Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China
Due to confounding factors such as crop residue and soil moisture, soil organic matter (SOM) is usually estimated from soil samples in a laboratory or in the field at a local scale. In this study, laboratory and field data of crop residue, soil moisture, crop management practices, and SOM content we...
Saved in:
Published in | Geoderma Vol. 356; p. 113896 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to confounding factors such as crop residue and soil moisture, soil organic matter (SOM) is usually estimated from soil samples in a laboratory or in the field at a local scale. In this study, laboratory and field data of crop residue, soil moisture, crop management practices, and SOM content were used in concert with multi-temporal MODIS images captured during bare soil periods over three years to construct spectral indices, which were then used as input variables to build a regional-scale SOM prediction model. Results showed that: (1) multi-temporal satellite images can be used to predict SOM content at a regional scale; (2) crop residue cover and time interval between snow melt, rainfall, and ploughing determined the optimal input variables for SOM prediction; (3) compared to a SOM model based on a single image, a multi-temporal model reduced the influence of soil moisture and improved both the stability and the accuracy of SOM prediction; (4) the best models generally used the ratio of MODIS Band 6 and Band 1 (R61) as an input variable, as R61 showed good correlation with SOM and less correlation with moisture; and (5) comparing different models in different years showed that models performed better in years with less crop residue. The study results can be used to improve the accuracy of quantitative estimates of the soil organic carbon pool and provide assistance in digital soil mapping.
•SOM prediction was influenced by soil moisture, crop residue, and cultivation.•Imagery under uniform environmental conditions produced the best SOM predictions.•Multi-date spectral indices were better predictors of SOM than single-date indices.•Indices that accounted for soil moisture performed better in SOM inversion models. |
---|---|
AbstractList | Due to confounding factors such as crop residue and soil moisture, soil organic matter (SOM) is usually estimated from soil samples in a laboratory or in the field at a local scale. In this study, laboratory and field data of crop residue, soil moisture, crop management practices, and SOM content were used in concert with multi-temporal MODIS images captured during bare soil periods over three years to construct spectral indices, which were then used as input variables to build a regional-scale SOM prediction model. Results showed that: (1) multi-temporal satellite images can be used to predict SOM content at a regional scale; (2) crop residue cover and time interval between snow melt, rainfall, and ploughing determined the optimal input variables for SOM prediction; (3) compared to a SOM model based on a single image, a multi-temporal model reduced the influence of soil moisture and improved both the stability and the accuracy of SOM prediction; (4) the best models generally used the ratio of MODIS Band 6 and Band 1 (R61) as an input variable, as R61 showed good correlation with SOM and less correlation with moisture; and (5) comparing different models in different years showed that models performed better in years with less crop residue. The study results can be used to improve the accuracy of quantitative estimates of the soil organic carbon pool and provide assistance in digital soil mapping.
•SOM prediction was influenced by soil moisture, crop residue, and cultivation.•Imagery under uniform environmental conditions produced the best SOM predictions.•Multi-date spectral indices were better predictors of SOM than single-date indices.•Indices that accounted for soil moisture performed better in SOM inversion models. Due to confounding factors such as crop residue and soil moisture, soil organic matter (SOM) is usually estimated from soil samples in a laboratory or in the field at a local scale. In this study, laboratory and field data of crop residue, soil moisture, crop management practices, and SOM content were used in concert with multi-temporal MODIS images captured during bare soil periods over three years to construct spectral indices, which were then used as input variables to build a regional-scale SOM prediction model. Results showed that: (1) multi-temporal satellite images can be used to predict SOM content at a regional scale; (2) crop residue cover and time interval between snow melt, rainfall, and ploughing determined the optimal input variables for SOM prediction; (3) compared to a SOM model based on a single image, a multi-temporal model reduced the influence of soil moisture and improved both the stability and the accuracy of SOM prediction; (4) the best models generally used the ratio of MODIS Band 6 and Band 1 (R61) as an input variable, as R61 showed good correlation with SOM and less correlation with moisture; and (5) comparing different models in different years showed that models performed better in years with less crop residue. The study results can be used to improve the accuracy of quantitative estimates of the soil organic carbon pool and provide assistance in digital soil mapping. |
ArticleNumber | 113896 |
Author | Wang, Xiang Pan, Yue Meng, Linghua Liu, Huanjun Dou, Xin Zhang, Xinle Yu, Ziyang Cui, Yang |
Author_xml | – sequence: 1 givenname: Xin surname: Dou fullname: Dou, Xin email: dxdx1993@hotmail.com organization: College of Resources and Environment Sciences, Northeast Agricultural University, Harbin 150030, China – sequence: 2 givenname: Xiang surname: Wang fullname: Wang, Xiang organization: College of Resources and Environment Sciences, Northeast Agricultural University, Harbin 150030, China – sequence: 3 givenname: Huanjun surname: Liu fullname: Liu, Huanjun email: liuhuanjun@neigae.ac.com organization: College of Resources and Environment Sciences, Northeast Agricultural University, Harbin 150030, China – sequence: 4 givenname: Xinle surname: Zhang fullname: Zhang, Xinle email: xinlezhang@yeah.net organization: College of Resources and Environment Sciences, Northeast Agricultural University, Harbin 150030, China – sequence: 5 givenname: Linghua surname: Meng fullname: Meng, Linghua organization: College of Resources and Environment Sciences, Northeast Agricultural University, Harbin 150030, China – sequence: 6 givenname: Yue surname: Pan fullname: Pan, Yue organization: College of Resources and Environment Sciences, Northeast Agricultural University, Harbin 150030, China – sequence: 7 givenname: Ziyang surname: Yu fullname: Yu, Ziyang organization: College of Resources and Environment Sciences, Northeast Agricultural University, Harbin 150030, China – sequence: 8 givenname: Yang surname: Cui fullname: Cui, Yang organization: College of Resources and Environment Sciences, Northeast Agricultural University, Harbin 150030, China |
BookMark | eNqFkU1LJDEQhoO4sKPrX1hy9GCP-Zj-Ag_K4K6CoLDrOdQk1T01dCdjkhH89_YwevHiqSh4n5fiqRN27INHxn5LMZdCVpebeY_BYRxhroRs51Lqpq2O2Ew2tSoqVbbHbCamZFGLSv5kJyltprUWSsyYfYroyGYKnoeOp0ADD7EHT5aPkDNGvkvkez7uhkxFxnEbIgw8QcZhoIycRugxcfI8r5H_C7736PnTAOQv-HJNHn6xHx0MCc8-5il7_nP7f3lXPDz-vV_ePBSgqyYXTmEtO1lrJ0QNDqQucVFBLRXqFULXOXDNwsl2Vbmm7lalEk45oYVrmpVSpT5l54febQwvO0zZjJTsdCZ4DLtklJalapVs9RS9OkRtDClF7IylDHsLOQINRgqzd2s25tOt2bs1B7cTXn3Bt3HyEN--B68PIE4eXgmjSZbQ2-kHEW02LtB3Fe9SRptM |
CitedBy_id | crossref_primary_10_19047_0136_1694_2022_111_77_96 crossref_primary_10_3390_drones7050290 crossref_primary_10_1016_j_jag_2020_102111 crossref_primary_10_1016_j_geoderma_2021_115263 crossref_primary_10_3390_rs13204165 crossref_primary_10_1016_j_rse_2024_114592 crossref_primary_10_3390_f15010218 crossref_primary_10_1016_j_catena_2023_107691 crossref_primary_10_1016_j_compag_2024_109377 crossref_primary_10_3390_agriculture13010008 crossref_primary_10_1016_j_still_2023_105912 crossref_primary_10_1080_10106049_2022_2063412 crossref_primary_10_3390_rs13183607 crossref_primary_10_3390_rs13234772 crossref_primary_10_1038_s41598_024_68424_5 crossref_primary_10_3390_agronomy12092111 crossref_primary_10_3390_rs16061069 crossref_primary_10_3390_rs17010105 crossref_primary_10_3390_su132414055 crossref_primary_10_1007_s11356_021_17956_8 crossref_primary_10_1109_TAFE_2024_3369995 crossref_primary_10_12677_OJNS_2021_94053 crossref_primary_10_1002_cpe_7611 crossref_primary_10_3390_rs17050882 crossref_primary_10_1080_10106049_2021_1996638 crossref_primary_10_1016_j_still_2025_106475 crossref_primary_10_1016_j_still_2025_106552 crossref_primary_10_3390_rs13040769 crossref_primary_10_3390_rs14122917 crossref_primary_10_3390_rs15010127 crossref_primary_10_1007_s11368_024_03862_2 crossref_primary_10_1016_j_still_2022_105325 crossref_primary_10_1051_e3sconf_202127305003 crossref_primary_10_1016_j_geoderma_2022_115953 crossref_primary_10_1038_s41598_024_82399_3 crossref_primary_10_1016_j_jclepro_2023_138544 crossref_primary_10_1016_j_catena_2021_105842 crossref_primary_10_1016_j_ecoinf_2023_102290 crossref_primary_10_1007_s44187_025_00338_1 crossref_primary_10_1016_j_ecolind_2024_112594 crossref_primary_10_1016_j_jenvman_2023_117810 crossref_primary_10_3390_su132413930 crossref_primary_10_3390_land13091447 crossref_primary_10_1007_s10661_024_12817_6 crossref_primary_10_3390_rs15051461 crossref_primary_10_1016_j_still_2023_105897 crossref_primary_10_1007_s11042_024_18955_w crossref_primary_10_1016_j_catena_2022_106023 crossref_primary_10_1002_ldr_4720 crossref_primary_10_3390_rs13245162 crossref_primary_10_1134_S001095252370065X crossref_primary_10_1016_j_rse_2022_113166 crossref_primary_10_1016_j_scitotenv_2023_166112 crossref_primary_10_3390_rs15123191 crossref_primary_10_5194_soil_9_351_2023 crossref_primary_10_3390_su14169905 crossref_primary_10_1016_j_compag_2022_107246 crossref_primary_10_1016_j_geoderma_2024_116987 crossref_primary_10_1016_j_rse_2023_113911 crossref_primary_10_1016_j_still_2024_106270 crossref_primary_10_1007_s11368_024_03876_w crossref_primary_10_1016_j_still_2024_106357 crossref_primary_10_3390_rs12203401 crossref_primary_10_1016_j_still_2024_106358 crossref_primary_10_1016_j_geoderma_2022_115696 crossref_primary_10_1515_geo_2022_0739 crossref_primary_10_3390_su16041497 crossref_primary_10_1016_j_geoderma_2022_116066 crossref_primary_10_3390_rs13122313 crossref_primary_10_1109_JSTARS_2023_3267102 crossref_primary_10_3390_rs13152934 crossref_primary_10_1016_j_jclepro_2022_132922 crossref_primary_10_3390_su152316310 crossref_primary_10_1016_j_isprsjprs_2023_07_020 crossref_primary_10_1016_j_jia_2023_09_017 crossref_primary_10_1080_17538947_2023_2192005 crossref_primary_10_3390_su15010469 crossref_primary_10_1016_j_catena_2019_104439 crossref_primary_10_1016_j_catena_2024_107821 crossref_primary_10_3389_fenvs_2024_1420557 crossref_primary_10_3390_environments10050077 crossref_primary_10_1016_j_jenvman_2021_113958 |
Cites_doi | 10.2136/sssaj2000.642746x 10.1111/j.1365-2389.1992.tb00128.x 10.2136/sssaj2008.0045 10.1016/0034-4257(89)90123-5 10.1016/j.geoderma.2009.01.025 10.1016/S2095-3119(16)61349-7 10.1016/S0034-4257(00)00146-2 10.1016/j.geoderma.2012.05.022 10.1016/j.geoderma.2017.10.018 10.1016/j.geoderma.2016.06.033 10.1007/s10661-008-0385-4 10.1016/j.geoderma.2006.03.050 10.1016/j.geoderma.2018.05.029 10.13031/2013.31816 10.1016/j.geoderma.2016.10.033 10.1007/s11676-014-0437-2 10.1016/S1002-0160(09)60146-6 10.1016/j.geoderma.2010.04.008 10.1016/j.catena.2018.11.010 10.1016/j.geoderma.2019.01.007 10.2136/sssaj1995.03615995005900020014x 10.1016/j.jafrearsci.2015.11.020 10.1016/j.geoderma.2013.07.031 10.1016/j.geoderma.2005.03.007 10.2135/cropsci1997.0011183X003700050024x 10.1016/j.geoderma.2011.05.007 10.2136/sssaj2005.0071 10.1080/01431161003778708 10.1155/2011/358193 10.2136/sssaj2005.0025 10.1016/S1002-0160(15)60029-7 10.1016/j.geoderma.2011.06.006 10.2136/sssaj2002.1922 10.1016/j.geoderma.2018.01.023 10.1023/A:1020612319014 10.1016/j.geoderma.2008.06.011 10.4155/cmt.13.77 10.1016/j.geoderma.2009.12.017 10.1016/j.envpol.2013.04.033 10.1097/00010694-196508000-00009 10.1016/j.catena.2016.05.023 10.1016/j.geoderma.2018.08.011 10.1016/j.agrformet.2013.01.007 10.1016/j.geoderma.2019.02.019 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.113896 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2019_113896 S0016706118321657 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-a368t-d2e71f173d007ada135e46a712e3beaffdad84d19b6d87fb520d2d030d88b2253 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Mon Jul 21 11:58:11 EDT 2025 Tue Jul 01 04:04:51 EDT 2025 Thu Apr 24 22:51:33 EDT 2025 Fri Feb 23 02:30:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil organic matter Optimal input variables Spectral index MODIS Temporal information |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-d2e71f173d007ada135e46a712e3beaffdad84d19b6d87fb520d2d030d88b2253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2315292193 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2315292193 crossref_citationtrail_10_1016_j_geoderma_2019_113896 crossref_primary_10_1016_j_geoderma_2019_113896 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_113896 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-15 |
PublicationDateYYYYMMDD | 2019-12-15 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kumar, Lal, Liu (bb0120) 2012; 189–190 Gomes, Faria, Souza, Veloso, Schaefer, Filho (bb0065) 2019; 340 Liu, Ding, Liu, Zhang, Qu, Hu, Zhang (bb0165) 2014; 51 Heilongjiang Provincial Bureau of Statistics (bb0090) 2015 Qin, Zhu, Qiu, Lu, Li, Pei (bb0200) 2012; 171-172 Behrens, Schmidt, Ramirez-Lopez, Gallant, Zhu, Scholten (bb0015) 2014; 213 Chen, Kissel, West, Adkins (bb0035) 2000; 64 Couillard, Turgeon, Shenk, Westerhaus (bb0040) 1997; 37 Mirzaee, Ghorbani-Dashtaki, Mohammadi, Asadi, Asadzadeh (bb0175) 2016; 145 Stevens, Van Wesemael, Vandenschrick, Touré (bb0230) 2006; 70 Liu, Zhang, Liu, Song, Wang, Duan (bb0130) 2007; 24 Liu, Peng, Zhang (bb0145) 2011; 5 Viscarra Rossel, Cattle, Ortega, Fouad (bb0250) 2009; 150 Shi, Yu, Xu, Warner, Wang, Sun, Zhao, Gong (bb0220) 2010; 155 Sullivan, Shaw, Rickman (bb0235) 2005; 29 Liu, Ning, Ran, Jin, Zhang, Sheng (bb0170) 2017; 37 Liu, Zhang, Yu, Zhang, Song, Blackwell (bb0150) 2011; 3 Wu, Wu, Luo, Zhang, Degloria (bb0265) 2009; 73 Fox, Sabbagh (bb0050) 2002; 66 Liu, Zhang, Zhang, Zhang, Song, Wang, Tang (bb0140) 2009; 19 Yang, Zhu, Qin, Li, Pei, Liu (bb0280) 2009; 46 Guerra-Santos, Cerón-Bretón, Cerón-Bretón, Damián-Hernández, Damián-Hernández, Sánchez-Junco, Carrió (bb0075) 2014; 25 Peng, Zhou, Zhang, Xiang (bb0185) 2013; 50 Zeng, Yang, Zhu, Rossiter, Liu, Liu, Qin, Wang (bb0285) 2016; 281 Hilgard (bb0095) 1860 Zhu (bb0315) 1997; 63 He, Wang, Cheng (bb0085) 2006; 22 Liu, Geng, Zhu, Fraser, Waddell (bb0160) 2012; 171-172 Abu-Hashim, Elsayed, Belal (bb0005) 2016; 114 Gomez, Viscarra Rossel, Mcbratney (bb0070) 2008; 146 Scharlemann, Tanner, Hiederer, Kapos (bb0210) 2014; 5 Zhan, Liang, Xu, Liang (bb0290) 2013; 179 Stenberg (bb0225) 2010; 158 Liu, Zhao, Wang, Huang, Zhang (bb0155) 2011; 27 Bao, Wu, Ye, Yang, Zhou (bb0010) 2017; 288 Jenny (bb0115) 1941 Fystro (bb0060) 2002; 246 Zhang, Song, Zhang, Han, Tang, Yang, Wang (bb0295) 2017; 16 He, Chen (bb0080) 2015; 46 Tziachris, Aschonitis, Chatzistathis, Papadopoulou (bb0240) 2019; 174 Bendor, Banin (bb0020) 1995; 59 Dokuchaev (bb0045) 1883 Qin, Lu, QIU, Zhu, Zhang, Yang (bb0195) 2010; 29 Hively, Mccarty, Iii, Lang, Oesterling, Delwiche (bb0105) 2011; 2011 Zhu, Hu, Jing, Cao, Bi, Yang (bb0320) 2018; 330 Hill, Schütt (bb0100) 2000; 74 Zhang, Dou, Xie, Liu, Wang, Wang, Pan (bb0305) 2018; 34 Viscarra Rossel, Walvoort, Mcbratney, Janik (bb0245) 2006; 131 Yang, Zhang, Fang, Liang (bb0275) 2004; 24 Zhang, Liu, Zhang, Yu, Dou, Xie, Wang (bb0300) 2018; 320 Bolton, Friedl (bb0025) 2013; 173 Rudiyanto, Minasny, B., Setiawan, B.I., Saptomo, S.K., McBratney, A.B., 2018 Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands. Geoderma 313, 25–40. Nelson, Sommers, Page, Miller, Keeney (bb0180) 1982 Zheng, Ryu, Jiao, Hong (bb0310) 2016; 26 IUSS Working Group WRB (bb0110) 2006 Xi, Zhu, Zhou, Du, Li, Zhang, Yang, Hou, Tang, Zhou (bb0270) 1998 Liu, Zhang, Zhang (bb0135) 2009; 154 Webster, Oliver (bb0260) 2010; 43 Bowers, Hanks (bb0030) 1965; 100 Pouladi, Møller, Tabatabai, Greve (bb0190) 2019; 342 Wang, Tang, Wang (bb0255) 2017; 48 Frazier, Cheng (bb0055) 1989; 28 Liang, Chen, Yang, Zhao, Shi, Viscarra Rossel (bb0125) 2019; 335 Selige, Böhner, Schmidhalter (bb0215) 2006; 136 Sudduth, Hummel (bb9000) 1991; 34 Bao (10.1016/j.geoderma.2019.113896_bb0010) 2017; 288 Bowers (10.1016/j.geoderma.2019.113896_bb0030) 1965; 100 Yang (10.1016/j.geoderma.2019.113896_bb0275) 2004; 24 Guerra-Santos (10.1016/j.geoderma.2019.113896_bb0075) 2014; 25 Bendor (10.1016/j.geoderma.2019.113896_bb0020) 1995; 59 Zhang (10.1016/j.geoderma.2019.113896_bb0300) 2018; 320 Selige (10.1016/j.geoderma.2019.113896_bb0215) 2006; 136 Pouladi (10.1016/j.geoderma.2019.113896_bb0190) 2019; 342 Liang (10.1016/j.geoderma.2019.113896_bb0125) 2019; 335 Liu (10.1016/j.geoderma.2019.113896_bb0165) 2014; 51 Liu (10.1016/j.geoderma.2019.113896_bb0170) 2017; 37 Zhang (10.1016/j.geoderma.2019.113896_bb0305) 2018; 34 Mirzaee (10.1016/j.geoderma.2019.113896_bb0175) 2016; 145 Heilongjiang Provincial Bureau of Statistics (10.1016/j.geoderma.2019.113896_bb0090) 2015 Xi (10.1016/j.geoderma.2019.113896_bb0270) 1998 Zheng (10.1016/j.geoderma.2019.113896_bb0310) 2016; 26 Liu (10.1016/j.geoderma.2019.113896_bb0160) 2012; 171-172 Zeng (10.1016/j.geoderma.2019.113896_bb0285) 2016; 281 Hill (10.1016/j.geoderma.2019.113896_bb0100) 2000; 74 Stenberg (10.1016/j.geoderma.2019.113896_bb0225) 2010; 158 Behrens (10.1016/j.geoderma.2019.113896_bb0015) 2014; 213 Webster (10.1016/j.geoderma.2019.113896_bb0260) 2010; 43 Zhu (10.1016/j.geoderma.2019.113896_bb0320) 2018; 330 Couillard (10.1016/j.geoderma.2019.113896_bb0040) 1997; 37 Chen (10.1016/j.geoderma.2019.113896_bb0035) 2000; 64 Liu (10.1016/j.geoderma.2019.113896_bb0155) 2011; 27 Sudduth (10.1016/j.geoderma.2019.113896_bb9000) 1991; 34 Wu (10.1016/j.geoderma.2019.113896_bb0265) 2009; 73 Shi (10.1016/j.geoderma.2019.113896_bb0220) 2010; 155 Nelson (10.1016/j.geoderma.2019.113896_bb0180) 1982 Wang (10.1016/j.geoderma.2019.113896_bb0255) 2017; 48 Fystro (10.1016/j.geoderma.2019.113896_bb0060) 2002; 246 He (10.1016/j.geoderma.2019.113896_bb0085) 2006; 22 Liu (10.1016/j.geoderma.2019.113896_bb0145) 2011; 5 Qin (10.1016/j.geoderma.2019.113896_bb0195) 2010; 29 Jenny (10.1016/j.geoderma.2019.113896_bb0115) 1941 Hilgard (10.1016/j.geoderma.2019.113896_bb0095) 1860 Liu (10.1016/j.geoderma.2019.113896_bb0130) 2007; 24 Hively (10.1016/j.geoderma.2019.113896_bb0105) 2011; 2011 Bolton (10.1016/j.geoderma.2019.113896_bb0025) 2013; 173 Fox (10.1016/j.geoderma.2019.113896_bb0050) 2002; 66 Qin (10.1016/j.geoderma.2019.113896_bb0200) 2012; 171-172 He (10.1016/j.geoderma.2019.113896_bb0080) 2015; 46 Gomes (10.1016/j.geoderma.2019.113896_bb0065) 2019; 340 Zhang (10.1016/j.geoderma.2019.113896_bb0295) 2017; 16 Zhu (10.1016/j.geoderma.2019.113896_bb0315) 1997; 63 Frazier (10.1016/j.geoderma.2019.113896_bb0055) 1989; 28 Tziachris (10.1016/j.geoderma.2019.113896_bb0240) 2019; 174 Scharlemann (10.1016/j.geoderma.2019.113896_bb0210) 2014; 5 10.1016/j.geoderma.2019.113896_bb0205 Zhan (10.1016/j.geoderma.2019.113896_bb0290) 2013; 179 Viscarra Rossel (10.1016/j.geoderma.2019.113896_bb0250) 2009; 150 Yang (10.1016/j.geoderma.2019.113896_bb0280) 2009; 46 Liu (10.1016/j.geoderma.2019.113896_bb0150) 2011; 3 Sullivan (10.1016/j.geoderma.2019.113896_bb0235) 2005; 29 Gomez (10.1016/j.geoderma.2019.113896_bb0070) 2008; 146 IUSS Working Group WRB (10.1016/j.geoderma.2019.113896_bb0110) 2006 Viscarra Rossel (10.1016/j.geoderma.2019.113896_bb0245) 2006; 131 Kumar (10.1016/j.geoderma.2019.113896_bb0120) 2012; 189–190 Stevens (10.1016/j.geoderma.2019.113896_bb0230) 2006; 70 Liu (10.1016/j.geoderma.2019.113896_bb0135) 2009; 154 Peng (10.1016/j.geoderma.2019.113896_bb0185) 2013; 50 Dokuchaev (10.1016/j.geoderma.2019.113896_bb0045) 1883 Abu-Hashim (10.1016/j.geoderma.2019.113896_bb0005) 2016; 114 Liu (10.1016/j.geoderma.2019.113896_bb0140) 2009; 19 |
References_xml | – volume: 28 start-page: 317 year: 1989 end-page: 325 ident: bb0055 article-title: Remote sensing of soils in the eastern Palouse region with Landsat thematic mapper publication-title: Remote Sens. Environ. – year: 1860 ident: bb0095 article-title: Report on the Geology and Agriculture of the State of Mississippi – volume: 100 start-page: 130 year: 1965 end-page: 138 ident: bb0030 article-title: Reflection of radiant energy from soils publication-title: Soil Sci. – volume: 179 start-page: 294 year: 2013 end-page: 300 ident: bb0290 article-title: Influence of plant root morphology and tissue composition on phenanthrene uptake: stepwise multiple linear regression analysis publication-title: Environ. Pollut. – volume: 34 start-page: 143 year: 2018 end-page: 150 ident: bb0305 article-title: Remote sensing inversion model of soil organic matter in farmland by introducing temporal information publication-title: Transactions of the Chinese Society of Agricultural Engineering – start-page: 552 year: 1982 end-page: 553 ident: bb0180 article-title: Total carbon, organic carbon and organic matter publication-title: Methods of Soil Analysis Part—chemical Methods – volume: 16 start-page: 229 year: 2017 end-page: 238 ident: bb0295 article-title: The renewability and quality of shallow groundwater in Sanjiang and Songnen Plain, Northeast China publication-title: J. Integr. Agric. – volume: 146 start-page: 403 year: 2008 end-page: 411 ident: bb0070 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study publication-title: Geoderma – volume: 48 start-page: 1 year: 2017 end-page: 21 ident: bb0255 article-title: Comprehensive utilization status and development analysis of crop straw resource in Northeast China publication-title: Transactions of the Chinese Society for Agricultural Machinery – volume: 63 start-page: 1195 year: 1997 end-page: 1202 ident: bb0315 article-title: Measuring uncertainty in class assignment for natural resource maps under fuzzy logic publication-title: Photogramm. Eng. Remote Sens. – volume: 51 start-page: 1021 year: 2014 end-page: 1026 ident: bb0165 article-title: Quantitative analysis of reflectance spectrum of black soil as affected by soil moisture for prediction of soil moisture in black soil publication-title: Acta Pedol. Sin. – volume: 145 start-page: 118 year: 2016 end-page: 127 ident: bb0175 article-title: Spatial variability of SOM using remote sensing data publication-title: Catena – volume: 19 start-page: 532 year: 2009 end-page: 540 ident: bb0140 article-title: Quantitative analysis of moisture effect on black soil reflectance publication-title: Pedosphere – volume: 22 start-page: 30 year: 2006 end-page: 34 ident: bb0085 article-title: Study on spectral features of soil Fe2O3 publication-title: Geography and Geo-Information Science – volume: 171-172 start-page: 44 year: 2012 end-page: 52 ident: bb0160 article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS publication-title: Geoderma – volume: 43 start-page: 177 year: 2010 end-page: 192 ident: bb0260 article-title: Sample adequately to estimate variograms of soil properties publication-title: Eur. J. Soil Sci. – volume: 37 start-page: 1554 year: 1997 end-page: 1559 ident: bb0040 article-title: Near infrared reflectance spectroscopy for analysis of turf soil profiles publication-title: Crop Sci. – volume: 320 start-page: 12 year: 2018 end-page: 22 ident: bb0300 article-title: Allocate soil individuals to soil classes with topsoil spectral characteristics and decision trees publication-title: Geoderma – volume: 213 start-page: 578 year: 2014 end-page: 588 ident: bb0015 article-title: Hyper-scale digital soil mapping and soil formation analysis publication-title: Geoderma – start-page: 14 year: 1883 end-page: 419 ident: bb0045 article-title: Russian Chernozem. In: Selected Works of V.V. Dokuchaev, Vol. 1. Moscow, 1948. Israel Program for Scientific Translations Ltd. (for USDA-NSF), S – volume: 335 start-page: 47 year: 2019 end-page: 56 ident: bb0125 article-title: National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China publication-title: Geoderma – reference: Rudiyanto, Minasny, B., Setiawan, B.I., Saptomo, S.K., McBratney, A.B., 2018 Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands. Geoderma 313, 25–40. – volume: 46 start-page: 9 year: 2009 end-page: 15 ident: bb0280 article-title: Soil property mapping using fuzzy membership—a case study of a study area in Heshan farm of Heilongjiang province publication-title: Acta Pedol. Sin. – volume: 24 start-page: 710 year: 2004 end-page: 714 ident: bb0275 article-title: Changes in organic matter and total nitrogen of black soils in Jilin Province over the past two decades publication-title: Sci. Geogr. Sin. – volume: 24 start-page: 439 year: 2007 end-page: 445 ident: bb0130 article-title: Spectral analysis of soils in Songnen Plain publication-title: Northeastern China. Journal of the Graduate School of the Chinese Academy of Sciences – volume: 189–190 start-page: 627 year: 2012 end-page: 634 ident: bb0120 article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock publication-title: Geoderma – volume: 150 start-page: 253 year: 2009 end-page: 266 ident: bb0250 article-title: In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy publication-title: Geoderma – volume: 73 start-page: 1202 year: 2009 end-page: 1208 ident: bb0265 article-title: Spatial prediction of SOM content using cokriging with remotely sensed data publication-title: Soilence Society of America Journal – volume: 26 start-page: 130 year: 2016 end-page: 136 ident: bb0310 article-title: Estimation of organic matter content in coastal soil using reflectance spectroscopy publication-title: Pedosphere – volume: 342 start-page: 85 year: 2019 end-page: 92 ident: bb0190 article-title: Mapping soil organic matter contents at field level with cubist, random Forest and kriging publication-title: Geoderma – volume: 281 start-page: 69 year: 2016 end-page: 82 ident: bb0285 article-title: Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method publication-title: Geoderma – volume: 5 start-page: 7 year: 2011 end-page: 11 ident: bb0145 article-title: Dynamic change of organic matter in the black soil under long term fertilization publication-title: Soil and Fertilizer Sciences in China – volume: 59 start-page: 364 year: 1995 end-page: 372 ident: bb0020 article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Sci. Soc. Am. J. – volume: 340 start-page: 337 year: 2019 end-page: 350 ident: bb0065 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma – volume: 155 start-page: 344 year: 2010 end-page: 350 ident: bb0220 article-title: Cross-reference for relating genetic soil classification of China with WRB at different scales publication-title: Geoderma – volume: 66 start-page: 1922 year: 2002 end-page: 1929 ident: bb0050 article-title: Estimation of soil organic matter from red and near-infrared remotely sensed data using a soil line Euclidean distance technique publication-title: Soil Sci. Soc. Am. J. – volume: 29 start-page: 1706 year: 2010 end-page: 1714 ident: bb0195 article-title: Application of fuzzy slope positions in predicting spatial distribution of soil property at finer scale publication-title: Geogr. Res. – volume: 5 start-page: 81 year: 2014 end-page: 91 ident: bb0210 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Management – volume: 37 start-page: 566 year: 2017 end-page: 570 ident: bb0170 article-title: A study on predicting model of organic matter contend incorporating soil moisture variation publication-title: Spectroscopy & Spectral Analysis – volume: 171-172 start-page: 64 year: 2012 end-page: 74 ident: bb0200 article-title: Mapping SOM in small low-relief catchments using fuzzy slope position information publication-title: Geoderma – volume: 3 start-page: 3819 year: 2011 end-page: 3834 ident: bb0150 article-title: Simulating models for Phaeozem hyperspectral reflectance publication-title: Int. J. Remote Sens. – volume: 136 start-page: 235 year: 2006 end-page: 244 ident: bb0215 article-title: High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures publication-title: Geoderma – volume: 158 start-page: 15 year: 2010 end-page: 22 ident: bb0225 article-title: Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on vis-NIR predictions of clay and soil organic carbon publication-title: Geoderma – volume: 29 start-page: 1789 year: 2005 end-page: 1798 ident: bb0235 article-title: IKONOS imagery to estimate surface soil property variability in two Alabama Physiographies publication-title: Soil Sci. Soc. Am. J. – volume: 173 start-page: 74 year: 2013 end-page: 84 ident: bb0025 article-title: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics publication-title: Agric. For. Meteorol. – year: 2006 ident: bb0110 article-title: World Reference Base for Soil Resources 2006 publication-title: World Soil Resources Reports No.103 – volume: 70 start-page: 844 year: 2006 end-page: 850 ident: bb0230 article-title: Detection of carbon stock change in agricultural soils using spectroscopic techniques publication-title: Soil Sci. Soc. Am. J. – start-page: 1 year: 1998 end-page: 1253 ident: bb0270 article-title: Soils of China – volume: 114 start-page: 78 year: 2016 end-page: 84 ident: bb0005 article-title: Effect of land-use changes and site variables on surface soil organic carbon pool at Mediterranean region publication-title: J. Afr. Earth Sci. – volume: 34 start-page: 1900 year: 1991 end-page: 1909 ident: bb9000 article-title: Evaluation of reflectance methods for soil organic matter sensing publication-title: Transactions of the ASAE – volume: 46 start-page: 127 year: 2015 end-page: 132 ident: bb0080 article-title: Real-time measurement of SOM content in field publication-title: Transactions of the Chinese Society of Agricultural Machinery – volume: 174 start-page: 206 year: 2019 end-page: 216 ident: bb0240 article-title: Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters publication-title: CATENA – volume: 25 start-page: 129 year: 2014 end-page: 134 ident: bb0075 article-title: Estimation of the carbon pool in soil and above-ground biomass within mangrove forests in Southeast Mexico using allometric equations publication-title: J. For. Res. – volume: 27 start-page: 211 year: 2011 end-page: 215 ident: bb0155 article-title: Soil organic matter predicting with remote sensing image in typical blacksoil area of Northeast China publication-title: Transactions of the Chinese Society of Agricultural Engineering – volume: 246 start-page: 139 year: 2002 end-page: 149 ident: bb0060 article-title: The prediction of C and N content and their potential mineralisation in heterogeneous soil samples using vis–NIR spectroscopy and comparative methods publication-title: Plant Soil – volume: 64 start-page: 746 year: 2000 end-page: 753 ident: bb0035 article-title: Field-scale mapping of surface soil organic carbon using remotely sensed imagery publication-title: Soil Sci. Soc. Am. J. – volume: 74 start-page: 557 year: 2000 end-page: 569 ident: bb0100 article-title: Mapping complex patterns of erosion and stability in dry Mediterranean ecosystems publication-title: Remote Sens. Environ. – year: 2015 ident: bb0090 article-title: Heilongjiang Statistical Yearbook [M] – volume: 131 start-page: 59 year: 2006 end-page: 75 ident: bb0245 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma – year: 1941 ident: bb0115 article-title: Factors of Soil Formation – volume: 330 start-page: 9 year: 2018 end-page: 18 ident: bb0320 article-title: Soil organic carbon prediction based on scale-specific relationships with environmental factors by discrete wavelet transform publication-title: Geoderma – volume: 154 start-page: 147 year: 2009 end-page: 154 ident: bb0135 article-title: Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China publication-title: Environmental Monitoring & Assessment – volume: 2011 start-page: 55 year: 2011 end-page: 66 ident: bb0105 article-title: Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields publication-title: Applied & Environmental Soil Science – volume: 288 start-page: 47 year: 2017 end-page: 55 ident: bb0010 article-title: Assessing SOM of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory publication-title: Geoderma – volume: 50 start-page: 517 year: 2013 end-page: 524 ident: bb0185 article-title: Effect of soil organic matter on spectral characteristics of soil publication-title: Acta Pedol. Sin. – volume: 64 start-page: 746 year: 2000 ident: 10.1016/j.geoderma.2019.113896_bb0035 article-title: Field-scale mapping of surface soil organic carbon using remotely sensed imagery publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.642746x – volume: 63 start-page: 1195 year: 1997 ident: 10.1016/j.geoderma.2019.113896_bb0315 article-title: Measuring uncertainty in class assignment for natural resource maps under fuzzy logic publication-title: Photogramm. Eng. Remote Sens. – volume: 43 start-page: 177 year: 2010 ident: 10.1016/j.geoderma.2019.113896_bb0260 article-title: Sample adequately to estimate variograms of soil properties publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1992.tb00128.x – volume: 46 start-page: 9 year: 2009 ident: 10.1016/j.geoderma.2019.113896_bb0280 article-title: Soil property mapping using fuzzy membership—a case study of a study area in Heshan farm of Heilongjiang province publication-title: Acta Pedol. Sin. – volume: 73 start-page: 1202 year: 2009 ident: 10.1016/j.geoderma.2019.113896_bb0265 article-title: Spatial prediction of SOM content using cokriging with remotely sensed data publication-title: Soilence Society of America Journal doi: 10.2136/sssaj2008.0045 – start-page: 1 year: 1998 ident: 10.1016/j.geoderma.2019.113896_bb0270 – start-page: 14 year: 1883 ident: 10.1016/j.geoderma.2019.113896_bb0045 – volume: 28 start-page: 317 year: 1989 ident: 10.1016/j.geoderma.2019.113896_bb0055 article-title: Remote sensing of soils in the eastern Palouse region with Landsat thematic mapper publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(89)90123-5 – volume: 150 start-page: 253 year: 2009 ident: 10.1016/j.geoderma.2019.113896_bb0250 article-title: In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2009.01.025 – volume: 29 start-page: 1706 year: 2010 ident: 10.1016/j.geoderma.2019.113896_bb0195 article-title: Application of fuzzy slope positions in predicting spatial distribution of soil property at finer scale publication-title: Geogr. Res. – volume: 16 start-page: 229 year: 2017 ident: 10.1016/j.geoderma.2019.113896_bb0295 article-title: The renewability and quality of shallow groundwater in Sanjiang and Songnen Plain, Northeast China publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(16)61349-7 – volume: 74 start-page: 557 year: 2000 ident: 10.1016/j.geoderma.2019.113896_bb0100 article-title: Mapping complex patterns of erosion and stability in dry Mediterranean ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00146-2 – volume: 189–190 start-page: 627 year: 2012 ident: 10.1016/j.geoderma.2019.113896_bb0120 article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.022 – ident: 10.1016/j.geoderma.2019.113896_bb0205 doi: 10.1016/j.geoderma.2017.10.018 – volume: 281 start-page: 69 year: 2016 ident: 10.1016/j.geoderma.2019.113896_bb0285 article-title: Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method publication-title: Geoderma doi: 10.1016/j.geoderma.2016.06.033 – volume: 154 start-page: 147 year: 2009 ident: 10.1016/j.geoderma.2019.113896_bb0135 article-title: Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China publication-title: Environmental Monitoring & Assessment doi: 10.1007/s10661-008-0385-4 – volume: 136 start-page: 235 year: 2006 ident: 10.1016/j.geoderma.2019.113896_bb0215 article-title: High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures publication-title: Geoderma doi: 10.1016/j.geoderma.2006.03.050 – volume: 330 start-page: 9 year: 2018 ident: 10.1016/j.geoderma.2019.113896_bb0320 article-title: Soil organic carbon prediction based on scale-specific relationships with environmental factors by discrete wavelet transform publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.029 – volume: 27 start-page: 211 year: 2011 ident: 10.1016/j.geoderma.2019.113896_bb0155 article-title: Soil organic matter predicting with remote sensing image in typical blacksoil area of Northeast China publication-title: Transactions of the Chinese Society of Agricultural Engineering – volume: 50 start-page: 517 year: 2013 ident: 10.1016/j.geoderma.2019.113896_bb0185 article-title: Effect of soil organic matter on spectral characteristics of soil publication-title: Acta Pedol. Sin. – volume: 34 start-page: 1900 year: 1991 ident: 10.1016/j.geoderma.2019.113896_bb9000 article-title: Evaluation of reflectance methods for soil organic matter sensing publication-title: Transactions of the ASAE doi: 10.13031/2013.31816 – year: 2015 ident: 10.1016/j.geoderma.2019.113896_bb0090 – volume: 288 start-page: 47 year: 2017 ident: 10.1016/j.geoderma.2019.113896_bb0010 article-title: Assessing SOM of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory publication-title: Geoderma doi: 10.1016/j.geoderma.2016.10.033 – volume: 25 start-page: 129 year: 2014 ident: 10.1016/j.geoderma.2019.113896_bb0075 article-title: Estimation of the carbon pool in soil and above-ground biomass within mangrove forests in Southeast Mexico using allometric equations publication-title: J. For. Res. doi: 10.1007/s11676-014-0437-2 – volume: 19 start-page: 532 year: 2009 ident: 10.1016/j.geoderma.2019.113896_bb0140 article-title: Quantitative analysis of moisture effect on black soil reflectance publication-title: Pedosphere doi: 10.1016/S1002-0160(09)60146-6 – volume: 158 start-page: 15 year: 2010 ident: 10.1016/j.geoderma.2019.113896_bb0225 article-title: Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on vis-NIR predictions of clay and soil organic carbon publication-title: Geoderma doi: 10.1016/j.geoderma.2010.04.008 – volume: 34 start-page: 143 year: 2018 ident: 10.1016/j.geoderma.2019.113896_bb0305 article-title: Remote sensing inversion model of soil organic matter in farmland by introducing temporal information publication-title: Transactions of the Chinese Society of Agricultural Engineering – volume: 174 start-page: 206 year: 2019 ident: 10.1016/j.geoderma.2019.113896_bb0240 article-title: Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters publication-title: CATENA doi: 10.1016/j.catena.2018.11.010 – volume: 340 start-page: 337 year: 2019 ident: 10.1016/j.geoderma.2019.113896_bb0065 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.007 – volume: 37 start-page: 566 year: 2017 ident: 10.1016/j.geoderma.2019.113896_bb0170 article-title: A study on predicting model of organic matter contend incorporating soil moisture variation publication-title: Spectroscopy & Spectral Analysis – volume: 51 start-page: 1021 year: 2014 ident: 10.1016/j.geoderma.2019.113896_bb0165 article-title: Quantitative analysis of reflectance spectrum of black soil as affected by soil moisture for prediction of soil moisture in black soil publication-title: Acta Pedol. Sin. – volume: 59 start-page: 364 year: 1995 ident: 10.1016/j.geoderma.2019.113896_bb0020 article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1995.03615995005900020014x – volume: 114 start-page: 78 year: 2016 ident: 10.1016/j.geoderma.2019.113896_bb0005 article-title: Effect of land-use changes and site variables on surface soil organic carbon pool at Mediterranean region publication-title: J. Afr. Earth Sci. doi: 10.1016/j.jafrearsci.2015.11.020 – volume: 213 start-page: 578 year: 2014 ident: 10.1016/j.geoderma.2019.113896_bb0015 article-title: Hyper-scale digital soil mapping and soil formation analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.031 – volume: 5 start-page: 7 year: 2011 ident: 10.1016/j.geoderma.2019.113896_bb0145 article-title: Dynamic change of organic matter in the black soil under long term fertilization publication-title: Soil and Fertilizer Sciences in China – volume: 131 start-page: 59 year: 2006 ident: 10.1016/j.geoderma.2019.113896_bb0245 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.007 – volume: 37 start-page: 1554 year: 1997 ident: 10.1016/j.geoderma.2019.113896_bb0040 article-title: Near infrared reflectance spectroscopy for analysis of turf soil profiles publication-title: Crop Sci. doi: 10.2135/cropsci1997.0011183X003700050024x – volume: 171-172 start-page: 44 year: 2012 ident: 10.1016/j.geoderma.2019.113896_bb0160 article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS publication-title: Geoderma doi: 10.1016/j.geoderma.2011.05.007 – volume: 24 start-page: 439 year: 2007 ident: 10.1016/j.geoderma.2019.113896_bb0130 article-title: Spectral analysis of soils in Songnen Plain publication-title: Northeastern China. Journal of the Graduate School of the Chinese Academy of Sciences – volume: 22 start-page: 30 year: 2006 ident: 10.1016/j.geoderma.2019.113896_bb0085 article-title: Study on spectral features of soil Fe2O3 publication-title: Geography and Geo-Information Science – volume: 29 start-page: 1789 year: 2005 ident: 10.1016/j.geoderma.2019.113896_bb0235 article-title: IKONOS imagery to estimate surface soil property variability in two Alabama Physiographies publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0071 – volume: 3 start-page: 3819 year: 2011 ident: 10.1016/j.geoderma.2019.113896_bb0150 article-title: Simulating models for Phaeozem hyperspectral reflectance publication-title: Int. J. Remote Sens. doi: 10.1080/01431161003778708 – volume: 2011 start-page: 55 year: 2011 ident: 10.1016/j.geoderma.2019.113896_bb0105 article-title: Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields publication-title: Applied & Environmental Soil Science doi: 10.1155/2011/358193 – volume: 70 start-page: 844 year: 2006 ident: 10.1016/j.geoderma.2019.113896_bb0230 article-title: Detection of carbon stock change in agricultural soils using spectroscopic techniques publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0025 – volume: 26 start-page: 130 year: 2016 ident: 10.1016/j.geoderma.2019.113896_bb0310 article-title: Estimation of organic matter content in coastal soil using reflectance spectroscopy publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60029-7 – volume: 171-172 start-page: 64 year: 2012 ident: 10.1016/j.geoderma.2019.113896_bb0200 article-title: Mapping SOM in small low-relief catchments using fuzzy slope position information publication-title: Geoderma doi: 10.1016/j.geoderma.2011.06.006 – volume: 66 start-page: 1922 year: 2002 ident: 10.1016/j.geoderma.2019.113896_bb0050 article-title: Estimation of soil organic matter from red and near-infrared remotely sensed data using a soil line Euclidean distance technique publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1922 – start-page: 552 year: 1982 ident: 10.1016/j.geoderma.2019.113896_bb0180 article-title: Total carbon, organic carbon and organic matter publication-title: Methods of Soil Analysis Part—chemical Methods – volume: 320 start-page: 12 year: 2018 ident: 10.1016/j.geoderma.2019.113896_bb0300 article-title: Allocate soil individuals to soil classes with topsoil spectral characteristics and decision trees publication-title: Geoderma doi: 10.1016/j.geoderma.2018.01.023 – volume: 246 start-page: 139 year: 2002 ident: 10.1016/j.geoderma.2019.113896_bb0060 article-title: The prediction of C and N content and their potential mineralisation in heterogeneous soil samples using vis–NIR spectroscopy and comparative methods publication-title: Plant Soil doi: 10.1023/A:1020612319014 – year: 1860 ident: 10.1016/j.geoderma.2019.113896_bb0095 – volume: 146 start-page: 403 year: 2008 ident: 10.1016/j.geoderma.2019.113896_bb0070 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study publication-title: Geoderma doi: 10.1016/j.geoderma.2008.06.011 – volume: 5 start-page: 81 year: 2014 ident: 10.1016/j.geoderma.2019.113896_bb0210 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Management doi: 10.4155/cmt.13.77 – year: 1941 ident: 10.1016/j.geoderma.2019.113896_bb0115 – volume: 155 start-page: 344 year: 2010 ident: 10.1016/j.geoderma.2019.113896_bb0220 article-title: Cross-reference for relating genetic soil classification of China with WRB at different scales publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.017 – volume: 24 start-page: 710 year: 2004 ident: 10.1016/j.geoderma.2019.113896_bb0275 article-title: Changes in organic matter and total nitrogen of black soils in Jilin Province over the past two decades publication-title: Sci. Geogr. Sin. – volume: 46 start-page: 127 year: 2015 ident: 10.1016/j.geoderma.2019.113896_bb0080 article-title: Real-time measurement of SOM content in field publication-title: Transactions of the Chinese Society of Agricultural Machinery – volume: 179 start-page: 294 year: 2013 ident: 10.1016/j.geoderma.2019.113896_bb0290 article-title: Influence of plant root morphology and tissue composition on phenanthrene uptake: stepwise multiple linear regression analysis publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.04.033 – volume: 100 start-page: 130 year: 1965 ident: 10.1016/j.geoderma.2019.113896_bb0030 article-title: Reflection of radiant energy from soils publication-title: Soil Sci. doi: 10.1097/00010694-196508000-00009 – volume: 48 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2019.113896_bb0255 article-title: Comprehensive utilization status and development analysis of crop straw resource in Northeast China publication-title: Transactions of the Chinese Society for Agricultural Machinery – volume: 145 start-page: 118 year: 2016 ident: 10.1016/j.geoderma.2019.113896_bb0175 article-title: Spatial variability of SOM using remote sensing data publication-title: Catena doi: 10.1016/j.catena.2016.05.023 – year: 2006 ident: 10.1016/j.geoderma.2019.113896_bb0110 article-title: World Reference Base for Soil Resources 2006 – volume: 335 start-page: 47 year: 2019 ident: 10.1016/j.geoderma.2019.113896_bb0125 article-title: National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.011 – volume: 173 start-page: 74 year: 2013 ident: 10.1016/j.geoderma.2019.113896_bb0025 article-title: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2013.01.007 – volume: 342 start-page: 85 year: 2019 ident: 10.1016/j.geoderma.2019.113896_bb0190 article-title: Mapping soil organic matter contents at field level with cubist, random Forest and kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.019 |
SSID | ssj0017020 |
Score | 2.5645351 |
Snippet | Due to confounding factors such as crop residue and soil moisture, soil organic matter (SOM) is usually estimated from soil samples in a laboratory or in the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113896 |
SubjectTerms | carbon sinks China crop management crop residues melting moderate resolution imaging spectroradiometer MODIS Optimal input variables plowing prediction rain remote sensing snowmelt soil organic carbon Soil organic matter soil sampling soil surveys soil water Spectral index Temporal information |
Title | Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.113896 https://www.proquest.com/docview/2315292193 |
Volume | 356 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBclu7SH0q0t_UaDHesmsvXlYygL2cZKoS3kJiRLCg6JXJL0ur99erZcujHoYUcbPyN-7xP03u8h9MVWrsxNpTMb7SmjhPDMUEEz63SupeeeExhO_nnHp0_0-4zNdtBtPwsDbZUp9ncxvY3W6c0woTl8rmuY8SVcxHQERkk4g4lySgVY-c2v1zYPIkaJmjGeAr5-MyW8iDqChWMt_xApYb2JBPL-fyeov0J1m38mB2g_FY543J3tI9px4RPaG8_XiTzDHaLqfg3XLgA1bjzeNPUSd1ubKrxqeTQxtLnPcdtFmCVWqiXe6JaWc-twvYrhZYPrgGNdiB-aMA8u4PulrsM1bldtH6GnydfH22mWlihkuuBym9ncCeKJKGysBrTVpGCOci1I7grjtPdWW0ktKQ23UnjD8pHNbXR9K6WJzl4co0FogjtBuOLcs8KMjC8r6qSWFfPUO2YLakQpylPEeuRUlRjGYdHFUvWtZAvVI64AcdUhfoqGr3LPHcfGuxJlrxj1h7WomAjelf3ca1JFV4L7ER1c87JRsdRleRlDeHH2H_8_R7vwBC0vhF2gwXb94i5j4bI1V61lXqEP428_pne_AeiM7-w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHxKqW1UhwI8zY8ZYDhwqopnRRJVqpN2PH9ijV1KkmUyEu_Cn-IM-JUwFC6gH1msiW8_bI730fQq9d7Stqa1M4sKeCESIKyyQrnDfUqCCCIGk4ef9AzI7Z5xN-soZ-jrMwqa0yx_4hpvfROj-ZZGlOzpsmzfgSISEdJaMkgsvcWbnrv3-D_7bu_c5HUPIbSrc_HX2YFZlaoDClUKvCUS9JILJ0kCONM6TkngkjCfWl9SYEZ5xijlRWOCWD5XTqqAOHcEpZcIES9r2BbjIIF4k24d2Py74SIqcZCxI-Ox3vt7HkUzCKxHDWAx6RKvGpqMQW8O-M-Fdu6BPe9j10N1eqeGsQxn205uMDdGdrvsxoHf4hqg-X6Z4n6Ra3AXdts8ADTVSNz3rgTpz66ue4b1ssMgzWAnemxwFdedycQTzrcBMxFKL4Sxvn0Ud8uDBNfIt7bu9H6PhaRPsYrcc2-g2EayECL-3UhqpmXhlV88CC565kVlay2kR8lJyuM6R5YtZY6LF37VSPEtdJ4nqQ-CaaXK47H0A9rlxRjYrRf5inhsxz5dpXoyY1-G66kDHRtxedhtqa0wpyRvnkP_Z_iW7Njvb39N7Owe5TdDu9Sf02hD9D66vlhX8OVdPKvuitFKOv1-0WvwCv1SxX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+soil+organic+matter+using+multi-temporal+satellite+images+in+the+Songnen+Plain%2C+China&rft.jtitle=Geoderma&rft.au=Dou%2C+Xin&rft.au=Wang%2C+Xiang&rft.au=Liu%2C+Huanjun&rft.au=Zhang%2C+Xinle&rft.date=2019-12-15&rft.issn=0016-7061&rft_id=info:doi/10.1016%2Fj.geoderma.2019.113896&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |