Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review

This article reviews the current research and applications of various digital soil mapping (DSM) techniques used to map Soil Organic Carbon (SOC) concentration and stocks following a systematic mapping approach from 2013 until present (18 February 2019). It is intended that this review of relevant l...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 352; pp. 395 - 413
Main Authors Lamichhane, Sushil, Kumar, Lalit, Wilson, Brian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article reviews the current research and applications of various digital soil mapping (DSM) techniques used to map Soil Organic Carbon (SOC) concentration and stocks following a systematic mapping approach from 2013 until present (18 February 2019). It is intended that this review of relevant literature will assist prospective researchers by identifying knowledge clusters and gaps in relation to the digital mapping of SOC. Of 120 studies, most were clustered in some specific countries such as China, Australia and the USA. The highest number publications were in 2016 and 2017. Regarding the predictive models, there was a progression from Linear Models towards Machine Learning (ML) techniques, and hybrid models in Regression Kriging (RK) framework performed better than individual models. Multiple Linear Regression (MLR) was the most frequently used method for predicting SOC, although it was outperformed by other ML techniques in most studies. Random Forest (RF) was found to perform better than MLR and other ML techniques in most comparative studies. Other common and competitive techniques were Cubist, Neural Network (NN), Boosted Regression Tree (BRT), Support Vector Machine (SVM) and Geographically Weighted Regression (GWR). Due to the inconsistency in various comparative studies, it would be advisable to calibrate the competitive algorithms using specific experimental datasets. This review also reveals the environmental covariates that have been identified as the most important by RF technique in recent years in regard to digital mapping of SOC, which may assist in selecting optimum sets of environmental covariates for mapping SOC. Covariates representing organism/organic activities were among the most frequent among top five covariates, followed by the variables representing climate and topography. Climate was reported to be influential in determining the variation in SOC level at regional scales, followed by parent materials, topography and land use. However, for mapping at a resolution that represents smaller areas such as a farm- or plot-scale, land use and vegetation indices were stated to be more influential in predicting SOC. Furthermore, unlike a previous review work, all recent studies in this review incorporated validation and 41% of them estimated spatially explicit prediction of uncertainty. Only 9.16% studies performed external validation, whereas most studies used data-splitting and cross-validation techniques which may not be the best options for datasets obtained through non-probability sampling.
AbstractList This article reviews the current research and applications of various digital soil mapping (DSM) techniques used to map Soil Organic Carbon (SOC) concentration and stocks following a systematic mapping approach from 2013 until present (18 February 2019). It is intended that this review of relevant literature will assist prospective researchers by identifying knowledge clusters and gaps in relation to the digital mapping of SOC. Of 120 studies, most were clustered in some specific countries such as China, Australia and the USA. The highest number publications were in 2016 and 2017. Regarding the predictive models, there was a progression from Linear Models towards Machine Learning (ML) techniques, and hybrid models in Regression Kriging (RK) framework performed better than individual models. Multiple Linear Regression (MLR) was the most frequently used method for predicting SOC, although it was outperformed by other ML techniques in most studies. Random Forest (RF) was found to perform better than MLR and other ML techniques in most comparative studies. Other common and competitive techniques were Cubist, Neural Network (NN), Boosted Regression Tree (BRT), Support Vector Machine (SVM) and Geographically Weighted Regression (GWR). Due to the inconsistency in various comparative studies, it would be advisable to calibrate the competitive algorithms using specific experimental datasets. This review also reveals the environmental covariates that have been identified as the most important by RF technique in recent years in regard to digital mapping of SOC, which may assist in selecting optimum sets of environmental covariates for mapping SOC. Covariates representing organism/organic activities were among the most frequent among top five covariates, followed by the variables representing climate and topography. Climate was reported to be influential in determining the variation in SOC level at regional scales, followed by parent materials, topography and land use. However, for mapping at a resolution that represents smaller areas such as a farm- or plot-scale, land use and vegetation indices were stated to be more influential in predicting SOC. Furthermore, unlike a previous review work, all recent studies in this review incorporated validation and 41% of them estimated spatially explicit prediction of uncertainty. Only 9.16% studies performed external validation, whereas most studies used data-splitting and cross-validation techniques which may not be the best options for datasets obtained through non-probability sampling.
Author Wilson, Brian
Kumar, Lalit
Lamichhane, Sushil
Author_xml – sequence: 1
  givenname: Sushil
  surname: Lamichhane
  fullname: Lamichhane, Sushil
  email: slamichh@myune.edu.au
  organization: School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
– sequence: 2
  givenname: Lalit
  surname: Kumar
  fullname: Kumar, Lalit
  organization: School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
– sequence: 3
  givenname: Brian
  surname: Wilson
  fullname: Wilson, Brian
  organization: School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
BookMark eNqFkMFu1DAQQK2qSN0WfqHykUvC2CFxUnGgaqEgVeICZ2vWO0lnldjBdov4e7xaKiQuPVljvTcavXNx6oMnIS4V1ApU925fTxR2FBesNaihhraGRp2IjeqNrjrdDqdiA4WsDHTqTJyntC-jAQ0bEW554oyzTIFnueC6sp8kzlOInB-WJNHvpAtPGBkzJTmGeERDnNCzkw7jNvh_ZsHzA3GUvKwzO8wcfLqS1zLSE9Ov1-LViHOiN3_fC_Hj86fvN1-q-293X2-u7ytsuj5XW6dUg5ra1ukG-mZoR2zUqPUI5aPfNrjFThs9msF0TrdK967BwRjSAGCwuRBvj3vXGH4-Usp24eRontFTeExWa1PyvAfQBf1wRF0MKUUarStFDnfniDxbBfbQ2e7tc2d76GyhtaVz0bv_9DXygvH3y-LHo0ilQ2kTbXJM3tGOI7lsd4FfWvEHz9CfBw
CitedBy_id crossref_primary_10_1016_j_ecolind_2024_112654
crossref_primary_10_1016_j_ecoinf_2024_102892
crossref_primary_10_1016_j_geodrs_2022_e00568
crossref_primary_10_1016_j_scitotenv_2021_147734
crossref_primary_10_1016_j_scitotenv_2022_160303
crossref_primary_10_1016_j_scitotenv_2023_169647
crossref_primary_10_1016_j_still_2024_106007
crossref_primary_10_1016_j_envsoft_2022_105612
crossref_primary_10_1016_j_geoderma_2022_116232
crossref_primary_10_1016_j_scitotenv_2024_173060
crossref_primary_10_5194_essd_17_517_2025
crossref_primary_10_1109_JSTARS_2023_3281732
crossref_primary_10_1007_s10661_023_11145_5
crossref_primary_10_1016_j_jag_2021_102428
crossref_primary_10_3390_land12061198
crossref_primary_10_5194_soil_10_619_2024
crossref_primary_10_1016_j_compag_2023_108561
crossref_primary_10_1016_j_geodrs_2023_e00611
crossref_primary_10_3389_fenvs_2022_948367
crossref_primary_10_1016_j_catena_2023_106961
crossref_primary_10_1007_s40710_024_00722_6
crossref_primary_10_1080_10106049_2022_2060317
crossref_primary_10_1016_j_geoderma_2023_116620
crossref_primary_10_1016_j_compag_2023_107928
crossref_primary_10_1016_j_jenvman_2022_117203
crossref_primary_10_1016_j_scitotenv_2024_177798
crossref_primary_10_1007_s11119_024_10128_x
crossref_primary_10_1016_j_geoderma_2021_115531
crossref_primary_10_3390_rs16091510
crossref_primary_10_1007_s42729_024_02082_4
crossref_primary_10_3390_agronomy13020445
crossref_primary_10_1016_j_earscirev_2020_103359
crossref_primary_10_1016_j_scitotenv_2023_166921
crossref_primary_10_1002_ldr_5105
crossref_primary_10_2139_ssrn_4013217
crossref_primary_10_1007_s12517_023_11844_w
crossref_primary_10_1016_j_fcr_2025_109752
crossref_primary_10_1016_j_catena_2022_106311
crossref_primary_10_1016_j_catena_2020_104953
crossref_primary_10_4236_jgis_2021_134024
crossref_primary_10_3390_atmos15080945
crossref_primary_10_1016_j_still_2024_106269
crossref_primary_10_1016_j_geoderma_2022_116252
crossref_primary_10_1007_s12517_024_12132_x
crossref_primary_10_1080_10106049_2024_2379842
crossref_primary_10_1002_ldr_5573
crossref_primary_10_1016_j_still_2022_105379
crossref_primary_10_1016_j_geoderma_2021_115567
crossref_primary_10_3390_land13010114
crossref_primary_10_1080_01431161_2024_2387133
crossref_primary_10_1016_j_catena_2021_105897
crossref_primary_10_1002_ldr_4917
crossref_primary_10_3390_agronomy12030628
crossref_primary_10_1016_j_catena_2023_107242
crossref_primary_10_1016_j_catena_2024_108635
crossref_primary_10_1002_ldr_4596
crossref_primary_10_1002_agg2_20207
crossref_primary_10_1016_j_geoderma_2021_115316
crossref_primary_10_1080_17538947_2023_2192005
crossref_primary_10_1186_s13717_023_00474_5
crossref_primary_10_1016_j_catena_2023_107369
crossref_primary_10_1080_10106049_2022_2138565
crossref_primary_10_3390_land11020208
crossref_primary_10_3390_rs15205033
crossref_primary_10_1016_j_geoderma_2024_116952
crossref_primary_10_1111_ejss_13011
crossref_primary_10_1007_s12665_023_10919_x
crossref_primary_10_3390_rs16234486
crossref_primary_10_1016_j_geodrs_2025_e00922
crossref_primary_10_1016_j_still_2024_106445
crossref_primary_10_1109_JSTARS_2024_3521034
crossref_primary_10_1002_jpln_202100138
crossref_primary_10_1016_j_envsoft_2024_106229
crossref_primary_10_1016_j_rse_2024_114592
crossref_primary_10_3390_land11122279
crossref_primary_10_1016_j_ecolind_2020_106288
crossref_primary_10_1088_2515_7620_ac71a2
crossref_primary_10_3390_agronomy12071697
crossref_primary_10_1016_j_geodrs_2024_e00776
crossref_primary_10_1016_j_scitotenv_2024_173537
crossref_primary_10_1016_j_ecolind_2024_112588
crossref_primary_10_1016_j_geoderma_2021_115290
crossref_primary_10_3390_rs13132571
crossref_primary_10_3390_soilsystems7040088
crossref_primary_10_1016_j_jenvman_2022_117127
crossref_primary_10_1016_j_chnaes_2020_06_009
crossref_primary_10_1080_10106049_2021_1996639
crossref_primary_10_3390_land12030520
crossref_primary_10_3390_rs15061628
crossref_primary_10_1016_j_jenvman_2025_125035
crossref_primary_10_1016_j_catena_2023_107188
crossref_primary_10_1038_s41597_019_0345_6
crossref_primary_10_3390_rs17020333
crossref_primary_10_1016_j_geoderma_2023_116549
crossref_primary_10_1186_s43170_021_00063_6
crossref_primary_10_1016_j_catena_2020_104576
crossref_primary_10_1016_j_catena_2022_106478
crossref_primary_10_3390_soilsystems7010027
crossref_primary_10_1007_s12665_025_12140_4
crossref_primary_10_3390_rs13183557
crossref_primary_10_1007_s10021_024_00928_7
crossref_primary_10_1016_j_catena_2021_105723
crossref_primary_10_1016_j_geoderma_2023_116652
crossref_primary_10_1080_03650340_2024_2448623
crossref_primary_10_3389_fsoil_2022_890437
crossref_primary_10_3389_frsen_2024_1461537
crossref_primary_10_3389_fsoil_2023_1225672
crossref_primary_10_3390_rs12142234
crossref_primary_10_1002_saj2_20525
crossref_primary_10_1016_j_still_2024_106220
crossref_primary_10_3390_land13060859
crossref_primary_10_1016_j_geoderma_2020_114472
crossref_primary_10_1016_j_still_2023_105897
crossref_primary_10_36783_18069657rbcs20230065
crossref_primary_10_3389_fsoil_2021_714323
crossref_primary_10_1016_j_scitotenv_2020_142661
crossref_primary_10_1029_2021JF006198
crossref_primary_10_1016_j_catena_2021_105299
crossref_primary_10_1080_15481603_2025_2460513
crossref_primary_10_3390_agriculture12091429
crossref_primary_10_1080_24749508_2023_2167632
crossref_primary_10_1371_journal_pone_0289286
crossref_primary_10_1016_j_jclepro_2023_139463
crossref_primary_10_7717_peerj_11685
crossref_primary_10_3390_rs14205151
crossref_primary_10_1016_j_geoderma_2023_116763
crossref_primary_10_1016_j_geodrs_2021_e00413
crossref_primary_10_1016_j_nbt_2024_03_001
crossref_primary_10_1016_j_still_2024_106357
crossref_primary_10_1016_j_still_2025_106530
crossref_primary_10_1007_s10666_024_09973_x
crossref_primary_10_7717_peerj_14275
crossref_primary_10_1080_22797254_2022_2045226
crossref_primary_10_3390_agriculture12111784
crossref_primary_10_3390_land14040677
crossref_primary_10_3390_rs13173502
crossref_primary_10_3390_su15086495
crossref_primary_10_1016_j_geodrs_2024_e00763
crossref_primary_10_1016_j_agee_2021_107636
crossref_primary_10_17221_4_2022_SWR
crossref_primary_10_1016_j_catena_2022_106217
crossref_primary_10_3390_land10010063
crossref_primary_10_1016_j_geoderma_2020_114809
crossref_primary_10_3390_land14010016
crossref_primary_10_1139_cjss_2022_0012
crossref_primary_10_3389_fsufs_2025_1533423
crossref_primary_10_3390_f14030539
crossref_primary_10_1016_j_advmem_2023_100072
crossref_primary_10_1016_j_geoderma_2024_116873
crossref_primary_10_1016_j_jenvman_2024_122623
crossref_primary_10_1016_j_geoderma_2022_116192
crossref_primary_10_1016_j_catena_2023_107409
crossref_primary_10_1016_j_jclepro_2024_144648
crossref_primary_10_1021_acs_est_4c01923
crossref_primary_10_1016_j_geoderma_2021_115387
crossref_primary_10_1016_j_geoderma_2021_115386
crossref_primary_10_1016_j_geoderma_2021_115263
crossref_primary_10_1016_j_ecolind_2023_111208
crossref_primary_10_2139_ssrn_4019282
crossref_primary_10_1109_TGRS_2024_3511118
crossref_primary_10_1111_ejss_12998
crossref_primary_10_3390_rs16040688
crossref_primary_10_1016_j_ecoinf_2025_103054
crossref_primary_10_3390_rs16152712
crossref_primary_10_1016_j_ecoinf_2025_103057
crossref_primary_10_1007_s40808_023_01890_4
crossref_primary_10_1007_s10661_021_09561_6
crossref_primary_10_3390_agriculture15050567
crossref_primary_10_1016_j_ecolind_2021_107975
crossref_primary_10_3390_land13070970
crossref_primary_10_12688_openreseurope_14716_2
crossref_primary_10_1016_j_ecolind_2021_107618
crossref_primary_10_1016_j_geodrs_2024_e00863
crossref_primary_10_1016_j_jag_2024_104181
crossref_primary_10_12688_openreseurope_14716_1
crossref_primary_10_1080_01431161_2022_2147037
crossref_primary_10_1016_j_compag_2023_107885
crossref_primary_10_1007_s41748_024_00539_1
crossref_primary_10_1016_j_geodrs_2021_e00440
crossref_primary_10_1016_j_geoderma_2024_116970
crossref_primary_10_1016_j_geoderma_2024_117026
crossref_primary_10_1016_j_ecolind_2022_109420
crossref_primary_10_1016_j_scitotenv_2022_160602
crossref_primary_10_3390_rs15102494
crossref_primary_10_3390_agronomy12030578
crossref_primary_10_20517_cf_2024_15
crossref_primary_10_3390_agronomy11061189
crossref_primary_10_1016_j_geoderma_2021_115041
crossref_primary_10_1080_17538947_2025_2471507
crossref_primary_10_1016_j_geoderma_2024_117023
crossref_primary_10_1016_j_geoderma_2024_117143
crossref_primary_10_3390_ijerph192215201
crossref_primary_10_3389_fenvs_2021_668912
crossref_primary_10_1016_j_catena_2023_107197
crossref_primary_10_1016_j_scitotenv_2020_138244
crossref_primary_10_1016_j_still_2024_106428
crossref_primary_10_3390_rs12213609
crossref_primary_10_1007_s12517_022_09629_8
crossref_primary_10_1007_s40808_024_02158_1
crossref_primary_10_3390_agronomy11030597
crossref_primary_10_1016_j_catena_2021_105258
crossref_primary_10_1016_j_catena_2023_107631
crossref_primary_10_1016_j_geodrs_2023_e00658
crossref_primary_10_1002_saj2_20453
crossref_primary_10_1016_j_geoderma_2024_116987
crossref_primary_10_1016_j_geoderma_2022_115695
crossref_primary_10_1016_j_geoderma_2020_114684
crossref_primary_10_1016_j_geoderma_2024_117032
crossref_primary_10_1016_j_envsoft_2025_106369
crossref_primary_10_1016_j_jenvman_2021_112191
crossref_primary_10_3389_fenvs_2023_1240106
crossref_primary_10_3390_agriculture11060475
crossref_primary_10_1117_1_JRS_19_014520
crossref_primary_10_3390_w14101668
crossref_primary_10_3390_rs11242947
crossref_primary_10_1080_24749508_2024_2429842
crossref_primary_10_3390_rs14051140
crossref_primary_10_1016_j_jenvman_2021_113718
crossref_primary_10_1016_j_regsus_2021_06_001
crossref_primary_10_1016_j_catena_2024_108475
crossref_primary_10_1016_j_iswcr_2024_10_002
crossref_primary_10_1186_s12302_024_00912_x
crossref_primary_10_3390_rs15071847
crossref_primary_10_5194_soil_6_389_2020
crossref_primary_10_1016_j_rama_2024_01_006
crossref_primary_10_1007_s10113_022_01980_6
crossref_primary_10_1002_saj2_70042
crossref_primary_10_1016_j_geoderma_2025_117240
crossref_primary_10_1016_j_geodrs_2024_e00801
crossref_primary_10_3390_rs14102504
crossref_primary_10_1016_j_envsoft_2021_105139
crossref_primary_10_3390_rs15041072
crossref_primary_10_1016_j_catena_2023_107572
crossref_primary_10_1016_j_geoderma_2020_114779
crossref_primary_10_1016_j_scitotenv_2020_142120
crossref_primary_10_1016_j_compag_2024_108760
crossref_primary_10_1016_j_isprsjprs_2022_04_026
crossref_primary_10_3390_land9100349
crossref_primary_10_3390_rs13234772
crossref_primary_10_1134_S106422932208004X
crossref_primary_10_1038_s41598_024_68424_5
crossref_primary_10_1016_j_catena_2023_107456
crossref_primary_10_1111_sum_12900
crossref_primary_10_3390_rs14102295
crossref_primary_10_1016_j_geodrs_2021_e00478
crossref_primary_10_1016_j_still_2024_106170
crossref_primary_10_1080_19475683_2024_2309868
crossref_primary_10_1016_j_geodrs_2024_e00817
crossref_primary_10_1111_exsy_13464
crossref_primary_10_1016_j_measurement_2022_111706
crossref_primary_10_1016_j_catena_2022_106077
crossref_primary_10_36783_18069657rbcs20230130
crossref_primary_10_3390_app13095249
crossref_primary_10_1007_s11104_023_06198_x
crossref_primary_10_1111_sum_12694
crossref_primary_10_1016_j_palaeo_2024_112201
crossref_primary_10_1016_j_catena_2021_105442
crossref_primary_10_1016_j_jenvman_2024_121573
crossref_primary_10_1088_1748_9326_aca41e
crossref_primary_10_1016_j_geodrs_2021_e00367
crossref_primary_10_1016_j_geodrs_2023_e00641
crossref_primary_10_3390_bdcc7020113
crossref_primary_10_1016_j_isprsjprs_2022_09_013
crossref_primary_10_1016_j_jclepro_2023_138544
crossref_primary_10_1016_j_ecoinf_2023_102290
crossref_primary_10_1038_s43247_023_01044_5
crossref_primary_10_3390_land12071344
crossref_primary_10_3390_s22072685
crossref_primary_10_1016_j_geodrs_2023_e00745
crossref_primary_10_1016_j_jenvman_2023_117810
crossref_primary_10_7717_peerj_17836
crossref_primary_10_1016_j_eja_2024_127323
crossref_primary_10_3390_f14061141
crossref_primary_10_17221_119_2023_SWR
crossref_primary_10_1016_j_geoderma_2022_116054
crossref_primary_10_1007_s11004_021_09988_0
crossref_primary_10_1016_j_catena_2019_104424
crossref_primary_10_1007_s44246_022_00010_8
crossref_primary_10_1108_SAMPJ_08_2023_0610
crossref_primary_10_3390_rs16152731
crossref_primary_10_1016_j_scitotenv_2021_145384
crossref_primary_10_1016_j_geodrs_2023_e00614
crossref_primary_10_1007_s41742_024_00611_8
crossref_primary_10_1016_j_jag_2022_102986
crossref_primary_10_1080_10095020_2025_2454523
crossref_primary_10_1016_j_geoderma_2023_116360
crossref_primary_10_1016_j_geoderma_2021_115599
crossref_primary_10_1021_acs_est_4c01172
crossref_primary_10_3390_land13070915
crossref_primary_10_1002_saj2_20371
crossref_primary_10_1016_j_geodrs_2021_e00387
crossref_primary_10_3390_toxics12030229
crossref_primary_10_1016_j_ecoinf_2023_102394
crossref_primary_10_1007_s13157_023_01705_3
crossref_primary_10_1016_j_csag_2024_100001
crossref_primary_10_1016_j_geodrs_2022_e00562
crossref_primary_10_1186_s13717_022_00411_y
crossref_primary_10_1016_j_scitotenv_2024_170778
crossref_primary_10_3389_feart_2021_748859
Cites_doi 10.1016/j.geoderma.2013.07.002
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.2136/sssaj2012.0317
10.1007/s12665-018-7374-x
10.1080/17583004.2017.1330593
10.1016/j.pce.2015.02.009
10.1016/S2095-3119(17)61762-3
10.1016/j.geoderma.2018.05.020
10.1016/j.ecolind.2017.08.046
10.1016/j.geoderma.2019.02.007
10.1016/j.catena.2017.03.020
10.1016/j.geodrs.2014.09.006
10.1016/j.catena.2016.02.016
10.1097/SS.0000000000000115
10.2134/jeq2017.08.0329
10.2136/sssaj2016.11.0376
10.1016/j.geodrs.2017.06.002
10.1016/j.geoderma.2008.05.008
10.1016/j.geoderma.2015.08.035
10.5194/soil-5-79-2019
10.1016/j.geoderma.2015.07.016
10.1016/j.geoderma.2008.06.016
10.1016/j.geodrs.2015.12.002
10.1016/j.foreco.2014.01.003
10.1023/A:1010933404324
10.1016/j.still.2014.12.002
10.1016/S1002-0160(17)60445-4
10.1016/j.geoderma.2010.06.017
10.1016/j.geoderma.2017.05.048
10.1071/SR16177
10.1134/S1064229312040047
10.1016/j.geodrs.2016.04.002
10.1071/SR14366
10.1080/03650340.2016.1154543
10.1016/j.ecolind.2013.12.015
10.1016/j.scitotenv.2018.02.209
10.1016/j.geoderma.2017.12.011
10.1016/j.geodrs.2017.07.005
10.1016/j.geoderma.2016.06.033
10.2136/sssaj2015.06.0224
10.1016/j.geodrs.2016.03.002
10.5194/gmd-7-1197-2014
10.1016/j.ecolind.2017.02.010
10.3390/rs9020124
10.1007/s10980-006-9058-2
10.1016/j.geoderma.2015.08.034
10.1016/j.jag.2016.09.002
10.1016/j.geoderma.2015.06.024
10.3390/su8111154
10.1371/journal.pone.0105519
10.1016/j.scitotenv.2017.08.012
10.1016/S1002-0160(15)60078-9
10.1561/2200000006
10.1371/journal.pone.0083592
10.1016/j.geoderma.2019.01.018
10.1016/j.geodrs.2014.11.003
10.1080/14498596.2013.812024
10.1016/j.geoderma.2018.07.037
10.1016/j.chemosphere.2014.12.027
10.1016/S0016-7061(03)00223-4
10.2136/sssaj2014.09.0392
10.1111/ejss.12193
10.5194/bg-10-8353-2013
10.1016/j.geodrs.2016.12.002
10.1111/j.1538-4632.1996.tb00936.x
10.1371/journal.pone.0125814
10.1016/j.geoderma.2016.04.026
10.1097/00010694-193401000-00003
10.1007/s10533-007-9109-z
10.1016/j.geoderma.2013.05.003
10.1080/02693799508902047
10.1016/j.geoderma.2018.04.004
10.1016/j.scitotenv.2014.02.061
10.1111/j.1475-2743.2011.00357.x
10.1016/j.ecolind.2014.12.028
10.1016/j.ecolind.2014.04.003
10.1016/j.agee.2017.11.022
10.1016/S0304-3800(99)00092-7
10.1016/j.geoderma.2018.08.011
10.1071/SR15100
10.1007/s10661-017-5830-9
10.1071/SR08240
10.1002/eap.1516
10.1016/j.geoderma.2017.10.018
10.1016/j.geodrs.2018.e00195
10.1029/2009GB003506
10.3390/rs10101509
10.1111/j.1365-2664.2006.01141.x
10.1016/j.scitotenv.2017.05.239
10.1111/gcb.12569
10.1016/0016-7061(93)90049-Q
10.1088/1748-9326/aaed52
10.1371/journal.pone.0139042
10.1371/journal.pone.0170478
10.1016/j.geoderma.2015.01.015
10.1016/j.geodrs.2017.07.003
10.1016/j.geoderma.2016.10.019
10.1016/j.catena.2018.10.050
10.1371/journal.pone.0142295
10.1016/j.scitotenv.2018.08.016
10.1007/s11442-013-1010-1
10.1016/j.geoderma.2009.05.015
10.1016/j.geoderma.2018.07.026
10.1016/j.geoderma.2011.06.006
10.1590/0103-9016-2015-0071
10.5194/soil-5-107-2019
10.2134/jeq2017.04.0178
10.1007/s11104-010-0425-z
10.1016/j.geoderma.2019.01.007
10.1016/S1002-0160(17)60461-2
10.1016/j.ecolind.2013.08.009
10.1016/j.geodrs.2014.09.001
10.1016/j.catena.2018.04.013
10.1016/j.geoderma.2016.02.002
10.1007/s12524-013-0332-x
10.1071/SR13306
10.1002/ldr.2833
10.1071/SR09146
10.1071/SR14307
10.1016/j.geoderma.2018.09.011
10.1016/j.geoderma.2017.10.052
10.1371/journal.pone.0169748
10.1016/j.geoderma.2014.03.007
10.1016/j.geodrs.2018.e00174
10.1016/j.scitotenv.2017.02.116
10.1016/j.geoderma.2013.05.029
10.1111/j.1365-2656.2008.01390.x
10.1016/j.soilbio.2016.04.001
10.1007/BF00994018
10.2136/sssaj2003.2580
10.2136/sssaj1993.03615995005700020026x
10.1016/j.scitotenv.2016.07.066
10.5194/bg-15-1663-2018
10.2136/sssaj2012.0419
10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
10.1016/j.geoderma.2011.05.007
10.1016/j.geoderma.2019.01.015
10.3390/su10051610
10.1007/s12524-017-0738-y
10.1016/j.geoderma.2014.04.016
10.1016/j.geoderma.2018.09.006
10.1007/s11442-016-1257-4
10.5194/soil-4-1-2018
10.2134/jeq2016.03.0076
10.1016/j.catena.2017.04.003
10.1016/j.ecolind.2015.08.036
10.1016/j.geoderma.2014.08.009
10.1016/j.geoderma.2018.09.005
10.1016/j.geoderma.2017.05.017
10.1007/s10661-016-5204-8
10.1016/j.scitotenv.2018.02.204
10.1016/B978-0-12-405942-9.00001-3
10.1071/SR12358
10.2136/sssaj2017.04.0122
10.1016/j.catena.2016.05.023
10.1016/j.geodrs.2016.12.001
10.1016/j.geoderma.2011.07.012
10.1007/s12665-018-7367-9
10.1016/j.geoderma.2009.06.003
10.1016/j.catena.2017.02.006
10.1016/j.geoderma.2003.08.018
10.1038/srep17866
10.2136/sssaj2008.0411
10.1016/j.geoderma.2016.02.021
10.5194/soil-4-173-2018
10.1080/136588197242266
10.1071/SR14268
10.1071/SR12376
10.1016/j.geodrs.2016.12.006
10.1590/S0100-06832014000300003
10.1007/s10661-017-6197-7
10.1016/j.geoderma.2005.02.010
10.1111/j.1475-2743.2006.00045.x
10.1016/S0167-8809(01)00145-1
10.3390/su9050754
10.1016/j.geoderma.2015.12.003
10.1016/j.geoderma.2016.09.024
10.1186/s13750-016-0059-6
10.1111/j.1365-2389.1996.tb01386.x
10.1111/j.1365-2389.2011.01364.x
10.1007/s11104-015-2380-1
10.1016/j.scitotenv.2016.03.085
10.1126/science.1097396
10.2136/sssaj2016.02.0038
10.1016/S1002-0160(12)60025-3
10.2136/sssaj2012.0275
10.4154/gc.2018.04
10.1016/j.geoderma.2009.12.025
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.05.031
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 413
ExternalDocumentID 10_1016_j_geoderma_2019_05_031
S0016706119300540
GeographicLocations Australia
United States
China
GeographicLocations_xml – name: China
– name: Australia
– name: United States
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-bc113a2e55c2308395fa31f22f0c238b3aba6272f7976c25128c3a977e20007a3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 05:09:11 EDT 2025
Thu Apr 24 22:51:33 EDT 2025
Tue Jul 01 04:04:50 EDT 2025
Fri Feb 23 02:30:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Validation
Algorithms
Digital soil mapping
Soil organic carbon
Covariates
Systematic mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-bc113a2e55c2308395fa31f22f0c238b3aba6272f7976c25128c3a977e20007a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2271874002
PQPubID 24069
PageCount 19
ParticipantIDs proquest_miscellaneous_2271874002
crossref_citationtrail_10_1016_j_geoderma_2019_05_031
crossref_primary_10_1016_j_geoderma_2019_05_031
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_05_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References de Menezes, Silva, de Mello, Owens, Curi (bb0525) 2016; 73
Sleutel, De Neve, Beheydt, Li, Hofman (bb0745) 2006; 22
Hempel, McBratney, Arrouays, McKenzie, Hartemink (bb0275) 2014
Zhang, Liu, Song (bb1020) 2017; 16
de Brogniez, Ballabio, Stevens, Jones, Montanarella, van Wesemael (bb0070) 2015; 66
Mulder, Lacoste, Richer-de-Forges, Arrouays (bb0555) 2016; 573
Kuhn, Weston, Keefer, Coulter, Quinlan (bb0380) 2018
Mosleh, Salehi, Jafari, Borujeni, Mehnatkesh (bb0545) 2016; 188
Jenny (bb0330) 1941
Li, Zhang, Wang, Li, Gao, Yuan, Luo (bb0440) 2016; 62
Yang, Mohammat, Feng, Zhou, Fang (bb0965) 2007; 84
(bb1000) 2018
Taghizadeh-Mehrjardi, Neupane, Sood, Kumar (bb0800) 2017; 8
Jeong, Oeverdieck, Park, Huwe, Ließ (bb0335) 2017; 154
Wang, Deng, Wu, Wang, Shangguan (bb0900) 2018; 29
Liddicoat, Maschmedt, Clifford, Searle, Herrmann, Macdonald, Baldock (bb0455) 2015; 53
Minasny, McBratney, Malone, Wheeler (bb0530) 2013
Vitharana, Mishra, Mapa (bb0850) 2019; 337
Lal (bb0420) 2004; 304
Mulder, Lacoste, Richer-de-Forges, Martin, Arrouays (bb0560) 2016; 263
Wiesmeier, Urbanski, Hobley, Lang, von Lützow, Marin-Spiotta, van Wesemael, Rabot, Ließ, Garcia-Franco, Wollschläger, Vogel, Kögel-Knabner (bb0945) 2019; 333
Wang, Fan, Zhong, Li, Zhu, Qiao, Zhang (bb0905) 2019; 174
Mckenzie, Austin (bb0510) 1993; 57
Gomes, Faria, de Souza, Veloso, Schaefer, Filho (bb0215) 2019; 340
Wiesmeier, Barthold, Spörlein, Geuß, Hangen, Reischl, Schilling, Angst, Von Lützow, Kögel-Knabner (bb0940) 2014; 1
Wang, Zhang, Pan, Zhao, Zhao, Wang (bb0865) 2012; 22
Wang, Adhikari, Wang, Jin, Li (bb0895) 2018; 84
Ramifehiarivo, Brossard, Grinand, Andriamananjara, Razafimbelo, Rasolohery, Razafimahatratra, Seyler, Ranaivoson, Rabenarivo, Albrecht, Razafindrabe, Razakamanarivo (bb0680) 2017; 9
Viscarra Rossel, Chen, Grundy, Searle, Clifford, Campbell (bb0845) 2015; 53
Qin, Zhu, Qiu, Lu, Li, Pei (bb0650) 2012; 171–172
Viscarra Rossel, Behrens (bb0835) 2010; 158
Adhikari, Hartemink (bb0005) 2015; 79
Poggio, Gimona, Brewer (bb0640) 2013; 209–210
Brus, Kempen, Heuvelink (bb0080) 2011; 62
Grinand, Maire, Vieilledent, Razakamanarivo, Razafimbelo, Bernoux (bb0245) 2017; 54
Maynard, Levi (bb0500) 2017; 285
Vaysse, Lagacherie (bb0825) 2015; 4
Quinlan (bb0655) 1992
Rabbi, Tighe, Delgado-Baquerizo, Cowie, Robertson, Dalal, Page, Crawford, Wilson, Schwenke, McLeod, Badgery, Dang, Bell, O'Leary, Liu, Baldock (bb0665) 2015; 5
Gray, Bishop, Smith (bb0235) 2016; 54
Wang, Zhang, Li, Lin, Zhang (bb0870) 2014; 59
Kupfer, Farris (bb0410) 2007; 22
Li (bb0435) 2010; 159
Liang, Chen, Yang, Zhao, Shi, Viscarra Rossel (bb0445) 2019; 335
Costa, Tassinari, Pinheiro, Beutler, dos Anjos (bb0135) 2018; 47
Song, Yang, Li, Hu, Wang, Zhou, Cui, Liu (bb0775) 2017; 9
Were, Singh, Dick (bb0925) 2016; 26
Piccini, Marchetti, Francaviglia (bb0635) 2014; 36
Zhao, Rossiter, Li, Zhao, Liu, Zhang (bb1025) 2014; 39
Mueller, Pierce (bb0550) 2003; 67
Adhikari, Hartemink, Minasny, Bou Kheir, Greve, Greve (bb0020) 2014; 9
Yang, Song, Zhu, Qin, Zhou, Qi, Li, Chen, Gao (bb0990) 2019; 340
Van Apeldoorn, Kempen, Bartholomeus, Rusinamhodzi, Zingore, Sonneveld, Kok, Giller (bb0815) 2014; 2–3
Drake, Randin, Guisan (bb0180) 2006; 43
Tan, Guo, Wu, Li, Liu (bb0805) 2017; 55
Kuhn, Johnson (bb0375) 2013; 26
Rabbinge, Van Ittersum (bb0670) 1994
Luo, Yaolin, Jian, Jing (bb0480) 2008
Rial, Martínez Cortizas, Taboada, Rodríguez-Lado (bb0695) 2017; 156
Walkley, Black (bb0860) 1934; 37
Kempen, Dalsgaard, Kaaya, Chamuya, Ruipérez-González, Pekkarinen, Walsh (bb0355) 2019; 337
Poggio, Gimona, Spezia, Brewer (bb0645) 2016; 277
Wang, Zhuang, Wang, Jin, Han (bb0880) 2017; 305
Sun, Wang, Zhao, Zhang, Zhang (bb0790) 2017; 303
Amirian Chakan, Taghizadeh-Mehrjardi, Kerry, Kumar, Khordehbin, Yusefi Khanghah (bb0035) 2017; 189
Sindayihebura, Ottoy, Dondeyne, Van Meirvenne, Van Orshoven (bb0740) 2017; 156
Zeng, Yang, Zhu, Rossiter, Liu, Liu, Qin, Wang (bb1005) 2016; 281
Elith, Leathwick, Hastie (bb0185) 2008; 77
Nussbaum, Spiess, Baltensweiler, Grob, Keller, Greiner, Schaepman, Papritz (bb0575) 2018; 4
Keskin, Grunwald (bb0360) 2018; 326
Kidd, Webb, Malone, Minasny, McBratney (bb0365) 2015; 53
Ottoy, Van Meerbeek, Sindayihebura, Hermy, Van Orshoven (bb0590) 2017; 589
Hartemink, Krasilnikov, Bockheim (bb0270) 2013; 207–208
Deng, Chen, Ma, Ren, Zhang, Grieneisen, Long, Ni, Zhan, Lv (bb0150) 2018; 254
Batjes (bb0050) 1996; 47
GSP (bb0255) 2017
Taghizadeh-Mehrjardi, Nabiollahi, Kerry (bb0795) 2016; 266
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bb0615) 2011; 12
Peng, Xiong, Adhikari, Knadel, Grunwald, Greve (bb0625) 2015; 10
Adhikari, Kheir, Greve, Bøcher, Malone, Minasny, McBratney, Greve (bb0015) 2013; 77
Gray, Bishop (bb0220) 2016; 80
McBratney, Mendonça Santos, Minasny (bb0505) 2003; 117
Wilson, Lonergan (bb0950) 2013; 51
Jobbágy, Jackson (bb0340) 2000; 10
De'ath (bb0145) 2007; 88
Rudiyanto, Minasny, Setiawan, Saptomo, McBratney (bb0710) 2018; 313
Yigini, Panagos (bb0995) 2016; 557–558
Pahlavan-Rad, Dahmardeh, Brungard (bb0605) 2018; 15
Grunwald (bb0250) 2009; 152
Lek, Guégan (bb0430) 1999; 120
Were, Tien Bui, Dick, Singh (bb0930) 2017; 27
Bengio (bb0055) 2009; 2
Eswaran, Reich, Kimble, Beinroth, Padmanabhan, Moncharoen (bb0190) 2000
Wang, Wang, Adhikari, Jia, Jin, Liu (bb0875) 2016; 8
Schillaci, Acutis, Lombardo, Lipani, Fantappiè, Märker, Saia (bb0720) 2017; 601–602
Yang, Zhang, Liu, Lu, Yang, Yang, Yang, Zhao, Li (bb0980) 2016; 60
Gessler, Moore, McKenzie, Ryan (bb0210) 1995; 9
Nussbaum, Papritz, Baltensweiler, Walthert (bb0570) 2014; 7
Smola (bb0750) 1996
Gray, Bishop, Yang (bb0230) 2015; 53
Somarathna, Malone, Minasny (bb0755) 2016; 7
Domke, Perry, Walters, Nave, Woodall, Swanston (bb0165) 2017; 27
Kumar, Velmurugan, Hamm, Dadhwal (bb0405) 2018; 46
Ratnayake, Karunaratne, Lessels, Yogenthiran, Rajapaksha, Gnanavelrajah (bb0685) 2016; 7
Zeraatpisheh, Ayoubi, Jafari, Tajik, Finke (bb1010) 2019; 338
Song, Brus, Liu, Li, Zhao, Yang, Zhang (bb0765) 2016; 261
Wang, Waters, Orgill, Gray, Cowie, Clark, Liu (bb0885) 2018; 630
Padarian, Minasny, McBratney (bb0600) 2019; 5
Chartin, Stevens, Goidts, Krüger, Carnol, van Wesemael (bb0115) 2017; 9
Guevara, Olmedo, Stell, Yigini, Aguilar Duarte, Arellano Hernández, Arévalo, Arroyo-Cruz, Bolivar, Bunning, Bustamante Cañas, Cruz-Gaistardo, Davila, Dell Acqua, Encina, Figueredo Tacona, Fontes, Hernández Herrera, Ibelles Navarro, Loayza, Manueles, Mendoza Jara, Olivera, Osorio Hermosilla, Pereira, Prieto, Ramos, Rey Brina, Rivera, Rodríguez-Rodríguez, Roopnarine, Rosales Ibarra, Rosales Riveiro, Schulz, Spence, Vasques, Vargas, Vargas (bb0260) 2018; 4
Kalambukattu, Kumar, Arya Raj (bb0345) 2018; 77
Heuvelink, Kros, Reinds, De Vries (bb0295) 2016; 7
Liu, Geng, Zhu, Fraser, Waddell (bb0460) 2012; 171–172
Ramcharan, Hengl, Nauman, Brungard, Waltman, Wills, Thompson (bb0675) 2018; 82
Grimm, Behrens, Märker, Elsenbeer (bb0240) 2008; 146
Meersmans, van Wesemael, De Ridder, Van Molle (bb0520) 2009; 152
Rodríguez-Lado, Martínez-Cortizas (bb0700) 2015; 245–246
Florinsky (bb0195) 2012; 45
Peng, Bing, Guangpo, Guangcan (bb0620) 2013; 8
Chen, Martin, Saby, Walter, Angers, Arrouays (bb0120) 2018; 630
Kassai, Sisák (bb0350) 2018; 71
Ingram, Fernandes (bb0315) 2001; 87
Kumar, Mutanga (bb0390) 2018; 10
Mirzaee, Ghorbani-Dashtaki, Mohammadi, Asadi, Asadzadeh (bb0535) 2016; 145
Brunsdon, Fotheringham, Charlton (bb0075) 1996; 28
Wiesmeier, Barthold, Blank, Kogel-Knabner (bb0935) 2011; 340
Hounkpatin, Op de Hipt, Bossa, Welp, Amelung (bb0310) 2018; 166
Nijbroek, Piikki, Söderström, Kempen, Turner, Hengari, Mutua (bb0565) 2018; 10
Hengl, De Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger, Guevara, Vargas, MacMillan, Batjes, Leenaars, Ribeiro, Wheeler, Mantel, Kempen (bb0290) 2017; 12
Zhang, Huang, Shen, Ye, Du (bb1015) 2012; 171–172
Sreenivas, Dadhwal, Kumar, Harsha, Mitran, Sujatha, Suresh, Fyzee, Ravisankar (bb0785) 2016; 269
de Carvalho, Chagas, Lagacherie, Calderano Filho, Bhering (bb0100) 2014; 38
Ottoy, De Vos, Sindayihebura, Hermy, Van Orshoven (bb0585) 2017; 77
Dong, Wu, Luo, Sun, Xia (bb0170) 2019; 340
Hobley, Wilson, Wilkie, Gray, Koen (bb0305) 2015; 390
Adhikari, Hartemink (bb0010) 2017; 10
Badgery, Simmons, Murphy, Rawson, Andersson, Lonergan, van de Ven (bb0045) 2013; 51
Weil, Brady (bb0915) 2016
Veronesi, Corstanje, Mayr (bb0830) 2014; 487
Rial, Martínez Cortizas, Rodríguez-Lado (bb0690) 2017; 609
Siewert (bb0735) 2018; 15
Aitkenhead, Coull (bb0025) 2016; 262
Forkuor, Hounkpatin, Welp, Thiel (bb0200) 2017; 12
Kumar (bb0385) 2015; 127
Zinn, Lal, Resck (bb1045) 2005; 127
Triantafilis, Lesch, La Lau, Buchanan (bb0810) 2009; 47
Zhu, Liu, Li, Pei, Qin, Liu, Wang, Chen, Ma, Qi, Zhou (bb1040) 2010; 74
Arrouays, McBratney, Minasny, Hempel, Heuvelink, MacMillan, Hartemink, Lagacherie, McKenzie (bb0040) 2014
Quinlan (bb0660) 1993
Liu, Zhang, Sun, Zhao, Li (bb0465) 2013; 77
Vasenev, Stoorvogel, Vasenev, Valentini (bb0820) 2014; 226–227
Schulp, Veldkamp (bb0730) 2008; 146
Kim, Grunwald (bb0370) 2016; 45
Dai, Zhou, Lv, Wang, Liu (bb0140) 2014; 45
Petropoulos, Ireland, Barrett (bb0630) 2015; 83–84
Somarathna, Minasny, Malone (bb0760) 2017; 81
Doblas-Miranda, Rovira, Brotons, Martínez-Vilalta, Retana, Pla, Vayreda (bb0160) 2013; 10
Liaw, Wiener (bb0450) 2002; 2
Orton, Pringle, Page, Dalal, Bishop (bb0580) 2014; 230–231
Padarian, Minasny, McBratney (bb0595) 2017; 9
Wang, Wang, Adhikari, Wang, Sui, Xin (bb0910) 2019; 342
Yang, Rossiter, Liu, Lu, Yang, Yang, Zhao, Li, Zhang (bb0970) 2015; 10
Cortes, Vapnik (bb0130) 1995; 20
Malone, McBratney, Minasny (bb0495) 2013; 77
Wilson, Koen, Barnes, Ghosh, King (bb0960) 2011; 27
McNicol, Bulmer, D'Amore, Sanborn, Saunders, Giesbrecht, Arriola, Bidlack, Butman, Buma (bb0515) 2019; 14
Breiman (bb0065) 2001; 45
Fotheringham, Brunsdon, Charlton (bb0205) 2002
Cheng-Ping, Chuan, Hai-wei (bb0125) 2011
Castro-Franco, Costa, Peralta, Aparicio (bb0105) 2015; 180
Kumar, Lal, Liu, Rafiq (bb0400) 2013; 23
Schillaci, Lombardo, Saia, Fantappiè, Märker, Acutis (bb0725) 2017; 286
Wang, Zhuang, Jia, Jin, Wang (bb0890) 2018; 314
Moore, Gessler, Nielsen, Peterson (bb0540) 1993;
Vasenev (10.1016/j.geoderma.2019.05.031_bb0820) 2014; 226–227
Castro-Franco (10.1016/j.geoderma.2019.05.031_bb0105) 2015; 180
Keskin (10.1016/j.geoderma.2019.05.031_bb0360) 2018; 326
Lombardo (10.1016/j.geoderma.2019.05.031_bb0475) 2018; 318
Liang (10.1016/j.geoderma.2019.05.031_bb0445) 2019; 335
Triantafilis (10.1016/j.geoderma.2019.05.031_bb0810) 2009; 47
Yang (10.1016/j.geoderma.2019.05.031_bb0970) 2015; 10
Yang (10.1016/j.geoderma.2019.05.031_bb0990) 2019; 340
Jobbágy (10.1016/j.geoderma.2019.05.031_bb0340) 2000; 10
Yang (10.1016/j.geoderma.2019.05.031_bb0985) 2016; 6
Kumar (10.1016/j.geoderma.2019.05.031_bb0385) 2015; 127
Schulp (10.1016/j.geoderma.2019.05.031_bb0730) 2008; 146
Sreenivas (10.1016/j.geoderma.2019.05.031_bb0780) 2014; 42
Tan (10.1016/j.geoderma.2019.05.031_bb0805) 2017; 55
Cheng-Ping (10.1016/j.geoderma.2019.05.031_bb0125) 2011
Grunwald (10.1016/j.geoderma.2019.05.031_bb0250) 2009; 152
Adhikari (10.1016/j.geoderma.2019.05.031_bb0010) 2017; 10
de Carvalho (10.1016/j.geoderma.2019.05.031_bb0100) 2014; 38
Hartemink (10.1016/j.geoderma.2019.05.031_bb0270) 2013; 207–208
GSOC Map (10.1016/j.geoderma.2019.05.031_bb1050)
Malone (10.1016/j.geoderma.2019.05.031_bb0495) 2013; 77
Wang (10.1016/j.geoderma.2019.05.031_bb0900) 2018; 29
Wang (10.1016/j.geoderma.2019.05.031_bb0905) 2019; 174
Costa (10.1016/j.geoderma.2019.05.031_bb0135) 2018; 47
Elith (10.1016/j.geoderma.2019.05.031_bb0185) 2008; 77
Mulder (10.1016/j.geoderma.2019.05.031_bb0560) 2016; 263
Mirzaee (10.1016/j.geoderma.2019.05.031_bb0535) 2016; 145
Pahlavan-Rad (10.1016/j.geoderma.2019.05.031_bb0605) 2018; 15
Wang (10.1016/j.geoderma.2019.05.031_bb0885) 2018; 630
Rudiyanto (10.1016/j.geoderma.2019.05.031_bb0710) 2018; 313
Bengio (10.1016/j.geoderma.2019.05.031_bb0055) 2009; 2
Zhou (10.1016/j.geoderma.2019.05.031_bb1030) 2019; 647
Sun (10.1016/j.geoderma.2019.05.031_bb0790) 2017; 303
De'ath (10.1016/j.geoderma.2019.05.031_bb0145) 2007; 88
Doblas-Miranda (10.1016/j.geoderma.2019.05.031_bb0160) 2013; 10
Wang (10.1016/j.geoderma.2019.05.031_bb0890) 2018; 314
Zhang (10.1016/j.geoderma.2019.05.031_bb1015) 2012; 171–172
Zhao (10.1016/j.geoderma.2019.05.031_bb1025) 2014; 39
Sleutel (10.1016/j.geoderma.2019.05.031_bb0745) 2006; 22
Brus (10.1016/j.geoderma.2019.05.031_bb0080) 2011; 62
Badgery (10.1016/j.geoderma.2019.05.031_bb0045) 2013; 51
Nussbaum (10.1016/j.geoderma.2019.05.031_bb0570) 2014; 7
Adhikari (10.1016/j.geoderma.2019.05.031_bb0005) 2015; 79
Wilson (10.1016/j.geoderma.2019.05.031_bb0960) 2011; 27
Adhikari (10.1016/j.geoderma.2019.05.031_bb0015) 2013; 77
Guevara (10.1016/j.geoderma.2019.05.031_bb0260) 2018; 4
Siewert (10.1016/j.geoderma.2019.05.031_bb0735) 2018; 15
Bui (10.1016/j.geoderma.2019.05.031_bb0090) 2009; 23
Pedregosa (10.1016/j.geoderma.2019.05.031_bb0615) 2011; 12
Schillaci (10.1016/j.geoderma.2019.05.031_bb0720) 2017; 601–602
Were (10.1016/j.geoderma.2019.05.031_bb0925) 2016; 26
Forkuor (10.1016/j.geoderma.2019.05.031_bb0200) 2017; 12
Gray (10.1016/j.geoderma.2019.05.031_bb0235) 2016; 54
Dai (10.1016/j.geoderma.2019.05.031_bb0140) 2014; 45
Meersmans (10.1016/j.geoderma.2019.05.031_bb0520) 2009; 152
Quinlan (10.1016/j.geoderma.2019.05.031_bb0655) 1992
Vitharana (10.1016/j.geoderma.2019.05.031_bb0850) 2019; 337
Wilson (10.1016/j.geoderma.2019.05.031_bb0955) 2010; 48
Ottoy (10.1016/j.geoderma.2019.05.031_bb0590) 2017; 589
Amirian Chakan (10.1016/j.geoderma.2019.05.031_bb0035) 2017; 189
Kumar (10.1016/j.geoderma.2019.05.031_bb0390) 2018; 10
Rabbinge (10.1016/j.geoderma.2019.05.031_bb0670) 1994
Viscarra Rossel (10.1016/j.geoderma.2019.05.031_bb0840) 2014; 20
Smola (10.1016/j.geoderma.2019.05.031_bb0750) 1996
Yang (10.1016/j.geoderma.2019.05.031_bb0965) 2007; 84
Li (10.1016/j.geoderma.2019.05.031_bb0440) 2016; 62
Mulder (10.1016/j.geoderma.2019.05.031_bb0555) 2016; 573
Mueller (10.1016/j.geoderma.2019.05.031_bb0550) 2003; 67
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2019.05.031_bb0800) 2017; 8
Bonfatti (10.1016/j.geoderma.2019.05.031_bb0060) 2016; 261
Lal (10.1016/j.geoderma.2019.05.031_bb0420) 2004; 304
McNicol (10.1016/j.geoderma.2019.05.031_bb0515) 2019; 14
Wang (10.1016/j.geoderma.2019.05.031_bb0895) 2018; 84
IUCN (10.1016/j.geoderma.2019.05.031_bb0320) 2015
Akpa (10.1016/j.geoderma.2019.05.031_bb0030) 2016; 271
Breiman (10.1016/j.geoderma.2019.05.031_bb0065) 2001; 45
Maynard (10.1016/j.geoderma.2019.05.031_bb0500) 2017; 285
McBratney (10.1016/j.geoderma.2019.05.031_bb0505) 2003; 117
Heuvelink (10.1016/j.geoderma.2019.05.031_bb0295) 2016; 7
Kumar (10.1016/j.geoderma.2019.05.031_bb0400) 2013; 23
Poggio (10.1016/j.geoderma.2019.05.031_bb0645) 2016; 277
Wiesmeier (10.1016/j.geoderma.2019.05.031_bb0940) 2014; 1
Li (10.1016/j.geoderma.2019.05.031_bb0435) 2010; 159
Mahmoudabadi (10.1016/j.geoderma.2019.05.031_bb0490) 2017; 189
Quinlan (10.1016/j.geoderma.2019.05.031_bb0660) 1993
Sreenivas (10.1016/j.geoderma.2019.05.031_bb0785) 2016; 269
Song (10.1016/j.geoderma.2019.05.031_bb0765) 2016; 261
Kassai (10.1016/j.geoderma.2019.05.031_bb0350) 2018; 71
Cortes (10.1016/j.geoderma.2019.05.031_bb0130) 1995; 20
Poggio (10.1016/j.geoderma.2019.05.031_bb0640) 2013; 209–210
Domke (10.1016/j.geoderma.2019.05.031_bb0165) 2017; 27
Rodríguez-Lado (10.1016/j.geoderma.2019.05.031_bb0700) 2015; 245–246
Wang (10.1016/j.geoderma.2019.05.031_bb0880) 2017; 305
GSP (10.1016/j.geoderma.2019.05.031_bb0255) 2017
Kuhn (10.1016/j.geoderma.2019.05.031_bb0380) 2018
Yang (10.1016/j.geoderma.2019.05.031_bb0980) 2016; 60
Nussbaum (10.1016/j.geoderma.2019.05.031_bb0575) 2018; 4
Adhikari (10.1016/j.geoderma.2019.05.031_bb0020) 2014; 9
Viscarra Rossel (10.1016/j.geoderma.2019.05.031_bb0845) 2015; 53
Kumar (10.1016/j.geoderma.2019.05.031_bb0395) 1997; 11
Wadoux (10.1016/j.geoderma.2019.05.031_bb0855) 2019; 5
Chartin (10.1016/j.geoderma.2019.05.031_bb0115) 2017; 9
Somarathna (10.1016/j.geoderma.2019.05.031_bb0755) 2016; 7
Padarian (10.1016/j.geoderma.2019.05.031_bb0595) 2017; 9
Wiesmeier (10.1016/j.geoderma.2019.05.031_bb0945) 2019; 333
Hempel (10.1016/j.geoderma.2019.05.031_bb0275) 2014
Wang (10.1016/j.geoderma.2019.05.031_bb0910) 2019; 342
Kidd (10.1016/j.geoderma.2019.05.031_bb0365) 2015; 53
Dong (10.1016/j.geoderma.2019.05.031_bb0170) 2019; 340
Ottoy (10.1016/j.geoderma.2019.05.031_bb0585) 2017; 77
Orton (10.1016/j.geoderma.2019.05.031_bb0580) 2014; 230–231
Moore (10.1016/j.geoderma.2019.05.031_bb0540) 1993; 57
Campbell (10.1016/j.geoderma.2019.05.031_bb0095) 2011
Jeong (10.1016/j.geoderma.2019.05.031_bb0335) 2017; 154
Song (10.1016/j.geoderma.2019.05.031_bb0775) 2017; 9
Kumar (10.1016/j.geoderma.2019.05.031_bb0405) 2018; 46
Gomes (10.1016/j.geoderma.2019.05.031_bb0215) 2019; 340
Piccini (10.1016/j.geoderma.2019.05.031_bb0635) 2014; 36
Ramcharan (10.1016/j.geoderma.2019.05.031_bb0675) 2018; 82
Qin (10.1016/j.geoderma.2019.05.031_bb0650) 2012; 171–172
Kuhn (10.1016/j.geoderma.2019.05.031_bb0375) 2013; 26
Grinand (10.1016/j.geoderma.2019.05.031_bb0245) 2017; 54
Aitkenhead (10.1016/j.geoderma.2019.05.031_bb0025) 2016; 262
Somarathna (10.1016/j.geoderma.2019.05.031_bb0760) 2017; 81
Drake (10.1016/j.geoderma.2019.05.031_bb0180) 2006; 43
Arrouays (10.1016/j.geoderma.2019.05.031_bb0040) 2014
Yang (10.1016/j.geoderma.2019.05.031_bb0975) 2016; 26
Liu (10.1016/j.geoderma.2019.05.031_bb0470) 2015; 148
Zhou (10.1016/j.geoderma.2019.05.031_bb1035) 2019; 334
Liaw (10.1016/j.geoderma.2019.05.031_bb0450) 2002; 2
Fotheringham (10.1016/j.geoderma.2019.05.031_bb0205) 2002
Zhu (10.1016/j.geoderma.2019.05.031_bb1040) 2010; 74
Gray (10.1016/j.geoderma.2019.05.031_bb0230) 2015; 53
(10.1016/j.geoderma.2019.05.031_bb1000) 2018
Brus (10.1016/j.geoderma.2019.05.031_bb0085) 2016; 141
Ma (10.1016/j.geoderma.2019.05.031_bb0485) 2017; 10
Gessler (10.1016/j.geoderma.2019.05.031_bb0210) 1995; 9
Ingram (10.1016/j.geoderma.2019.05.031_bb0315) 2001; 87
Hounkpatin (10.1016/j.geoderma.2019.05.031_bb0310) 2018; 166
Van Apeldoorn (10.1016/j.geoderma.2019.05.031_bb0815) 2014; 2–3
Rabbi (10.1016/j.geoderma.2019.05.031_bb0665) 2015; 5
James (10.1016/j.geoderma.2019.05.031_bb0325) 2016; 5
Wang (10.1016/j.geoderma.2019.05.031_bb0875) 2016; 8
Batjes (10.1016/j.geoderma.2019.05.031_bb0050) 1996; 47
Lek (10.1016/j.geoderma.2019.05.031_bb0430) 1999; 120
Petropoulos (10.1016/j.geoderma.2019.05.031_bb0630) 2015; 83–84
Gray (10.1016/j.geoderma.2019.05.031_bb0220) 2016; 80
Zhang (10.1016/j.geoderma.2019.05.031_bb1020) 2017; 16
Hengl (10.1016/j.geoderma.2019.05.031_bb0280) 2004; 120
Rial (10.1016/j.geoderma.2019.05.031_bb0695) 2017; 156
Yigini (10.1016/j.geoderma.2019.05.031_bb0995) 2016; 557–558
Hobley (10.1016/j.geoderma.2019.05.031_bb0305) 2015; 390
Dorji (10.1016/j.geoderma.2019.05.031_bb0175) 2014; 318
Zeng (10.1016/j.geoderma.2019.05.031_bb1005) 2016; 281
Weil (10.1016/j.geoderma.2019.05.031_bb0915) 2016
Laub (10.1016/j.geoderma.2019.05.031_bb0425) 2018; 330
Padarian (10.1016/j.geoderma.2019.05.031_bb0600) 2019; 5
Vaysse (10.1016/j.geoderma.2019.05.031_bb0825) 2015; 4
Peng (10.1016/j.geoderma.2019.05.031_bb0625) 2015; 10
Rial (10.1016/j.geoderma.2019.05.031_bb0690) 2017; 609
Wang (10.1016/j.geoderma.2019.05.031_bb0870) 2014; 59
Chen (10.1016/j.geoderma.2019.05.031_bb0120) 2018; 630
Liddicoat (10.1016/j.geoderma.2019.05.031_bb0455) 2015; 53
Brunsdon (10.1016/j.geoderma.2019.05.031_bb0075) 1996; 28
de Brogniez (10.1016/j.geoderma.2019.05.031_bb0070) 2015; 66
Kupfer (10.1016/j.geoderma.2019.05.031_bb0410) 2007; 22
Kim (10.1016/j.geoderma.2019.05.031_bb0370) 2016; 45
Zinn (10.1016/j.geoderma.2019.05.031_bb1045) 2005; 127
Viscarra Rossel (10.1016/j.geoderma.2019.05.031_bb0835) 2010; 158
Ratnayake (10.1016/j.geoderma.2019.05.031_bb0685) 2016; 7
Liu (10.1016/j.geoderma.2019.05.031_bb0465) 2013; 77
Paul (10.1016/j.geoderma.2019.05.031_bb0610) 2016; 98
Florinsky (10.1016/j.geoderma.2019.05.031_bb0195) 2012; 45
Peng (10.1016/j.geoderma.2019.05.031_bb0620) 2013; 8
de Menezes (10.1016/j.geoderma.2019.05.031_bb0525) 2016; 73
Lacoste (10.1016/j.geoderma.2019.05.031_bb0415) 2014; 213
Jenny (10.1016/j.geoderma.2019.05.031_bb0330) 1941
Minasny (10.1016/j.geoderma.2019.05.031_bb0530) 2013
Liu (10.1016/j.geoderma.2019.05.031_bb0460) 2012; 171–172
Song (10.1016/j.geoderma.2019.05.031_bb0770) 2017; 27
Walkley (10.1016
References_xml – volume: 152
  start-page: 43
  year: 2009
  end-page: 52
  ident: bb0520
  article-title: Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium)
  publication-title: Geoderma
– volume: 59
  start-page: 91
  year: 2014
  end-page: 106
  ident: bb0870
  article-title: Mapping soil organic matter with limited sample data using geographically weighted regression
  publication-title: J. Spat. Sci.
– volume: 245–246
  start-page: 65
  year: 2015
  end-page: 73
  ident: bb0700
  article-title: Modelling and mapping organic carbon content of topsoils in an Atlantic area of southwestern Europe (Galicia, NW-Spain)
  publication-title: Geoderma
– volume: 28
  start-page: 281
  year: 1996
  end-page: 298
  ident: bb0075
  article-title: Geographically weighted regression: a method for exploring spatial nonstationarity
  publication-title: Geogr. Anal.
– year: 2011
  ident: bb0095
  article-title: Introduction to Remote Sensing
– volume: 158
  start-page: 46
  year: 2010
  end-page: 54
  ident: bb0835
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
– volume: 45
  start-page: 184
  year: 2014
  end-page: 194
  ident: bb0140
  article-title: Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau
  publication-title: Ecol. Indic.
– volume: 303
  start-page: 118
  year: 2017
  end-page: 132
  ident: bb0790
  article-title: Digital soil mapping based on wavelet decomposed components of environmental covariates
  publication-title: Geoderma
– volume: 166
  start-page: 298
  year: 2018
  end-page: 309
  ident: bb0310
  article-title: Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso)
  publication-title: Catena
– volume: 9
  year: 2017
  ident: bb0110
  article-title: Soil carbon stock and particle size fractions in the central Amazon predicted from remotely sensed relief, multispectral and radar data
  publication-title: Remote Sens.
– volume: 62
  start-page: 394
  year: 2011
  end-page: 407
  ident: bb0080
  article-title: Sampling for validation of digital soil maps
  publication-title: Eur. J. Soil Sci.
– volume: 338
  start-page: 445
  year: 2019
  end-page: 452
  ident: bb1010
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran
  publication-title: Geoderma
– volume: 45
  start-page: 1910
  year: 2016
  end-page: 1918
  ident: bb0370
  article-title: Assessment of carbon stocks in the topsoil using random forest and remote sensing images
  publication-title: J. Environ. Qual.
– volume: 589
  start-page: 153
  year: 2017
  end-page: 164
  ident: bb0590
  article-title: Assessing top- and subsoil organic carbon stocks of low-input high-diversity systems using soil and vegetation characteristics
  publication-title: Sci. Total Environ.
– volume: 22
  start-page: 394
  year: 2012
  end-page: 403
  ident: bb0865
  article-title: Mapping Soil texture of a plain area using fuzzy-c-means clustering method based on land surface diurnal temperature difference
  publication-title: Pedosphere
– volume: 630
  start-page: 389
  year: 2018
  end-page: 400
  ident: bb0120
  article-title: Fine resolution map of top- and subsoil carbon sequestration potential in France
  publication-title: Sci. Total Environ.
– volume: 88
  start-page: 243
  year: 2007
  end-page: 251
  ident: bb0145
  article-title: Boosted trees for ecological modeling and prediction
  publication-title: Ecology
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bb0055
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends® Mach. Learn.
– volume: 47
  start-page: 735
  year: 2018
  end-page: 745
  ident: bb0705
  article-title: Projecting soil organic carbon distribution in central chile under future climate scenarios
  publication-title: J. Environ. Qual.
– volume: 171–172
  start-page: 35
  year: 2012
  end-page: 43
  ident: bb1015
  article-title: Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information
  publication-title: Geoderma
– volume: 1
  start-page: 67
  year: 2014
  end-page: 78
  ident: bb0940
  article-title: Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany)
  publication-title: Geoderma Regional
– volume: 342
  start-page: 55
  year: 2019
  end-page: 64
  ident: bb0910
  article-title: Effect of cultivation history on soil organic carbon status of arable land in northeastern China
  publication-title: Geoderma
– volume: 79
  start-page: 1741
  year: 2015
  end-page: 1751
  ident: bb0225
  article-title: Factors controlling soil organic carbon stocks with depth in Eastern Australia
  publication-title: Soil Sci. Soc. Am. J.
– volume: 20
  start-page: 2953
  year: 2014
  end-page: 2970
  ident: bb0840
  article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change
  publication-title: Glob. Chang. Biol.
– volume: 318
  start-page: 91
  year: 2014
  end-page: 102
  ident: bb0175
  article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas
  publication-title: For. Ecol. Manag.
– volume: 156
  start-page: 161
  year: 2017
  end-page: 175
  ident: bb0740
  article-title: Comparing digital soil mapping techniques for organic carbon and clay content: case study in Burundi's central plateaus
  publication-title: Catena
– volume: 53
  start-page: 24
  year: 2015
  end-page: 42
  ident: bb0230
  article-title: Pragmatic models for the prediction and digital mapping of soil properties in eastern Australia
  publication-title: Soil Research
– volume: 10
  start-page: 115
  year: 2017
  end-page: 125
  ident: bb0010
  article-title: Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA
  publication-title: Geoderma Reg.
– volume: 313
  start-page: 25
  year: 2018
  end-page: 40
  ident: bb0710
  article-title: Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands
  publication-title: Geoderma
– volume: 213
  start-page: 296
  year: 2014
  end-page: 311
  ident: bb0415
  article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape
  publication-title: Geoderma
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0505
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 79
  start-page: 155
  year: 2015
  end-page: 164
  ident: bb0005
  article-title: Digital mapping of topsoil carbon content and changes in the Driftless area of Wisconsin, USA
  publication-title: Soil Sci. Soc. Am. J.
– volume: 487
  start-page: 578
  year: 2014
  end-page: 586
  ident: bb0830
  article-title: Landscape scale estimation of soil carbon stock using 3D modelling
  publication-title: Sci. Total Environ.
– volume: 189
  year: 2017
  ident: bb0490
  article-title: Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran
  publication-title: Environ. Monit. Assess.
– volume: 180
  start-page: 74
  year: 2015
  end-page: 85
  ident: bb0105
  article-title: Prediction of soil properties at farm scale using a model-based soil sampling scheme and random forest
  publication-title: Soil Sci.
– volume: 83–84
  start-page: 36
  year: 2015
  end-page: 56
  ident: bb0630
  article-title: Surface soil moisture retrievals from remote sensing: current status, products & future trends
  publication-title: Phys. Chem. Earth Parts A/B/C
– volume: 314
  start-page: 8
  year: 2018
  end-page: 19
  ident: bb0890
  article-title: Spatial variations of soil organic carbon stocks in a coastal hilly area of China
  publication-title: Geoderma
– volume: 10
  start-page: 1610
  year: 2018
  ident: bb0565
  article-title: Soil organic carbon baselines for land degradation neutrality: map accuracy and cost tradeoffs with respect to complexity in Otjozondjupa, Namibia
  publication-title: Sustainability
– volume: 77
  start-page: 172
  year: 2018
  ident: bb0300
  article-title: Prediction of soil organic carbon stock using digital mapping approach in humid India
  publication-title: Environ. Earth Sci.
– volume: 146
  start-page: 102
  year: 2008
  end-page: 113
  ident: bb0240
  article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island — digital soil mapping using random forests analysis
  publication-title: Geoderma
– volume: 226–227
  start-page: 103
  year: 2014
  end-page: 115
  ident: bb0820
  article-title: How to map soil organic carbon stocks in highly urbanized regions?
  publication-title: Geoderma
– volume: 145
  start-page: 118
  year: 2016
  end-page: 127
  ident: bb0535
  article-title: Spatial variability of soil organic matter using remote sensing data
  publication-title: Catena
– volume: 340
  start-page: 7
  year: 2011
  ident: bb0935
  article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem
  publication-title: Plant Soil
– volume: 10
  start-page: 1509
  year: 2018
  ident: bb0390
  article-title: Google earth engine applications since inception: usage, trends, and potential
  publication-title: Remote Sens.
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: bb0185
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– volume: 7
  start-page: 1197
  year: 2014
  end-page: 1210
  ident: bb0570
  article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging
  publication-title: Geosci. Model Dev.
– volume: 27
  start-page: 877
  year: 2017
  end-page: 889
  ident: bb0930
  article-title: A novel evolutionary genetic optimization-based adaptive neuro-fuzzy inference system and geographical information systems predict and map soil organic carbon stocks across an afromontane landscape
  publication-title: Pedosphere
– volume: 10
  year: 2015
  ident: bb0285
  article-title: Mapping soil properties of Africa at 250
  publication-title: PLoS ONE
– volume: 209–210
  start-page: 1
  year: 2013
  end-page: 14
  ident: bb0640
  article-title: Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates
  publication-title: Geoderma
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0130
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 630
  start-page: 367
  year: 2018
  end-page: 378
  ident: bb0885
  article-title: High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 424
  year: 2006
  end-page: 432
  ident: bb0180
  article-title: Modelling ecological niches with support vector machines
  publication-title: J. Appl. Ecol.
– volume: 98
  start-page: 109
  year: 2016
  end-page: 126
  ident: bb0610
  article-title: The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization
  publication-title: Soil Biol. Biochem.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0065
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 77
  start-page: 890
  year: 2013
  end-page: 902
  ident: bb0495
  article-title: Spatial scaling for digital soil mapping
  publication-title: Soil Sci. Soc. Am. J.
– year: 2018
  ident: bb0380
  article-title: Cubist: Rule-and Instance-based Regression Modeling
– volume: 15
  start-page: 1663
  year: 2018
  end-page: 1682
  ident: bb0735
  article-title: High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment
  publication-title: Biogeosciences
– volume: 39
  start-page: 120
  year: 2014
  end-page: 133
  ident: bb1025
  article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index
  publication-title: Ecol. Indic.
– volume: 77
  start-page: 1241
  year: 2013
  end-page: 1253
  ident: bb0465
  article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape
  publication-title: Soil Sci. Soc. Am. J.
– volume: 557–558
  start-page: 838
  year: 2016
  end-page: 850
  ident: bb0995
  article-title: Assessment of soil organic carbon stocks under future climate and land cover changes in Europe
  publication-title: Sci. Total Environ.
– volume: 23
  start-page: 280
  year: 2013
  end-page: 296
  ident: bb0400
  article-title: Estimating the spatial distribution of organic carbon density for the soils of Ohio, USA
  publication-title: J. Geogr. Sci.
– year: 2008
  ident: bb0480
  article-title: Quantitative mapping of soil organic material using field spectrometer and hyperspectral remote sensing
  publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B8) Beijing
– volume: 10
  start-page: 144
  year: 2017
  end-page: 153
  ident: bb0485
  article-title: Mapping key soil properties to support agricultural production in Eastern China
  publication-title: Geoderma Regional
– year: 2002
  ident: bb0205
  article-title: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships
– volume: 52
  start-page: 394
  year: 2015
  end-page: 403
  ident: bb0920
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
– volume: 127
  start-page: 168
  year: 2005
  end-page: 173
  ident: bb1045
  article-title: Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils
  publication-title: Geoderma
– volume: 23
  year: 2009
  ident: bb0090
  article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia
  publication-title: Glob. Biogeochem. Cycles
– start-page: 15
  year: 2000
  end-page: 26
  ident: bb0190
  publication-title: Global Climate Change and Pedogenic Carbonates
– volume: 146
  start-page: 457
  year: 2008
  end-page: 465
  ident: bb0730
  article-title: Long-term landscape – land use interactions as explaining factor for soil organic matter variability in Dutch agricultural landscapes
  publication-title: Geoderma
– volume: 266
  start-page: 98
  year: 2016
  end-page: 110
  ident: bb0795
  article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran
  publication-title: Geoderma
– volume: 4
  start-page: 173
  year: 2018
  end-page: 193
  ident: bb0260
  article-title: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
  publication-title: Soil
– volume: 60
  start-page: 870
  year: 2016
  end-page: 878
  ident: bb0980
  article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem
  publication-title: Ecol. Indic.
– volume: 174
  start-page: 248
  year: 2019
  end-page: 258
  ident: bb0905
  article-title: A multi-factor weighted regression approach for estimating the spatial distribution of soil organic carbon in grasslands
  publication-title: Catena
– volume: 8
  start-page: 277
  year: 2017
  end-page: 291
  ident: bb0800
  article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA
  publication-title: Carbon Manag.
– volume: 337
  start-page: 164
  year: 2019
  end-page: 180
  ident: bb0355
  article-title: Mapping topsoil organic carbon concentrations and stocks for Tanzania
  publication-title: Geoderma
– volume: 281
  start-page: 69
  year: 2016
  end-page: 82
  ident: bb1005
  article-title: Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method
  publication-title: Geoderma
– volume: 51
  start-page: 645
  year: 2013
  end-page: 656
  ident: bb0045
  article-title: Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia
  publication-title: Soil Research
– volume: 27
  start-page: 437
  year: 2011
  end-page: 447
  ident: bb0960
  article-title: Soil carbon and related soil properties along a soil type and land-use intensity gradient, New South Wales, Australia
  publication-title: Soil Use Manag.
– volume: 38
  start-page: 706
  year: 2014
  end-page: 717
  ident: bb0100
  article-title: Evaluation of statistical and geostatistical models of digital soil properties mapping in tropical mountain regions
  publication-title: Rev. Bras. Cienc. Solo
– volume: 57
  start-page: 443
  year: 1993
  end-page: 452
  ident: bb0540
  article-title: Soil attribute prediction using terrain analysis
  publication-title: Soil Sci. Soc. Am. J.
– volume: 73
  start-page: 274
  year: 2016
  end-page: 285
  ident: bb0525
  article-title: Spatial prediction of soil properties in two contrasting physiographic regions in Brazil
  publication-title: Sci. Agric.
– volume: 53
  start-page: 956
  year: 2015
  end-page: 973
  ident: bb0455
  article-title: Predictive mapping of soil organic carbon stocks in South Australia's agricultural zone
  publication-title: Soil Research
– volume: 390
  start-page: 111
  year: 2015
  end-page: 127
  ident: bb0305
  article-title: Drivers of soil organic carbon storage and vertical distribution in Eastern Australia
  publication-title: Plant Soil
– volume: 53
  start-page: 845
  year: 2015
  end-page: 864
  ident: bb0845
  article-title: The Australian three-dimensional soil grid: Australia's contribution to the GlobalSoilMap project
  publication-title: Soil Research
– year: 2014
  ident: bb0040
  article-title: The GlobalSoilMap project specifications
  publication-title: GlobalSoilMap: Basis of the Global Spatial Soil Information System
– volume: 127
  start-page: 49
  year: 2015
  end-page: 57
  ident: bb0385
  article-title: Estimating spatial distribution of soil organic carbon for the Midwestern United States using historical database
  publication-title: Chemosphere
– volume: 10
  year: 2015
  ident: bb0970
  article-title: Predictive mapping of topsoil organic Carbon in an Alpine environment aided by Landsat TM
  publication-title: PLoS ONE
– volume: 26
  start-page: 699
  year: 2016
  end-page: 708
  ident: bb0975
  article-title: Mapping soil texture based on field soil moisture observations at a high temporal resolution in an oasis agricultural area
  publication-title: Pedosphere
– volume: 335
  start-page: 47
  year: 2019
  end-page: 56
  ident: bb0445
  article-title: National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China
  publication-title: Geoderma
– volume: 47
  start-page: 651
  year: 2009
  end-page: 663
  ident: bb0810
  article-title: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model
  publication-title: Soil Research
– start-page: 31
  year: 1994
  end-page: 40
  ident: bb0670
  article-title: Tension between aggregation levels
  publication-title: The Future of the Land
– volume: 26
  start-page: 102
  year: 2016
  end-page: 124
  ident: bb0925
  article-title: Spatially distributed modelling and mapping of soil organic carbon and total nitrogen stocks in the Eastern Mau Forest Reserve, Kenya
  publication-title: J. Geogr. Sci.
– volume: 230–231
  start-page: 119
  year: 2014
  end-page: 130
  ident: bb0580
  article-title: Spatial prediction of soil organic carbon stock using a linear model of coregionalisation
  publication-title: Geoderma
– volume: 261
  start-page: 11
  year: 2016
  end-page: 22
  ident: bb0765
  article-title: Mapping soil organic carbon content by geographically weighted regression: a case study in the Heihe River Basin, China
  publication-title: Geoderma
– year: 1996
  ident: bb0750
  article-title: Regression Estimation With Support Vector Learning Machines
– volume: 77
  year: 2018
  ident: bb0345
  article-title: Digital soil mapping in a Himalayan watershed using remote sensing and terrain parameters employing artificial neural network model
  publication-title: Environ. Earth Sci.
– volume: 71
  start-page: 29
  year: 2018
  end-page: 39
  ident: bb0350
  article-title: The role of geology in the spatial prediction of soil properties in the watershed of Lake Balaton, Hungary
  publication-title: Geol. Croat.
– volume: 171–172
  start-page: 44
  year: 2012
  end-page: 52
  ident: bb0460
  article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS
  publication-title: Geoderma
– volume: 10
  start-page: 8353
  year: 2013
  end-page: 8361
  ident: bb0160
  article-title: Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain
  publication-title: Biogeosciences
– volume: 46
  start-page: 705
  year: 2018
  end-page: 716
  ident: bb0405
  article-title: Geospatial mapping of soil organic carbon using regression kriging and remote sensing
  publication-title: Journal of the Indian Society of Remote Sensing
– volume: 4
  start-page: 1
  year: 2018
  end-page: 22
  ident: bb0575
  article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates
  publication-title: SOIL
– volume: 74
  start-page: 861
  year: 2010
  end-page: 869
  ident: bb1040
  article-title: Differentiation of soil conditions over low relief areas using feedback dynamic patterns
  publication-title: Soil Sci. Soc. Am. J.
– volume: 47
  start-page: 718
  year: 2018
  end-page: 725
  ident: bb0135
  article-title: Mapping soil organic carbon and organic matter fractions by geographically weighted regression
  publication-title: J. Environ. Qual.
– volume: 2–3
  start-page: 32
  year: 2014
  end-page: 40
  ident: bb0815
  article-title: Analysing soil organic C gradients in a smallholder farming village of East Zimbabwe
  publication-title: Geoderma Regional
– start-page: 236
  year: 1993
  end-page: 243
  ident: bb0660
  article-title: Combining instance-based and model-based learning
  publication-title: Proceedings of the Tenth International Conference on Machine Learning
– volume: 154
  start-page: 73
  year: 2017
  end-page: 84
  ident: bb0335
  article-title: Spatial soil nutrients prediction using three supervised learning methods for assessment of land potentials in complex terrain
  publication-title: Catena
– volume: 7
  start-page: 38
  year: 2016
  end-page: 48
  ident: bb0755
  article-title: Mapping soil organic carbon content over New South Wales, Australia using local regression kriging
  publication-title: Geoderma Regional
– volume: 340
  start-page: 337
  year: 2019
  end-page: 350
  ident: bb0215
  article-title: Modelling and mapping soil organic carbon stocks in Brazil
  publication-title: Geoderma
– volume: 148
  start-page: 46
  year: 2015
  end-page: 58
  ident: bb0470
  article-title: Comparing geospatial techniques to predict SOC stocks
  publication-title: Soil Tillage Res.
– volume: 254
  start-page: 213
  year: 2018
  end-page: 223
  ident: bb0150
  article-title: Baseline map of organic carbon stock in farmland topsoil in East China
  publication-title: Agric. Ecosyst. Environ.
– volume: 330
  start-page: 177
  year: 2018
  end-page: 192
  ident: bb0425
  article-title: A mixed model for landscape soil organic carbon prediction across continuous profile depth in the mountainous subtropics
  publication-title: Geoderma
– volume: 12
  year: 2017
  ident: bb0290
  article-title: SoilGrids250
  publication-title: PLoS ONE
– volume: 340
  start-page: 234
  year: 2019
  end-page: 248
  ident: bb0170
  article-title: Land parcel-based digital soil mapping of soil nutrient properties in an alluvial-diluvia plain agricultural area in China
  publication-title: Geoderma
– volume: 171–172
  start-page: 64
  year: 2012
  end-page: 74
  ident: bb0650
  article-title: Mapping soil organic matter in small low-relief catchments using fuzzy slope position information
  publication-title: Geoderma
– volume: 9
  year: 2014
  ident: bb0020
  article-title: Digital mapping of soil organic carbon contents and stocks in Denmark
  publication-title: PLoS ONE
– volume: 9
  start-page: 73
  year: 2017
  end-page: 86
  ident: bb0115
  article-title: Mapping soil organic carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia)
  publication-title: Geoderma Regional
– volume: 9
  start-page: 421
  year: 1995
  end-page: 432
  ident: bb0210
  article-title: Soil-landscape modelling and spatial prediction of soil attributes
  publication-title: Int. J. Geogr. Inf. Syst.
– year: 2016
  ident: bb0915
  article-title: The Nature and Properties of Soils
– volume: 5
  start-page: 7
  year: 2016
  ident: bb0325
  article-title: A methodology for systematic mapping in environmental sciences
  publication-title: Environ. Evid.
– volume: 609
  start-page: 1411
  year: 2017
  end-page: 1422
  ident: bb0690
  article-title: Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils
  publication-title: Sci. Total Environ.
– volume: 15
  year: 2018
  ident: bb0605
  article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran
  publication-title: Geoderma Regional
– year: 2018
  ident: bb1000
  publication-title: Soil Organic Carbon Mapping Cookbook
– volume: 54
  start-page: 1
  year: 2017
  end-page: 14
  ident: bb0245
  article-title: Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 48
  start-page: 421
  year: 2010
  end-page: 433
  ident: bb0955
  article-title: Measurement and estimation of land-use effects on soil carbon and related properties for soil monitoring: a study on a basalt landscape of northern New South Wales, Australia
  publication-title: Soil Research
– volume: 66
  start-page: 121
  year: 2015
  end-page: 134
  ident: bb0070
  article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model
  publication-title: Eur. J. Soil Sci.
– volume: 57
  start-page: 329
  year: 1993
  end-page: 355
  ident: bb0510
  article-title: A quantitative australian approach to medium and small-scale surveys based on soil stratigraphy and environmental correlation
  publication-title: Geoderma
– volume: 573
  start-page: 1352
  year: 2016
  end-page: 1369
  ident: bb0555
  article-title: GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth
  publication-title: Sci. Total Environ.
– volume: 27
  start-page: 681
  year: 2017
  end-page: 693
  ident: bb0770
  article-title: Mapping soil organic carbon using local terrain attributes: a comparison of different polynomial models
  publication-title: Pedosphere
– volume: 55
  start-page: 318
  year: 2017
  end-page: 331
  ident: bb0805
  article-title: Prediction of soil properties by using geographically weighted regression at a regional scale
  publication-title: Soil Res.
– volume: 141
  start-page: 46
  year: 2016
  end-page: 55
  ident: bb0085
  article-title: Three-dimensional geostatistical modeling of soil organic carbon: a case study in the Qilian Mountains, China
  publication-title: Catena
– volume: 84
  start-page: 131
  year: 2007
  end-page: 141
  ident: bb0965
  article-title: Storage, patterns and environmental controls of soil organic carbon in China
  publication-title: Biogeochemistry
– volume: 4
  start-page: 20
  year: 2015
  end-page: 30
  ident: bb0825
  article-title: Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)
  publication-title: Geoderma Regional
– volume: 120
  start-page: 65
  year: 1999
  end-page: 73
  ident: bb0430
  article-title: Artificial neural networks as a tool in ecological modelling, an introduction
  publication-title: Ecol. Model.
– volume: 262
  start-page: 187
  year: 2016
  end-page: 198
  ident: bb0025
  article-title: Mapping soil carbon stocks across Scotland using a neural network model
  publication-title: Geoderma
– year: 2015
  ident: bb0320
  article-title: Land degradation neutrality: implications and opportunities for conservation
  publication-title: Technical Brief
– volume: 189
  year: 2017
  ident: bb0035
  article-title: Spatial 3D distribution of soil organic carbon under different land use types
  publication-title: Environ. Monit. Assess.
– volume: 237–238
  start-page: 49
  year: 2015
  end-page: 59
  ident: bb0265
  article-title: Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach
  publication-title: Geoderma
– volume: 67
  start-page: 258
  year: 2003
  end-page: 267
  ident: bb0550
  article-title: Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales
  publication-title: Soil Sci. Soc. Am. J.
– volume: 16
  start-page: 2871
  year: 2017
  end-page: 2885
  ident: bb1020
  article-title: Recent progress and future prospect of digital soil mapping: a review
  publication-title: J. Integr. Agric.
– volume: 26
  year: 2013
  ident: bb0375
  article-title: Applied Predictive Modeling
– volume: 11
  start-page: 475
  year: 1997
  end-page: 497
  ident: bb0395
  article-title: Modelling topographic variation in solar radiation in a GIS environment
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 340
  start-page: 289
  year: 2019
  end-page: 302
  ident: bb0990
  article-title: Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables
  publication-title: Geoderma
– volume: 188
  start-page: 1
  year: 2016
  end-page: 13
  ident: bb0545
  article-title: The effectiveness of digital soil mapping to predict soil properties over low-relief areas
  publication-title: Environ. Monit. Assess.
– volume: 285
  start-page: 94
  year: 2017
  end-page: 109
  ident: bb0500
  article-title: Hyper-temporal remote sensing for digital soil mapping: characterizing soil-vegetation response to climatic variability
  publication-title: Geoderma
– volume: 269
  start-page: 160
  year: 2016
  end-page: 173
  ident: bb0785
  article-title: Digital mapping of soil organic and inorganic carbon status in India
  publication-title: Geoderma
– volume: 277
  start-page: 69
  year: 2016
  end-page: 82
  ident: bb0645
  article-title: Bayesian spatial modelling of soil properties and their uncertainty: the example of soil organic matter in Scotland using R-INLA
  publication-title: Geoderma
– volume: 29
  start-page: 26
  year: 2018
  end-page: 37
  ident: bb0900
  article-title: Large-scale soil organic carbon mapping based on multivariate modelling: the case of grasslands on the Loess Plateau
  publication-title: Land Degrad. Dev.
– volume: 152
  start-page: 195
  year: 2009
  end-page: 207
  ident: bb0250
  article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches
  publication-title: Geoderma
– year: 2017
  ident: bb0255
  article-title: Global Soil Organic Carbon Map - Leaflet
– volume: 271
  start-page: 202
  year: 2016
  end-page: 215
  ident: bb0030
  article-title: Total soil organic carbon and carbon sequestration potential in Nigeria
  publication-title: Geoderma
– year: 1941
  ident: bb0330
  article-title: Factors of Soil Formation - A System of Quantitative Pedology
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0450
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 156
  start-page: 74
  year: 2017
  end-page: 81
  ident: bb0695
  article-title: Soil organic carbon stocks in Santa Cruz Island, Galapagos, under different climate change scenarios
  publication-title: Catena
– volume: 51
  start-page: 668
  year: 2013
  end-page: 679
  ident: bb0950
  article-title: Land-use and historical management effects on soil organic carbon in grazing systems on the Northern Tablelands of New South Wales
  publication-title: Soil Research
– volume: 6
  year: 2016
  ident: bb0985
  article-title: Precise estimation of soil organic carbon stocks in the northeast Tibetan Plateau
  publication-title: Sci. Rep.
– volume: 45
  start-page: 445
  year: 2012
  end-page: 451
  ident: bb0195
  article-title: The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication)
  publication-title: Eurasian Soil Sci.
– volume: 22
  start-page: 837
  year: 2007
  end-page: 852
  ident: bb0410
  article-title: Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models
  publication-title: Landsc. Ecol.
– volume: 84
  start-page: 263
  year: 2018
  end-page: 272
  ident: bb0895
  article-title: Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China
  publication-title: Ecol. Indic.
– volume: 261
  start-page: 204
  year: 2016
  end-page: 221
  ident: bb0060
  article-title: Digital mapping of soil carbon in a viticultural region of Southern Brazil
  publication-title: Geoderma
– volume: 14
  year: 2018
  ident: bb0715
  article-title: Soil texture and organic carbon mapping using surface temperature and reflectance spectra in Southeast Brazil
  publication-title: Geoderma Regional
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0615
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 8
  year: 2016
  ident: bb0875
  article-title: Spatial-temporal changes of soil organic carbon content in Wafangdian, China
  publication-title: Sustainability
– volume: 334
  start-page: 124
  year: 2019
  end-page: 133
  ident: bb1035
  article-title: Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s
  publication-title: Geoderma
– volume: 333
  start-page: 149
  year: 2019
  end-page: 162
  ident: bb0945
  article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales
  publication-title: Geoderma
– volume: 5
  year: 2015
  ident: bb0665
  article-title: Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia
  publication-title: Sci. Rep.
– volume: 81
  start-page: 1413
  year: 2017
  end-page: 1426
  ident: bb0760
  article-title: More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon
  publication-title: Soil Sci. Soc. Am. J.
– volume: 8
  year: 2013
  ident: bb0620
  article-title: Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China
  publication-title: PLoS ONE
– volume: 9
  year: 2017
  ident: bb0775
  article-title: Spatial prediction of soil organic matter using a hybrid geostatistical model of an extreme learning machine and ordinary kriging
  publication-title: Sustainability
– volume: 647
  start-page: 1230
  year: 2019
  end-page: 1238
  ident: bb1030
  article-title: Land use and climate change effects on soil organic carbon in North and Northeast China
  publication-title: Sci. Total Environ.
– start-page: 1
  year: 2013
  end-page: 47
  ident: bb0530
  article-title: Digital mapping of soil carbon
  publication-title: Advances in Agronomy
– volume: 77
  start-page: 860
  year: 2013
  end-page: 876
  ident: bb0015
  article-title: High-resolution 3-D mapping of soil texture in Denmark
  publication-title: Soil Sci. Soc. Am. J.
– volume: 27
  start-page: 1223
  year: 2017
  end-page: 1235
  ident: bb0165
  article-title: Toward inventory-based estimates of soil organic carbon in forests of the United States
  publication-title: Ecol. Appl.
– volume: 77
  start-page: 139
  year: 2017
  end-page: 150
  ident: bb0585
  article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation
  publication-title: Ecol. Indic.
– volume: 87
  start-page: 111
  year: 2001
  end-page: 117
  ident: bb0315
  article-title: Managing carbon sequestration in soils: concepts and terminology
  publication-title: Agric. Ecosyst. Environ.
– volume: 36
  start-page: 301
  year: 2014
  end-page: 314
  ident: bb0635
  article-title: Estimation of soil organic matter by geostatistical methods: use of auxiliary information in agricultural and environmental assessment
  publication-title: Ecol. Indic.
– volume: 601–602
  start-page: 821
  year: 2017
  end-page: 832
  ident: bb0720
  article-title: Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: the role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling
  publication-title: Sci. Total Environ.
– start-page: 1673
  year: 2011
  end-page: 1676
  ident: bb0125
  article-title: Research on hydrology time series prediction based on grey theory and [epsilon]-support vector regression
  publication-title: 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring
– volume: 263
  start-page: 16
  year: 2016
  end-page: 34
  ident: bb0560
  article-title: National versus global modelling the 3D distribution of soil organic carbon in mainland France
  publication-title: Geoderma
– volume: 12
  year: 2017
  ident: bb0200
  article-title: High resolution mapping of soil properties using Remote Sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models
  publication-title: PLoS ONE
– volume: 9
  start-page: 29
  year: 2017
  end-page: 38
  ident: bb0680
  article-title: Mapping soil organic carbon on a national scale: towards an improved and updated map of Madagascar
  publication-title: Geoderma Regional
– volume: 337
  start-page: 55
  year: 2019
  end-page: 64
  ident: bb0850
  article-title: National soil organic carbon estimates can improve global estimates
  publication-title: Geoderma
– volume: 47
  start-page: 151
  year: 1996
  end-page: 163
  ident: bb0050
  article-title: Total carbon and nitrogen in the soils of the world
  publication-title: Eur. J. Soil Sci.
– volume: 7
  start-page: 201
  year: 2016
  end-page: 215
  ident: bb0295
  article-title: Geostatistical prediction and simulation of European soil property maps
  publication-title: Geoderma Regional
– volume: 318
  start-page: 148
  year: 2018
  end-page: 159
  ident: bb0475
  article-title: Modeling soil organic carbon with quantile regression: dissecting predictors' effects on carbon stocks
  publication-title: Geoderma
– volume: 22
  start-page: 342
  year: 2006
  end-page: 351
  ident: bb0745
  article-title: Regional simulation of long-term organic carbon stock changes in cropland soils using the DNDC model: 1. Large-scale model validation against a spatially explicit data set
  publication-title: Soil Use Manag.
– volume: 82
  start-page: 186
  year: 2018
  end-page: 201
  ident: bb0675
  article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution
  publication-title: Soil Sci. Soc. Am. J.
– volume: 54
  start-page: 49
  year: 2016
  end-page: 63
  ident: bb0235
  article-title: Digital mapping of pre-European soil carbon stocks and decline since clearing over New South Wales, Australia
  publication-title: Soil Research
– volume: 5
  start-page: 107
  year: 2019
  end-page: 119
  ident: bb0855
  article-title: Multi-source data integration for soil mapping using deep learning
  publication-title: SOIL
– start-page: 343
  year: 1992
  end-page: 348
  ident: bb0655
  article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence
  publication-title: World Sci.
– year: 2014
  ident: bb0275
  article-title: GlobalSoilMap project history
  publication-title: GlobalSoilMap: Basis of the Global Spatial Soil Information System
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  ident: bb0420
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 10
  year: 2015
  ident: bb0625
  article-title: Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra
  publication-title: PLoS ONE
– volume: 10
  start-page: 423
  year: 2000
  end-page: 436
  ident: bb0340
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecol. Appl.
– volume: 305
  start-page: 250
  year: 2017
  end-page: 263
  ident: bb0880
  article-title: Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China
  publication-title: Geoderma
– volume: 62
  start-page: 1541
  year: 2016
  end-page: 1553
  ident: bb0440
  article-title: Spatial prediction of soil nutrient in a hilly area using artificial neural network model combined with kriging
  publication-title: Arch. Agron. Soil Sci.
– volume: 326
  start-page: 22
  year: 2018
  end-page: 41
  ident: bb0360
  article-title: Regression kriging as a workhorse in the digital soil mapper's toolbox
  publication-title: Geoderma
– volume: 7
  start-page: 167
  year: 2016
  end-page: 176
  ident: bb0685
  article-title: Digital soil mapping of organic carbon concentration in paddy growing soils of Northern Sri Lanka
  publication-title: Geoderma Regional
– volume: 286
  start-page: 35
  year: 2017
  end-page: 45
  ident: bb0725
  article-title: Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region
  publication-title: Geoderma
– volume: 159
  start-page: 63
  year: 2010
  end-page: 75
  ident: bb0435
  article-title: Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information?
  publication-title: Geoderma
– volume: 14
  start-page: 12
  year: 2019
  ident: bb0515
  article-title: Large, climate-sensitive soil carbon stocks mapped with pedology-informed machine learning in the North Pacific coastal temperate rainforest
  publication-title: Environ. Res. Lett.
– volume: 9
  start-page: 17
  year: 2017
  end-page: 28
  ident: bb0595
  article-title: Chile and the Chilean soil grid: a contribution to GlobalSoilMap
  publication-title: Geoderma Regional
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: bb0860
  article-title: Estimation of soil organic carbon by the chromic acid titration method
  publication-title: Soil Sci.
– volume: 42
  start-page: 577
  year: 2014
  end-page: 587
  ident: bb0780
  article-title: Spatial assessment of soil organic carbon density through random forests based imputation
  publication-title: J. Indian Soc. Remote Sens.
– volume: 120
  start-page: 75
  year: 2004
  end-page: 93
  ident: bb0280
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
– volume: 53
  start-page: 932
  year: 2015
  end-page: 955
  ident: bb0365
  article-title: Eighty-metre resolution 3D soil-attribute maps for Tasmania, Australia
  publication-title: Soil Research
– volume: 10
  start-page: 154
  year: 2017
  end-page: 162
  ident: bb0155
  article-title: Spatial prediction of major soil properties using random forest techniques - a case study in semi-arid tropics of South India
  publication-title: Geoderma Regional
– volume: 80
  start-page: 1296
  year: 2016
  end-page: 1307
  ident: bb0220
  article-title: Change in soil organic carbon stocks under 12 climate change projections over New South Wales, Australia
  publication-title: Soil Sci. Soc. Am. J.
– volume: 207–208
  start-page: 256
  year: 2013
  end-page: 267
  ident: bb0270
  article-title: Soil maps of the world
  publication-title: Geoderma
– volume: 5
  start-page: 79
  year: 2019
  end-page: 89
  ident: bb0600
  article-title: Using deep learning for digital soil mapping
  publication-title: SOIL
– volume: 213
  start-page: 296
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0415
  article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.002
– year: 2011
  ident: 10.1016/j.geoderma.2019.05.031_bb0095
– volume: 10
  start-page: 423
  issue: 2
  year: 2000
  ident: 10.1016/j.geoderma.2019.05.031_bb0340
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– volume: 77
  start-page: 1241
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0465
  article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0317
– volume: 77
  start-page: 172
  issue: 5
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0300
  article-title: Prediction of soil organic carbon stock using digital mapping approach in humid India
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7374-x
– volume: 8
  start-page: 277
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0800
  article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2017.1330593
– volume: 83–84
  start-page: 36
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0630
  article-title: Surface soil moisture retrievals from remote sensing: current status, products & future trends
  publication-title: Phys. Chem. Earth Parts A/B/C
  doi: 10.1016/j.pce.2015.02.009
– volume: 16
  start-page: 2871
  issue: 12
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb1020
  article-title: Recent progress and future prospect of digital soil mapping: a review
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(17)61762-3
– volume: 330
  start-page: 177
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0425
  article-title: A mixed model for landscape soil organic carbon prediction across continuous profile depth in the mountainous subtropics
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.020
– volume: 84
  start-page: 263
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0895
  article-title: Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.08.046
– volume: 342
  start-page: 55
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0910
  article-title: Effect of cultivation history on soil organic carbon status of arable land in northeastern China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.007
– volume: 156
  start-page: 74
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0695
  article-title: Soil organic carbon stocks in Santa Cruz Island, Galapagos, under different climate change scenarios
  publication-title: Catena
  doi: 10.1016/j.catena.2017.03.020
– volume: 2–3
  start-page: 32
  issue: C
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0815
  article-title: Analysing soil organic C gradients in a smallholder farming village of East Zimbabwe
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2014.09.006
– volume: 141
  start-page: 46
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0085
  article-title: Three-dimensional geostatistical modeling of soil organic carbon: a case study in the Qilian Mountains, China
  publication-title: Catena
  doi: 10.1016/j.catena.2016.02.016
– volume: 180
  start-page: 74
  issue: 2
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0105
  article-title: Prediction of soil properties at farm scale using a model-based soil sampling scheme and random forest
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000115
– volume: 47
  start-page: 735
  issue: 4
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0705
  article-title: Projecting soil organic carbon distribution in central chile under future climate scenarios
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2017.08.0329
– volume: 81
  start-page: 1413
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0760
  article-title: More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2016.11.0376
– volume: 10
  start-page: 144
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0485
  article-title: Mapping key soil properties to support agricultural production in Eastern China
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2017.06.002
– volume: 146
  start-page: 102
  issue: 1
  year: 2008
  ident: 10.1016/j.geoderma.2019.05.031_bb0240
  article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island — digital soil mapping using random forests analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.008
– volume: 263
  start-page: 16
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0560
  article-title: National versus global modelling the 3D distribution of soil organic carbon in mainland France
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.08.035
– volume: 5
  start-page: 79
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0600
  article-title: Using deep learning for digital soil mapping
  publication-title: SOIL
  doi: 10.5194/soil-5-79-2019
– volume: 261
  start-page: 204
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0060
  article-title: Digital mapping of soil carbon in a viticultural region of Southern Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.016
– volume: 12
  start-page: 2825
  issue: Oct
  year: 2011
  ident: 10.1016/j.geoderma.2019.05.031_bb0615
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 146
  start-page: 457
  issue: 3
  year: 2008
  ident: 10.1016/j.geoderma.2019.05.031_bb0730
  article-title: Long-term landscape – land use interactions as explaining factor for soil organic matter variability in Dutch agricultural landscapes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.06.016
– volume: 7
  start-page: 38
  issue: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0755
  article-title: Mapping soil organic carbon content over New South Wales, Australia using local regression kriging
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2015.12.002
– volume: 318
  start-page: 91
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0175
  article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2014.01.003
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2019.05.031_bb0065
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 148
  start-page: 46
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0470
  article-title: Comparing geospatial techniques to predict SOC stocks
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2014.12.002
– volume: 27
  start-page: 681
  issue: 4
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0770
  article-title: Mapping soil organic carbon using local terrain attributes: a comparison of different polynomial models
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60445-4
– year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0320
  article-title: Land degradation neutrality: implications and opportunities for conservation
– volume: 159
  start-page: 63
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2019.05.031_bb0435
  article-title: Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.06.017
– volume: 305
  start-page: 250
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0880
  article-title: Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.05.048
– start-page: 1673
  year: 2011
  ident: 10.1016/j.geoderma.2019.05.031_bb0125
  article-title: Research on hydrology time series prediction based on grey theory and [epsilon]-support vector regression
– volume: 55
  start-page: 318
  issue: 4
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0805
  article-title: Prediction of soil properties by using geographically weighted regression at a regional scale
  publication-title: Soil Res.
  doi: 10.1071/SR16177
– volume: 45
  start-page: 445
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2019.05.031_bb0195
  article-title: The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication)
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229312040047
– year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0275
  article-title: GlobalSoilMap project history
– volume: 7
  start-page: 201
  issue: 2
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0295
  article-title: Geostatistical prediction and simulation of European soil property maps
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2016.04.002
– volume: 53
  start-page: 845
  issue: 8
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0845
  article-title: The Australian three-dimensional soil grid: Australia's contribution to the GlobalSoilMap project
  publication-title: Soil Research
  doi: 10.1071/SR14366
– volume: 62
  start-page: 1541
  issue: 11
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0440
  article-title: Spatial prediction of soil nutrient in a hilly area using artificial neural network model combined with kriging
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2016.1154543
– volume: 39
  start-page: 120
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb1025
  article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2013.12.015
– volume: 630
  start-page: 389
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0120
  article-title: Fine resolution map of top- and subsoil carbon sequestration potential in France
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.209
– volume: 318
  start-page: 148
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0475
  article-title: Modeling soil organic carbon with quantile regression: dissecting predictors' effects on carbon stocks
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.12.011
– volume: 10
  start-page: 154
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0155
  article-title: Spatial prediction of major soil properties using random forest techniques - a case study in semi-arid tropics of South India
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2017.07.005
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.geoderma.2019.05.031_bb0450
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 281
  start-page: 69
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb1005
  article-title: Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.06.033
– volume: 79
  start-page: 1741
  issue: 6
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0225
  article-title: Factors controlling soil organic carbon stocks with depth in Eastern Australia
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.06.0224
– volume: 7
  start-page: 167
  issue: 2
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0685
  article-title: Digital soil mapping of organic carbon concentration in paddy growing soils of Northern Sri Lanka
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2016.03.002
– volume: 7
  start-page: 1197
  issue: 3
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0570
  article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1197-2014
– volume: 77
  start-page: 139
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0585
  article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.02.010
– volume: 9
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0110
  article-title: Soil carbon stock and particle size fractions in the central Amazon predicted from remotely sensed relief, multispectral and radar data
  publication-title: Remote Sens.
  doi: 10.3390/rs9020124
– volume: 22
  start-page: 837
  issue: 6
  year: 2007
  ident: 10.1016/j.geoderma.2019.05.031_bb0410
  article-title: Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-006-9058-2
– volume: 262
  start-page: 187
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0025
  article-title: Mapping soil carbon stocks across Scotland using a neural network model
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.08.034
– volume: 54
  start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0245
  article-title: Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.09.002
– volume: 261
  start-page: 11
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0765
  article-title: Mapping soil organic carbon content by geographically weighted regression: a case study in the Heihe River Basin, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.06.024
– volume: 8
  issue: 11
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0875
  article-title: Spatial-temporal changes of soil organic carbon content in Wafangdian, China
  publication-title: Sustainability
  doi: 10.3390/su8111154
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0020
  article-title: Digital mapping of soil organic carbon contents and stocks in Denmark
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0105519
– volume: 609
  start-page: 1411
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0690
  article-title: Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.012
– volume: 26
  start-page: 699
  issue: 5
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0975
  article-title: Mapping soil texture based on field soil moisture observations at a high temporal resolution in an oasis agricultural area
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60078-9
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2019.05.031_bb0055
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000006
– volume: 8
  issue: 12
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0620
  article-title: Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0083592
– volume: 340
  start-page: 234
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0170
  article-title: Land parcel-based digital soil mapping of soil nutrient properties in an alluvial-diluvia plain agricultural area in China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.018
– volume: 4
  start-page: 20
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0825
  article-title: Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2014.11.003
– year: 2002
  ident: 10.1016/j.geoderma.2019.05.031_bb0205
– volume: 59
  start-page: 91
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0870
  article-title: Mapping soil organic matter with limited sample data using geographically weighted regression
  publication-title: J. Spat. Sci.
  doi: 10.1080/14498596.2013.812024
– volume: 334
  start-page: 124
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb1035
  article-title: Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.037
– volume: 127
  start-page: 49
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0385
  article-title: Estimating spatial distribution of soil organic carbon for the Midwestern United States using historical database
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.027
– year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0915
– volume: 117
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2019.05.031_bb0505
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 79
  start-page: 155
  issue: 1
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0005
  article-title: Digital mapping of topsoil carbon content and changes in the Driftless area of Wisconsin, USA
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2014.09.0392
– volume: 66
  start-page: 121
  issue: 1
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0070
  article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12193
– volume: 10
  start-page: 8353
  issue: 12
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0160
  article-title: Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-8353-2013
– volume: 9
  start-page: 29
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0680
  article-title: Mapping soil organic carbon on a national scale: towards an improved and updated map of Madagascar
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2016.12.002
– volume: 28
  start-page: 281
  issue: 4
  year: 1996
  ident: 10.1016/j.geoderma.2019.05.031_bb0075
  article-title: Geographically weighted regression: a method for exploring spatial nonstationarity
  publication-title: Geogr. Anal.
  doi: 10.1111/j.1538-4632.1996.tb00936.x
– volume: 10
  issue: 6
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0285
  article-title: Mapping soil properties of Africa at 250m resolution: Random Forests significantly improve current predictions
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0125814
– volume: 277
  start-page: 69
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0645
  article-title: Bayesian spatial modelling of soil properties and their uncertainty: the example of soil organic matter in Scotland using R-INLA
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.04.026
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.geoderma.2019.05.031_bb0860
  article-title: Estimation of soil organic carbon by the chromic acid titration method
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– volume: 84
  start-page: 131
  issue: 2
  year: 2007
  ident: 10.1016/j.geoderma.2019.05.031_bb0965
  article-title: Storage, patterns and environmental controls of soil organic carbon in China
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9109-z
– volume: 207–208
  start-page: 256
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0270
  article-title: Soil maps of the world
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.05.003
– volume: 9
  start-page: 421
  issue: 4
  year: 1995
  ident: 10.1016/j.geoderma.2019.05.031_bb0210
  article-title: Soil-landscape modelling and spatial prediction of soil attributes
  publication-title: Int. J. Geogr. Inf. Syst.
  doi: 10.1080/02693799508902047
– volume: 326
  start-page: 22
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0360
  article-title: Regression kriging as a workhorse in the digital soil mapper's toolbox
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.04.004
– volume: 487
  start-page: 578
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0830
  article-title: Landscape scale estimation of soil carbon stock using 3D modelling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.02.061
– volume: 27
  start-page: 437
  issue: 4
  year: 2011
  ident: 10.1016/j.geoderma.2019.05.031_bb0960
  article-title: Soil carbon and related soil properties along a soil type and land-use intensity gradient, New South Wales, Australia
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2011.00357.x
– volume: 52
  start-page: 394
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0920
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.12.028
– volume: 45
  start-page: 184
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0140
  article-title: Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.04.003
– volume: 254
  start-page: 213
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0150
  article-title: Baseline map of organic carbon stock in farmland topsoil in East China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.11.022
– volume: 120
  start-page: 65
  issue: 2
  year: 1999
  ident: 10.1016/j.geoderma.2019.05.031_bb0430
  article-title: Artificial neural networks as a tool in ecological modelling, an introduction
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(99)00092-7
– volume: 6
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0985
  article-title: Precise estimation of soil organic carbon stocks in the northeast Tibetan Plateau
  publication-title: Sci. Rep.
– volume: 335
  start-page: 47
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0445
  article-title: National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.011
– volume: 53
  start-page: 956
  issue: 8
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0455
  article-title: Predictive mapping of soil organic carbon stocks in South Australia's agricultural zone
  publication-title: Soil Research
  doi: 10.1071/SR15100
– volume: 189
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0035
  article-title: Spatial 3D distribution of soil organic carbon under different land use types
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-017-5830-9
– volume: 47
  start-page: 651
  issue: 7
  year: 2009
  ident: 10.1016/j.geoderma.2019.05.031_bb0810
  article-title: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model
  publication-title: Soil Research
  doi: 10.1071/SR08240
– volume: 27
  start-page: 1223
  issue: 4
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0165
  article-title: Toward inventory-based estimates of soil organic carbon in forests of the United States
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.1516
– volume: 313
  start-page: 25
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0710
  article-title: Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.018
– volume: 15
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0605
  article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2018.e00195
– volume: 23
  issue: 4
  year: 2009
  ident: 10.1016/j.geoderma.2019.05.031_bb0090
  article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2009GB003506
– volume: 10
  start-page: 1509
  issue: 10
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0390
  article-title: Google earth engine applications since inception: usage, trends, and potential
  publication-title: Remote Sens.
  doi: 10.3390/rs10101509
– volume: 43
  start-page: 424
  issue: 3
  year: 2006
  ident: 10.1016/j.geoderma.2019.05.031_bb0180
  article-title: Modelling ecological niches with support vector machines
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2006.01141.x
– volume: 601–602
  start-page: 821
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0720
  article-title: Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: the role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.05.239
– volume: 20
  start-page: 2953
  issue: 9
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0840
  article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12569
– volume: 57
  start-page: 329
  issue: 4
  year: 1993
  ident: 10.1016/j.geoderma.2019.05.031_bb0510
  article-title: A quantitative australian approach to medium and small-scale surveys based on soil stratigraphy and environmental correlation
  publication-title: Geoderma
  doi: 10.1016/0016-7061(93)90049-Q
– volume: 14
  start-page: 12
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0515
  article-title: Large, climate-sensitive soil carbon stocks mapped with pedology-informed machine learning in the North Pacific coastal temperate rainforest
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aaed52
– year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0040
  article-title: The GlobalSoilMap project specifications
– volume: 10
  issue: 10
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0970
  article-title: Predictive mapping of topsoil organic Carbon in an Alpine environment aided by Landsat TM
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0139042
– volume: 12
  issue: 1
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0200
  article-title: High resolution mapping of soil properties using Remote Sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0170478
– volume: 245–246
  start-page: 65
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0700
  article-title: Modelling and mapping organic carbon content of topsoils in an Atlantic area of southwestern Europe (Galicia, NW-Spain)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.01.015
– volume: 10
  start-page: 115
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0010
  article-title: Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2017.07.003
– volume: 286
  start-page: 35
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0725
  article-title: Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.10.019
– volume: 174
  start-page: 248
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0905
  article-title: A multi-factor weighted regression approach for estimating the spatial distribution of soil organic carbon in grasslands
  publication-title: Catena
  doi: 10.1016/j.catena.2018.10.050
– volume: 10
  issue: 11
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0625
  article-title: Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0142295
– volume: 647
  start-page: 1230
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb1030
  article-title: Land use and climate change effects on soil organic carbon in North and Northeast China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.016
– volume: 23
  start-page: 280
  issue: 2
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0400
  article-title: Estimating the spatial distribution of organic carbon density for the soils of Ohio, USA
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-013-1010-1
– year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb1000
– volume: 152
  start-page: 43
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2019.05.031_bb0520
  article-title: Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.05.015
– start-page: 343
  year: 1992
  ident: 10.1016/j.geoderma.2019.05.031_bb0655
  article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence
  publication-title: World Sci.
– volume: 333
  start-page: 149
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0945
  article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.026
– volume: 171–172
  start-page: 64
  year: 2012
  ident: 10.1016/j.geoderma.2019.05.031_bb0650
  article-title: Mapping soil organic matter in small low-relief catchments using fuzzy slope position information
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.06.006
– volume: 73
  start-page: 274
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0525
  article-title: Spatial prediction of soil properties in two contrasting physiographic regions in Brazil
  publication-title: Sci. Agric.
  doi: 10.1590/0103-9016-2015-0071
– volume: 5
  start-page: 107
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0855
  article-title: Multi-source data integration for soil mapping using deep learning
  publication-title: SOIL
  doi: 10.5194/soil-5-107-2019
– volume: 47
  start-page: 718
  issue: 4
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0135
  article-title: Mapping soil organic carbon and organic matter fractions by geographically weighted regression
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2017.04.0178
– start-page: 15
  year: 2000
  ident: 10.1016/j.geoderma.2019.05.031_bb0190
– volume: 340
  start-page: 7
  year: 2011
  ident: 10.1016/j.geoderma.2019.05.031_bb0935
  article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0425-z
– volume: 340
  start-page: 337
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0215
  article-title: Modelling and mapping soil organic carbon stocks in Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.007
– volume: 27
  start-page: 877
  issue: 5
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0930
  article-title: A novel evolutionary genetic optimization-based adaptive neuro-fuzzy inference system and geographical information systems predict and map soil organic carbon stocks across an afromontane landscape
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60461-2
– volume: 36
  start-page: 301
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0635
  article-title: Estimation of soil organic matter by geostatistical methods: use of auxiliary information in agricultural and environmental assessment
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2013.08.009
– volume: 1
  start-page: 67
  issue: C
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0940
  article-title: Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany)
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2014.09.001
– volume: 166
  start-page: 298
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0310
  article-title: Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso)
  publication-title: Catena
  doi: 10.1016/j.catena.2018.04.013
– volume: 269
  start-page: 160
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0785
  article-title: Digital mapping of soil organic and inorganic carbon status in India
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.02.002
– volume: 42
  start-page: 577
  issue: 3
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0780
  article-title: Spatial assessment of soil organic carbon density through random forests based imputation
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/s12524-013-0332-x
– volume: 53
  start-page: 24
  issue: 1
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0230
  article-title: Pragmatic models for the prediction and digital mapping of soil properties in eastern Australia
  publication-title: Soil Research
  doi: 10.1071/SR13306
– ident: 10.1016/j.geoderma.2019.05.031_bb1050
– volume: 29
  start-page: 26
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0900
  article-title: Large-scale soil organic carbon mapping based on multivariate modelling: the case of grasslands on the Loess Plateau
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2833
– volume: 48
  start-page: 421
  issue: 5
  year: 2010
  ident: 10.1016/j.geoderma.2019.05.031_bb0955
  article-title: Measurement and estimation of land-use effects on soil carbon and related properties for soil monitoring: a study on a basalt landscape of northern New South Wales, Australia
  publication-title: Soil Research
  doi: 10.1071/SR09146
– volume: 26
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0375
– volume: 54
  start-page: 49
  issue: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0235
  article-title: Digital mapping of pre-European soil carbon stocks and decline since clearing over New South Wales, Australia
  publication-title: Soil Research
  doi: 10.1071/SR14307
– volume: 337
  start-page: 164
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0355
  article-title: Mapping topsoil organic carbon concentrations and stocks for Tanzania
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.011
– volume: 314
  start-page: 8
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0890
  article-title: Spatial variations of soil organic carbon stocks in a coastal hilly area of China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.052
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0290
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169748
– volume: 226–227
  start-page: 103
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0820
  article-title: How to map soil organic carbon stocks in highly urbanized regions?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.007
– volume: 14
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0715
  article-title: Soil texture and organic carbon mapping using surface temperature and reflectance spectra in Southeast Brazil
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2018.e00174
– volume: 589
  start-page: 153
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0590
  article-title: Assessing top- and subsoil organic carbon stocks of low-input high-diversity systems using soil and vegetation characteristics
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.02.116
– volume: 209–210
  start-page: 1
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0640
  article-title: Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.05.029
– volume: 77
  start-page: 802
  issue: 4
  year: 2008
  ident: 10.1016/j.geoderma.2019.05.031_bb0185
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 98
  start-page: 109
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0610
  article-title: The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.04.001
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.geoderma.2019.05.031_bb0130
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 67
  start-page: 258
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2019.05.031_bb0550
  article-title: Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2003.2580
– volume: 57
  start-page: 443
  issue: 2
  year: 1993
  ident: 10.1016/j.geoderma.2019.05.031_bb0540
  article-title: Soil attribute prediction using terrain analysis
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1993.03615995005700020026x
– volume: 573
  start-page: 1352
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0555
  article-title: GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.066
– volume: 15
  start-page: 1663
  issue: 6
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0735
  article-title: High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment
  publication-title: Biogeosciences
  doi: 10.5194/bg-15-1663-2018
– volume: 77
  start-page: 890
  issue: 3
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0495
  article-title: Spatial scaling for digital soil mapping
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0419
– volume: 88
  start-page: 243
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2019.05.031_bb0145
  article-title: Boosted trees for ecological modeling and prediction
  publication-title: Ecology
  doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
– volume: 171–172
  start-page: 44
  year: 2012
  ident: 10.1016/j.geoderma.2019.05.031_bb0460
  article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.05.007
– year: 2008
  ident: 10.1016/j.geoderma.2019.05.031_bb0480
  article-title: Quantitative mapping of soil organic material using field spectrometer and hyperspectral remote sensing
– volume: 340
  start-page: 289
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0990
  article-title: Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.015
– volume: 10
  start-page: 1610
  issue: 5
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0565
  article-title: Soil organic carbon baselines for land degradation neutrality: map accuracy and cost tradeoffs with respect to complexity in Otjozondjupa, Namibia
  publication-title: Sustainability
  doi: 10.3390/su10051610
– volume: 46
  start-page: 705
  issue: 5
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0405
  article-title: Geospatial mapping of soil organic carbon using regression kriging and remote sensing
  publication-title: Journal of the Indian Society of Remote Sensing
  doi: 10.1007/s12524-017-0738-y
– volume: 230–231
  start-page: 119
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0580
  article-title: Spatial prediction of soil organic carbon stock using a linear model of coregionalisation
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.016
– volume: 338
  start-page: 445
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb1010
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.006
– volume: 26
  start-page: 102
  issue: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0925
  article-title: Spatially distributed modelling and mapping of soil organic carbon and total nitrogen stocks in the Eastern Mau Forest Reserve, Kenya
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-016-1257-4
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0575
  article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates
  publication-title: SOIL
  doi: 10.5194/soil-4-1-2018
– start-page: 31
  year: 1994
  ident: 10.1016/j.geoderma.2019.05.031_bb0670
  article-title: Tension between aggregation levels
– volume: 45
  start-page: 1910
  issue: 6
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0370
  article-title: Assessment of carbon stocks in the topsoil using random forest and remote sensing images
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.03.0076
– volume: 156
  start-page: 161
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0740
  article-title: Comparing digital soil mapping techniques for organic carbon and clay content: case study in Burundi's central plateaus
  publication-title: Catena
  doi: 10.1016/j.catena.2017.04.003
– volume: 60
  start-page: 870
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0980
  article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.08.036
– volume: 237–238
  start-page: 49
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0265
  article-title: Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.08.009
– volume: 337
  start-page: 55
  year: 2019
  ident: 10.1016/j.geoderma.2019.05.031_bb0850
  article-title: National soil organic carbon estimates can improve global estimates
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.005
– volume: 303
  start-page: 118
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0790
  article-title: Digital soil mapping based on wavelet decomposed components of environmental covariates
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.05.017
– volume: 188
  start-page: 1
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0545
  article-title: The effectiveness of digital soil mapping to predict soil properties over low-relief areas
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5204-8
– volume: 630
  start-page: 367
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0885
  article-title: High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.204
– start-page: 1
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0530
  article-title: Digital mapping of soil carbon
  doi: 10.1016/B978-0-12-405942-9.00001-3
– volume: 51
  start-page: 645
  issue: 8
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0045
  article-title: Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia
  publication-title: Soil Research
  doi: 10.1071/SR12358
– volume: 82
  start-page: 186
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0675
  article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.04.0122
– volume: 145
  start-page: 118
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0535
  article-title: Spatial variability of soil organic matter using remote sensing data
  publication-title: Catena
  doi: 10.1016/j.catena.2016.05.023
– volume: 9
  start-page: 17
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0595
  article-title: Chile and the Chilean soil grid: a contribution to GlobalSoilMap
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2016.12.001
– volume: 171–172
  start-page: 35
  year: 2012
  ident: 10.1016/j.geoderma.2019.05.031_bb1015
  article-title: Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.07.012
– volume: 77
  issue: 5
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0345
  article-title: Digital soil mapping in a Himalayan watershed using remote sensing and terrain parameters employing artificial neural network model
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7367-9
– volume: 152
  start-page: 195
  issue: 3
  year: 2009
  ident: 10.1016/j.geoderma.2019.05.031_bb0250
  article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.06.003
– volume: 154
  start-page: 73
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0335
  article-title: Spatial soil nutrients prediction using three supervised learning methods for assessment of land potentials in complex terrain
  publication-title: Catena
  doi: 10.1016/j.catena.2017.02.006
– volume: 120
  start-page: 75
  issue: 1
  year: 2004
  ident: 10.1016/j.geoderma.2019.05.031_bb0280
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.08.018
– volume: 5
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0665
  article-title: Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia
  publication-title: Sci. Rep.
  doi: 10.1038/srep17866
– volume: 74
  start-page: 861
  issue: 3
  year: 2010
  ident: 10.1016/j.geoderma.2019.05.031_bb1040
  article-title: Differentiation of soil conditions over low relief areas using feedback dynamic patterns
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0411
– volume: 271
  start-page: 202
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0030
  article-title: Total soil organic carbon and carbon sequestration potential in Nigeria
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.02.021
– volume: 4
  start-page: 173
  issue: 3
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0260
  article-title: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
  publication-title: Soil
  doi: 10.5194/soil-4-173-2018
– volume: 11
  start-page: 475
  issue: 5
  year: 1997
  ident: 10.1016/j.geoderma.2019.05.031_bb0395
  article-title: Modelling topographic variation in solar radiation in a GIS environment
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/136588197242266
– volume: 53
  start-page: 932
  issue: 8
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0365
  article-title: Eighty-metre resolution 3D soil-attribute maps for Tasmania, Australia
  publication-title: Soil Research
  doi: 10.1071/SR14268
– volume: 51
  start-page: 668
  issue: 8
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0950
  article-title: Land-use and historical management effects on soil organic carbon in grazing systems on the Northern Tablelands of New South Wales
  publication-title: Soil Research
  doi: 10.1071/SR12376
– year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0255
– volume: 9
  start-page: 73
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0115
  article-title: Mapping soil organic carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia)
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2016.12.006
– volume: 38
  start-page: 706
  issue: 3
  year: 2014
  ident: 10.1016/j.geoderma.2019.05.031_bb0100
  article-title: Evaluation of statistical and geostatistical models of digital soil properties mapping in tropical mountain regions
  publication-title: Rev. Bras. Cienc. Solo
  doi: 10.1590/S0100-06832014000300003
– volume: 189
  issue: 10
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0490
  article-title: Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-017-6197-7
– volume: 127
  start-page: 168
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2019.05.031_bb1045
  article-title: Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.02.010
– volume: 22
  start-page: 342
  issue: 4
  year: 2006
  ident: 10.1016/j.geoderma.2019.05.031_bb0745
  article-title: Regional simulation of long-term organic carbon stock changes in cropland soils using the DNDC model: 1. Large-scale model validation against a spatially explicit data set
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2006.00045.x
– volume: 87
  start-page: 111
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2019.05.031_bb0315
  article-title: Managing carbon sequestration in soils: concepts and terminology
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(01)00145-1
– volume: 9
  issue: 5
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0775
  article-title: Spatial prediction of soil organic matter using a hybrid geostatistical model of an extreme learning machine and ordinary kriging
  publication-title: Sustainability
  doi: 10.3390/su9050754
– volume: 266
  start-page: 98
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0795
  article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.003
– volume: 285
  start-page: 94
  year: 2017
  ident: 10.1016/j.geoderma.2019.05.031_bb0500
  article-title: Hyper-temporal remote sensing for digital soil mapping: characterizing soil-vegetation response to climatic variability
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.09.024
– volume: 5
  start-page: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0325
  article-title: A methodology for systematic mapping in environmental sciences
  publication-title: Environ. Evid.
  doi: 10.1186/s13750-016-0059-6
– volume: 47
  start-page: 151
  issue: 2
  year: 1996
  ident: 10.1016/j.geoderma.2019.05.031_bb0050
  article-title: Total carbon and nitrogen in the soils of the world
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1996.tb01386.x
– start-page: 236
  year: 1993
  ident: 10.1016/j.geoderma.2019.05.031_bb0660
  article-title: Combining instance-based and model-based learning
– year: 1996
  ident: 10.1016/j.geoderma.2019.05.031_bb0750
– volume: 62
  start-page: 394
  issue: 3
  year: 2011
  ident: 10.1016/j.geoderma.2019.05.031_bb0080
  article-title: Sampling for validation of digital soil maps
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2011.01364.x
– volume: 390
  start-page: 111
  issue: 1–2
  year: 2015
  ident: 10.1016/j.geoderma.2019.05.031_bb0305
  article-title: Drivers of soil organic carbon storage and vertical distribution in Eastern Australia
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2380-1
– year: 1941
  ident: 10.1016/j.geoderma.2019.05.031_bb0330
– volume: 557–558
  start-page: 838
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0995
  article-title: Assessment of soil organic carbon stocks under future climate and land cover changes in Europe
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.03.085
– volume: 304
  start-page: 1623
  issue: 5677
  year: 2004
  ident: 10.1016/j.geoderma.2019.05.031_bb0420
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
  doi: 10.1126/science.1097396
– volume: 80
  start-page: 1296
  issue: 5
  year: 2016
  ident: 10.1016/j.geoderma.2019.05.031_bb0220
  article-title: Change in soil organic carbon stocks under 12 climate change projections over New South Wales, Australia
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2016.02.0038
– volume: 22
  start-page: 394
  issue: 3
  year: 2012
  ident: 10.1016/j.geoderma.2019.05.031_bb0865
  article-title: Mapping Soil texture of a plain area using fuzzy-c-means clustering method based on land surface diurnal temperature difference
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(12)60025-3
– volume: 77
  start-page: 860
  issue: 3
  year: 2013
  ident: 10.1016/j.geoderma.2019.05.031_bb0015
  article-title: High-resolution 3-D mapping of soil texture in Denmark
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0275
– year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0380
– volume: 71
  start-page: 29
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.05.031_bb0350
  article-title: The role of geology in the spatial prediction of soil properties in the watershed of Lake Balaton, Hungary
  publication-title: Geol. Croat.
  doi: 10.4154/gc.2018.04
– volume: 158
  start-page: 46
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2019.05.031_bb0835
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.025
SSID ssj0017020
Score 2.677316
SecondaryResourceType review_article
Snippet This article reviews the current research and applications of various digital soil mapping (DSM) techniques used to map Soil Organic Carbon (SOC) concentration...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 395
SubjectTerms Algorithms
Australia
China
climate
computer-aided mapping
Covariates
data collection
Digital soil mapping
kriging
land use
linear models
prediction
regression analysis
Soil organic carbon
soil surveys
support vector machines
Systematic mapping
topography
uncertainty
United States
Validation
vegetation index
Title Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review
URI https://dx.doi.org/10.1016/j.geoderma.2019.05.031
https://www.proquest.com/docview/2271874002
Volume 352
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMAB8RTjMQWJa1mTLE3LbQKmAYITSLtFSdqOTluLtsGR347dBy8JceDYKq4qx7U_N_5sQk5jJWJfcOWlxuCvG6s8GzHj9TizEOEcJCXIRr67D4aPvZuRHLXIRcOFwbLK2vdXPr301vWdbq3N7nOWIceXBQrCEUCQEnggg72n0MrP3j7KPJjy69aMLPBw9ReW8AT2CAeOlf2HWFR28BTstwD1w1WX8WewSTZq4Ej71bttkVaSb5P1_nheN89IdkhxmY1xBghdFNmUzgy2XhhTMx0X82z5NFtQk8fUFa-QHiPCpIBXq6XVaCdHnZnbIv-UhOXlQQLNvtSdn9M-rQgvu-RxcPVwMfTqgQqeEUG49KxjTBieSOkg8wBoJFMjWMp56sON0ApjTcAVTxWAFIfIJ3TCAEJMkNCjjNgjK3mRJ_uEphBcozhkCiyg56fSxniED9lbyoIolHGbyEaL2tXdxnHoxVQ3ZWUT3Whfo_a1LzVov026H3LPVb-NPyWiZpP0N8vREBT-lD1pdlXDZ4VnJSZPipeF5lyV0wp9fvCP5x-SNbzCWMfkEVlZzl-SYwAxS9sprbRDVvvXt8P7d8f-8sM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9VKUPlb5wpfaYbmyv46RSD6tStJTHCSRuru0kS9CSoN2lVS_8Kf5gZxIHKBLiUHF1MlY0Hs_3OZ4HwMdcyzyWQkeltfTrxunIZdxGQ8EdIpzHQwllI-_uJeOD4Y9DdbgEF30uDIVVBt_f-fTWW4eRQdDm4LSqKMeXJxrhCClISzxCZOV28ec3ntvmX7c2cJE_CbH5ff_bOAqtBSIrk3QROc-5tKJQyiMHR5KgSit5KUQZ40DqpHU2EVqUGuHaEwdIvbTIlQpKbdFW4rwPYGWI7oLaJnw-v4wr4ToOtSB5EtHnXUtLPkajoA5nbcEjnrUlQyW_DRFvYEMLeJtP4UlgqmzUKWMVlor6GTweTWahWkfxHJqNakJNR9i8qabsxFKthwmz00kzqxZHJ3Nm65z55heex4nSMiTI3atdLynPvJ25pr6SxNfbmwtWXQt0_8JGrMuweQEH96Lml7BcN3XxCliJaJ7lKddocsO4VC6nmAE8LpY8yVKVr4HqtWh8KG9OXTampo9jOza99g1p38TKoPbXYHApd9oV-LhTIusXyfxjqgZR6E7ZD_2qGtzHdDlj66I5mxshdNseMRav_2P-dXg43t_dMTtbe9tv4BE9IaDl6i0sL2ZnxTtkUAv3vrVYBj_ve4v8BVXZLII
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+soil+mapping+algorithms+and+covariates+for+soil+organic+carbon+mapping+and+their+implications%3A+A+review&rft.jtitle=Geoderma&rft.au=Lamichhane%2C+Sushil&rft.au=Kumar%2C+Lalit&rft.au=Wilson%2C+Brian&rft.date=2019-10-15&rft.issn=0016-7061&rft.volume=352+p.395-413&rft.spage=395&rft.epage=413&rft_id=info:doi/10.1016%2Fj.geoderma.2019.05.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon