Combination of Convolutional Neural Networks and Recurrent Neural Networks for predicting soil properties using Vis–NIR spectroscopy

•Combining the advantages of CNN and RNN for Vis-NIR spectral analysis.•Developing a joined CNN and RNN model called CCNVR for predicting soil properties.•CCNVR exhibits great superiority in the prediction accuracy and robustness to noise.•CCNVR shows good transferability across different soil types...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 380; p. 114616
Main Authors Yang, Jiechao, Wang, Xuelei, Wang, Ruihua, Wang, Huanjie
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Combining the advantages of CNN and RNN for Vis-NIR spectral analysis.•Developing a joined CNN and RNN model called CCNVR for predicting soil properties.•CCNVR exhibits great superiority in the prediction accuracy and robustness to noise.•CCNVR shows good transferability across different soil types and sample sizes. Visible and Near-infrared diffuse reflectance spectroscopy (Vis–NIR) serves as a rapid and non-destructive technique to estimate various soil properties. Recently, there is a growing need for developing a more accurate and robust calibration model in large soil spectral libraries to support the implementation of effective soil quality assessments and digital soil maps at national, continental and even global scales. Traditional calibration methods, such as partial least squares regression (PLSR), support vector machines regression(SVMR), multivariate adaptive regression splines(MARS), random forests(RF), and artificial neural networks (ANN), may not be successfully applied in large spectral libraries due to their relatively weak generation performance in large regions. To overcome these weaknesses, we proposed a jointed Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) architecture called CCNVR, which combines the ability of CNN to extract the local and abstract features from the raw spectrum with the advantage of RNN to learn various dependencies of sequence features. We then compared the prediction accuracy of CCNVR with other conventional methods, namely, PLSR, SVMR, CNN, ANN, and RNN, on the selected soil properties of mineral soil samples in the Land Use/Land Cover Area Frame Survey (LUCAS) database. Of all calibration models, our proposed CCNVR achieved the best model performance with the lowest RMSE value (6.40, 0.45, 3.30, and 0.35 for OC, N, CEC, and pH, respectively) and the highest R2 (0.73, 0.70, 0.73, and 0.86 for OC, N, CEC, and pH, respectively) for the selected properties, indicating the outstanding prediction ability of our proposed model. Besides, to quantify the robustness of different calibration models, we added different levels of white noise on the original Vis–NIR spectra of the calibration set to observe how the prediction accuracy changes in the test set. The result showed that our proposed CCNVR model has a better resistance towards noise compared to other calibration models. Finally, we explored the transferability of our proposed CCNVR model. We extended the calibration model trained on the mineral samples to the organic samples through transfer learning. The result revealed that the transfer-based CCNVR fine-tuning model had a better prediction accuracy than that of the non-transfer CCNVR model with an improvement of R2 value from 0.79 to 0.84. The result demonstrated the excellent transferability of our proposed CCNVR model across different soil types and sample sizes.
AbstractList Visible and Near-infrared diffuse reflectance spectroscopy (Vis–NIR) serves as a rapid and non-destructive technique to estimate various soil properties. Recently, there is a growing need for developing a more accurate and robust calibration model in large soil spectral libraries to support the implementation of effective soil quality assessments and digital soil maps at national, continental and even global scales. Traditional calibration methods, such as partial least squares regression (PLSR), support vector machines regression(SVMR), multivariate adaptive regression splines(MARS), random forests(RF), and artificial neural networks (ANN), may not be successfully applied in large spectral libraries due to their relatively weak generation performance in large regions. To overcome these weaknesses, we proposed a jointed Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) architecture called CCNVR, which combines the ability of CNN to extract the local and abstract features from the raw spectrum with the advantage of RNN to learn various dependencies of sequence features. We then compared the prediction accuracy of CCNVR with other conventional methods, namely, PLSR, SVMR, CNN, ANN, and RNN, on the selected soil properties of mineral soil samples in the Land Use/Land Cover Area Frame Survey (LUCAS) database. Of all calibration models, our proposed CCNVR achieved the best model performance with the lowest RMSE value (6.40, 0.45, 3.30, and 0.35 for OC, N, CEC, and pH, respectively) and the highest R2 (0.73, 0.70, 0.73, and 0.86 for OC, N, CEC, and pH, respectively) for the selected properties, indicating the outstanding prediction ability of our proposed model. Besides, to quantify the robustness of different calibration models, we added different levels of white noise on the original Vis–NIR spectra of the calibration set to observe how the prediction accuracy changes in the test set. The result showed that our proposed CCNVR model has a better resistance towards noise compared to other calibration models. Finally, we explored the transferability of our proposed CCNVR model. We extended the calibration model trained on the mineral samples to the organic samples through transfer learning. The result revealed that the transfer-based CCNVR fine-tuning model had a better prediction accuracy than that of the non-transfer CCNVR model with an improvement of R2 value from 0.79 to 0.84. The result demonstrated the excellent transferability of our proposed CCNVR model across different soil types and sample sizes.
•Combining the advantages of CNN and RNN for Vis-NIR spectral analysis.•Developing a joined CNN and RNN model called CCNVR for predicting soil properties.•CCNVR exhibits great superiority in the prediction accuracy and robustness to noise.•CCNVR shows good transferability across different soil types and sample sizes. Visible and Near-infrared diffuse reflectance spectroscopy (Vis–NIR) serves as a rapid and non-destructive technique to estimate various soil properties. Recently, there is a growing need for developing a more accurate and robust calibration model in large soil spectral libraries to support the implementation of effective soil quality assessments and digital soil maps at national, continental and even global scales. Traditional calibration methods, such as partial least squares regression (PLSR), support vector machines regression(SVMR), multivariate adaptive regression splines(MARS), random forests(RF), and artificial neural networks (ANN), may not be successfully applied in large spectral libraries due to their relatively weak generation performance in large regions. To overcome these weaknesses, we proposed a jointed Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) architecture called CCNVR, which combines the ability of CNN to extract the local and abstract features from the raw spectrum with the advantage of RNN to learn various dependencies of sequence features. We then compared the prediction accuracy of CCNVR with other conventional methods, namely, PLSR, SVMR, CNN, ANN, and RNN, on the selected soil properties of mineral soil samples in the Land Use/Land Cover Area Frame Survey (LUCAS) database. Of all calibration models, our proposed CCNVR achieved the best model performance with the lowest RMSE value (6.40, 0.45, 3.30, and 0.35 for OC, N, CEC, and pH, respectively) and the highest R2 (0.73, 0.70, 0.73, and 0.86 for OC, N, CEC, and pH, respectively) for the selected properties, indicating the outstanding prediction ability of our proposed model. Besides, to quantify the robustness of different calibration models, we added different levels of white noise on the original Vis–NIR spectra of the calibration set to observe how the prediction accuracy changes in the test set. The result showed that our proposed CCNVR model has a better resistance towards noise compared to other calibration models. Finally, we explored the transferability of our proposed CCNVR model. We extended the calibration model trained on the mineral samples to the organic samples through transfer learning. The result revealed that the transfer-based CCNVR fine-tuning model had a better prediction accuracy than that of the non-transfer CCNVR model with an improvement of R2 value from 0.79 to 0.84. The result demonstrated the excellent transferability of our proposed CCNVR model across different soil types and sample sizes.
ArticleNumber 114616
Author Yang, Jiechao
Wang, Xuelei
Wang, Ruihua
Wang, Huanjie
Author_xml – sequence: 1
  givenname: Jiechao
  surname: Yang
  fullname: Yang, Jiechao
  email: yangjiechao2018@ia.ac.cn
  organization: University of Chinese Academy of Sciences, School of Artificial Intelligence, Beijing 100049, China
– sequence: 2
  givenname: Xuelei
  surname: Wang
  fullname: Wang, Xuelei
  email: xuelei.wang@ia.ac.cn
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: Ruihua
  surname: Wang
  fullname: Wang, Ruihua
  email: wangruihua2019@ia.ac.cn
  organization: University of Chinese Academy of Sciences, School of Artificial Intelligence, Beijing 100049, China
– sequence: 4
  givenname: Huanjie
  surname: Wang
  fullname: Wang, Huanjie
  email: wanghuanjie2018@ia.ac.cn
  organization: University of Chinese Academy of Sciences, School of Artificial Intelligence, Beijing 100049, China
BookMark eNqFkM1O3DAUha0KpA7QV6i87CbT2EnsRGIBGvEnISoh1K11x75BnmbsYDsgdqx4gb4hT4KHgU27YHV17j3n6ujbIzvOOyTkOyvnrGTi52p-i95gWMOclzwvWS2Y-EJmrJW8ELzpdsiszM5CloJ9JXsxrrKU2Tsjzwu_XloHyXpHfU8X3t37YdpIGOgVTuFtpAcf_kQKztBr1FMI6NJ_194HOgY0Vifrbmn0dsjajxiSxUinuNn-tvHl6e_VxTWNI-oUfNR-fDwguz0MEb-9z31yc3pyszgvLn-dXSyOLwuoRJsKA9yYSpe8gaqFWtYcOqm7hksAIcGIqjdVPjVVvWx71rJK8rqBBpbdktey2ic_tm9zrbsJY1JrGzUOAzj0U1S8aVjHmWQiWw-3Vp0rxoC90ja9YUoB7KBYqTb01Up90Fcb-mpLP8fFP_Ex2DWEx8-DR9sgZgz3FoOK2qLTGWvIvJTx9rMXrx8OqTk
CitedBy_id crossref_primary_10_1039_D4EM00605D
crossref_primary_10_1016_j_geoderma_2023_116555
crossref_primary_10_1016_j_geoderma_2024_117127
crossref_primary_10_1080_15481603_2020_1857623
crossref_primary_10_1080_09540091_2022_2052264
crossref_primary_10_1016_j_fuel_2021_122121
crossref_primary_10_3390_rs14194962
crossref_primary_10_1016_j_sab_2024_107000
crossref_primary_10_3390_rs16111964
crossref_primary_10_1016_j_microc_2024_111310
crossref_primary_10_1007_s41748_024_00564_0
crossref_primary_10_1016_j_compag_2023_108561
crossref_primary_10_1016_j_compag_2024_108643
crossref_primary_10_17221_94_2022_SWR
crossref_primary_10_1016_j_ecolind_2024_111843
crossref_primary_10_3390_rs16040688
crossref_primary_10_1177_09670335231173140
crossref_primary_10_1007_s11368_023_03647_z
crossref_primary_10_1016_j_scitotenv_2021_146253
crossref_primary_10_1016_j_jfca_2024_105996
crossref_primary_10_1016_j_saa_2022_122003
crossref_primary_10_1007_s13131_024_2437_1
crossref_primary_10_3390_rs13020305
crossref_primary_10_1016_j_envres_2023_117790
crossref_primary_10_1016_j_still_2021_105223
crossref_primary_10_1109_LGRS_2024_3389671
crossref_primary_10_3390_foods11152210
crossref_primary_10_3390_s22249764
crossref_primary_10_1080_05704928_2024_2369570
crossref_primary_10_1016_j_compag_2024_109761
crossref_primary_10_1002_jrs_6435
crossref_primary_10_1038_s41598_021_02564_w
crossref_primary_10_1016_j_saa_2024_123966
crossref_primary_10_1016_j_catena_2022_106552
crossref_primary_10_1080_10408398_2025_2474183
crossref_primary_10_1016_j_chemosphere_2023_139161
crossref_primary_10_1016_j_conbuildmat_2022_128799
crossref_primary_10_1111_ejss_13271
crossref_primary_10_1016_j_saa_2023_122452
crossref_primary_10_3390_s22093187
crossref_primary_10_1016_j_tifs_2021_04_008
crossref_primary_10_1007_s12145_023_01168_4
crossref_primary_10_1016_j_earscirev_2023_104501
crossref_primary_10_1007_s13369_022_07575_x
crossref_primary_10_1016_j_saa_2022_121441
crossref_primary_10_2174_1570164619666221010100406
crossref_primary_10_1007_s10661_024_12817_6
crossref_primary_10_1016_j_saa_2023_122371
crossref_primary_10_1371_journal_pone_0253385
crossref_primary_10_1016_j_seh_2024_100113
crossref_primary_10_1016_j_compag_2023_108067
crossref_primary_10_3390_s24144728
crossref_primary_10_1016_j_rse_2022_113166
crossref_primary_10_1016_j_engappai_2024_109140
crossref_primary_10_1016_j_compag_2023_108427
crossref_primary_10_1016_j_geoderma_2024_117037
crossref_primary_10_2139_ssrn_3969122
crossref_primary_10_3389_fenvs_2021_809995
crossref_primary_10_1016_j_infrared_2024_105162
crossref_primary_10_1016_j_saa_2022_121133
crossref_primary_10_1038_s41598_021_96772_z
crossref_primary_10_1177_00037028231203249
crossref_primary_10_1016_j_microc_2024_111815
crossref_primary_10_1016_j_still_2023_105684
crossref_primary_10_3390_agronomy13112816
crossref_primary_10_1016_j_catena_2023_107200
crossref_primary_10_3390_rs16132353
crossref_primary_10_1080_07038992_2022_2056435
crossref_primary_10_17221_133_2022_SWR
crossref_primary_10_1016_j_compag_2023_108271
crossref_primary_10_1109_LGRS_2023_3304749
crossref_primary_10_3390_agriculture12081188
crossref_primary_10_1016_j_compag_2023_108350
crossref_primary_10_1016_j_asr_2025_01_048
crossref_primary_10_1080_00103624_2024_2406484
crossref_primary_10_3390_w13050664
crossref_primary_10_1016_j_geoderma_2024_116903
crossref_primary_10_3390_app142411687
crossref_primary_10_1088_1361_6501_acd8e2
crossref_primary_10_3390_rs14030740
crossref_primary_10_1007_s10812_021_01185_5
crossref_primary_10_1016_j_ijmecsci_2024_109110
crossref_primary_10_3390_app131810484
Cites_doi 10.1016/j.saa.2018.10.028
10.1016/j.compag.2007.03.011
10.1109/CVPR.2016.91
10.1109/MSP.2012.2205597
10.1366/0003702894202201
10.3390/rs9111099
10.1016/j.geoderma.2009.12.021
10.2136/sssaj2001.652480x
10.1109/TPAMI.2013.50
10.1016/j.compag.2014.11.019
10.1038/nature14539
10.1162/neco.1997.9.8.1735
10.1016/j.biosystemseng.2016.04.018
10.1016/j.geodrs.2018.e00198
10.1109/ICASSP.2011.5947611
10.3390/s18093169
10.1016/j.soilbio.2013.10.022
10.1109/TPAMI.2015.2437384
10.1016/j.chemolab.2018.08.001
10.1016/j.trac.2009.07.007
10.1111/ejss.12272
10.1016/j.geoderma.2009.12.025
10.1109/5.726791
10.3115/v1/D14-1179
10.1002/jrs.5750
10.2136/sssaj1995.03615995005900020014x
10.1016/j.geoderma.2006.07.004
10.1002/cem.2977
10.1109/ICASSP.2016.7472618
10.1016/j.geoderma.2009.11.032
10.1016/0022-2496(77)90033-5
10.1016/j.geoderma.2019.01.009
10.1109/CVPR.2016.90
10.1016/j.geoderma.2019.06.016
10.1109/TPAMI.2016.2598339
10.1016/j.geoderma.2005.03.007
10.1111/j.1365-2389.2011.01358.x
10.1016/j.geoderma.2011.08.001
10.1109/MCI.2018.2840738
10.1016/j.geodrs.2019.e00233
10.1016/j.still.2015.07.021
10.1371/journal.pone.0066409
10.1109/ICASSP.2013.6638947
10.1016/j.aca.2019.01.002
10.1126/science.1127647
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114616
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114616
S0016706120301415
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-a368t-da2dd3c025a38a4742a97c9527aa67ad63fd3a38534b8f18137245a5ab9b2473
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Mon Jul 21 11:48:52 EDT 2025
Tue Jul 01 04:04:53 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Fri Feb 23 02:47:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Convolutional Neural Network
Soil properties estimation
Vis–NIR spectroscopy
Recurrent Neural Network
Transfer learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-da2dd3c025a38a4742a97c9527aa67ad63fd3a38534b8f18137245a5ab9b2473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2551921716
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551921716
crossref_citationtrail_10_1016_j_geoderma_2020_114616
crossref_primary_10_1016_j_geoderma_2020_114616
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114616
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-15
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lecun, Bottou, Bengio, Haffner (b0115) 1998; 86
Saaty (b0210) 1977; 15
Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of Machine Learning Research(PMLR), pp. 448–456.
Qi, Paz-Kagan, Karnieli, Li (b0180) 2017; 9
Malek, Melgani, Bazi (b0130) 2018; 32
Padarian, Minasny, McBratney (b0170) 2019; 16
Vohland, Besold, Hill, Frund (b0255) 2011; 166
Shi, Ji, Viscarra Rossel, Chen, Zhou (b0220) 2015; 66
Viscarra Rossel, McGlynn, McBratney (b0250) 2006; 137
Rossel, Walvoort, McBratney, Janik, Skjemstad (b0200) 2006; 131
Rinnan, Van Den Berg, Engelsen (b0190) 2009; 28
Glorot, Bordes, Bengio (b0045) 2011
Nocita, Stevens, Toth, Panagos, van Wesemael, Montanarella (b0160) 2014; 68
Ng, Minasny, Montazerolghaem, Padarian, Ferguson, Bailey, McBratney (b0150) 2019; 352
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0230) 2014; 15
Bengio, Courville, Vincent (b0015) 2013; 35
Hochreiter, Schmidhuber (b0090) 1997; 9
Ben-Dor, Banin (b0010) 1995; 59
Karpathy, A., Li, F.F., 2015. Deep visual-semantic alignments for generating image descriptions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3128–3137. https://doi.org/10.1109/TPAMI.2016.2598339.
Chollet, F., et al., 2015. Keras. URL: https://keras.io.
Stevens, Nocita, Tóth, Montanarella, van Wesemael (b0240) 2013; 8
Chang, Laird, Mausbach, Hurburgh (b0020) 2001; 65
Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27 (NIPS 2014) 27, 3104–3112.
Liu, Ji, Buchroithner (b0125) 2018; 18
Wang, Huang, Liu, Lin, Li, Wang, Ge (b0260) 2015; 111
Ross, Jeff, Trevor, Jitendra (b0205) 2016; 38
LeCun, Bengio, Hinton (b0120) 2015; 521
Yuanyuan, Zhibin (b0280) 2018; 181
Hinton, Salakhutdinov (b0080) 2006; 313
Zhang, R., Xie, H., Cai, S., Hu, Y., Liu, G.k., Hong, W., Tian, Z.q., 2020. Transfer-learning-based raman spectra identification. Journal of Raman Spectroscopy 51, 176–186. https://doi.org/10.1002/jrs.5750.
Barnes, Dhanoa, Lister (b0005) 1989; 43
Zhang, Lin, Xu, Luo, Ying (b0285) 2019; 1058
Kuang, Mouazen (b0110) 2011; 62
Singh, Kasana (b0225) 2019; 18
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (b0085) 2012; 29
Mikolov, T., Karafiat, M., Burget, L., Cernock++, J., Khudanpur, S., 2010. Recurrent neural network based language model. In: Conference of the International Speech Communication Association, pp. 1045–1048.
He, Huang, Garcia, Hernandez, Song (b0065) 2007; 58
Padarian, Minasny, McBratney (b0165) 2019; 340
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. https://doi.org/10.1109/Cvpr.2016.91.
Stevens, Udelhoven, Denis, Tychon, Lioy, Hoffmann, van Wesemael (b0235) 2010; 158
Ni, Wang, Tao (b0155) 2019; 209
Rossel, Behrens (b0195) 2010; 158
Wrb, I.W.G., Isric, F., 2006. World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome.
Krizhevsky, Sutskever, Hinton (b0105) 2012; 141
Chollet (b0030) 2017
Guerrero, Zornoza, Gomez, Mataix-Beneyto (b0055) 2010; 158
Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using rnn encoder–decoder for statistical machine translation, in: Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), pp. 1724–1734.
Dzmitry, B., Jan, C., Dmitriy, S., Philemon, B., Yoshua, B., 2016. End-to-end attention-based large vocabulary speech recognition. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949. https://doi.org/10.1109/ICASSP.2016.7472618.
Graves, A., Mohamed, A.R., Hinton, G., 2013. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. https://doi.org/10.1109/ICASSP.2013.6638947.
He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J., 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. https://doi.org/10.1109/Cvpr.2016.90.
Nawar, Buddenbaum, Hill, Kozak, Mouazen (b0145) 2016; 155
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0175) 2011; 12
Sandler, Howard, Zhu, Zhmoginov, Chen (b0215) 2018
Guo, J., Li, Y., Lin, W., Chen, Y., Li, J., 2018. Network decoupling: From regular to depthwise separable convolutions. arXiv preprint arXiv:1808.05517 https://arxiv.org/abs/1808.05517.
Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., Blunsom, P., 2015. Teaching machines to read and comprehend. Advances in Neural Information Processing Systems 28 (NIPS 2015) 28, 1693–1701. http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf.
Young, Hazarika, Poria, Cambria (b0275) 2018; 13
Morellos, Pantazi, Moshou, Alexandridis, Whetton, Tziotzios, Wiebensohn, Bill, Mouazen (b0140) 2016; 152
Weimer, Karatzoglou, Le, Smola (b0265) 2008
Barnes (10.1016/j.geoderma.2020.114616_b0005) 1989; 43
Glorot (10.1016/j.geoderma.2020.114616_b0045) 2011
10.1016/j.geoderma.2020.114616_b0245
Shi (10.1016/j.geoderma.2020.114616_b0220) 2015; 66
Stevens (10.1016/j.geoderma.2020.114616_b0235) 2010; 158
Ng (10.1016/j.geoderma.2020.114616_b0150) 2019; 352
10.1016/j.geoderma.2020.114616_b0050
10.1016/j.geoderma.2020.114616_b0095
Viscarra Rossel (10.1016/j.geoderma.2020.114616_b0250) 2006; 137
He (10.1016/j.geoderma.2020.114616_b0065) 2007; 58
Hinton (10.1016/j.geoderma.2020.114616_b0080) 2006; 313
10.1016/j.geoderma.2020.114616_b0290
LeCun (10.1016/j.geoderma.2020.114616_b0120) 2015; 521
Padarian (10.1016/j.geoderma.2020.114616_b0170) 2019; 16
Ni (10.1016/j.geoderma.2020.114616_b0155) 2019; 209
Saaty (10.1016/j.geoderma.2020.114616_b0210) 1977; 15
10.1016/j.geoderma.2020.114616_b0135
Liu (10.1016/j.geoderma.2020.114616_b0125) 2018; 18
10.1016/j.geoderma.2020.114616_b0060
Pedregosa (10.1016/j.geoderma.2020.114616_b0175) 2011; 12
Malek (10.1016/j.geoderma.2020.114616_b0130) 2018; 32
Padarian (10.1016/j.geoderma.2020.114616_b0165) 2019; 340
Nawar (10.1016/j.geoderma.2020.114616_b0145) 2016; 155
Sandler (10.1016/j.geoderma.2020.114616_b0215) 2018
Chollet (10.1016/j.geoderma.2020.114616_b0030) 2017
Guerrero (10.1016/j.geoderma.2020.114616_b0055) 2010; 158
Vohland (10.1016/j.geoderma.2020.114616_b0255) 2011; 166
Ben-Dor (10.1016/j.geoderma.2020.114616_b0010) 1995; 59
Yuanyuan (10.1016/j.geoderma.2020.114616_b0280) 2018; 181
Bengio (10.1016/j.geoderma.2020.114616_b0015) 2013; 35
Nocita (10.1016/j.geoderma.2020.114616_b0160) 2014; 68
Ross (10.1016/j.geoderma.2020.114616_b0205) 2016; 38
10.1016/j.geoderma.2020.114616_b0025
Morellos (10.1016/j.geoderma.2020.114616_b0140) 2016; 152
10.1016/j.geoderma.2020.114616_b0185
Singh (10.1016/j.geoderma.2020.114616_b0225) 2019; 18
10.1016/j.geoderma.2020.114616_b0100
Krizhevsky (10.1016/j.geoderma.2020.114616_b0105) 2012; 141
10.1016/j.geoderma.2020.114616_b0270
Rinnan (10.1016/j.geoderma.2020.114616_b0190) 2009; 28
Lecun (10.1016/j.geoderma.2020.114616_b0115) 1998; 86
Wang (10.1016/j.geoderma.2020.114616_b0260) 2015; 111
10.1016/j.geoderma.2020.114616_b0070
Stevens (10.1016/j.geoderma.2020.114616_b0240) 2013; 8
Qi (10.1016/j.geoderma.2020.114616_b0180) 2017; 9
Rossel (10.1016/j.geoderma.2020.114616_b0195) 2010; 158
Hinton (10.1016/j.geoderma.2020.114616_b0085) 2012; 29
Young (10.1016/j.geoderma.2020.114616_b0275) 2018; 13
Chang (10.1016/j.geoderma.2020.114616_b0020) 2001; 65
10.1016/j.geoderma.2020.114616_b0035
Rossel (10.1016/j.geoderma.2020.114616_b0200) 2006; 131
Hochreiter (10.1016/j.geoderma.2020.114616_b0090) 1997; 9
Kuang (10.1016/j.geoderma.2020.114616_b0110) 2011; 62
10.1016/j.geoderma.2020.114616_b0075
Srivastava (10.1016/j.geoderma.2020.114616_b0230) 2014; 15
10.1016/j.geoderma.2020.114616_b0040
Weimer (10.1016/j.geoderma.2020.114616_b0265) 2008
Zhang (10.1016/j.geoderma.2020.114616_b0285) 2019; 1058
References_xml – volume: 340
  start-page: 279
  year: 2019
  end-page: 288
  ident: b0165
  article-title: Transfer learning to localise a continental soil vis-nir calibration model
  publication-title: Geoderma
– reference: Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., Blunsom, P., 2015. Teaching machines to read and comprehend. Advances in Neural Information Processing Systems 28 (NIPS 2015) 28, 1693–1701. http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0230
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– reference: Zhang, R., Xie, H., Cai, S., Hu, Y., Liu, G.k., Hong, W., Tian, Z.q., 2020. Transfer-learning-based raman spectra identification. Journal of Raman Spectroscopy 51, 176–186. https://doi.org/10.1002/jrs.5750.
– reference: Wrb, I.W.G., Isric, F., 2006. World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome.
– reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of Machine Learning Research(PMLR), pp. 448–456.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0175
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– reference: Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using rnn encoder–decoder for statistical machine translation, in: Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), pp. 1724–1734.
– volume: 59
  start-page: 364
  year: 1995
  end-page: 372
  ident: b0010
  article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties
  publication-title: Soil Science Society of America Journal
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0080
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 13
  start-page: 55
  year: 2018
  end-page: 75
  ident: b0275
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Computational Intelligence Magazine
– volume: 141
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0105
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Neural Information Processing Systems
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b0115
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– reference: Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27 (NIPS 2014) 27, 3104–3112.
– volume: 152
  start-page: 104
  year: 2016
  end-page: 116
  ident: b0140
  article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using vis-nir spectroscopy
  publication-title: Biosystems Engineering
– reference: Dzmitry, B., Jan, C., Dmitriy, S., Philemon, B., Yoshua, B., 2016. End-to-end attention-based large vocabulary speech recognition. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949. https://doi.org/10.1109/ICASSP.2016.7472618.
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: b0085
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
– volume: 158
  start-page: 46
  year: 2010
  end-page: 54
  ident: b0195
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: b0020
  article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties
  publication-title: Soil Science Society of America Journal
– volume: 62
  start-page: 629
  year: 2011
  end-page: 636
  ident: b0110
  article-title: Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three european farms
  publication-title: European Journal of Soil Science
– volume: 28
  start-page: 1201
  year: 2009
  end-page: 1222
  ident: b0190
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC Trends in Analytical Chemistry
– volume: 9
  start-page: 1099
  year: 2017
  ident: b0180
  article-title: Linear multi-task learning for predicting soil properties using field spectroscopy
  publication-title: Remote Sensing
– volume: 15
  start-page: 234
  year: 1977
  end-page: 281
  ident: b0210
  article-title: A scaling method for priorities in hierarchical structures
  publication-title: Journal of Mathematical Psychology
– volume: 209
  start-page: 32
  year: 2019
  end-page: 39
  ident: b0155
  article-title: Variable weighted convolutional neural network for the nitrogen content quantization of masson pine seedling leaves with near-infrared spectroscopy
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 38
  start-page: 142
  year: 2016
  end-page: 158
  ident: b0205
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Guo, J., Li, Y., Lin, W., Chen, Y., Li, J., 2018. Network decoupling: From regular to depthwise separable convolutions. arXiv preprint arXiv:1808.05517 https://arxiv.org/abs/1808.05517.
– reference: Graves, A., Mohamed, A.R., Hinton, G., 2013. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. https://doi.org/10.1109/ICASSP.2013.6638947.
– start-page: 1593
  year: 2008
  end-page: 1600
  ident: b0265
  article-title: Cofi rank-maximum margin matrix factorization for collaborative ranking
  publication-title: Advances in Neural Information Processing Systems
– volume: 66
  start-page: 679
  year: 2015
  end-page: 687
  ident: b0220
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the chinese vis-nir spectral library
  publication-title: European Journal of Soil Science
– volume: 16
  year: 2019
  ident: b0170
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Regional
– volume: 137
  start-page: 70
  year: 2006
  end-page: 82
  ident: b0250
  article-title: Determining the composition of mineral-organic mixes using uv-vis-nir diffuse reflectance spectroscopy
  publication-title: Geoderma
– volume: 158
  start-page: 66
  year: 2010
  end-page: 77
  ident: b0055
  article-title: Spiking of nir regional models using samples from target sites: Effect of model size on prediction accuracy
  publication-title: Geoderma
– volume: 155
  start-page: 510
  year: 2016
  end-page: 522
  ident: b0145
  article-title: Estimating the soil clay content and organic matter by means of different calibration methods of vis-nir diffuse reflectance spectroscopy
  publication-title: Soil and Tillage Research
– reference: Chollet, F., et al., 2015. Keras. URL: https://keras.io.
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: b0215
  article-title: Mobilenetv 2: Inverted residuals and linear bottlenecks, in
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1251
  year: 2017
  end-page: 1258
  ident: b0030
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 1058
  start-page: 48
  year: 2019
  end-page: 57
  ident: b0285
  article-title: Deepspectra: An end-to-end deep learning approach for quantitative spectral analysis
  publication-title: Anal Chim Acta
– volume: 18
  start-page: 3169
  year: 2018
  ident: b0125
  article-title: Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery
  publication-title: Sensors
– volume: 111
  start-page: 69
  year: 2015
  end-page: 77
  ident: b0260
  article-title: Soil ph value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy
  publication-title: Computers and Electronics in Agriculture
– volume: 58
  start-page: 144
  year: 2007
  end-page: 153
  ident: b0065
  article-title: Prediction of soil macronutrients content using near-infrared spectroscopy
  publication-title: Computers and Electronics in Agriculture
– volume: 68
  start-page: 337
  year: 2014
  end-page: 347
  ident: b0160
  article-title: Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach
  publication-title: Soil Biology and Biochemistry
– reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. https://doi.org/10.1109/Cvpr.2016.91.
– volume: 158
  start-page: 32
  year: 2010
  end-page: 45
  ident: b0235
  article-title: Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy
  publication-title: Geoderma
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  ident: b0200
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
– start-page: 315
  year: 2011
  end-page: 323
  ident: b0045
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– reference: Karpathy, A., Li, F.F., 2015. Deep visual-semantic alignments for generating image descriptions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3128–3137. https://doi.org/10.1109/TPAMI.2016.2598339.
– volume: 43
  start-page: 772
  year: 1989
  end-page: 777
  ident: b0005
  article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
  publication-title: Applied Spectroscopy
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0090
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 8
  year: 2013
  ident: b0240
  article-title: Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy
  publication-title: PloS one.
– reference: He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J., 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. https://doi.org/10.1109/Cvpr.2016.90.
– volume: 181
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0280
  article-title: Quantitative analysis modeling of infrared spectroscopy based on ensemble convolutional neural networks
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 166
  start-page: 198
  year: 2011
  end-page: 205
  ident: b0255
  article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
  publication-title: Geoderma
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0120
  article-title: Deep learning
  publication-title: Nature
– reference: Mikolov, T., Karafiat, M., Burget, L., Cernock++, J., Khudanpur, S., 2010. Recurrent neural network based language model. In: Conference of the International Speech Communication Association, pp. 1045–1048.
– volume: 352
  start-page: 251
  year: 2019
  end-page: 267
  ident: b0150
  article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra
  publication-title: Geoderma
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b0015
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 32
  year: 2018
  ident: b0130
  article-title: One-dimensional convolutional neural networks for spectroscopic signal regression
  publication-title: Journal of Chemometrics
– volume: 18
  year: 2019
  ident: b0225
  article-title: Estimation of soil properties from the eu spectral library using long short-term memory networks
  publication-title: Geoderma Regional
– volume: 209
  start-page: 32
  year: 2019
  ident: 10.1016/j.geoderma.2020.114616_b0155
  article-title: Variable weighted convolutional neural network for the nitrogen content quantization of masson pine seedling leaves with near-infrared spectroscopy
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2018.10.028
– volume: 58
  start-page: 144
  year: 2007
  ident: 10.1016/j.geoderma.2020.114616_b0065
  article-title: Prediction of soil macronutrients content using near-infrared spectroscopy
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2007.03.011
– ident: 10.1016/j.geoderma.2020.114616_b0185
  doi: 10.1109/CVPR.2016.91
– volume: 29
  start-page: 82
  year: 2012
  ident: 10.1016/j.geoderma.2020.114616_b0085
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2012.2205597
– volume: 43
  start-page: 772
  year: 1989
  ident: 10.1016/j.geoderma.2020.114616_b0005
  article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
  publication-title: Applied Spectroscopy
  doi: 10.1366/0003702894202201
– ident: 10.1016/j.geoderma.2020.114616_b0060
– volume: 9
  start-page: 1099
  year: 2017
  ident: 10.1016/j.geoderma.2020.114616_b0180
  article-title: Linear multi-task learning for predicting soil properties using field spectroscopy
  publication-title: Remote Sensing
  doi: 10.3390/rs9111099
– volume: 158
  start-page: 66
  year: 2010
  ident: 10.1016/j.geoderma.2020.114616_b0055
  article-title: Spiking of nir regional models using samples from target sites: Effect of model size on prediction accuracy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.021
– volume: 65
  start-page: 480
  year: 2001
  ident: 10.1016/j.geoderma.2020.114616_b0020
  article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2001.652480x
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.geoderma.2020.114616_b0175
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– start-page: 1251
  year: 2017
  ident: 10.1016/j.geoderma.2020.114616_b0030
  article-title: Xception: Deep learning with depthwise separable convolutions
– volume: 35
  start-page: 1798
  year: 2013
  ident: 10.1016/j.geoderma.2020.114616_b0015
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.50
– volume: 111
  start-page: 69
  year: 2015
  ident: 10.1016/j.geoderma.2020.114616_b0260
  article-title: Soil ph value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2014.11.019
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.geoderma.2020.114616_b0120
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.geoderma.2020.114616_b0090
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.geoderma.2020.114616_b0230
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– volume: 152
  start-page: 104
  year: 2016
  ident: 10.1016/j.geoderma.2020.114616_b0140
  article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using vis-nir spectroscopy
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2016.04.018
– volume: 16
  year: 2019
  ident: 10.1016/j.geoderma.2020.114616_b0170
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2018.e00198
– ident: 10.1016/j.geoderma.2020.114616_b0135
  doi: 10.1109/ICASSP.2011.5947611
– ident: 10.1016/j.geoderma.2020.114616_b0075
– volume: 18
  start-page: 3169
  year: 2018
  ident: 10.1016/j.geoderma.2020.114616_b0125
  article-title: Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery
  publication-title: Sensors
  doi: 10.3390/s18093169
– volume: 68
  start-page: 337
  year: 2014
  ident: 10.1016/j.geoderma.2020.114616_b0160
  article-title: Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2013.10.022
– volume: 38
  start-page: 142
  year: 2016
  ident: 10.1016/j.geoderma.2020.114616_b0205
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2437384
– volume: 181
  start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2020.114616_b0280
  article-title: Quantitative analysis modeling of infrared spectroscopy based on ensemble convolutional neural networks
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2018.08.001
– volume: 28
  start-page: 1201
  year: 2009
  ident: 10.1016/j.geoderma.2020.114616_b0190
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2009.07.007
– ident: 10.1016/j.geoderma.2020.114616_b0245
– volume: 66
  start-page: 679
  year: 2015
  ident: 10.1016/j.geoderma.2020.114616_b0220
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the chinese vis-nir spectral library
  publication-title: European Journal of Soil Science
  doi: 10.1111/ejss.12272
– volume: 158
  start-page: 46
  year: 2010
  ident: 10.1016/j.geoderma.2020.114616_b0195
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.025
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.geoderma.2020.114616_b0115
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– ident: 10.1016/j.geoderma.2020.114616_b0025
  doi: 10.3115/v1/D14-1179
– ident: 10.1016/j.geoderma.2020.114616_b0290
  doi: 10.1002/jrs.5750
– volume: 59
  start-page: 364
  year: 1995
  ident: 10.1016/j.geoderma.2020.114616_b0010
  article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1995.03615995005900020014x
– volume: 137
  start-page: 70
  year: 2006
  ident: 10.1016/j.geoderma.2020.114616_b0250
  article-title: Determining the composition of mineral-organic mixes using uv-vis-nir diffuse reflectance spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.07.004
– volume: 32
  year: 2018
  ident: 10.1016/j.geoderma.2020.114616_b0130
  article-title: One-dimensional convolutional neural networks for spectroscopic signal regression
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.2977
– ident: 10.1016/j.geoderma.2020.114616_b0040
  doi: 10.1109/ICASSP.2016.7472618
– volume: 158
  start-page: 32
  year: 2010
  ident: 10.1016/j.geoderma.2020.114616_b0235
  article-title: Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.11.032
– ident: 10.1016/j.geoderma.2020.114616_b0095
– volume: 15
  start-page: 234
  year: 1977
  ident: 10.1016/j.geoderma.2020.114616_b0210
  article-title: A scaling method for priorities in hierarchical structures
  publication-title: Journal of Mathematical Psychology
  doi: 10.1016/0022-2496(77)90033-5
– start-page: 315
  year: 2011
  ident: 10.1016/j.geoderma.2020.114616_b0045
  article-title: Deep sparse rectifier neural networks
– volume: 340
  start-page: 279
  year: 2019
  ident: 10.1016/j.geoderma.2020.114616_b0165
  article-title: Transfer learning to localise a continental soil vis-nir calibration model
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.009
– ident: 10.1016/j.geoderma.2020.114616_b0070
  doi: 10.1109/CVPR.2016.90
– volume: 352
  start-page: 251
  year: 2019
  ident: 10.1016/j.geoderma.2020.114616_b0150
  article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.016
– ident: 10.1016/j.geoderma.2020.114616_b0100
  doi: 10.1109/TPAMI.2016.2598339
– volume: 131
  start-page: 59
  year: 2006
  ident: 10.1016/j.geoderma.2020.114616_b0200
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.007
– volume: 62
  start-page: 629
  year: 2011
  ident: 10.1016/j.geoderma.2020.114616_b0110
  article-title: Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three european farms
  publication-title: European Journal of Soil Science
  doi: 10.1111/j.1365-2389.2011.01358.x
– start-page: 1593
  year: 2008
  ident: 10.1016/j.geoderma.2020.114616_b0265
  article-title: Cofi rank-maximum margin matrix factorization for collaborative ranking
  publication-title: Advances in Neural Information Processing Systems
– volume: 166
  start-page: 198
  year: 2011
  ident: 10.1016/j.geoderma.2020.114616_b0255
  article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.08.001
– ident: 10.1016/j.geoderma.2020.114616_b0270
– volume: 13
  start-page: 55
  year: 2018
  ident: 10.1016/j.geoderma.2020.114616_b0275
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2018.2840738
– volume: 141
  start-page: 1097
  year: 2012
  ident: 10.1016/j.geoderma.2020.114616_b0105
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Neural Information Processing Systems
– volume: 18
  year: 2019
  ident: 10.1016/j.geoderma.2020.114616_b0225
  article-title: Estimation of soil properties from the eu spectral library using long short-term memory networks
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2019.e00233
– volume: 155
  start-page: 510
  year: 2016
  ident: 10.1016/j.geoderma.2020.114616_b0145
  article-title: Estimating the soil clay content and organic matter by means of different calibration methods of vis-nir diffuse reflectance spectroscopy
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2015.07.021
– start-page: 4510
  year: 2018
  ident: 10.1016/j.geoderma.2020.114616_b0215
  article-title: Mobilenetv 2: Inverted residuals and linear bottlenecks, in
– volume: 8
  year: 2013
  ident: 10.1016/j.geoderma.2020.114616_b0240
  article-title: Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy
  publication-title: PloS one.
  doi: 10.1371/journal.pone.0066409
– ident: 10.1016/j.geoderma.2020.114616_b0035
– ident: 10.1016/j.geoderma.2020.114616_b0050
  doi: 10.1109/ICASSP.2013.6638947
– volume: 1058
  start-page: 48
  year: 2019
  ident: 10.1016/j.geoderma.2020.114616_b0285
  article-title: Deepspectra: An end-to-end deep learning approach for quantitative spectral analysis
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2019.01.002
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.geoderma.2020.114616_b0080
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
SSID ssj0017020
Score 2.587626
Snippet •Combining the advantages of CNN and RNN for Vis-NIR spectral analysis.•Developing a joined CNN and RNN model called CCNVR for predicting soil...
Visible and Near-infrared diffuse reflectance spectroscopy (Vis–NIR) serves as a rapid and non-destructive technique to estimate various soil properties....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114616
SubjectTerms calibration
Convolutional Neural Network
land cover
land use
mineral soils
model validation
neural networks
nondestructive methods
prediction
Recurrent Neural Network
reflectance spectroscopy
Soil properties estimation
soil quality
surveys
Transfer learning
Vis–NIR spectroscopy
Title Combination of Convolutional Neural Networks and Recurrent Neural Networks for predicting soil properties using Vis–NIR spectroscopy
URI https://dx.doi.org/10.1016/j.geoderma.2020.114616
https://www.proquest.com/docview/2551921716
Volume 380
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQXMqhKhTEv4zENd3d2I6T42oFWkDsAdGKm2UnNlqEkmizi8Sl6qkvwBvyJMw4DqKAxKGnyHEmimbGnpl45htCjpiwuTGCRzJzMuJWs8hYibCVogALZaVLsd75YpKMf_Kza3G9REZdLQymVYa9v93T_W4d7vQCN3v1dIo1voNEooX2YYEvNOdcopb_-P2S5jGQ_QDNOEgifPpVlfAtyAgbjnn8obiFzcW-5x8bqDdbtbc_J9_I1-A40mH7bWtkyZbrZHV4MwvgGfY7-QuLGwJdz2taOTqqyvugWUCJMBz-4vO-G6rLgl7i33bEZ3o3C74srWd4ioN50bSppncwrmpMw7YNxXT5G_pr2jz9eZycXlJfsInAmFX9sEGuTo6vRuMo9FmINEvSeVTouChYDt6PZqnmECzrTOaZiKXWidRFwlzBYEowblIHLgGTMRdaaJOZmEu2SZbLqrRbhDoHDHSOO277HFtVccP6MYgyM3ks02KbiI63Kg8Y5NgK4051yWa3qpOJQpmoVibbpPdCV7coHJ9SZJ3o1D_6pMBUfEp72MlawWLDExRd2mrRKIi_ED8OYsyd_3j_LvmCI0yKGYg9sjyfLew-uDZzc-B194CsDE_Px5Nn3W79vg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFOU8jASHMNu_IiTA4eqUO3Sdg_Vgnqz7MSutqqSaLOl6gVx4g_wT_hJ_BJmHKfiJfWAeooSy1E0M57xxN98Q8hLLl1prRSJKrxKhDM8sU4hbaWsIEI55XOsd96fZZMP4v2hPFwj34daGIRVRt_f-_TgreOTUZTmqF0ssMY3zRRG6JAWpAOyctedn0He1r2ZvgUlv2Js5918e5LE1gKJ4Vm-SirDqoqXEPANz42A_NAUqiwkU8ZkylQZ9xWHIcmFzT1EQa6YkEYaW1gmFIfXXiPXBXgL7Jrw-vMFrCRV40gFmWYJft0vVcnHYBPY4CzwHbGephf7rP87IP4RGkK827lDbseNKt3qZXGXrLn6Hrm1dbSMZB3uPvkKzgQS66Bb2ni63dSfoiXDTKT9CJeAM--oqSt6gH_3kQ_qr1HYO9N2iadGiMOmXbM4gfumRdi36yjC84_ox0X348u32fSAhgJRJOJs2vMHZH4Vwn9I1uumdo8I9R4E6L3wwo0FtsYSlo8ZmE5hS6byaoPIQba6jJzn2HrjRA_gtmM96ESjTnSvkw0yupjX9qwfl84oBtXp3-xXQ2i6dO6LQdcaFjee2JjaNaedhnwP-eogp338H-9_Tm5M5vt7em86290kN3EEATmpfELWV8tT9xS2VSv7LNgxJfqK181PO3w3-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+of+Convolutional+Neural+Networks+and+Recurrent+Neural+Networks+for+predicting+soil+properties+using+Vis%E2%80%93NIR+spectroscopy&rft.jtitle=Geoderma&rft.au=Yang%2C+Jiechao&rft.au=Wang%2C+Xuelei&rft.au=Wang%2C+Ruihua&rft.au=Wang%2C+Huanjie&rft.date=2020-12-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=380&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114616&rft.externalDocID=S0016706120301415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon