNN, ANN, and RNN, on the selected soil properties of mineral soil samples in the Land Use/Land Cover Area Frame Survey (LUCAS) database. Of all calibration models, our proposed CCNVR achieved the best model performance with the lowest RMSE value (6.40, 0.45, 3.30, and 0.35 for OC, N, CEC, and pH, respectively) and the highest R2 (0.73, 0.70, 0.73, and 0.86 for OC, N, CEC, and pH, respectively) for the selected properties, indicating the outstanding prediction ability of our proposed model. Besides, to quantify the robustness of different calibration models, we added different levels of white noise on the original Vis–NIR spectra of the calibration set to observe how the prediction accuracy changes in the test set. The result showed that our proposed CCNVR model has a better resistance towards noise compared to other calibration models. Finally, we explored the transferability of our proposed CCNVR model. We extended the calibration model trained on the mineral samples to the organic samples through transfer learning. The result revealed that the transfer-based CCNVR fine-tuning model had a better prediction accuracy than that of the non-transfer CCNVR model with an improvement of R2 value from 0.79 to 0.84. The result demonstrated the excellent transferability of our proposed CCNVR model across different soil types and sample sizes. •Combining the advantages of CNN and RNN for Vis-NIR spectral analysis.•Developing a joined CNN and RNN model called CCNVR for predicting soil properties.•CCNVR exhibits great superiority in the prediction accuracy and robustness to noise.•CCNVR shows good transferability across different soil types and sample sizes. Visible and Near-infrared diffuse reflectance spectroscopy (Vis–NIR) serves as a rapid and non-destructive technique to estimate various soil properties. Recently, there is a growing need for developing a more accurate and robust calibration model in large soil spectral libraries to support the implementation of effective soil quality assessments and digital soil maps at national, continental and even global scales. Traditional calibration methods, such as partial least squares regression (PLSR), support vector machines regression(SVMR), multivariate adaptive regression splines(MARS), random forests(RF), and artificial neural networks (ANN), may not be successfully applied in large spectral libraries due to their relatively weak generation performance in large regions. To overcome these weaknesses, we proposed a jointed Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) architecture called CCNVR, which combines the ability of CNN to extract the local and abstract features from the raw spectrum with the advantage of RNN to learn various dependencies of sequence features. We then compared the prediction accuracy of CCNVR with other conventional methods, namely, PLSR, SVMR, CNN, ANN, and RNN, on the selected soil properties of mineral soil samples in the Land Use/Land Cover Area Frame Survey (LUCAS) database. Of all calibration models, our proposed CCNVR achieved the best model performance with the lowest RMSE value (6.40, 0.45, 3.30, and 0.35 for OC, N, CEC, and pH, respectively) and the highest R2 (0.73, 0.70, 0.73, and 0.86 for OC, N, CEC, and pH, respectively) for the selected properties, indicating the outstanding prediction ability of our proposed model. Besides, to quantify the robustness of different calibration models, we added different levels of white noise on the original Vis–NIR spectra of the calibration set to observe how the prediction accuracy changes in the test set. The result showed that our proposed CCNVR model has a better resistance towards noise compared to other calibration models. Finally, we explored the transferability of our proposed CCNVR model. We extended the calibration model trained on the mineral samples to the organic samples through transfer learning. The result revealed that the transfer-based CCNVR fine-tuning model had a better prediction accuracy than that of the non-transfer CCNVR model with an improvement of R2 value from 0.79 to 0.84. The result demonstrated the excellent transferability of our proposed CCNVR model across different soil types and sample sizes. |
ArticleNumber | 114616 |
Author | Yang, Jiechao Wang, Xuelei Wang, Ruihua Wang, Huanjie |
Author_xml | – sequence: 1 givenname: Jiechao surname: Yang fullname: Yang, Jiechao email: yangjiechao2018@ia.ac.cn organization: University of Chinese Academy of Sciences, School of Artificial Intelligence, Beijing 100049, China – sequence: 2 givenname: Xuelei surname: Wang fullname: Wang, Xuelei email: xuelei.wang@ia.ac.cn organization: Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China – sequence: 3 givenname: Ruihua surname: Wang fullname: Wang, Ruihua email: wangruihua2019@ia.ac.cn organization: University of Chinese Academy of Sciences, School of Artificial Intelligence, Beijing 100049, China – sequence: 4 givenname: Huanjie surname: Wang fullname: Wang, Huanjie email: wanghuanjie2018@ia.ac.cn organization: University of Chinese Academy of Sciences, School of Artificial Intelligence, Beijing 100049, China |
BookMark | eNqFkM1O3DAUha0KpA7QV6i87CbT2EnsRGIBGvEnISoh1K11x75BnmbsYDsgdqx4gb4hT4KHgU27YHV17j3n6ujbIzvOOyTkOyvnrGTi52p-i95gWMOclzwvWS2Y-EJmrJW8ELzpdsiszM5CloJ9JXsxrrKU2Tsjzwu_XloHyXpHfU8X3t37YdpIGOgVTuFtpAcf_kQKztBr1FMI6NJ_194HOgY0Vifrbmn0dsjajxiSxUinuNn-tvHl6e_VxTWNI-oUfNR-fDwguz0MEb-9z31yc3pyszgvLn-dXSyOLwuoRJsKA9yYSpe8gaqFWtYcOqm7hksAIcGIqjdVPjVVvWx71rJK8rqBBpbdktey2ic_tm9zrbsJY1JrGzUOAzj0U1S8aVjHmWQiWw-3Vp0rxoC90ja9YUoB7KBYqTb01Up90Fcb-mpLP8fFP_Ex2DWEx8-DR9sgZgz3FoOK2qLTGWvIvJTx9rMXrx8OqTk |
CitedBy_id | crossref_primary_10_1039_D4EM00605D crossref_primary_10_1016_j_geoderma_2023_116555 crossref_primary_10_1016_j_geoderma_2024_117127 crossref_primary_10_1080_15481603_2020_1857623 crossref_primary_10_1080_09540091_2022_2052264 crossref_primary_10_1016_j_fuel_2021_122121 crossref_primary_10_3390_rs14194962 crossref_primary_10_1016_j_sab_2024_107000 crossref_primary_10_3390_rs16111964 crossref_primary_10_1016_j_microc_2024_111310 crossref_primary_10_1007_s41748_024_00564_0 crossref_primary_10_1016_j_compag_2023_108561 crossref_primary_10_1016_j_compag_2024_108643 crossref_primary_10_17221_94_2022_SWR crossref_primary_10_1016_j_ecolind_2024_111843 crossref_primary_10_3390_rs16040688 crossref_primary_10_1177_09670335231173140 crossref_primary_10_1007_s11368_023_03647_z crossref_primary_10_1016_j_scitotenv_2021_146253 crossref_primary_10_1016_j_jfca_2024_105996 crossref_primary_10_1016_j_saa_2022_122003 crossref_primary_10_1007_s13131_024_2437_1 crossref_primary_10_3390_rs13020305 crossref_primary_10_1016_j_envres_2023_117790 crossref_primary_10_1016_j_still_2021_105223 crossref_primary_10_1109_LGRS_2024_3389671 crossref_primary_10_3390_foods11152210 crossref_primary_10_3390_s22249764 crossref_primary_10_1080_05704928_2024_2369570 crossref_primary_10_1016_j_compag_2024_109761 crossref_primary_10_1002_jrs_6435 crossref_primary_10_1038_s41598_021_02564_w crossref_primary_10_1016_j_saa_2024_123966 crossref_primary_10_1016_j_catena_2022_106552 crossref_primary_10_1080_10408398_2025_2474183 crossref_primary_10_1016_j_chemosphere_2023_139161 crossref_primary_10_1016_j_conbuildmat_2022_128799 crossref_primary_10_1111_ejss_13271 crossref_primary_10_1016_j_saa_2023_122452 crossref_primary_10_3390_s22093187 crossref_primary_10_1016_j_tifs_2021_04_008 crossref_primary_10_1007_s12145_023_01168_4 crossref_primary_10_1016_j_earscirev_2023_104501 crossref_primary_10_1007_s13369_022_07575_x crossref_primary_10_1016_j_saa_2022_121441 crossref_primary_10_2174_1570164619666221010100406 crossref_primary_10_1007_s10661_024_12817_6 crossref_primary_10_1016_j_saa_2023_122371 crossref_primary_10_1371_journal_pone_0253385 crossref_primary_10_1016_j_seh_2024_100113 crossref_primary_10_1016_j_compag_2023_108067 crossref_primary_10_3390_s24144728 crossref_primary_10_1016_j_rse_2022_113166 crossref_primary_10_1016_j_engappai_2024_109140 crossref_primary_10_1016_j_compag_2023_108427 crossref_primary_10_1016_j_geoderma_2024_117037 crossref_primary_10_2139_ssrn_3969122 crossref_primary_10_3389_fenvs_2021_809995 crossref_primary_10_1016_j_infrared_2024_105162 crossref_primary_10_1016_j_saa_2022_121133 crossref_primary_10_1038_s41598_021_96772_z crossref_primary_10_1177_00037028231203249 crossref_primary_10_1016_j_microc_2024_111815 crossref_primary_10_1016_j_still_2023_105684 crossref_primary_10_3390_agronomy13112816 crossref_primary_10_1016_j_catena_2023_107200 crossref_primary_10_3390_rs16132353 crossref_primary_10_1080_07038992_2022_2056435 crossref_primary_10_17221_133_2022_SWR crossref_primary_10_1016_j_compag_2023_108271 crossref_primary_10_1109_LGRS_2023_3304749 crossref_primary_10_3390_agriculture12081188 crossref_primary_10_1016_j_compag_2023_108350 crossref_primary_10_1016_j_asr_2025_01_048 crossref_primary_10_1080_00103624_2024_2406484 crossref_primary_10_3390_w13050664 crossref_primary_10_1016_j_geoderma_2024_116903 crossref_primary_10_3390_app142411687 crossref_primary_10_1088_1361_6501_acd8e2 crossref_primary_10_3390_rs14030740 crossref_primary_10_1007_s10812_021_01185_5 crossref_primary_10_1016_j_ijmecsci_2024_109110 crossref_primary_10_3390_app131810484 |
Cites_doi | 10.1016/j.saa.2018.10.028 10.1016/j.compag.2007.03.011 10.1109/CVPR.2016.91 10.1109/MSP.2012.2205597 10.1366/0003702894202201 10.3390/rs9111099 10.1016/j.geoderma.2009.12.021 10.2136/sssaj2001.652480x 10.1109/TPAMI.2013.50 10.1016/j.compag.2014.11.019 10.1038/nature14539 10.1162/neco.1997.9.8.1735 10.1016/j.biosystemseng.2016.04.018 10.1016/j.geodrs.2018.e00198 10.1109/ICASSP.2011.5947611 10.3390/s18093169 10.1016/j.soilbio.2013.10.022 10.1109/TPAMI.2015.2437384 10.1016/j.chemolab.2018.08.001 10.1016/j.trac.2009.07.007 10.1111/ejss.12272 10.1016/j.geoderma.2009.12.025 10.1109/5.726791 10.3115/v1/D14-1179 10.1002/jrs.5750 10.2136/sssaj1995.03615995005900020014x 10.1016/j.geoderma.2006.07.004 10.1002/cem.2977 10.1109/ICASSP.2016.7472618 10.1016/j.geoderma.2009.11.032 10.1016/0022-2496(77)90033-5 10.1016/j.geoderma.2019.01.009 10.1109/CVPR.2016.90 10.1016/j.geoderma.2019.06.016 10.1109/TPAMI.2016.2598339 10.1016/j.geoderma.2005.03.007 10.1111/j.1365-2389.2011.01358.x 10.1016/j.geoderma.2011.08.001 10.1109/MCI.2018.2840738 10.1016/j.geodrs.2019.e00233 10.1016/j.still.2015.07.021 10.1371/journal.pone.0066409 10.1109/ICASSP.2013.6638947 10.1016/j.aca.2019.01.002 10.1126/science.1127647 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114616 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114616 S0016706120301415 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-a368t-da2dd3c025a38a4742a97c9527aa67ad63fd3a38534b8f18137245a5ab9b2473 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Mon Jul 21 11:48:52 EDT 2025 Tue Jul 01 04:04:53 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Fri Feb 23 02:47:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Convolutional Neural Network Soil properties estimation Vis–NIR spectroscopy Recurrent Neural Network Transfer learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-da2dd3c025a38a4742a97c9527aa67ad63fd3a38534b8f18137245a5ab9b2473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2551921716 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551921716 crossref_citationtrail_10_1016_j_geoderma_2020_114616 crossref_primary_10_1016_j_geoderma_2020_114616 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114616 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-15 |
PublicationDateYYYYMMDD | 2020-12-15 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lecun, Bottou, Bengio, Haffner (b0115) 1998; 86 Saaty (b0210) 1977; 15 Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of Machine Learning Research(PMLR), pp. 448–456. Qi, Paz-Kagan, Karnieli, Li (b0180) 2017; 9 Malek, Melgani, Bazi (b0130) 2018; 32 Padarian, Minasny, McBratney (b0170) 2019; 16 Vohland, Besold, Hill, Frund (b0255) 2011; 166 Shi, Ji, Viscarra Rossel, Chen, Zhou (b0220) 2015; 66 Viscarra Rossel, McGlynn, McBratney (b0250) 2006; 137 Rossel, Walvoort, McBratney, Janik, Skjemstad (b0200) 2006; 131 Rinnan, Van Den Berg, Engelsen (b0190) 2009; 28 Glorot, Bordes, Bengio (b0045) 2011 Nocita, Stevens, Toth, Panagos, van Wesemael, Montanarella (b0160) 2014; 68 Ng, Minasny, Montazerolghaem, Padarian, Ferguson, Bailey, McBratney (b0150) 2019; 352 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0230) 2014; 15 Bengio, Courville, Vincent (b0015) 2013; 35 Hochreiter, Schmidhuber (b0090) 1997; 9 Ben-Dor, Banin (b0010) 1995; 59 Karpathy, A., Li, F.F., 2015. Deep visual-semantic alignments for generating image descriptions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3128–3137. https://doi.org/10.1109/TPAMI.2016.2598339. Chollet, F., et al., 2015. Keras. URL: https://keras.io. Stevens, Nocita, Tóth, Montanarella, van Wesemael (b0240) 2013; 8 Chang, Laird, Mausbach, Hurburgh (b0020) 2001; 65 Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27 (NIPS 2014) 27, 3104–3112. Liu, Ji, Buchroithner (b0125) 2018; 18 Wang, Huang, Liu, Lin, Li, Wang, Ge (b0260) 2015; 111 Ross, Jeff, Trevor, Jitendra (b0205) 2016; 38 LeCun, Bengio, Hinton (b0120) 2015; 521 Yuanyuan, Zhibin (b0280) 2018; 181 Hinton, Salakhutdinov (b0080) 2006; 313 Zhang, R., Xie, H., Cai, S., Hu, Y., Liu, G.k., Hong, W., Tian, Z.q., 2020. Transfer-learning-based raman spectra identification. Journal of Raman Spectroscopy 51, 176–186. https://doi.org/10.1002/jrs.5750. Barnes, Dhanoa, Lister (b0005) 1989; 43 Zhang, Lin, Xu, Luo, Ying (b0285) 2019; 1058 Kuang, Mouazen (b0110) 2011; 62 Singh, Kasana (b0225) 2019; 18 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (b0085) 2012; 29 Mikolov, T., Karafiat, M., Burget, L., Cernock++, J., Khudanpur, S., 2010. Recurrent neural network based language model. In: Conference of the International Speech Communication Association, pp. 1045–1048. He, Huang, Garcia, Hernandez, Song (b0065) 2007; 58 Padarian, Minasny, McBratney (b0165) 2019; 340 Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. https://doi.org/10.1109/Cvpr.2016.91. Stevens, Udelhoven, Denis, Tychon, Lioy, Hoffmann, van Wesemael (b0235) 2010; 158 Ni, Wang, Tao (b0155) 2019; 209 Rossel, Behrens (b0195) 2010; 158 Wrb, I.W.G., Isric, F., 2006. World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome. Krizhevsky, Sutskever, Hinton (b0105) 2012; 141 Chollet (b0030) 2017 Guerrero, Zornoza, Gomez, Mataix-Beneyto (b0055) 2010; 158 Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using rnn encoder–decoder for statistical machine translation, in: Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), pp. 1724–1734. Dzmitry, B., Jan, C., Dmitriy, S., Philemon, B., Yoshua, B., 2016. End-to-end attention-based large vocabulary speech recognition. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949. https://doi.org/10.1109/ICASSP.2016.7472618. Graves, A., Mohamed, A.R., Hinton, G., 2013. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. https://doi.org/10.1109/ICASSP.2013.6638947. He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J., 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. https://doi.org/10.1109/Cvpr.2016.90. Nawar, Buddenbaum, Hill, Kozak, Mouazen (b0145) 2016; 155 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0175) 2011; 12 Sandler, Howard, Zhu, Zhmoginov, Chen (b0215) 2018 Guo, J., Li, Y., Lin, W., Chen, Y., Li, J., 2018. Network decoupling: From regular to depthwise separable convolutions. arXiv preprint arXiv:1808.05517 https://arxiv.org/abs/1808.05517. Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., Blunsom, P., 2015. Teaching machines to read and comprehend. Advances in Neural Information Processing Systems 28 (NIPS 2015) 28, 1693–1701. http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf. Young, Hazarika, Poria, Cambria (b0275) 2018; 13 Morellos, Pantazi, Moshou, Alexandridis, Whetton, Tziotzios, Wiebensohn, Bill, Mouazen (b0140) 2016; 152 Weimer, Karatzoglou, Le, Smola (b0265) 2008 Barnes (10.1016/j.geoderma.2020.114616_b0005) 1989; 43 Glorot (10.1016/j.geoderma.2020.114616_b0045) 2011 10.1016/j.geoderma.2020.114616_b0245 Shi (10.1016/j.geoderma.2020.114616_b0220) 2015; 66 Stevens (10.1016/j.geoderma.2020.114616_b0235) 2010; 158 Ng (10.1016/j.geoderma.2020.114616_b0150) 2019; 352 10.1016/j.geoderma.2020.114616_b0050 10.1016/j.geoderma.2020.114616_b0095 Viscarra Rossel (10.1016/j.geoderma.2020.114616_b0250) 2006; 137 He (10.1016/j.geoderma.2020.114616_b0065) 2007; 58 Hinton (10.1016/j.geoderma.2020.114616_b0080) 2006; 313 10.1016/j.geoderma.2020.114616_b0290 LeCun (10.1016/j.geoderma.2020.114616_b0120) 2015; 521 Padarian (10.1016/j.geoderma.2020.114616_b0170) 2019; 16 Ni (10.1016/j.geoderma.2020.114616_b0155) 2019; 209 Saaty (10.1016/j.geoderma.2020.114616_b0210) 1977; 15 10.1016/j.geoderma.2020.114616_b0135 Liu (10.1016/j.geoderma.2020.114616_b0125) 2018; 18 10.1016/j.geoderma.2020.114616_b0060 Pedregosa (10.1016/j.geoderma.2020.114616_b0175) 2011; 12 Malek (10.1016/j.geoderma.2020.114616_b0130) 2018; 32 Padarian (10.1016/j.geoderma.2020.114616_b0165) 2019; 340 Nawar (10.1016/j.geoderma.2020.114616_b0145) 2016; 155 Sandler (10.1016/j.geoderma.2020.114616_b0215) 2018 Chollet (10.1016/j.geoderma.2020.114616_b0030) 2017 Guerrero (10.1016/j.geoderma.2020.114616_b0055) 2010; 158 Vohland (10.1016/j.geoderma.2020.114616_b0255) 2011; 166 Ben-Dor (10.1016/j.geoderma.2020.114616_b0010) 1995; 59 Yuanyuan (10.1016/j.geoderma.2020.114616_b0280) 2018; 181 Bengio (10.1016/j.geoderma.2020.114616_b0015) 2013; 35 Nocita (10.1016/j.geoderma.2020.114616_b0160) 2014; 68 Ross (10.1016/j.geoderma.2020.114616_b0205) 2016; 38 10.1016/j.geoderma.2020.114616_b0025 Morellos (10.1016/j.geoderma.2020.114616_b0140) 2016; 152 10.1016/j.geoderma.2020.114616_b0185 Singh (10.1016/j.geoderma.2020.114616_b0225) 2019; 18 10.1016/j.geoderma.2020.114616_b0100 Krizhevsky (10.1016/j.geoderma.2020.114616_b0105) 2012; 141 10.1016/j.geoderma.2020.114616_b0270 Rinnan (10.1016/j.geoderma.2020.114616_b0190) 2009; 28 Lecun (10.1016/j.geoderma.2020.114616_b0115) 1998; 86 Wang (10.1016/j.geoderma.2020.114616_b0260) 2015; 111 10.1016/j.geoderma.2020.114616_b0070 Stevens (10.1016/j.geoderma.2020.114616_b0240) 2013; 8 Qi (10.1016/j.geoderma.2020.114616_b0180) 2017; 9 Rossel (10.1016/j.geoderma.2020.114616_b0195) 2010; 158 Hinton (10.1016/j.geoderma.2020.114616_b0085) 2012; 29 Young (10.1016/j.geoderma.2020.114616_b0275) 2018; 13 Chang (10.1016/j.geoderma.2020.114616_b0020) 2001; 65 10.1016/j.geoderma.2020.114616_b0035 Rossel (10.1016/j.geoderma.2020.114616_b0200) 2006; 131 Hochreiter (10.1016/j.geoderma.2020.114616_b0090) 1997; 9 Kuang (10.1016/j.geoderma.2020.114616_b0110) 2011; 62 10.1016/j.geoderma.2020.114616_b0075 Srivastava (10.1016/j.geoderma.2020.114616_b0230) 2014; 15 10.1016/j.geoderma.2020.114616_b0040 Weimer (10.1016/j.geoderma.2020.114616_b0265) 2008 Zhang (10.1016/j.geoderma.2020.114616_b0285) 2019; 1058 |
References_xml | – volume: 340 start-page: 279 year: 2019 end-page: 288 ident: b0165 article-title: Transfer learning to localise a continental soil vis-nir calibration model publication-title: Geoderma – reference: Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., Blunsom, P., 2015. Teaching machines to read and comprehend. Advances in Neural Information Processing Systems 28 (NIPS 2015) 28, 1693–1701. http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0230 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – reference: Zhang, R., Xie, H., Cai, S., Hu, Y., Liu, G.k., Hong, W., Tian, Z.q., 2020. Transfer-learning-based raman spectra identification. Journal of Raman Spectroscopy 51, 176–186. https://doi.org/10.1002/jrs.5750. – reference: Wrb, I.W.G., Isric, F., 2006. World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome. – reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of Machine Learning Research(PMLR), pp. 448–456. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0175 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research – reference: Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using rnn encoder–decoder for statistical machine translation, in: Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), pp. 1724–1734. – volume: 59 start-page: 364 year: 1995 end-page: 372 ident: b0010 article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Science Society of America Journal – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b0080 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 13 start-page: 55 year: 2018 end-page: 75 ident: b0275 article-title: Recent trends in deep learning based natural language processing publication-title: IEEE Computational Intelligence Magazine – volume: 141 start-page: 1097 year: 2012 end-page: 1105 ident: b0105 article-title: Imagenet classification with deep convolutional neural networks publication-title: Neural Information Processing Systems – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b0115 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – reference: Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27 (NIPS 2014) 27, 3104–3112. – volume: 152 start-page: 104 year: 2016 end-page: 116 ident: b0140 article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using vis-nir spectroscopy publication-title: Biosystems Engineering – reference: Dzmitry, B., Jan, C., Dmitriy, S., Philemon, B., Yoshua, B., 2016. End-to-end attention-based large vocabulary speech recognition. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949. https://doi.org/10.1109/ICASSP.2016.7472618. – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: b0085 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Processing Magazine – volume: 158 start-page: 46 year: 2010 end-page: 54 ident: b0195 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma – volume: 65 start-page: 480 year: 2001 end-page: 490 ident: b0020 article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties publication-title: Soil Science Society of America Journal – volume: 62 start-page: 629 year: 2011 end-page: 636 ident: b0110 article-title: Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three european farms publication-title: European Journal of Soil Science – volume: 28 start-page: 1201 year: 2009 end-page: 1222 ident: b0190 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC Trends in Analytical Chemistry – volume: 9 start-page: 1099 year: 2017 ident: b0180 article-title: Linear multi-task learning for predicting soil properties using field spectroscopy publication-title: Remote Sensing – volume: 15 start-page: 234 year: 1977 end-page: 281 ident: b0210 article-title: A scaling method for priorities in hierarchical structures publication-title: Journal of Mathematical Psychology – volume: 209 start-page: 32 year: 2019 end-page: 39 ident: b0155 article-title: Variable weighted convolutional neural network for the nitrogen content quantization of masson pine seedling leaves with near-infrared spectroscopy publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy – volume: 38 start-page: 142 year: 2016 end-page: 158 ident: b0205 article-title: Region-based convolutional networks for accurate object detection and segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Guo, J., Li, Y., Lin, W., Chen, Y., Li, J., 2018. Network decoupling: From regular to depthwise separable convolutions. arXiv preprint arXiv:1808.05517 https://arxiv.org/abs/1808.05517. – reference: Graves, A., Mohamed, A.R., Hinton, G., 2013. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. https://doi.org/10.1109/ICASSP.2013.6638947. – start-page: 1593 year: 2008 end-page: 1600 ident: b0265 article-title: Cofi rank-maximum margin matrix factorization for collaborative ranking publication-title: Advances in Neural Information Processing Systems – volume: 66 start-page: 679 year: 2015 end-page: 687 ident: b0220 article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the chinese vis-nir spectral library publication-title: European Journal of Soil Science – volume: 16 year: 2019 ident: b0170 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Regional – volume: 137 start-page: 70 year: 2006 end-page: 82 ident: b0250 article-title: Determining the composition of mineral-organic mixes using uv-vis-nir diffuse reflectance spectroscopy publication-title: Geoderma – volume: 158 start-page: 66 year: 2010 end-page: 77 ident: b0055 article-title: Spiking of nir regional models using samples from target sites: Effect of model size on prediction accuracy publication-title: Geoderma – volume: 155 start-page: 510 year: 2016 end-page: 522 ident: b0145 article-title: Estimating the soil clay content and organic matter by means of different calibration methods of vis-nir diffuse reflectance spectroscopy publication-title: Soil and Tillage Research – reference: Chollet, F., et al., 2015. Keras. URL: https://keras.io. – start-page: 4510 year: 2018 end-page: 4520 ident: b0215 article-title: Mobilenetv 2: Inverted residuals and linear bottlenecks, in publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1251 year: 2017 end-page: 1258 ident: b0030 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 1058 start-page: 48 year: 2019 end-page: 57 ident: b0285 article-title: Deepspectra: An end-to-end deep learning approach for quantitative spectral analysis publication-title: Anal Chim Acta – volume: 18 start-page: 3169 year: 2018 ident: b0125 article-title: Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery publication-title: Sensors – volume: 111 start-page: 69 year: 2015 end-page: 77 ident: b0260 article-title: Soil ph value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy publication-title: Computers and Electronics in Agriculture – volume: 58 start-page: 144 year: 2007 end-page: 153 ident: b0065 article-title: Prediction of soil macronutrients content using near-infrared spectroscopy publication-title: Computers and Electronics in Agriculture – volume: 68 start-page: 337 year: 2014 end-page: 347 ident: b0160 article-title: Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach publication-title: Soil Biology and Biochemistry – reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. https://doi.org/10.1109/Cvpr.2016.91. – volume: 158 start-page: 32 year: 2010 end-page: 45 ident: b0235 article-title: Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy publication-title: Geoderma – volume: 131 start-page: 59 year: 2006 end-page: 75 ident: b0200 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma – start-page: 315 year: 2011 end-page: 323 ident: b0045 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – reference: Karpathy, A., Li, F.F., 2015. Deep visual-semantic alignments for generating image descriptions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3128–3137. https://doi.org/10.1109/TPAMI.2016.2598339. – volume: 43 start-page: 772 year: 1989 end-page: 777 ident: b0005 article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra publication-title: Applied Spectroscopy – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0090 article-title: Long short-term memory publication-title: Neural Computation – volume: 8 year: 2013 ident: b0240 article-title: Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy publication-title: PloS one. – reference: He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J., 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. https://doi.org/10.1109/Cvpr.2016.90. – volume: 181 start-page: 1 year: 2018 end-page: 10 ident: b0280 article-title: Quantitative analysis modeling of infrared spectroscopy based on ensemble convolutional neural networks publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 166 start-page: 198 year: 2011 end-page: 205 ident: b0255 article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy publication-title: Geoderma – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0120 article-title: Deep learning publication-title: Nature – reference: Mikolov, T., Karafiat, M., Burget, L., Cernock++, J., Khudanpur, S., 2010. Recurrent neural network based language model. In: Conference of the International Speech Communication Association, pp. 1045–1048. – volume: 352 start-page: 251 year: 2019 end-page: 267 ident: b0150 article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra publication-title: Geoderma – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: b0015 article-title: Representation learning: a review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 32 year: 2018 ident: b0130 article-title: One-dimensional convolutional neural networks for spectroscopic signal regression publication-title: Journal of Chemometrics – volume: 18 year: 2019 ident: b0225 article-title: Estimation of soil properties from the eu spectral library using long short-term memory networks publication-title: Geoderma Regional – volume: 209 start-page: 32 year: 2019 ident: 10.1016/j.geoderma.2020.114616_b0155 article-title: Variable weighted convolutional neural network for the nitrogen content quantization of masson pine seedling leaves with near-infrared spectroscopy publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy doi: 10.1016/j.saa.2018.10.028 – volume: 58 start-page: 144 year: 2007 ident: 10.1016/j.geoderma.2020.114616_b0065 article-title: Prediction of soil macronutrients content using near-infrared spectroscopy publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2007.03.011 – ident: 10.1016/j.geoderma.2020.114616_b0185 doi: 10.1109/CVPR.2016.91 – volume: 29 start-page: 82 year: 2012 ident: 10.1016/j.geoderma.2020.114616_b0085 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2012.2205597 – volume: 43 start-page: 772 year: 1989 ident: 10.1016/j.geoderma.2020.114616_b0005 article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra publication-title: Applied Spectroscopy doi: 10.1366/0003702894202201 – ident: 10.1016/j.geoderma.2020.114616_b0060 – volume: 9 start-page: 1099 year: 2017 ident: 10.1016/j.geoderma.2020.114616_b0180 article-title: Linear multi-task learning for predicting soil properties using field spectroscopy publication-title: Remote Sensing doi: 10.3390/rs9111099 – volume: 158 start-page: 66 year: 2010 ident: 10.1016/j.geoderma.2020.114616_b0055 article-title: Spiking of nir regional models using samples from target sites: Effect of model size on prediction accuracy publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.021 – volume: 65 start-page: 480 year: 2001 ident: 10.1016/j.geoderma.2020.114616_b0020 article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2001.652480x – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.geoderma.2020.114616_b0175 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research – start-page: 1251 year: 2017 ident: 10.1016/j.geoderma.2020.114616_b0030 article-title: Xception: Deep learning with depthwise separable convolutions – volume: 35 start-page: 1798 year: 2013 ident: 10.1016/j.geoderma.2020.114616_b0015 article-title: Representation learning: a review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.50 – volume: 111 start-page: 69 year: 2015 ident: 10.1016/j.geoderma.2020.114616_b0260 article-title: Soil ph value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2014.11.019 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.geoderma.2020.114616_b0120 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.geoderma.2020.114616_b0090 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.geoderma.2020.114616_b0230 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – volume: 152 start-page: 104 year: 2016 ident: 10.1016/j.geoderma.2020.114616_b0140 article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using vis-nir spectroscopy publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2016.04.018 – volume: 16 year: 2019 ident: 10.1016/j.geoderma.2020.114616_b0170 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2018.e00198 – ident: 10.1016/j.geoderma.2020.114616_b0135 doi: 10.1109/ICASSP.2011.5947611 – ident: 10.1016/j.geoderma.2020.114616_b0075 – volume: 18 start-page: 3169 year: 2018 ident: 10.1016/j.geoderma.2020.114616_b0125 article-title: Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery publication-title: Sensors doi: 10.3390/s18093169 – volume: 68 start-page: 337 year: 2014 ident: 10.1016/j.geoderma.2020.114616_b0160 article-title: Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2013.10.022 – volume: 38 start-page: 142 year: 2016 ident: 10.1016/j.geoderma.2020.114616_b0205 article-title: Region-based convolutional networks for accurate object detection and segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2437384 – volume: 181 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2020.114616_b0280 article-title: Quantitative analysis modeling of infrared spectroscopy based on ensemble convolutional neural networks publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2018.08.001 – volume: 28 start-page: 1201 year: 2009 ident: 10.1016/j.geoderma.2020.114616_b0190 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC Trends in Analytical Chemistry doi: 10.1016/j.trac.2009.07.007 – ident: 10.1016/j.geoderma.2020.114616_b0245 – volume: 66 start-page: 679 year: 2015 ident: 10.1016/j.geoderma.2020.114616_b0220 article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the chinese vis-nir spectral library publication-title: European Journal of Soil Science doi: 10.1111/ejss.12272 – volume: 158 start-page: 46 year: 2010 ident: 10.1016/j.geoderma.2020.114616_b0195 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.025 – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.geoderma.2020.114616_b0115 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – ident: 10.1016/j.geoderma.2020.114616_b0025 doi: 10.3115/v1/D14-1179 – ident: 10.1016/j.geoderma.2020.114616_b0290 doi: 10.1002/jrs.5750 – volume: 59 start-page: 364 year: 1995 ident: 10.1016/j.geoderma.2020.114616_b0010 article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1995.03615995005900020014x – volume: 137 start-page: 70 year: 2006 ident: 10.1016/j.geoderma.2020.114616_b0250 article-title: Determining the composition of mineral-organic mixes using uv-vis-nir diffuse reflectance spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2006.07.004 – volume: 32 year: 2018 ident: 10.1016/j.geoderma.2020.114616_b0130 article-title: One-dimensional convolutional neural networks for spectroscopic signal regression publication-title: Journal of Chemometrics doi: 10.1002/cem.2977 – ident: 10.1016/j.geoderma.2020.114616_b0040 doi: 10.1109/ICASSP.2016.7472618 – volume: 158 start-page: 32 year: 2010 ident: 10.1016/j.geoderma.2020.114616_b0235 article-title: Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2009.11.032 – ident: 10.1016/j.geoderma.2020.114616_b0095 – volume: 15 start-page: 234 year: 1977 ident: 10.1016/j.geoderma.2020.114616_b0210 article-title: A scaling method for priorities in hierarchical structures publication-title: Journal of Mathematical Psychology doi: 10.1016/0022-2496(77)90033-5 – start-page: 315 year: 2011 ident: 10.1016/j.geoderma.2020.114616_b0045 article-title: Deep sparse rectifier neural networks – volume: 340 start-page: 279 year: 2019 ident: 10.1016/j.geoderma.2020.114616_b0165 article-title: Transfer learning to localise a continental soil vis-nir calibration model publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.009 – ident: 10.1016/j.geoderma.2020.114616_b0070 doi: 10.1109/CVPR.2016.90 – volume: 352 start-page: 251 year: 2019 ident: 10.1016/j.geoderma.2020.114616_b0150 article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.016 – ident: 10.1016/j.geoderma.2020.114616_b0100 doi: 10.1109/TPAMI.2016.2598339 – volume: 131 start-page: 59 year: 2006 ident: 10.1016/j.geoderma.2020.114616_b0200 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.007 – volume: 62 start-page: 629 year: 2011 ident: 10.1016/j.geoderma.2020.114616_b0110 article-title: Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three european farms publication-title: European Journal of Soil Science doi: 10.1111/j.1365-2389.2011.01358.x – start-page: 1593 year: 2008 ident: 10.1016/j.geoderma.2020.114616_b0265 article-title: Cofi rank-maximum margin matrix factorization for collaborative ranking publication-title: Advances in Neural Information Processing Systems – volume: 166 start-page: 198 year: 2011 ident: 10.1016/j.geoderma.2020.114616_b0255 article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2011.08.001 – ident: 10.1016/j.geoderma.2020.114616_b0270 – volume: 13 start-page: 55 year: 2018 ident: 10.1016/j.geoderma.2020.114616_b0275 article-title: Recent trends in deep learning based natural language processing publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2018.2840738 – volume: 141 start-page: 1097 year: 2012 ident: 10.1016/j.geoderma.2020.114616_b0105 article-title: Imagenet classification with deep convolutional neural networks publication-title: Neural Information Processing Systems – volume: 18 year: 2019 ident: 10.1016/j.geoderma.2020.114616_b0225 article-title: Estimation of soil properties from the eu spectral library using long short-term memory networks publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2019.e00233 – volume: 155 start-page: 510 year: 2016 ident: 10.1016/j.geoderma.2020.114616_b0145 article-title: Estimating the soil clay content and organic matter by means of different calibration methods of vis-nir diffuse reflectance spectroscopy publication-title: Soil and Tillage Research doi: 10.1016/j.still.2015.07.021 – start-page: 4510 year: 2018 ident: 10.1016/j.geoderma.2020.114616_b0215 article-title: Mobilenetv 2: Inverted residuals and linear bottlenecks, in – volume: 8 year: 2013 ident: 10.1016/j.geoderma.2020.114616_b0240 article-title: Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy publication-title: PloS one. doi: 10.1371/journal.pone.0066409 – ident: 10.1016/j.geoderma.2020.114616_b0035 – ident: 10.1016/j.geoderma.2020.114616_b0050 doi: 10.1109/ICASSP.2013.6638947 – volume: 1058 start-page: 48 year: 2019 ident: 10.1016/j.geoderma.2020.114616_b0285 article-title: Deepspectra: An end-to-end deep learning approach for quantitative spectral analysis publication-title: Anal Chim Acta doi: 10.1016/j.aca.2019.01.002 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.geoderma.2020.114616_b0080 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 |
SSID | ssj0017020 |
Score | 2.587626 |
Snippet | •Combining the advantages of CNN and RNN for Vis-NIR spectral analysis.•Developing a joined CNN and RNN model called CCNVR for predicting soil... Visible and Near-infrared diffuse reflectance spectroscopy (Vis–NIR) serves as a rapid and non-destructive technique to estimate various soil properties.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114616 |
SubjectTerms | calibration Convolutional Neural Network land cover land use mineral soils model validation neural networks nondestructive methods prediction Recurrent Neural Network reflectance spectroscopy Soil properties estimation soil quality surveys Transfer learning Vis–NIR spectroscopy |
Title | Combination of Convolutional Neural Networks and Recurrent Neural Networks for predicting soil properties using Vis–NIR spectroscopy |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114616 https://www.proquest.com/docview/2551921716 |
Volume | 380 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQXMqhKhTEv4zENd3d2I6T42oFWkDsAdGKm2UnNlqEkmizi8Sl6qkvwBvyJMw4DqKAxKGnyHEmimbGnpl45htCjpiwuTGCRzJzMuJWs8hYibCVogALZaVLsd75YpKMf_Kza3G9REZdLQymVYa9v93T_W4d7vQCN3v1dIo1voNEooX2YYEvNOdcopb_-P2S5jGQ_QDNOEgifPpVlfAtyAgbjnn8obiFzcW-5x8bqDdbtbc_J9_I1-A40mH7bWtkyZbrZHV4MwvgGfY7-QuLGwJdz2taOTqqyvugWUCJMBz-4vO-G6rLgl7i33bEZ3o3C74srWd4ioN50bSppncwrmpMw7YNxXT5G_pr2jz9eZycXlJfsInAmFX9sEGuTo6vRuMo9FmINEvSeVTouChYDt6PZqnmECzrTOaZiKXWidRFwlzBYEowblIHLgGTMRdaaJOZmEu2SZbLqrRbhDoHDHSOO277HFtVccP6MYgyM3ks02KbiI63Kg8Y5NgK4051yWa3qpOJQpmoVibbpPdCV7coHJ9SZJ3o1D_6pMBUfEp72MlawWLDExRd2mrRKIi_ED8OYsyd_3j_LvmCI0yKGYg9sjyfLew-uDZzc-B194CsDE_Px5Nn3W79vg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFOU8jASHMNu_IiTA4eqUO3Sdg_Vgnqz7MSutqqSaLOl6gVx4g_wT_hJ_BJmHKfiJfWAeooSy1E0M57xxN98Q8hLLl1prRSJKrxKhDM8sU4hbaWsIEI55XOsd96fZZMP4v2hPFwj34daGIRVRt_f-_TgreOTUZTmqF0ssMY3zRRG6JAWpAOyctedn0He1r2ZvgUlv2Js5918e5LE1gKJ4Vm-SirDqoqXEPANz42A_NAUqiwkU8ZkylQZ9xWHIcmFzT1EQa6YkEYaW1gmFIfXXiPXBXgL7Jrw-vMFrCRV40gFmWYJft0vVcnHYBPY4CzwHbGephf7rP87IP4RGkK827lDbseNKt3qZXGXrLn6Hrm1dbSMZB3uPvkKzgQS66Bb2ni63dSfoiXDTKT9CJeAM--oqSt6gH_3kQ_qr1HYO9N2iadGiMOmXbM4gfumRdi36yjC84_ox0X348u32fSAhgJRJOJs2vMHZH4Vwn9I1uumdo8I9R4E6L3wwo0FtsYSlo8ZmE5hS6byaoPIQba6jJzn2HrjRA_gtmM96ESjTnSvkw0yupjX9qwfl84oBtXp3-xXQ2i6dO6LQdcaFjee2JjaNaedhnwP-eogp338H-9_Tm5M5vt7em86290kN3EEATmpfELWV8tT9xS2VSv7LNgxJfqK181PO3w3-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+of+Convolutional+Neural+Networks+and+Recurrent+Neural+Networks+for+predicting+soil+properties+using+Vis%E2%80%93NIR+spectroscopy&rft.jtitle=Geoderma&rft.au=Yang%2C+Jiechao&rft.au=Wang%2C+Xuelei&rft.au=Wang%2C+Ruihua&rft.au=Wang%2C+Huanjie&rft.date=2020-12-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=380&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114616&rft.externalDocID=S0016706120301415 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |