Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review
This article reviews the current research and applications of various digital soil mapping (DSM) techniques used to map Soil Organic Carbon (SOC) concentration and stocks following a systematic mapping approach from 2013 until present (18 February 2019). It is intended that this review of relevant l...
Saved in:
Published in | Geoderma Vol. 352; pp. 395 - 413 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article reviews the current research and applications of various digital soil mapping (DSM) techniques used to map Soil Organic Carbon (SOC) concentration and stocks following a systematic mapping approach from 2013 until present (18 February 2019). It is intended that this review of relevant literature will assist prospective researchers by identifying knowledge clusters and gaps in relation to the digital mapping of SOC. Of 120 studies, most were clustered in some specific countries such as China, Australia and the USA. The highest number publications were in 2016 and 2017. Regarding the predictive models, there was a progression from Linear Models towards Machine Learning (ML) techniques, and hybrid models in Regression Kriging (RK) framework performed better than individual models. Multiple Linear Regression (MLR) was the most frequently used method for predicting SOC, although it was outperformed by other ML techniques in most studies. Random Forest (RF) was found to perform better than MLR and other ML techniques in most comparative studies. Other common and competitive techniques were Cubist, Neural Network (NN), Boosted Regression Tree (BRT), Support Vector Machine (SVM) and Geographically Weighted Regression (GWR). Due to the inconsistency in various comparative studies, it would be advisable to calibrate the competitive algorithms using specific experimental datasets. This review also reveals the environmental covariates that have been identified as the most important by RF technique in recent years in regard to digital mapping of SOC, which may assist in selecting optimum sets of environmental covariates for mapping SOC. Covariates representing organism/organic activities were among the most frequent among top five covariates, followed by the variables representing climate and topography. Climate was reported to be influential in determining the variation in SOC level at regional scales, followed by parent materials, topography and land use. However, for mapping at a resolution that represents smaller areas such as a farm- or plot-scale, land use and vegetation indices were stated to be more influential in predicting SOC. Furthermore, unlike a previous review work, all recent studies in this review incorporated validation and 41% of them estimated spatially explicit prediction of uncertainty. Only 9.16% studies performed external validation, whereas most studies used data-splitting and cross-validation techniques which may not be the best options for datasets obtained through non-probability sampling. |
---|---|
AbstractList | This article reviews the current research and applications of various digital soil mapping (DSM) techniques used to map Soil Organic Carbon (SOC) concentration and stocks following a systematic mapping approach from 2013 until present (18 February 2019). It is intended that this review of relevant literature will assist prospective researchers by identifying knowledge clusters and gaps in relation to the digital mapping of SOC. Of 120 studies, most were clustered in some specific countries such as China, Australia and the USA. The highest number publications were in 2016 and 2017. Regarding the predictive models, there was a progression from Linear Models towards Machine Learning (ML) techniques, and hybrid models in Regression Kriging (RK) framework performed better than individual models. Multiple Linear Regression (MLR) was the most frequently used method for predicting SOC, although it was outperformed by other ML techniques in most studies. Random Forest (RF) was found to perform better than MLR and other ML techniques in most comparative studies. Other common and competitive techniques were Cubist, Neural Network (NN), Boosted Regression Tree (BRT), Support Vector Machine (SVM) and Geographically Weighted Regression (GWR). Due to the inconsistency in various comparative studies, it would be advisable to calibrate the competitive algorithms using specific experimental datasets. This review also reveals the environmental covariates that have been identified as the most important by RF technique in recent years in regard to digital mapping of SOC, which may assist in selecting optimum sets of environmental covariates for mapping SOC. Covariates representing organism/organic activities were among the most frequent among top five covariates, followed by the variables representing climate and topography. Climate was reported to be influential in determining the variation in SOC level at regional scales, followed by parent materials, topography and land use. However, for mapping at a resolution that represents smaller areas such as a farm- or plot-scale, land use and vegetation indices were stated to be more influential in predicting SOC. Furthermore, unlike a previous review work, all recent studies in this review incorporated validation and 41% of them estimated spatially explicit prediction of uncertainty. Only 9.16% studies performed external validation, whereas most studies used data-splitting and cross-validation techniques which may not be the best options for datasets obtained through non-probability sampling. |
Author | Wilson, Brian Kumar, Lalit Lamichhane, Sushil |
Author_xml | – sequence: 1 givenname: Sushil surname: Lamichhane fullname: Lamichhane, Sushil email: slamichh@myune.edu.au organization: School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia – sequence: 2 givenname: Lalit surname: Kumar fullname: Kumar, Lalit organization: School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia – sequence: 3 givenname: Brian surname: Wilson fullname: Wilson, Brian organization: School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia |
BookMark | eNqFkMFu1DAQQK2qSN0WfqHykUvC2CFxUnGgaqEgVeICZ2vWO0lnldjBdov4e7xaKiQuPVljvTcavXNx6oMnIS4V1ApU925fTxR2FBesNaihhraGRp2IjeqNrjrdDqdiA4WsDHTqTJyntC-jAQ0bEW554oyzTIFnueC6sp8kzlOInB-WJNHvpAtPGBkzJTmGeERDnNCzkw7jNvh_ZsHzA3GUvKwzO8wcfLqS1zLSE9Ov1-LViHOiN3_fC_Hj86fvN1-q-293X2-u7ytsuj5XW6dUg5ra1ukG-mZoR2zUqPUI5aPfNrjFThs9msF0TrdK967BwRjSAGCwuRBvj3vXGH4-Usp24eRontFTeExWa1PyvAfQBf1wRF0MKUUarStFDnfniDxbBfbQ2e7tc2d76GyhtaVz0bv_9DXygvH3y-LHo0ilQ2kTbXJM3tGOI7lsd4FfWvEHz9CfBw |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2024_112654 crossref_primary_10_1016_j_ecoinf_2024_102892 crossref_primary_10_1016_j_geodrs_2022_e00568 crossref_primary_10_1016_j_scitotenv_2021_147734 crossref_primary_10_1016_j_scitotenv_2022_160303 crossref_primary_10_1016_j_scitotenv_2023_169647 crossref_primary_10_1016_j_still_2024_106007 crossref_primary_10_1016_j_envsoft_2022_105612 crossref_primary_10_1016_j_geoderma_2022_116232 crossref_primary_10_1016_j_scitotenv_2024_173060 crossref_primary_10_5194_essd_17_517_2025 crossref_primary_10_1109_JSTARS_2023_3281732 crossref_primary_10_1007_s10661_023_11145_5 crossref_primary_10_1016_j_jag_2021_102428 crossref_primary_10_3390_land12061198 crossref_primary_10_5194_soil_10_619_2024 crossref_primary_10_1016_j_compag_2023_108561 crossref_primary_10_1016_j_geodrs_2023_e00611 crossref_primary_10_3389_fenvs_2022_948367 crossref_primary_10_1016_j_catena_2023_106961 crossref_primary_10_1007_s40710_024_00722_6 crossref_primary_10_1080_10106049_2022_2060317 crossref_primary_10_1016_j_geoderma_2023_116620 crossref_primary_10_1016_j_compag_2023_107928 crossref_primary_10_1016_j_jenvman_2022_117203 crossref_primary_10_1016_j_scitotenv_2024_177798 crossref_primary_10_1007_s11119_024_10128_x crossref_primary_10_1016_j_geoderma_2021_115531 crossref_primary_10_3390_rs16091510 crossref_primary_10_1007_s42729_024_02082_4 crossref_primary_10_3390_agronomy13020445 crossref_primary_10_1016_j_earscirev_2020_103359 crossref_primary_10_1016_j_scitotenv_2023_166921 crossref_primary_10_1002_ldr_5105 crossref_primary_10_2139_ssrn_4013217 crossref_primary_10_1007_s12517_023_11844_w crossref_primary_10_1016_j_fcr_2025_109752 crossref_primary_10_1016_j_catena_2022_106311 crossref_primary_10_1016_j_catena_2020_104953 crossref_primary_10_4236_jgis_2021_134024 crossref_primary_10_3390_atmos15080945 crossref_primary_10_1016_j_still_2024_106269 crossref_primary_10_1016_j_geoderma_2022_116252 crossref_primary_10_1007_s12517_024_12132_x crossref_primary_10_1080_10106049_2024_2379842 crossref_primary_10_1002_ldr_5573 crossref_primary_10_1016_j_still_2022_105379 crossref_primary_10_1016_j_geoderma_2021_115567 crossref_primary_10_3390_land13010114 crossref_primary_10_1080_01431161_2024_2387133 crossref_primary_10_1016_j_catena_2021_105897 crossref_primary_10_1002_ldr_4917 crossref_primary_10_3390_agronomy12030628 crossref_primary_10_1016_j_catena_2023_107242 crossref_primary_10_1016_j_catena_2024_108635 crossref_primary_10_1002_ldr_4596 crossref_primary_10_1002_agg2_20207 crossref_primary_10_1016_j_geoderma_2021_115316 crossref_primary_10_1080_17538947_2023_2192005 crossref_primary_10_1186_s13717_023_00474_5 crossref_primary_10_1016_j_catena_2023_107369 crossref_primary_10_1080_10106049_2022_2138565 crossref_primary_10_3390_land11020208 crossref_primary_10_3390_rs15205033 crossref_primary_10_1016_j_geoderma_2024_116952 crossref_primary_10_1111_ejss_13011 crossref_primary_10_1007_s12665_023_10919_x crossref_primary_10_3390_rs16234486 crossref_primary_10_1016_j_geodrs_2025_e00922 crossref_primary_10_1016_j_still_2024_106445 crossref_primary_10_1109_JSTARS_2024_3521034 crossref_primary_10_1002_jpln_202100138 crossref_primary_10_1016_j_envsoft_2024_106229 crossref_primary_10_1016_j_rse_2024_114592 crossref_primary_10_3390_land11122279 crossref_primary_10_1016_j_ecolind_2020_106288 crossref_primary_10_1088_2515_7620_ac71a2 crossref_primary_10_3390_agronomy12071697 crossref_primary_10_1016_j_geodrs_2024_e00776 crossref_primary_10_1016_j_scitotenv_2024_173537 crossref_primary_10_1016_j_ecolind_2024_112588 crossref_primary_10_1016_j_geoderma_2021_115290 crossref_primary_10_3390_rs13132571 crossref_primary_10_3390_soilsystems7040088 crossref_primary_10_1016_j_jenvman_2022_117127 crossref_primary_10_1016_j_chnaes_2020_06_009 crossref_primary_10_1080_10106049_2021_1996639 crossref_primary_10_3390_land12030520 crossref_primary_10_3390_rs15061628 crossref_primary_10_1016_j_jenvman_2025_125035 crossref_primary_10_1016_j_catena_2023_107188 crossref_primary_10_1038_s41597_019_0345_6 crossref_primary_10_3390_rs17020333 crossref_primary_10_1016_j_geoderma_2023_116549 crossref_primary_10_1186_s43170_021_00063_6 crossref_primary_10_1016_j_catena_2020_104576 crossref_primary_10_1016_j_catena_2022_106478 crossref_primary_10_3390_soilsystems7010027 crossref_primary_10_1007_s12665_025_12140_4 crossref_primary_10_3390_rs13183557 crossref_primary_10_1007_s10021_024_00928_7 crossref_primary_10_1016_j_catena_2021_105723 crossref_primary_10_1016_j_geoderma_2023_116652 crossref_primary_10_1080_03650340_2024_2448623 crossref_primary_10_3389_fsoil_2022_890437 crossref_primary_10_3389_frsen_2024_1461537 crossref_primary_10_3389_fsoil_2023_1225672 crossref_primary_10_3390_rs12142234 crossref_primary_10_1002_saj2_20525 crossref_primary_10_1016_j_still_2024_106220 crossref_primary_10_3390_land13060859 crossref_primary_10_1016_j_geoderma_2020_114472 crossref_primary_10_1016_j_still_2023_105897 crossref_primary_10_36783_18069657rbcs20230065 crossref_primary_10_3389_fsoil_2021_714323 crossref_primary_10_1016_j_scitotenv_2020_142661 crossref_primary_10_1029_2021JF006198 crossref_primary_10_1016_j_catena_2021_105299 crossref_primary_10_1080_15481603_2025_2460513 crossref_primary_10_3390_agriculture12091429 crossref_primary_10_1080_24749508_2023_2167632 crossref_primary_10_1371_journal_pone_0289286 crossref_primary_10_1016_j_jclepro_2023_139463 crossref_primary_10_7717_peerj_11685 crossref_primary_10_3390_rs14205151 crossref_primary_10_1016_j_geoderma_2023_116763 crossref_primary_10_1016_j_geodrs_2021_e00413 crossref_primary_10_1016_j_nbt_2024_03_001 crossref_primary_10_1016_j_still_2024_106357 crossref_primary_10_1016_j_still_2025_106530 crossref_primary_10_1007_s10666_024_09973_x crossref_primary_10_7717_peerj_14275 crossref_primary_10_1080_22797254_2022_2045226 crossref_primary_10_3390_agriculture12111784 crossref_primary_10_3390_land14040677 crossref_primary_10_3390_rs13173502 crossref_primary_10_3390_su15086495 crossref_primary_10_1016_j_geodrs_2024_e00763 crossref_primary_10_1016_j_agee_2021_107636 crossref_primary_10_17221_4_2022_SWR crossref_primary_10_1016_j_catena_2022_106217 crossref_primary_10_3390_land10010063 crossref_primary_10_1016_j_geoderma_2020_114809 crossref_primary_10_3390_land14010016 crossref_primary_10_1139_cjss_2022_0012 crossref_primary_10_3389_fsufs_2025_1533423 crossref_primary_10_3390_f14030539 crossref_primary_10_1016_j_advmem_2023_100072 crossref_primary_10_1016_j_geoderma_2024_116873 crossref_primary_10_1016_j_jenvman_2024_122623 crossref_primary_10_1016_j_geoderma_2022_116192 crossref_primary_10_1016_j_catena_2023_107409 crossref_primary_10_1016_j_jclepro_2024_144648 crossref_primary_10_1021_acs_est_4c01923 crossref_primary_10_1016_j_geoderma_2021_115387 crossref_primary_10_1016_j_geoderma_2021_115386 crossref_primary_10_1016_j_geoderma_2021_115263 crossref_primary_10_1016_j_ecolind_2023_111208 crossref_primary_10_2139_ssrn_4019282 crossref_primary_10_1109_TGRS_2024_3511118 crossref_primary_10_1111_ejss_12998 crossref_primary_10_3390_rs16040688 crossref_primary_10_1016_j_ecoinf_2025_103054 crossref_primary_10_3390_rs16152712 crossref_primary_10_1016_j_ecoinf_2025_103057 crossref_primary_10_1007_s40808_023_01890_4 crossref_primary_10_1007_s10661_021_09561_6 crossref_primary_10_3390_agriculture15050567 crossref_primary_10_1016_j_ecolind_2021_107975 crossref_primary_10_3390_land13070970 crossref_primary_10_12688_openreseurope_14716_2 crossref_primary_10_1016_j_ecolind_2021_107618 crossref_primary_10_1016_j_geodrs_2024_e00863 crossref_primary_10_1016_j_jag_2024_104181 crossref_primary_10_12688_openreseurope_14716_1 crossref_primary_10_1080_01431161_2022_2147037 crossref_primary_10_1016_j_compag_2023_107885 crossref_primary_10_1007_s41748_024_00539_1 crossref_primary_10_1016_j_geodrs_2021_e00440 crossref_primary_10_1016_j_geoderma_2024_116970 crossref_primary_10_1016_j_geoderma_2024_117026 crossref_primary_10_1016_j_ecolind_2022_109420 crossref_primary_10_1016_j_scitotenv_2022_160602 crossref_primary_10_3390_rs15102494 crossref_primary_10_3390_agronomy12030578 crossref_primary_10_20517_cf_2024_15 crossref_primary_10_3390_agronomy11061189 crossref_primary_10_1016_j_geoderma_2021_115041 crossref_primary_10_1080_17538947_2025_2471507 crossref_primary_10_1016_j_geoderma_2024_117023 crossref_primary_10_1016_j_geoderma_2024_117143 crossref_primary_10_3390_ijerph192215201 crossref_primary_10_3389_fenvs_2021_668912 crossref_primary_10_1016_j_catena_2023_107197 crossref_primary_10_1016_j_scitotenv_2020_138244 crossref_primary_10_1016_j_still_2024_106428 crossref_primary_10_3390_rs12213609 crossref_primary_10_1007_s12517_022_09629_8 crossref_primary_10_1007_s40808_024_02158_1 crossref_primary_10_3390_agronomy11030597 crossref_primary_10_1016_j_catena_2021_105258 crossref_primary_10_1016_j_catena_2023_107631 crossref_primary_10_1016_j_geodrs_2023_e00658 crossref_primary_10_1002_saj2_20453 crossref_primary_10_1016_j_geoderma_2024_116987 crossref_primary_10_1016_j_geoderma_2022_115695 crossref_primary_10_1016_j_geoderma_2020_114684 crossref_primary_10_1016_j_geoderma_2024_117032 crossref_primary_10_1016_j_envsoft_2025_106369 crossref_primary_10_1016_j_jenvman_2021_112191 crossref_primary_10_3389_fenvs_2023_1240106 crossref_primary_10_3390_agriculture11060475 crossref_primary_10_1117_1_JRS_19_014520 crossref_primary_10_3390_w14101668 crossref_primary_10_3390_rs11242947 crossref_primary_10_1080_24749508_2024_2429842 crossref_primary_10_3390_rs14051140 crossref_primary_10_1016_j_jenvman_2021_113718 crossref_primary_10_1016_j_regsus_2021_06_001 crossref_primary_10_1016_j_catena_2024_108475 crossref_primary_10_1016_j_iswcr_2024_10_002 crossref_primary_10_1186_s12302_024_00912_x crossref_primary_10_3390_rs15071847 crossref_primary_10_5194_soil_6_389_2020 crossref_primary_10_1016_j_rama_2024_01_006 crossref_primary_10_1007_s10113_022_01980_6 crossref_primary_10_1002_saj2_70042 crossref_primary_10_1016_j_geoderma_2025_117240 crossref_primary_10_1016_j_geodrs_2024_e00801 crossref_primary_10_3390_rs14102504 crossref_primary_10_1016_j_envsoft_2021_105139 crossref_primary_10_3390_rs15041072 crossref_primary_10_1016_j_catena_2023_107572 crossref_primary_10_1016_j_geoderma_2020_114779 crossref_primary_10_1016_j_scitotenv_2020_142120 crossref_primary_10_1016_j_compag_2024_108760 crossref_primary_10_1016_j_isprsjprs_2022_04_026 crossref_primary_10_3390_land9100349 crossref_primary_10_3390_rs13234772 crossref_primary_10_1134_S106422932208004X crossref_primary_10_1038_s41598_024_68424_5 crossref_primary_10_1016_j_catena_2023_107456 crossref_primary_10_1111_sum_12900 crossref_primary_10_3390_rs14102295 crossref_primary_10_1016_j_geodrs_2021_e00478 crossref_primary_10_1016_j_still_2024_106170 crossref_primary_10_1080_19475683_2024_2309868 crossref_primary_10_1016_j_geodrs_2024_e00817 crossref_primary_10_1111_exsy_13464 crossref_primary_10_1016_j_measurement_2022_111706 crossref_primary_10_1016_j_catena_2022_106077 crossref_primary_10_36783_18069657rbcs20230130 crossref_primary_10_3390_app13095249 crossref_primary_10_1007_s11104_023_06198_x crossref_primary_10_1111_sum_12694 crossref_primary_10_1016_j_palaeo_2024_112201 crossref_primary_10_1016_j_catena_2021_105442 crossref_primary_10_1016_j_jenvman_2024_121573 crossref_primary_10_1088_1748_9326_aca41e crossref_primary_10_1016_j_geodrs_2021_e00367 crossref_primary_10_1016_j_geodrs_2023_e00641 crossref_primary_10_3390_bdcc7020113 crossref_primary_10_1016_j_isprsjprs_2022_09_013 crossref_primary_10_1016_j_jclepro_2023_138544 crossref_primary_10_1016_j_ecoinf_2023_102290 crossref_primary_10_1038_s43247_023_01044_5 crossref_primary_10_3390_land12071344 crossref_primary_10_3390_s22072685 crossref_primary_10_1016_j_geodrs_2023_e00745 crossref_primary_10_1016_j_jenvman_2023_117810 crossref_primary_10_7717_peerj_17836 crossref_primary_10_1016_j_eja_2024_127323 crossref_primary_10_3390_f14061141 crossref_primary_10_17221_119_2023_SWR crossref_primary_10_1016_j_geoderma_2022_116054 crossref_primary_10_1007_s11004_021_09988_0 crossref_primary_10_1016_j_catena_2019_104424 crossref_primary_10_1007_s44246_022_00010_8 crossref_primary_10_1108_SAMPJ_08_2023_0610 crossref_primary_10_3390_rs16152731 crossref_primary_10_1016_j_scitotenv_2021_145384 crossref_primary_10_1016_j_geodrs_2023_e00614 crossref_primary_10_1007_s41742_024_00611_8 crossref_primary_10_1016_j_jag_2022_102986 crossref_primary_10_1080_10095020_2025_2454523 crossref_primary_10_1016_j_geoderma_2023_116360 crossref_primary_10_1016_j_geoderma_2021_115599 crossref_primary_10_1021_acs_est_4c01172 crossref_primary_10_3390_land13070915 crossref_primary_10_1002_saj2_20371 crossref_primary_10_1016_j_geodrs_2021_e00387 crossref_primary_10_3390_toxics12030229 crossref_primary_10_1016_j_ecoinf_2023_102394 crossref_primary_10_1007_s13157_023_01705_3 crossref_primary_10_1016_j_csag_2024_100001 crossref_primary_10_1016_j_geodrs_2022_e00562 crossref_primary_10_1186_s13717_022_00411_y crossref_primary_10_1016_j_scitotenv_2024_170778 crossref_primary_10_3389_feart_2021_748859 |
Cites_doi | 10.1016/j.geoderma.2013.07.002 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.2136/sssaj2012.0317 10.1007/s12665-018-7374-x 10.1080/17583004.2017.1330593 10.1016/j.pce.2015.02.009 10.1016/S2095-3119(17)61762-3 10.1016/j.geoderma.2018.05.020 10.1016/j.ecolind.2017.08.046 10.1016/j.geoderma.2019.02.007 10.1016/j.catena.2017.03.020 10.1016/j.geodrs.2014.09.006 10.1016/j.catena.2016.02.016 10.1097/SS.0000000000000115 10.2134/jeq2017.08.0329 10.2136/sssaj2016.11.0376 10.1016/j.geodrs.2017.06.002 10.1016/j.geoderma.2008.05.008 10.1016/j.geoderma.2015.08.035 10.5194/soil-5-79-2019 10.1016/j.geoderma.2015.07.016 10.1016/j.geoderma.2008.06.016 10.1016/j.geodrs.2015.12.002 10.1016/j.foreco.2014.01.003 10.1023/A:1010933404324 10.1016/j.still.2014.12.002 10.1016/S1002-0160(17)60445-4 10.1016/j.geoderma.2010.06.017 10.1016/j.geoderma.2017.05.048 10.1071/SR16177 10.1134/S1064229312040047 10.1016/j.geodrs.2016.04.002 10.1071/SR14366 10.1080/03650340.2016.1154543 10.1016/j.ecolind.2013.12.015 10.1016/j.scitotenv.2018.02.209 10.1016/j.geoderma.2017.12.011 10.1016/j.geodrs.2017.07.005 10.1016/j.geoderma.2016.06.033 10.2136/sssaj2015.06.0224 10.1016/j.geodrs.2016.03.002 10.5194/gmd-7-1197-2014 10.1016/j.ecolind.2017.02.010 10.3390/rs9020124 10.1007/s10980-006-9058-2 10.1016/j.geoderma.2015.08.034 10.1016/j.jag.2016.09.002 10.1016/j.geoderma.2015.06.024 10.3390/su8111154 10.1371/journal.pone.0105519 10.1016/j.scitotenv.2017.08.012 10.1016/S1002-0160(15)60078-9 10.1561/2200000006 10.1371/journal.pone.0083592 10.1016/j.geoderma.2019.01.018 10.1016/j.geodrs.2014.11.003 10.1080/14498596.2013.812024 10.1016/j.geoderma.2018.07.037 10.1016/j.chemosphere.2014.12.027 10.1016/S0016-7061(03)00223-4 10.2136/sssaj2014.09.0392 10.1111/ejss.12193 10.5194/bg-10-8353-2013 10.1016/j.geodrs.2016.12.002 10.1111/j.1538-4632.1996.tb00936.x 10.1371/journal.pone.0125814 10.1016/j.geoderma.2016.04.026 10.1097/00010694-193401000-00003 10.1007/s10533-007-9109-z 10.1016/j.geoderma.2013.05.003 10.1080/02693799508902047 10.1016/j.geoderma.2018.04.004 10.1016/j.scitotenv.2014.02.061 10.1111/j.1475-2743.2011.00357.x 10.1016/j.ecolind.2014.12.028 10.1016/j.ecolind.2014.04.003 10.1016/j.agee.2017.11.022 10.1016/S0304-3800(99)00092-7 10.1016/j.geoderma.2018.08.011 10.1071/SR15100 10.1007/s10661-017-5830-9 10.1071/SR08240 10.1002/eap.1516 10.1016/j.geoderma.2017.10.018 10.1016/j.geodrs.2018.e00195 10.1029/2009GB003506 10.3390/rs10101509 10.1111/j.1365-2664.2006.01141.x 10.1016/j.scitotenv.2017.05.239 10.1111/gcb.12569 10.1016/0016-7061(93)90049-Q 10.1088/1748-9326/aaed52 10.1371/journal.pone.0139042 10.1371/journal.pone.0170478 10.1016/j.geoderma.2015.01.015 10.1016/j.geodrs.2017.07.003 10.1016/j.geoderma.2016.10.019 10.1016/j.catena.2018.10.050 10.1371/journal.pone.0142295 10.1016/j.scitotenv.2018.08.016 10.1007/s11442-013-1010-1 10.1016/j.geoderma.2009.05.015 10.1016/j.geoderma.2018.07.026 10.1016/j.geoderma.2011.06.006 10.1590/0103-9016-2015-0071 10.5194/soil-5-107-2019 10.2134/jeq2017.04.0178 10.1007/s11104-010-0425-z 10.1016/j.geoderma.2019.01.007 10.1016/S1002-0160(17)60461-2 10.1016/j.ecolind.2013.08.009 10.1016/j.geodrs.2014.09.001 10.1016/j.catena.2018.04.013 10.1016/j.geoderma.2016.02.002 10.1007/s12524-013-0332-x 10.1071/SR13306 10.1002/ldr.2833 10.1071/SR09146 10.1071/SR14307 10.1016/j.geoderma.2018.09.011 10.1016/j.geoderma.2017.10.052 10.1371/journal.pone.0169748 10.1016/j.geoderma.2014.03.007 10.1016/j.geodrs.2018.e00174 10.1016/j.scitotenv.2017.02.116 10.1016/j.geoderma.2013.05.029 10.1111/j.1365-2656.2008.01390.x 10.1016/j.soilbio.2016.04.001 10.1007/BF00994018 10.2136/sssaj2003.2580 10.2136/sssaj1993.03615995005700020026x 10.1016/j.scitotenv.2016.07.066 10.5194/bg-15-1663-2018 10.2136/sssaj2012.0419 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 10.1016/j.geoderma.2011.05.007 10.1016/j.geoderma.2019.01.015 10.3390/su10051610 10.1007/s12524-017-0738-y 10.1016/j.geoderma.2014.04.016 10.1016/j.geoderma.2018.09.006 10.1007/s11442-016-1257-4 10.5194/soil-4-1-2018 10.2134/jeq2016.03.0076 10.1016/j.catena.2017.04.003 10.1016/j.ecolind.2015.08.036 10.1016/j.geoderma.2014.08.009 10.1016/j.geoderma.2018.09.005 10.1016/j.geoderma.2017.05.017 10.1007/s10661-016-5204-8 10.1016/j.scitotenv.2018.02.204 10.1016/B978-0-12-405942-9.00001-3 10.1071/SR12358 10.2136/sssaj2017.04.0122 10.1016/j.catena.2016.05.023 10.1016/j.geodrs.2016.12.001 10.1016/j.geoderma.2011.07.012 10.1007/s12665-018-7367-9 10.1016/j.geoderma.2009.06.003 10.1016/j.catena.2017.02.006 10.1016/j.geoderma.2003.08.018 10.1038/srep17866 10.2136/sssaj2008.0411 10.1016/j.geoderma.2016.02.021 10.5194/soil-4-173-2018 10.1080/136588197242266 10.1071/SR14268 10.1071/SR12376 10.1016/j.geodrs.2016.12.006 10.1590/S0100-06832014000300003 10.1007/s10661-017-6197-7 10.1016/j.geoderma.2005.02.010 10.1111/j.1475-2743.2006.00045.x 10.1016/S0167-8809(01)00145-1 10.3390/su9050754 10.1016/j.geoderma.2015.12.003 10.1016/j.geoderma.2016.09.024 10.1186/s13750-016-0059-6 10.1111/j.1365-2389.1996.tb01386.x 10.1111/j.1365-2389.2011.01364.x 10.1007/s11104-015-2380-1 10.1016/j.scitotenv.2016.03.085 10.1126/science.1097396 10.2136/sssaj2016.02.0038 10.1016/S1002-0160(12)60025-3 10.2136/sssaj2012.0275 10.4154/gc.2018.04 10.1016/j.geoderma.2009.12.025 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.05.031 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 413 |
ExternalDocumentID | 10_1016_j_geoderma_2019_05_031 S0016706119300540 |
GeographicLocations | Australia United States China |
GeographicLocations_xml | – name: China – name: Australia – name: United States |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-bc113a2e55c2308395fa31f22f0c238b3aba6272f7976c25128c3a977e20007a3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 05:09:11 EDT 2025 Thu Apr 24 22:51:33 EDT 2025 Tue Jul 01 04:04:50 EDT 2025 Fri Feb 23 02:30:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Validation Algorithms Digital soil mapping Soil organic carbon Covariates Systematic mapping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-bc113a2e55c2308395fa31f22f0c238b3aba6272f7976c25128c3a977e20007a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2271874002 |
PQPubID | 24069 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2271874002 crossref_citationtrail_10_1016_j_geoderma_2019_05_031 crossref_primary_10_1016_j_geoderma_2019_05_031 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_05_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-15 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | de Menezes, Silva, de Mello, Owens, Curi (bb0525) 2016; 73 Sleutel, De Neve, Beheydt, Li, Hofman (bb0745) 2006; 22 Hempel, McBratney, Arrouays, McKenzie, Hartemink (bb0275) 2014 Zhang, Liu, Song (bb1020) 2017; 16 de Brogniez, Ballabio, Stevens, Jones, Montanarella, van Wesemael (bb0070) 2015; 66 Mulder, Lacoste, Richer-de-Forges, Arrouays (bb0555) 2016; 573 Kuhn, Weston, Keefer, Coulter, Quinlan (bb0380) 2018 Mosleh, Salehi, Jafari, Borujeni, Mehnatkesh (bb0545) 2016; 188 Jenny (bb0330) 1941 Li, Zhang, Wang, Li, Gao, Yuan, Luo (bb0440) 2016; 62 Yang, Mohammat, Feng, Zhou, Fang (bb0965) 2007; 84 (bb1000) 2018 Taghizadeh-Mehrjardi, Neupane, Sood, Kumar (bb0800) 2017; 8 Jeong, Oeverdieck, Park, Huwe, Ließ (bb0335) 2017; 154 Wang, Deng, Wu, Wang, Shangguan (bb0900) 2018; 29 Liddicoat, Maschmedt, Clifford, Searle, Herrmann, Macdonald, Baldock (bb0455) 2015; 53 Minasny, McBratney, Malone, Wheeler (bb0530) 2013 Vitharana, Mishra, Mapa (bb0850) 2019; 337 Lal (bb0420) 2004; 304 Mulder, Lacoste, Richer-de-Forges, Martin, Arrouays (bb0560) 2016; 263 Wiesmeier, Urbanski, Hobley, Lang, von Lützow, Marin-Spiotta, van Wesemael, Rabot, Ließ, Garcia-Franco, Wollschläger, Vogel, Kögel-Knabner (bb0945) 2019; 333 Wang, Fan, Zhong, Li, Zhu, Qiao, Zhang (bb0905) 2019; 174 Mckenzie, Austin (bb0510) 1993; 57 Gomes, Faria, de Souza, Veloso, Schaefer, Filho (bb0215) 2019; 340 Wiesmeier, Barthold, Spörlein, Geuß, Hangen, Reischl, Schilling, Angst, Von Lützow, Kögel-Knabner (bb0940) 2014; 1 Wang, Zhang, Pan, Zhao, Zhao, Wang (bb0865) 2012; 22 Wang, Adhikari, Wang, Jin, Li (bb0895) 2018; 84 Ramifehiarivo, Brossard, Grinand, Andriamananjara, Razafimbelo, Rasolohery, Razafimahatratra, Seyler, Ranaivoson, Rabenarivo, Albrecht, Razafindrabe, Razakamanarivo (bb0680) 2017; 9 Viscarra Rossel, Chen, Grundy, Searle, Clifford, Campbell (bb0845) 2015; 53 Qin, Zhu, Qiu, Lu, Li, Pei (bb0650) 2012; 171–172 Viscarra Rossel, Behrens (bb0835) 2010; 158 Adhikari, Hartemink (bb0005) 2015; 79 Poggio, Gimona, Brewer (bb0640) 2013; 209–210 Brus, Kempen, Heuvelink (bb0080) 2011; 62 Grinand, Maire, Vieilledent, Razakamanarivo, Razafimbelo, Bernoux (bb0245) 2017; 54 Maynard, Levi (bb0500) 2017; 285 Vaysse, Lagacherie (bb0825) 2015; 4 Quinlan (bb0655) 1992 Rabbi, Tighe, Delgado-Baquerizo, Cowie, Robertson, Dalal, Page, Crawford, Wilson, Schwenke, McLeod, Badgery, Dang, Bell, O'Leary, Liu, Baldock (bb0665) 2015; 5 Gray, Bishop, Smith (bb0235) 2016; 54 Wang, Zhang, Li, Lin, Zhang (bb0870) 2014; 59 Kupfer, Farris (bb0410) 2007; 22 Li (bb0435) 2010; 159 Liang, Chen, Yang, Zhao, Shi, Viscarra Rossel (bb0445) 2019; 335 Costa, Tassinari, Pinheiro, Beutler, dos Anjos (bb0135) 2018; 47 Song, Yang, Li, Hu, Wang, Zhou, Cui, Liu (bb0775) 2017; 9 Were, Singh, Dick (bb0925) 2016; 26 Piccini, Marchetti, Francaviglia (bb0635) 2014; 36 Zhao, Rossiter, Li, Zhao, Liu, Zhang (bb1025) 2014; 39 Mueller, Pierce (bb0550) 2003; 67 Adhikari, Hartemink, Minasny, Bou Kheir, Greve, Greve (bb0020) 2014; 9 Yang, Song, Zhu, Qin, Zhou, Qi, Li, Chen, Gao (bb0990) 2019; 340 Van Apeldoorn, Kempen, Bartholomeus, Rusinamhodzi, Zingore, Sonneveld, Kok, Giller (bb0815) 2014; 2–3 Drake, Randin, Guisan (bb0180) 2006; 43 Tan, Guo, Wu, Li, Liu (bb0805) 2017; 55 Kuhn, Johnson (bb0375) 2013; 26 Rabbinge, Van Ittersum (bb0670) 1994 Luo, Yaolin, Jian, Jing (bb0480) 2008 Rial, Martínez Cortizas, Taboada, Rodríguez-Lado (bb0695) 2017; 156 Walkley, Black (bb0860) 1934; 37 Kempen, Dalsgaard, Kaaya, Chamuya, Ruipérez-González, Pekkarinen, Walsh (bb0355) 2019; 337 Poggio, Gimona, Spezia, Brewer (bb0645) 2016; 277 Wang, Zhuang, Wang, Jin, Han (bb0880) 2017; 305 Sun, Wang, Zhao, Zhang, Zhang (bb0790) 2017; 303 Amirian Chakan, Taghizadeh-Mehrjardi, Kerry, Kumar, Khordehbin, Yusefi Khanghah (bb0035) 2017; 189 Sindayihebura, Ottoy, Dondeyne, Van Meirvenne, Van Orshoven (bb0740) 2017; 156 Zeng, Yang, Zhu, Rossiter, Liu, Liu, Qin, Wang (bb1005) 2016; 281 Elith, Leathwick, Hastie (bb0185) 2008; 77 Nussbaum, Spiess, Baltensweiler, Grob, Keller, Greiner, Schaepman, Papritz (bb0575) 2018; 4 Keskin, Grunwald (bb0360) 2018; 326 Kidd, Webb, Malone, Minasny, McBratney (bb0365) 2015; 53 Ottoy, Van Meerbeek, Sindayihebura, Hermy, Van Orshoven (bb0590) 2017; 589 Hartemink, Krasilnikov, Bockheim (bb0270) 2013; 207–208 Deng, Chen, Ma, Ren, Zhang, Grieneisen, Long, Ni, Zhan, Lv (bb0150) 2018; 254 Batjes (bb0050) 1996; 47 GSP (bb0255) 2017 Taghizadeh-Mehrjardi, Nabiollahi, Kerry (bb0795) 2016; 266 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bb0615) 2011; 12 Peng, Xiong, Adhikari, Knadel, Grunwald, Greve (bb0625) 2015; 10 Adhikari, Kheir, Greve, Bøcher, Malone, Minasny, McBratney, Greve (bb0015) 2013; 77 Gray, Bishop (bb0220) 2016; 80 McBratney, Mendonça Santos, Minasny (bb0505) 2003; 117 Wilson, Lonergan (bb0950) 2013; 51 Jobbágy, Jackson (bb0340) 2000; 10 De'ath (bb0145) 2007; 88 Rudiyanto, Minasny, Setiawan, Saptomo, McBratney (bb0710) 2018; 313 Yigini, Panagos (bb0995) 2016; 557–558 Pahlavan-Rad, Dahmardeh, Brungard (bb0605) 2018; 15 Grunwald (bb0250) 2009; 152 Lek, Guégan (bb0430) 1999; 120 Were, Tien Bui, Dick, Singh (bb0930) 2017; 27 Bengio (bb0055) 2009; 2 Eswaran, Reich, Kimble, Beinroth, Padmanabhan, Moncharoen (bb0190) 2000 Wang, Wang, Adhikari, Jia, Jin, Liu (bb0875) 2016; 8 Schillaci, Acutis, Lombardo, Lipani, Fantappiè, Märker, Saia (bb0720) 2017; 601–602 Yang, Zhang, Liu, Lu, Yang, Yang, Yang, Zhao, Li (bb0980) 2016; 60 Gessler, Moore, McKenzie, Ryan (bb0210) 1995; 9 Nussbaum, Papritz, Baltensweiler, Walthert (bb0570) 2014; 7 Smola (bb0750) 1996 Gray, Bishop, Yang (bb0230) 2015; 53 Somarathna, Malone, Minasny (bb0755) 2016; 7 Domke, Perry, Walters, Nave, Woodall, Swanston (bb0165) 2017; 27 Kumar, Velmurugan, Hamm, Dadhwal (bb0405) 2018; 46 Ratnayake, Karunaratne, Lessels, Yogenthiran, Rajapaksha, Gnanavelrajah (bb0685) 2016; 7 Zeraatpisheh, Ayoubi, Jafari, Tajik, Finke (bb1010) 2019; 338 Song, Brus, Liu, Li, Zhao, Yang, Zhang (bb0765) 2016; 261 Wang, Waters, Orgill, Gray, Cowie, Clark, Liu (bb0885) 2018; 630 Padarian, Minasny, McBratney (bb0600) 2019; 5 Chartin, Stevens, Goidts, Krüger, Carnol, van Wesemael (bb0115) 2017; 9 Guevara, Olmedo, Stell, Yigini, Aguilar Duarte, Arellano Hernández, Arévalo, Arroyo-Cruz, Bolivar, Bunning, Bustamante Cañas, Cruz-Gaistardo, Davila, Dell Acqua, Encina, Figueredo Tacona, Fontes, Hernández Herrera, Ibelles Navarro, Loayza, Manueles, Mendoza Jara, Olivera, Osorio Hermosilla, Pereira, Prieto, Ramos, Rey Brina, Rivera, Rodríguez-Rodríguez, Roopnarine, Rosales Ibarra, Rosales Riveiro, Schulz, Spence, Vasques, Vargas, Vargas (bb0260) 2018; 4 Kalambukattu, Kumar, Arya Raj (bb0345) 2018; 77 Heuvelink, Kros, Reinds, De Vries (bb0295) 2016; 7 Liu, Geng, Zhu, Fraser, Waddell (bb0460) 2012; 171–172 Ramcharan, Hengl, Nauman, Brungard, Waltman, Wills, Thompson (bb0675) 2018; 82 Grimm, Behrens, Märker, Elsenbeer (bb0240) 2008; 146 Meersmans, van Wesemael, De Ridder, Van Molle (bb0520) 2009; 152 Rodríguez-Lado, Martínez-Cortizas (bb0700) 2015; 245–246 Florinsky (bb0195) 2012; 45 Peng, Bing, Guangpo, Guangcan (bb0620) 2013; 8 Chen, Martin, Saby, Walter, Angers, Arrouays (bb0120) 2018; 630 Kassai, Sisák (bb0350) 2018; 71 Ingram, Fernandes (bb0315) 2001; 87 Kumar, Mutanga (bb0390) 2018; 10 Mirzaee, Ghorbani-Dashtaki, Mohammadi, Asadi, Asadzadeh (bb0535) 2016; 145 Brunsdon, Fotheringham, Charlton (bb0075) 1996; 28 Wiesmeier, Barthold, Blank, Kogel-Knabner (bb0935) 2011; 340 Hounkpatin, Op de Hipt, Bossa, Welp, Amelung (bb0310) 2018; 166 Nijbroek, Piikki, Söderström, Kempen, Turner, Hengari, Mutua (bb0565) 2018; 10 Hengl, De Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger, Guevara, Vargas, MacMillan, Batjes, Leenaars, Ribeiro, Wheeler, Mantel, Kempen (bb0290) 2017; 12 Zhang, Huang, Shen, Ye, Du (bb1015) 2012; 171–172 Sreenivas, Dadhwal, Kumar, Harsha, Mitran, Sujatha, Suresh, Fyzee, Ravisankar (bb0785) 2016; 269 de Carvalho, Chagas, Lagacherie, Calderano Filho, Bhering (bb0100) 2014; 38 Ottoy, De Vos, Sindayihebura, Hermy, Van Orshoven (bb0585) 2017; 77 Dong, Wu, Luo, Sun, Xia (bb0170) 2019; 340 Hobley, Wilson, Wilkie, Gray, Koen (bb0305) 2015; 390 Adhikari, Hartemink (bb0010) 2017; 10 Badgery, Simmons, Murphy, Rawson, Andersson, Lonergan, van de Ven (bb0045) 2013; 51 Weil, Brady (bb0915) 2016 Veronesi, Corstanje, Mayr (bb0830) 2014; 487 Rial, Martínez Cortizas, Rodríguez-Lado (bb0690) 2017; 609 Siewert (bb0735) 2018; 15 Aitkenhead, Coull (bb0025) 2016; 262 Forkuor, Hounkpatin, Welp, Thiel (bb0200) 2017; 12 Kumar (bb0385) 2015; 127 Zinn, Lal, Resck (bb1045) 2005; 127 Triantafilis, Lesch, La Lau, Buchanan (bb0810) 2009; 47 Zhu, Liu, Li, Pei, Qin, Liu, Wang, Chen, Ma, Qi, Zhou (bb1040) 2010; 74 Arrouays, McBratney, Minasny, Hempel, Heuvelink, MacMillan, Hartemink, Lagacherie, McKenzie (bb0040) 2014 Quinlan (bb0660) 1993 Liu, Zhang, Sun, Zhao, Li (bb0465) 2013; 77 Vasenev, Stoorvogel, Vasenev, Valentini (bb0820) 2014; 226–227 Schulp, Veldkamp (bb0730) 2008; 146 Kim, Grunwald (bb0370) 2016; 45 Dai, Zhou, Lv, Wang, Liu (bb0140) 2014; 45 Petropoulos, Ireland, Barrett (bb0630) 2015; 83–84 Somarathna, Minasny, Malone (bb0760) 2017; 81 Doblas-Miranda, Rovira, Brotons, Martínez-Vilalta, Retana, Pla, Vayreda (bb0160) 2013; 10 Liaw, Wiener (bb0450) 2002; 2 Orton, Pringle, Page, Dalal, Bishop (bb0580) 2014; 230–231 Padarian, Minasny, McBratney (bb0595) 2017; 9 Wang, Wang, Adhikari, Wang, Sui, Xin (bb0910) 2019; 342 Yang, Rossiter, Liu, Lu, Yang, Yang, Zhao, Li, Zhang (bb0970) 2015; 10 Cortes, Vapnik (bb0130) 1995; 20 Malone, McBratney, Minasny (bb0495) 2013; 77 Wilson, Koen, Barnes, Ghosh, King (bb0960) 2011; 27 McNicol, Bulmer, D'Amore, Sanborn, Saunders, Giesbrecht, Arriola, Bidlack, Butman, Buma (bb0515) 2019; 14 Breiman (bb0065) 2001; 45 Fotheringham, Brunsdon, Charlton (bb0205) 2002 Cheng-Ping, Chuan, Hai-wei (bb0125) 2011 Castro-Franco, Costa, Peralta, Aparicio (bb0105) 2015; 180 Kumar, Lal, Liu, Rafiq (bb0400) 2013; 23 Schillaci, Lombardo, Saia, Fantappiè, Märker, Acutis (bb0725) 2017; 286 Wang, Zhuang, Jia, Jin, Wang (bb0890) 2018; 314 Moore, Gessler, Nielsen, Peterson (bb0540) 1993; Vasenev (10.1016/j.geoderma.2019.05.031_bb0820) 2014; 226–227 Castro-Franco (10.1016/j.geoderma.2019.05.031_bb0105) 2015; 180 Keskin (10.1016/j.geoderma.2019.05.031_bb0360) 2018; 326 Lombardo (10.1016/j.geoderma.2019.05.031_bb0475) 2018; 318 Liang (10.1016/j.geoderma.2019.05.031_bb0445) 2019; 335 Triantafilis (10.1016/j.geoderma.2019.05.031_bb0810) 2009; 47 Yang (10.1016/j.geoderma.2019.05.031_bb0970) 2015; 10 Yang (10.1016/j.geoderma.2019.05.031_bb0990) 2019; 340 Jobbágy (10.1016/j.geoderma.2019.05.031_bb0340) 2000; 10 Yang (10.1016/j.geoderma.2019.05.031_bb0985) 2016; 6 Kumar (10.1016/j.geoderma.2019.05.031_bb0385) 2015; 127 Schulp (10.1016/j.geoderma.2019.05.031_bb0730) 2008; 146 Sreenivas (10.1016/j.geoderma.2019.05.031_bb0780) 2014; 42 Tan (10.1016/j.geoderma.2019.05.031_bb0805) 2017; 55 Cheng-Ping (10.1016/j.geoderma.2019.05.031_bb0125) 2011 Grunwald (10.1016/j.geoderma.2019.05.031_bb0250) 2009; 152 Adhikari (10.1016/j.geoderma.2019.05.031_bb0010) 2017; 10 de Carvalho (10.1016/j.geoderma.2019.05.031_bb0100) 2014; 38 Hartemink (10.1016/j.geoderma.2019.05.031_bb0270) 2013; 207–208 GSOC Map (10.1016/j.geoderma.2019.05.031_bb1050) Malone (10.1016/j.geoderma.2019.05.031_bb0495) 2013; 77 Wang (10.1016/j.geoderma.2019.05.031_bb0900) 2018; 29 Wang (10.1016/j.geoderma.2019.05.031_bb0905) 2019; 174 Costa (10.1016/j.geoderma.2019.05.031_bb0135) 2018; 47 Elith (10.1016/j.geoderma.2019.05.031_bb0185) 2008; 77 Mulder (10.1016/j.geoderma.2019.05.031_bb0560) 2016; 263 Mirzaee (10.1016/j.geoderma.2019.05.031_bb0535) 2016; 145 Pahlavan-Rad (10.1016/j.geoderma.2019.05.031_bb0605) 2018; 15 Wang (10.1016/j.geoderma.2019.05.031_bb0885) 2018; 630 Rudiyanto (10.1016/j.geoderma.2019.05.031_bb0710) 2018; 313 Bengio (10.1016/j.geoderma.2019.05.031_bb0055) 2009; 2 Zhou (10.1016/j.geoderma.2019.05.031_bb1030) 2019; 647 Sun (10.1016/j.geoderma.2019.05.031_bb0790) 2017; 303 De'ath (10.1016/j.geoderma.2019.05.031_bb0145) 2007; 88 Doblas-Miranda (10.1016/j.geoderma.2019.05.031_bb0160) 2013; 10 Wang (10.1016/j.geoderma.2019.05.031_bb0890) 2018; 314 Zhang (10.1016/j.geoderma.2019.05.031_bb1015) 2012; 171–172 Zhao (10.1016/j.geoderma.2019.05.031_bb1025) 2014; 39 Sleutel (10.1016/j.geoderma.2019.05.031_bb0745) 2006; 22 Brus (10.1016/j.geoderma.2019.05.031_bb0080) 2011; 62 Badgery (10.1016/j.geoderma.2019.05.031_bb0045) 2013; 51 Nussbaum (10.1016/j.geoderma.2019.05.031_bb0570) 2014; 7 Adhikari (10.1016/j.geoderma.2019.05.031_bb0005) 2015; 79 Wilson (10.1016/j.geoderma.2019.05.031_bb0960) 2011; 27 Adhikari (10.1016/j.geoderma.2019.05.031_bb0015) 2013; 77 Guevara (10.1016/j.geoderma.2019.05.031_bb0260) 2018; 4 Siewert (10.1016/j.geoderma.2019.05.031_bb0735) 2018; 15 Bui (10.1016/j.geoderma.2019.05.031_bb0090) 2009; 23 Pedregosa (10.1016/j.geoderma.2019.05.031_bb0615) 2011; 12 Schillaci (10.1016/j.geoderma.2019.05.031_bb0720) 2017; 601–602 Were (10.1016/j.geoderma.2019.05.031_bb0925) 2016; 26 Forkuor (10.1016/j.geoderma.2019.05.031_bb0200) 2017; 12 Gray (10.1016/j.geoderma.2019.05.031_bb0235) 2016; 54 Dai (10.1016/j.geoderma.2019.05.031_bb0140) 2014; 45 Meersmans (10.1016/j.geoderma.2019.05.031_bb0520) 2009; 152 Quinlan (10.1016/j.geoderma.2019.05.031_bb0655) 1992 Vitharana (10.1016/j.geoderma.2019.05.031_bb0850) 2019; 337 Wilson (10.1016/j.geoderma.2019.05.031_bb0955) 2010; 48 Ottoy (10.1016/j.geoderma.2019.05.031_bb0590) 2017; 589 Amirian Chakan (10.1016/j.geoderma.2019.05.031_bb0035) 2017; 189 Kumar (10.1016/j.geoderma.2019.05.031_bb0390) 2018; 10 Rabbinge (10.1016/j.geoderma.2019.05.031_bb0670) 1994 Viscarra Rossel (10.1016/j.geoderma.2019.05.031_bb0840) 2014; 20 Smola (10.1016/j.geoderma.2019.05.031_bb0750) 1996 Yang (10.1016/j.geoderma.2019.05.031_bb0965) 2007; 84 Li (10.1016/j.geoderma.2019.05.031_bb0440) 2016; 62 Mulder (10.1016/j.geoderma.2019.05.031_bb0555) 2016; 573 Mueller (10.1016/j.geoderma.2019.05.031_bb0550) 2003; 67 Taghizadeh-Mehrjardi (10.1016/j.geoderma.2019.05.031_bb0800) 2017; 8 Bonfatti (10.1016/j.geoderma.2019.05.031_bb0060) 2016; 261 Lal (10.1016/j.geoderma.2019.05.031_bb0420) 2004; 304 McNicol (10.1016/j.geoderma.2019.05.031_bb0515) 2019; 14 Wang (10.1016/j.geoderma.2019.05.031_bb0895) 2018; 84 IUCN (10.1016/j.geoderma.2019.05.031_bb0320) 2015 Akpa (10.1016/j.geoderma.2019.05.031_bb0030) 2016; 271 Breiman (10.1016/j.geoderma.2019.05.031_bb0065) 2001; 45 Maynard (10.1016/j.geoderma.2019.05.031_bb0500) 2017; 285 McBratney (10.1016/j.geoderma.2019.05.031_bb0505) 2003; 117 Heuvelink (10.1016/j.geoderma.2019.05.031_bb0295) 2016; 7 Kumar (10.1016/j.geoderma.2019.05.031_bb0400) 2013; 23 Poggio (10.1016/j.geoderma.2019.05.031_bb0645) 2016; 277 Wiesmeier (10.1016/j.geoderma.2019.05.031_bb0940) 2014; 1 Li (10.1016/j.geoderma.2019.05.031_bb0435) 2010; 159 Mahmoudabadi (10.1016/j.geoderma.2019.05.031_bb0490) 2017; 189 Quinlan (10.1016/j.geoderma.2019.05.031_bb0660) 1993 Sreenivas (10.1016/j.geoderma.2019.05.031_bb0785) 2016; 269 Song (10.1016/j.geoderma.2019.05.031_bb0765) 2016; 261 Kassai (10.1016/j.geoderma.2019.05.031_bb0350) 2018; 71 Cortes (10.1016/j.geoderma.2019.05.031_bb0130) 1995; 20 Poggio (10.1016/j.geoderma.2019.05.031_bb0640) 2013; 209–210 Domke (10.1016/j.geoderma.2019.05.031_bb0165) 2017; 27 Rodríguez-Lado (10.1016/j.geoderma.2019.05.031_bb0700) 2015; 245–246 Wang (10.1016/j.geoderma.2019.05.031_bb0880) 2017; 305 GSP (10.1016/j.geoderma.2019.05.031_bb0255) 2017 Kuhn (10.1016/j.geoderma.2019.05.031_bb0380) 2018 Yang (10.1016/j.geoderma.2019.05.031_bb0980) 2016; 60 Nussbaum (10.1016/j.geoderma.2019.05.031_bb0575) 2018; 4 Adhikari (10.1016/j.geoderma.2019.05.031_bb0020) 2014; 9 Viscarra Rossel (10.1016/j.geoderma.2019.05.031_bb0845) 2015; 53 Kumar (10.1016/j.geoderma.2019.05.031_bb0395) 1997; 11 Wadoux (10.1016/j.geoderma.2019.05.031_bb0855) 2019; 5 Chartin (10.1016/j.geoderma.2019.05.031_bb0115) 2017; 9 Somarathna (10.1016/j.geoderma.2019.05.031_bb0755) 2016; 7 Padarian (10.1016/j.geoderma.2019.05.031_bb0595) 2017; 9 Wiesmeier (10.1016/j.geoderma.2019.05.031_bb0945) 2019; 333 Hempel (10.1016/j.geoderma.2019.05.031_bb0275) 2014 Wang (10.1016/j.geoderma.2019.05.031_bb0910) 2019; 342 Kidd (10.1016/j.geoderma.2019.05.031_bb0365) 2015; 53 Dong (10.1016/j.geoderma.2019.05.031_bb0170) 2019; 340 Ottoy (10.1016/j.geoderma.2019.05.031_bb0585) 2017; 77 Orton (10.1016/j.geoderma.2019.05.031_bb0580) 2014; 230–231 Moore (10.1016/j.geoderma.2019.05.031_bb0540) 1993; 57 Campbell (10.1016/j.geoderma.2019.05.031_bb0095) 2011 Jeong (10.1016/j.geoderma.2019.05.031_bb0335) 2017; 154 Song (10.1016/j.geoderma.2019.05.031_bb0775) 2017; 9 Kumar (10.1016/j.geoderma.2019.05.031_bb0405) 2018; 46 Gomes (10.1016/j.geoderma.2019.05.031_bb0215) 2019; 340 Piccini (10.1016/j.geoderma.2019.05.031_bb0635) 2014; 36 Ramcharan (10.1016/j.geoderma.2019.05.031_bb0675) 2018; 82 Qin (10.1016/j.geoderma.2019.05.031_bb0650) 2012; 171–172 Kuhn (10.1016/j.geoderma.2019.05.031_bb0375) 2013; 26 Grinand (10.1016/j.geoderma.2019.05.031_bb0245) 2017; 54 Aitkenhead (10.1016/j.geoderma.2019.05.031_bb0025) 2016; 262 Somarathna (10.1016/j.geoderma.2019.05.031_bb0760) 2017; 81 Drake (10.1016/j.geoderma.2019.05.031_bb0180) 2006; 43 Arrouays (10.1016/j.geoderma.2019.05.031_bb0040) 2014 Yang (10.1016/j.geoderma.2019.05.031_bb0975) 2016; 26 Liu (10.1016/j.geoderma.2019.05.031_bb0470) 2015; 148 Zhou (10.1016/j.geoderma.2019.05.031_bb1035) 2019; 334 Liaw (10.1016/j.geoderma.2019.05.031_bb0450) 2002; 2 Fotheringham (10.1016/j.geoderma.2019.05.031_bb0205) 2002 Zhu (10.1016/j.geoderma.2019.05.031_bb1040) 2010; 74 Gray (10.1016/j.geoderma.2019.05.031_bb0230) 2015; 53 (10.1016/j.geoderma.2019.05.031_bb1000) 2018 Brus (10.1016/j.geoderma.2019.05.031_bb0085) 2016; 141 Ma (10.1016/j.geoderma.2019.05.031_bb0485) 2017; 10 Gessler (10.1016/j.geoderma.2019.05.031_bb0210) 1995; 9 Ingram (10.1016/j.geoderma.2019.05.031_bb0315) 2001; 87 Hounkpatin (10.1016/j.geoderma.2019.05.031_bb0310) 2018; 166 Van Apeldoorn (10.1016/j.geoderma.2019.05.031_bb0815) 2014; 2–3 Rabbi (10.1016/j.geoderma.2019.05.031_bb0665) 2015; 5 James (10.1016/j.geoderma.2019.05.031_bb0325) 2016; 5 Wang (10.1016/j.geoderma.2019.05.031_bb0875) 2016; 8 Batjes (10.1016/j.geoderma.2019.05.031_bb0050) 1996; 47 Lek (10.1016/j.geoderma.2019.05.031_bb0430) 1999; 120 Petropoulos (10.1016/j.geoderma.2019.05.031_bb0630) 2015; 83–84 Gray (10.1016/j.geoderma.2019.05.031_bb0220) 2016; 80 Zhang (10.1016/j.geoderma.2019.05.031_bb1020) 2017; 16 Hengl (10.1016/j.geoderma.2019.05.031_bb0280) 2004; 120 Rial (10.1016/j.geoderma.2019.05.031_bb0695) 2017; 156 Yigini (10.1016/j.geoderma.2019.05.031_bb0995) 2016; 557–558 Hobley (10.1016/j.geoderma.2019.05.031_bb0305) 2015; 390 Dorji (10.1016/j.geoderma.2019.05.031_bb0175) 2014; 318 Zeng (10.1016/j.geoderma.2019.05.031_bb1005) 2016; 281 Weil (10.1016/j.geoderma.2019.05.031_bb0915) 2016 Laub (10.1016/j.geoderma.2019.05.031_bb0425) 2018; 330 Padarian (10.1016/j.geoderma.2019.05.031_bb0600) 2019; 5 Vaysse (10.1016/j.geoderma.2019.05.031_bb0825) 2015; 4 Peng (10.1016/j.geoderma.2019.05.031_bb0625) 2015; 10 Rial (10.1016/j.geoderma.2019.05.031_bb0690) 2017; 609 Wang (10.1016/j.geoderma.2019.05.031_bb0870) 2014; 59 Chen (10.1016/j.geoderma.2019.05.031_bb0120) 2018; 630 Liddicoat (10.1016/j.geoderma.2019.05.031_bb0455) 2015; 53 Brunsdon (10.1016/j.geoderma.2019.05.031_bb0075) 1996; 28 de Brogniez (10.1016/j.geoderma.2019.05.031_bb0070) 2015; 66 Kupfer (10.1016/j.geoderma.2019.05.031_bb0410) 2007; 22 Kim (10.1016/j.geoderma.2019.05.031_bb0370) 2016; 45 Zinn (10.1016/j.geoderma.2019.05.031_bb1045) 2005; 127 Viscarra Rossel (10.1016/j.geoderma.2019.05.031_bb0835) 2010; 158 Ratnayake (10.1016/j.geoderma.2019.05.031_bb0685) 2016; 7 Liu (10.1016/j.geoderma.2019.05.031_bb0465) 2013; 77 Paul (10.1016/j.geoderma.2019.05.031_bb0610) 2016; 98 Florinsky (10.1016/j.geoderma.2019.05.031_bb0195) 2012; 45 Peng (10.1016/j.geoderma.2019.05.031_bb0620) 2013; 8 de Menezes (10.1016/j.geoderma.2019.05.031_bb0525) 2016; 73 Lacoste (10.1016/j.geoderma.2019.05.031_bb0415) 2014; 213 Jenny (10.1016/j.geoderma.2019.05.031_bb0330) 1941 Minasny (10.1016/j.geoderma.2019.05.031_bb0530) 2013 Liu (10.1016/j.geoderma.2019.05.031_bb0460) 2012; 171–172 Song (10.1016/j.geoderma.2019.05.031_bb0770) 2017; 27 Walkley (10.1016 |
References_xml | – volume: 152 start-page: 43 year: 2009 end-page: 52 ident: bb0520 article-title: Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium) publication-title: Geoderma – volume: 59 start-page: 91 year: 2014 end-page: 106 ident: bb0870 article-title: Mapping soil organic matter with limited sample data using geographically weighted regression publication-title: J. Spat. Sci. – volume: 245–246 start-page: 65 year: 2015 end-page: 73 ident: bb0700 article-title: Modelling and mapping organic carbon content of topsoils in an Atlantic area of southwestern Europe (Galicia, NW-Spain) publication-title: Geoderma – volume: 28 start-page: 281 year: 1996 end-page: 298 ident: bb0075 article-title: Geographically weighted regression: a method for exploring spatial nonstationarity publication-title: Geogr. Anal. – year: 2011 ident: bb0095 article-title: Introduction to Remote Sensing – volume: 158 start-page: 46 year: 2010 end-page: 54 ident: bb0835 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma – volume: 45 start-page: 184 year: 2014 end-page: 194 ident: bb0140 article-title: Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau publication-title: Ecol. Indic. – volume: 303 start-page: 118 year: 2017 end-page: 132 ident: bb0790 article-title: Digital soil mapping based on wavelet decomposed components of environmental covariates publication-title: Geoderma – volume: 166 start-page: 298 year: 2018 end-page: 309 ident: bb0310 article-title: Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso) publication-title: Catena – volume: 9 year: 2017 ident: bb0110 article-title: Soil carbon stock and particle size fractions in the central Amazon predicted from remotely sensed relief, multispectral and radar data publication-title: Remote Sens. – volume: 62 start-page: 394 year: 2011 end-page: 407 ident: bb0080 article-title: Sampling for validation of digital soil maps publication-title: Eur. J. Soil Sci. – volume: 338 start-page: 445 year: 2019 end-page: 452 ident: bb1010 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran publication-title: Geoderma – volume: 45 start-page: 1910 year: 2016 end-page: 1918 ident: bb0370 article-title: Assessment of carbon stocks in the topsoil using random forest and remote sensing images publication-title: J. Environ. Qual. – volume: 589 start-page: 153 year: 2017 end-page: 164 ident: bb0590 article-title: Assessing top- and subsoil organic carbon stocks of low-input high-diversity systems using soil and vegetation characteristics publication-title: Sci. Total Environ. – volume: 22 start-page: 394 year: 2012 end-page: 403 ident: bb0865 article-title: Mapping Soil texture of a plain area using fuzzy-c-means clustering method based on land surface diurnal temperature difference publication-title: Pedosphere – volume: 630 start-page: 389 year: 2018 end-page: 400 ident: bb0120 article-title: Fine resolution map of top- and subsoil carbon sequestration potential in France publication-title: Sci. Total Environ. – volume: 88 start-page: 243 year: 2007 end-page: 251 ident: bb0145 article-title: Boosted trees for ecological modeling and prediction publication-title: Ecology – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: bb0055 article-title: Learning deep architectures for AI publication-title: Found. Trends® Mach. Learn. – volume: 47 start-page: 735 year: 2018 end-page: 745 ident: bb0705 article-title: Projecting soil organic carbon distribution in central chile under future climate scenarios publication-title: J. Environ. Qual. – volume: 171–172 start-page: 35 year: 2012 end-page: 43 ident: bb1015 article-title: Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information publication-title: Geoderma – volume: 1 start-page: 67 year: 2014 end-page: 78 ident: bb0940 article-title: Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany) publication-title: Geoderma Regional – volume: 342 start-page: 55 year: 2019 end-page: 64 ident: bb0910 article-title: Effect of cultivation history on soil organic carbon status of arable land in northeastern China publication-title: Geoderma – volume: 79 start-page: 1741 year: 2015 end-page: 1751 ident: bb0225 article-title: Factors controlling soil organic carbon stocks with depth in Eastern Australia publication-title: Soil Sci. Soc. Am. J. – volume: 20 start-page: 2953 year: 2014 end-page: 2970 ident: bb0840 article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change publication-title: Glob. Chang. Biol. – volume: 318 start-page: 91 year: 2014 end-page: 102 ident: bb0175 article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas publication-title: For. Ecol. Manag. – volume: 156 start-page: 161 year: 2017 end-page: 175 ident: bb0740 article-title: Comparing digital soil mapping techniques for organic carbon and clay content: case study in Burundi's central plateaus publication-title: Catena – volume: 53 start-page: 24 year: 2015 end-page: 42 ident: bb0230 article-title: Pragmatic models for the prediction and digital mapping of soil properties in eastern Australia publication-title: Soil Research – volume: 10 start-page: 115 year: 2017 end-page: 125 ident: bb0010 article-title: Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA publication-title: Geoderma Reg. – volume: 313 start-page: 25 year: 2018 end-page: 40 ident: bb0710 article-title: Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands publication-title: Geoderma – volume: 213 start-page: 296 year: 2014 end-page: 311 ident: bb0415 article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape publication-title: Geoderma – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bb0505 article-title: On digital soil mapping publication-title: Geoderma – volume: 79 start-page: 155 year: 2015 end-page: 164 ident: bb0005 article-title: Digital mapping of topsoil carbon content and changes in the Driftless area of Wisconsin, USA publication-title: Soil Sci. Soc. Am. J. – volume: 487 start-page: 578 year: 2014 end-page: 586 ident: bb0830 article-title: Landscape scale estimation of soil carbon stock using 3D modelling publication-title: Sci. Total Environ. – volume: 189 year: 2017 ident: bb0490 article-title: Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran publication-title: Environ. Monit. Assess. – volume: 180 start-page: 74 year: 2015 end-page: 85 ident: bb0105 article-title: Prediction of soil properties at farm scale using a model-based soil sampling scheme and random forest publication-title: Soil Sci. – volume: 83–84 start-page: 36 year: 2015 end-page: 56 ident: bb0630 article-title: Surface soil moisture retrievals from remote sensing: current status, products & future trends publication-title: Phys. Chem. Earth Parts A/B/C – volume: 314 start-page: 8 year: 2018 end-page: 19 ident: bb0890 article-title: Spatial variations of soil organic carbon stocks in a coastal hilly area of China publication-title: Geoderma – volume: 10 start-page: 1610 year: 2018 ident: bb0565 article-title: Soil organic carbon baselines for land degradation neutrality: map accuracy and cost tradeoffs with respect to complexity in Otjozondjupa, Namibia publication-title: Sustainability – volume: 77 start-page: 172 year: 2018 ident: bb0300 article-title: Prediction of soil organic carbon stock using digital mapping approach in humid India publication-title: Environ. Earth Sci. – volume: 146 start-page: 102 year: 2008 end-page: 113 ident: bb0240 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island — digital soil mapping using random forests analysis publication-title: Geoderma – volume: 226–227 start-page: 103 year: 2014 end-page: 115 ident: bb0820 article-title: How to map soil organic carbon stocks in highly urbanized regions? publication-title: Geoderma – volume: 145 start-page: 118 year: 2016 end-page: 127 ident: bb0535 article-title: Spatial variability of soil organic matter using remote sensing data publication-title: Catena – volume: 340 start-page: 7 year: 2011 ident: bb0935 article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem publication-title: Plant Soil – volume: 10 start-page: 1509 year: 2018 ident: bb0390 article-title: Google earth engine applications since inception: usage, trends, and potential publication-title: Remote Sens. – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: bb0185 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. – volume: 7 start-page: 1197 year: 2014 end-page: 1210 ident: bb0570 article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging publication-title: Geosci. Model Dev. – volume: 27 start-page: 877 year: 2017 end-page: 889 ident: bb0930 article-title: A novel evolutionary genetic optimization-based adaptive neuro-fuzzy inference system and geographical information systems predict and map soil organic carbon stocks across an afromontane landscape publication-title: Pedosphere – volume: 10 year: 2015 ident: bb0285 article-title: Mapping soil properties of Africa at 250 publication-title: PLoS ONE – volume: 209–210 start-page: 1 year: 2013 end-page: 14 ident: bb0640 article-title: Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates publication-title: Geoderma – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0130 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 630 start-page: 367 year: 2018 end-page: 378 ident: bb0885 article-title: High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia publication-title: Sci. Total Environ. – volume: 43 start-page: 424 year: 2006 end-page: 432 ident: bb0180 article-title: Modelling ecological niches with support vector machines publication-title: J. Appl. Ecol. – volume: 98 start-page: 109 year: 2016 end-page: 126 ident: bb0610 article-title: The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization publication-title: Soil Biol. Biochem. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0065 article-title: Random forests publication-title: Mach. Learn. – volume: 77 start-page: 890 year: 2013 end-page: 902 ident: bb0495 article-title: Spatial scaling for digital soil mapping publication-title: Soil Sci. Soc. Am. J. – year: 2018 ident: bb0380 article-title: Cubist: Rule-and Instance-based Regression Modeling – volume: 15 start-page: 1663 year: 2018 end-page: 1682 ident: bb0735 article-title: High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment publication-title: Biogeosciences – volume: 39 start-page: 120 year: 2014 end-page: 133 ident: bb1025 article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index publication-title: Ecol. Indic. – volume: 77 start-page: 1241 year: 2013 end-page: 1253 ident: bb0465 article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape publication-title: Soil Sci. Soc. Am. J. – volume: 557–558 start-page: 838 year: 2016 end-page: 850 ident: bb0995 article-title: Assessment of soil organic carbon stocks under future climate and land cover changes in Europe publication-title: Sci. Total Environ. – volume: 23 start-page: 280 year: 2013 end-page: 296 ident: bb0400 article-title: Estimating the spatial distribution of organic carbon density for the soils of Ohio, USA publication-title: J. Geogr. Sci. – year: 2008 ident: bb0480 article-title: Quantitative mapping of soil organic material using field spectrometer and hyperspectral remote sensing publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B8) Beijing – volume: 10 start-page: 144 year: 2017 end-page: 153 ident: bb0485 article-title: Mapping key soil properties to support agricultural production in Eastern China publication-title: Geoderma Regional – year: 2002 ident: bb0205 article-title: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships – volume: 52 start-page: 394 year: 2015 end-page: 403 ident: bb0920 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. – volume: 127 start-page: 168 year: 2005 end-page: 173 ident: bb1045 article-title: Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils publication-title: Geoderma – volume: 23 year: 2009 ident: bb0090 article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia publication-title: Glob. Biogeochem. Cycles – start-page: 15 year: 2000 end-page: 26 ident: bb0190 publication-title: Global Climate Change and Pedogenic Carbonates – volume: 146 start-page: 457 year: 2008 end-page: 465 ident: bb0730 article-title: Long-term landscape – land use interactions as explaining factor for soil organic matter variability in Dutch agricultural landscapes publication-title: Geoderma – volume: 266 start-page: 98 year: 2016 end-page: 110 ident: bb0795 article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran publication-title: Geoderma – volume: 4 start-page: 173 year: 2018 end-page: 193 ident: bb0260 article-title: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America publication-title: Soil – volume: 60 start-page: 870 year: 2016 end-page: 878 ident: bb0980 article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem publication-title: Ecol. Indic. – volume: 174 start-page: 248 year: 2019 end-page: 258 ident: bb0905 article-title: A multi-factor weighted regression approach for estimating the spatial distribution of soil organic carbon in grasslands publication-title: Catena – volume: 8 start-page: 277 year: 2017 end-page: 291 ident: bb0800 article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA publication-title: Carbon Manag. – volume: 337 start-page: 164 year: 2019 end-page: 180 ident: bb0355 article-title: Mapping topsoil organic carbon concentrations and stocks for Tanzania publication-title: Geoderma – volume: 281 start-page: 69 year: 2016 end-page: 82 ident: bb1005 article-title: Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method publication-title: Geoderma – volume: 51 start-page: 645 year: 2013 end-page: 656 ident: bb0045 article-title: Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia publication-title: Soil Research – volume: 27 start-page: 437 year: 2011 end-page: 447 ident: bb0960 article-title: Soil carbon and related soil properties along a soil type and land-use intensity gradient, New South Wales, Australia publication-title: Soil Use Manag. – volume: 38 start-page: 706 year: 2014 end-page: 717 ident: bb0100 article-title: Evaluation of statistical and geostatistical models of digital soil properties mapping in tropical mountain regions publication-title: Rev. Bras. Cienc. Solo – volume: 57 start-page: 443 year: 1993 end-page: 452 ident: bb0540 article-title: Soil attribute prediction using terrain analysis publication-title: Soil Sci. Soc. Am. J. – volume: 73 start-page: 274 year: 2016 end-page: 285 ident: bb0525 article-title: Spatial prediction of soil properties in two contrasting physiographic regions in Brazil publication-title: Sci. Agric. – volume: 53 start-page: 956 year: 2015 end-page: 973 ident: bb0455 article-title: Predictive mapping of soil organic carbon stocks in South Australia's agricultural zone publication-title: Soil Research – volume: 390 start-page: 111 year: 2015 end-page: 127 ident: bb0305 article-title: Drivers of soil organic carbon storage and vertical distribution in Eastern Australia publication-title: Plant Soil – volume: 53 start-page: 845 year: 2015 end-page: 864 ident: bb0845 article-title: The Australian three-dimensional soil grid: Australia's contribution to the GlobalSoilMap project publication-title: Soil Research – year: 2014 ident: bb0040 article-title: The GlobalSoilMap project specifications publication-title: GlobalSoilMap: Basis of the Global Spatial Soil Information System – volume: 127 start-page: 49 year: 2015 end-page: 57 ident: bb0385 article-title: Estimating spatial distribution of soil organic carbon for the Midwestern United States using historical database publication-title: Chemosphere – volume: 10 year: 2015 ident: bb0970 article-title: Predictive mapping of topsoil organic Carbon in an Alpine environment aided by Landsat TM publication-title: PLoS ONE – volume: 26 start-page: 699 year: 2016 end-page: 708 ident: bb0975 article-title: Mapping soil texture based on field soil moisture observations at a high temporal resolution in an oasis agricultural area publication-title: Pedosphere – volume: 335 start-page: 47 year: 2019 end-page: 56 ident: bb0445 article-title: National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China publication-title: Geoderma – volume: 47 start-page: 651 year: 2009 end-page: 663 ident: bb0810 article-title: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model publication-title: Soil Research – start-page: 31 year: 1994 end-page: 40 ident: bb0670 article-title: Tension between aggregation levels publication-title: The Future of the Land – volume: 26 start-page: 102 year: 2016 end-page: 124 ident: bb0925 article-title: Spatially distributed modelling and mapping of soil organic carbon and total nitrogen stocks in the Eastern Mau Forest Reserve, Kenya publication-title: J. Geogr. Sci. – volume: 230–231 start-page: 119 year: 2014 end-page: 130 ident: bb0580 article-title: Spatial prediction of soil organic carbon stock using a linear model of coregionalisation publication-title: Geoderma – volume: 261 start-page: 11 year: 2016 end-page: 22 ident: bb0765 article-title: Mapping soil organic carbon content by geographically weighted regression: a case study in the Heihe River Basin, China publication-title: Geoderma – year: 1996 ident: bb0750 article-title: Regression Estimation With Support Vector Learning Machines – volume: 77 year: 2018 ident: bb0345 article-title: Digital soil mapping in a Himalayan watershed using remote sensing and terrain parameters employing artificial neural network model publication-title: Environ. Earth Sci. – volume: 71 start-page: 29 year: 2018 end-page: 39 ident: bb0350 article-title: The role of geology in the spatial prediction of soil properties in the watershed of Lake Balaton, Hungary publication-title: Geol. Croat. – volume: 171–172 start-page: 44 year: 2012 end-page: 52 ident: bb0460 article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS publication-title: Geoderma – volume: 10 start-page: 8353 year: 2013 end-page: 8361 ident: bb0160 article-title: Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain publication-title: Biogeosciences – volume: 46 start-page: 705 year: 2018 end-page: 716 ident: bb0405 article-title: Geospatial mapping of soil organic carbon using regression kriging and remote sensing publication-title: Journal of the Indian Society of Remote Sensing – volume: 4 start-page: 1 year: 2018 end-page: 22 ident: bb0575 article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates publication-title: SOIL – volume: 74 start-page: 861 year: 2010 end-page: 869 ident: bb1040 article-title: Differentiation of soil conditions over low relief areas using feedback dynamic patterns publication-title: Soil Sci. Soc. Am. J. – volume: 47 start-page: 718 year: 2018 end-page: 725 ident: bb0135 article-title: Mapping soil organic carbon and organic matter fractions by geographically weighted regression publication-title: J. Environ. Qual. – volume: 2–3 start-page: 32 year: 2014 end-page: 40 ident: bb0815 article-title: Analysing soil organic C gradients in a smallholder farming village of East Zimbabwe publication-title: Geoderma Regional – start-page: 236 year: 1993 end-page: 243 ident: bb0660 article-title: Combining instance-based and model-based learning publication-title: Proceedings of the Tenth International Conference on Machine Learning – volume: 154 start-page: 73 year: 2017 end-page: 84 ident: bb0335 article-title: Spatial soil nutrients prediction using three supervised learning methods for assessment of land potentials in complex terrain publication-title: Catena – volume: 7 start-page: 38 year: 2016 end-page: 48 ident: bb0755 article-title: Mapping soil organic carbon content over New South Wales, Australia using local regression kriging publication-title: Geoderma Regional – volume: 340 start-page: 337 year: 2019 end-page: 350 ident: bb0215 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma – volume: 148 start-page: 46 year: 2015 end-page: 58 ident: bb0470 article-title: Comparing geospatial techniques to predict SOC stocks publication-title: Soil Tillage Res. – volume: 254 start-page: 213 year: 2018 end-page: 223 ident: bb0150 article-title: Baseline map of organic carbon stock in farmland topsoil in East China publication-title: Agric. Ecosyst. Environ. – volume: 330 start-page: 177 year: 2018 end-page: 192 ident: bb0425 article-title: A mixed model for landscape soil organic carbon prediction across continuous profile depth in the mountainous subtropics publication-title: Geoderma – volume: 12 year: 2017 ident: bb0290 article-title: SoilGrids250 publication-title: PLoS ONE – volume: 340 start-page: 234 year: 2019 end-page: 248 ident: bb0170 article-title: Land parcel-based digital soil mapping of soil nutrient properties in an alluvial-diluvia plain agricultural area in China publication-title: Geoderma – volume: 171–172 start-page: 64 year: 2012 end-page: 74 ident: bb0650 article-title: Mapping soil organic matter in small low-relief catchments using fuzzy slope position information publication-title: Geoderma – volume: 9 year: 2014 ident: bb0020 article-title: Digital mapping of soil organic carbon contents and stocks in Denmark publication-title: PLoS ONE – volume: 9 start-page: 73 year: 2017 end-page: 86 ident: bb0115 article-title: Mapping soil organic carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia) publication-title: Geoderma Regional – volume: 9 start-page: 421 year: 1995 end-page: 432 ident: bb0210 article-title: Soil-landscape modelling and spatial prediction of soil attributes publication-title: Int. J. Geogr. Inf. Syst. – year: 2016 ident: bb0915 article-title: The Nature and Properties of Soils – volume: 5 start-page: 7 year: 2016 ident: bb0325 article-title: A methodology for systematic mapping in environmental sciences publication-title: Environ. Evid. – volume: 609 start-page: 1411 year: 2017 end-page: 1422 ident: bb0690 article-title: Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils publication-title: Sci. Total Environ. – volume: 15 year: 2018 ident: bb0605 article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran publication-title: Geoderma Regional – year: 2018 ident: bb1000 publication-title: Soil Organic Carbon Mapping Cookbook – volume: 54 start-page: 1 year: 2017 end-page: 14 ident: bb0245 article-title: Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 48 start-page: 421 year: 2010 end-page: 433 ident: bb0955 article-title: Measurement and estimation of land-use effects on soil carbon and related properties for soil monitoring: a study on a basalt landscape of northern New South Wales, Australia publication-title: Soil Research – volume: 66 start-page: 121 year: 2015 end-page: 134 ident: bb0070 article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model publication-title: Eur. J. Soil Sci. – volume: 57 start-page: 329 year: 1993 end-page: 355 ident: bb0510 article-title: A quantitative australian approach to medium and small-scale surveys based on soil stratigraphy and environmental correlation publication-title: Geoderma – volume: 573 start-page: 1352 year: 2016 end-page: 1369 ident: bb0555 article-title: GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth publication-title: Sci. Total Environ. – volume: 27 start-page: 681 year: 2017 end-page: 693 ident: bb0770 article-title: Mapping soil organic carbon using local terrain attributes: a comparison of different polynomial models publication-title: Pedosphere – volume: 55 start-page: 318 year: 2017 end-page: 331 ident: bb0805 article-title: Prediction of soil properties by using geographically weighted regression at a regional scale publication-title: Soil Res. – volume: 141 start-page: 46 year: 2016 end-page: 55 ident: bb0085 article-title: Three-dimensional geostatistical modeling of soil organic carbon: a case study in the Qilian Mountains, China publication-title: Catena – volume: 84 start-page: 131 year: 2007 end-page: 141 ident: bb0965 article-title: Storage, patterns and environmental controls of soil organic carbon in China publication-title: Biogeochemistry – volume: 4 start-page: 20 year: 2015 end-page: 30 ident: bb0825 article-title: Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France) publication-title: Geoderma Regional – volume: 120 start-page: 65 year: 1999 end-page: 73 ident: bb0430 article-title: Artificial neural networks as a tool in ecological modelling, an introduction publication-title: Ecol. Model. – volume: 262 start-page: 187 year: 2016 end-page: 198 ident: bb0025 article-title: Mapping soil carbon stocks across Scotland using a neural network model publication-title: Geoderma – year: 2015 ident: bb0320 article-title: Land degradation neutrality: implications and opportunities for conservation publication-title: Technical Brief – volume: 189 year: 2017 ident: bb0035 article-title: Spatial 3D distribution of soil organic carbon under different land use types publication-title: Environ. Monit. Assess. – volume: 237–238 start-page: 49 year: 2015 end-page: 59 ident: bb0265 article-title: Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach publication-title: Geoderma – volume: 67 start-page: 258 year: 2003 end-page: 267 ident: bb0550 article-title: Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales publication-title: Soil Sci. Soc. Am. J. – volume: 16 start-page: 2871 year: 2017 end-page: 2885 ident: bb1020 article-title: Recent progress and future prospect of digital soil mapping: a review publication-title: J. Integr. Agric. – volume: 26 year: 2013 ident: bb0375 article-title: Applied Predictive Modeling – volume: 11 start-page: 475 year: 1997 end-page: 497 ident: bb0395 article-title: Modelling topographic variation in solar radiation in a GIS environment publication-title: Int. J. Geogr. Inf. Sci. – volume: 340 start-page: 289 year: 2019 end-page: 302 ident: bb0990 article-title: Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables publication-title: Geoderma – volume: 188 start-page: 1 year: 2016 end-page: 13 ident: bb0545 article-title: The effectiveness of digital soil mapping to predict soil properties over low-relief areas publication-title: Environ. Monit. Assess. – volume: 285 start-page: 94 year: 2017 end-page: 109 ident: bb0500 article-title: Hyper-temporal remote sensing for digital soil mapping: characterizing soil-vegetation response to climatic variability publication-title: Geoderma – volume: 269 start-page: 160 year: 2016 end-page: 173 ident: bb0785 article-title: Digital mapping of soil organic and inorganic carbon status in India publication-title: Geoderma – volume: 277 start-page: 69 year: 2016 end-page: 82 ident: bb0645 article-title: Bayesian spatial modelling of soil properties and their uncertainty: the example of soil organic matter in Scotland using R-INLA publication-title: Geoderma – volume: 29 start-page: 26 year: 2018 end-page: 37 ident: bb0900 article-title: Large-scale soil organic carbon mapping based on multivariate modelling: the case of grasslands on the Loess Plateau publication-title: Land Degrad. Dev. – volume: 152 start-page: 195 year: 2009 end-page: 207 ident: bb0250 article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches publication-title: Geoderma – year: 2017 ident: bb0255 article-title: Global Soil Organic Carbon Map - Leaflet – volume: 271 start-page: 202 year: 2016 end-page: 215 ident: bb0030 article-title: Total soil organic carbon and carbon sequestration potential in Nigeria publication-title: Geoderma – year: 1941 ident: bb0330 article-title: Factors of Soil Formation - A System of Quantitative Pedology – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0450 article-title: Classification and regression by randomForest publication-title: R News – volume: 156 start-page: 74 year: 2017 end-page: 81 ident: bb0695 article-title: Soil organic carbon stocks in Santa Cruz Island, Galapagos, under different climate change scenarios publication-title: Catena – volume: 51 start-page: 668 year: 2013 end-page: 679 ident: bb0950 article-title: Land-use and historical management effects on soil organic carbon in grazing systems on the Northern Tablelands of New South Wales publication-title: Soil Research – volume: 6 year: 2016 ident: bb0985 article-title: Precise estimation of soil organic carbon stocks in the northeast Tibetan Plateau publication-title: Sci. Rep. – volume: 45 start-page: 445 year: 2012 end-page: 451 ident: bb0195 article-title: The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication) publication-title: Eurasian Soil Sci. – volume: 22 start-page: 837 year: 2007 end-page: 852 ident: bb0410 article-title: Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models publication-title: Landsc. Ecol. – volume: 84 start-page: 263 year: 2018 end-page: 272 ident: bb0895 article-title: Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China publication-title: Ecol. Indic. – volume: 261 start-page: 204 year: 2016 end-page: 221 ident: bb0060 article-title: Digital mapping of soil carbon in a viticultural region of Southern Brazil publication-title: Geoderma – volume: 14 year: 2018 ident: bb0715 article-title: Soil texture and organic carbon mapping using surface temperature and reflectance spectra in Southeast Brazil publication-title: Geoderma Regional – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bb0615 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 8 year: 2016 ident: bb0875 article-title: Spatial-temporal changes of soil organic carbon content in Wafangdian, China publication-title: Sustainability – volume: 334 start-page: 124 year: 2019 end-page: 133 ident: bb1035 article-title: Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s publication-title: Geoderma – volume: 333 start-page: 149 year: 2019 end-page: 162 ident: bb0945 article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales publication-title: Geoderma – volume: 5 year: 2015 ident: bb0665 article-title: Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia publication-title: Sci. Rep. – volume: 81 start-page: 1413 year: 2017 end-page: 1426 ident: bb0760 article-title: More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon publication-title: Soil Sci. Soc. Am. J. – volume: 8 year: 2013 ident: bb0620 article-title: Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China publication-title: PLoS ONE – volume: 9 year: 2017 ident: bb0775 article-title: Spatial prediction of soil organic matter using a hybrid geostatistical model of an extreme learning machine and ordinary kriging publication-title: Sustainability – volume: 647 start-page: 1230 year: 2019 end-page: 1238 ident: bb1030 article-title: Land use and climate change effects on soil organic carbon in North and Northeast China publication-title: Sci. Total Environ. – start-page: 1 year: 2013 end-page: 47 ident: bb0530 article-title: Digital mapping of soil carbon publication-title: Advances in Agronomy – volume: 77 start-page: 860 year: 2013 end-page: 876 ident: bb0015 article-title: High-resolution 3-D mapping of soil texture in Denmark publication-title: Soil Sci. Soc. Am. J. – volume: 27 start-page: 1223 year: 2017 end-page: 1235 ident: bb0165 article-title: Toward inventory-based estimates of soil organic carbon in forests of the United States publication-title: Ecol. Appl. – volume: 77 start-page: 139 year: 2017 end-page: 150 ident: bb0585 article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation publication-title: Ecol. Indic. – volume: 87 start-page: 111 year: 2001 end-page: 117 ident: bb0315 article-title: Managing carbon sequestration in soils: concepts and terminology publication-title: Agric. Ecosyst. Environ. – volume: 36 start-page: 301 year: 2014 end-page: 314 ident: bb0635 article-title: Estimation of soil organic matter by geostatistical methods: use of auxiliary information in agricultural and environmental assessment publication-title: Ecol. Indic. – volume: 601–602 start-page: 821 year: 2017 end-page: 832 ident: bb0720 article-title: Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: the role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling publication-title: Sci. Total Environ. – start-page: 1673 year: 2011 end-page: 1676 ident: bb0125 article-title: Research on hydrology time series prediction based on grey theory and [epsilon]-support vector regression publication-title: 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring – volume: 263 start-page: 16 year: 2016 end-page: 34 ident: bb0560 article-title: National versus global modelling the 3D distribution of soil organic carbon in mainland France publication-title: Geoderma – volume: 12 year: 2017 ident: bb0200 article-title: High resolution mapping of soil properties using Remote Sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models publication-title: PLoS ONE – volume: 9 start-page: 29 year: 2017 end-page: 38 ident: bb0680 article-title: Mapping soil organic carbon on a national scale: towards an improved and updated map of Madagascar publication-title: Geoderma Regional – volume: 337 start-page: 55 year: 2019 end-page: 64 ident: bb0850 article-title: National soil organic carbon estimates can improve global estimates publication-title: Geoderma – volume: 47 start-page: 151 year: 1996 end-page: 163 ident: bb0050 article-title: Total carbon and nitrogen in the soils of the world publication-title: Eur. J. Soil Sci. – volume: 7 start-page: 201 year: 2016 end-page: 215 ident: bb0295 article-title: Geostatistical prediction and simulation of European soil property maps publication-title: Geoderma Regional – volume: 318 start-page: 148 year: 2018 end-page: 159 ident: bb0475 article-title: Modeling soil organic carbon with quantile regression: dissecting predictors' effects on carbon stocks publication-title: Geoderma – volume: 22 start-page: 342 year: 2006 end-page: 351 ident: bb0745 article-title: Regional simulation of long-term organic carbon stock changes in cropland soils using the DNDC model: 1. Large-scale model validation against a spatially explicit data set publication-title: Soil Use Manag. – volume: 82 start-page: 186 year: 2018 end-page: 201 ident: bb0675 article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution publication-title: Soil Sci. Soc. Am. J. – volume: 54 start-page: 49 year: 2016 end-page: 63 ident: bb0235 article-title: Digital mapping of pre-European soil carbon stocks and decline since clearing over New South Wales, Australia publication-title: Soil Research – volume: 5 start-page: 107 year: 2019 end-page: 119 ident: bb0855 article-title: Multi-source data integration for soil mapping using deep learning publication-title: SOIL – start-page: 343 year: 1992 end-page: 348 ident: bb0655 article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence publication-title: World Sci. – year: 2014 ident: bb0275 article-title: GlobalSoilMap project history publication-title: GlobalSoilMap: Basis of the Global Spatial Soil Information System – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: bb0420 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 10 year: 2015 ident: bb0625 article-title: Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra publication-title: PLoS ONE – volume: 10 start-page: 423 year: 2000 end-page: 436 ident: bb0340 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. – volume: 305 start-page: 250 year: 2017 end-page: 263 ident: bb0880 article-title: Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China publication-title: Geoderma – volume: 62 start-page: 1541 year: 2016 end-page: 1553 ident: bb0440 article-title: Spatial prediction of soil nutrient in a hilly area using artificial neural network model combined with kriging publication-title: Arch. Agron. Soil Sci. – volume: 326 start-page: 22 year: 2018 end-page: 41 ident: bb0360 article-title: Regression kriging as a workhorse in the digital soil mapper's toolbox publication-title: Geoderma – volume: 7 start-page: 167 year: 2016 end-page: 176 ident: bb0685 article-title: Digital soil mapping of organic carbon concentration in paddy growing soils of Northern Sri Lanka publication-title: Geoderma Regional – volume: 286 start-page: 35 year: 2017 end-page: 45 ident: bb0725 article-title: Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region publication-title: Geoderma – volume: 159 start-page: 63 year: 2010 end-page: 75 ident: bb0435 article-title: Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information? publication-title: Geoderma – volume: 14 start-page: 12 year: 2019 ident: bb0515 article-title: Large, climate-sensitive soil carbon stocks mapped with pedology-informed machine learning in the North Pacific coastal temperate rainforest publication-title: Environ. Res. Lett. – volume: 9 start-page: 17 year: 2017 end-page: 28 ident: bb0595 article-title: Chile and the Chilean soil grid: a contribution to GlobalSoilMap publication-title: Geoderma Regional – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: bb0860 article-title: Estimation of soil organic carbon by the chromic acid titration method publication-title: Soil Sci. – volume: 42 start-page: 577 year: 2014 end-page: 587 ident: bb0780 article-title: Spatial assessment of soil organic carbon density through random forests based imputation publication-title: J. Indian Soc. Remote Sens. – volume: 120 start-page: 75 year: 2004 end-page: 93 ident: bb0280 article-title: A generic framework for spatial prediction of soil variables based on regression-kriging publication-title: Geoderma – volume: 53 start-page: 932 year: 2015 end-page: 955 ident: bb0365 article-title: Eighty-metre resolution 3D soil-attribute maps for Tasmania, Australia publication-title: Soil Research – volume: 10 start-page: 154 year: 2017 end-page: 162 ident: bb0155 article-title: Spatial prediction of major soil properties using random forest techniques - a case study in semi-arid tropics of South India publication-title: Geoderma Regional – volume: 80 start-page: 1296 year: 2016 end-page: 1307 ident: bb0220 article-title: Change in soil organic carbon stocks under 12 climate change projections over New South Wales, Australia publication-title: Soil Sci. Soc. Am. J. – volume: 207–208 start-page: 256 year: 2013 end-page: 267 ident: bb0270 article-title: Soil maps of the world publication-title: Geoderma – volume: 5 start-page: 79 year: 2019 end-page: 89 ident: bb0600 article-title: Using deep learning for digital soil mapping publication-title: SOIL – volume: 213 start-page: 296 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0415 article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.002 – year: 2011 ident: 10.1016/j.geoderma.2019.05.031_bb0095 – volume: 10 start-page: 423 issue: 2 year: 2000 ident: 10.1016/j.geoderma.2019.05.031_bb0340 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – volume: 77 start-page: 1241 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0465 article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0317 – volume: 77 start-page: 172 issue: 5 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0300 article-title: Prediction of soil organic carbon stock using digital mapping approach in humid India publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7374-x – volume: 8 start-page: 277 issue: 3 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0800 article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA publication-title: Carbon Manag. doi: 10.1080/17583004.2017.1330593 – volume: 83–84 start-page: 36 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0630 article-title: Surface soil moisture retrievals from remote sensing: current status, products & future trends publication-title: Phys. Chem. Earth Parts A/B/C doi: 10.1016/j.pce.2015.02.009 – volume: 16 start-page: 2871 issue: 12 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb1020 article-title: Recent progress and future prospect of digital soil mapping: a review publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(17)61762-3 – volume: 330 start-page: 177 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0425 article-title: A mixed model for landscape soil organic carbon prediction across continuous profile depth in the mountainous subtropics publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.020 – volume: 84 start-page: 263 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0895 article-title: Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.08.046 – volume: 342 start-page: 55 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0910 article-title: Effect of cultivation history on soil organic carbon status of arable land in northeastern China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.007 – volume: 156 start-page: 74 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0695 article-title: Soil organic carbon stocks in Santa Cruz Island, Galapagos, under different climate change scenarios publication-title: Catena doi: 10.1016/j.catena.2017.03.020 – volume: 2–3 start-page: 32 issue: C year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0815 article-title: Analysing soil organic C gradients in a smallholder farming village of East Zimbabwe publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2014.09.006 – volume: 141 start-page: 46 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0085 article-title: Three-dimensional geostatistical modeling of soil organic carbon: a case study in the Qilian Mountains, China publication-title: Catena doi: 10.1016/j.catena.2016.02.016 – volume: 180 start-page: 74 issue: 2 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0105 article-title: Prediction of soil properties at farm scale using a model-based soil sampling scheme and random forest publication-title: Soil Sci. doi: 10.1097/SS.0000000000000115 – volume: 47 start-page: 735 issue: 4 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0705 article-title: Projecting soil organic carbon distribution in central chile under future climate scenarios publication-title: J. Environ. Qual. doi: 10.2134/jeq2017.08.0329 – volume: 81 start-page: 1413 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0760 article-title: More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2016.11.0376 – volume: 10 start-page: 144 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0485 article-title: Mapping key soil properties to support agricultural production in Eastern China publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2017.06.002 – volume: 146 start-page: 102 issue: 1 year: 2008 ident: 10.1016/j.geoderma.2019.05.031_bb0240 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island — digital soil mapping using random forests analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.008 – volume: 263 start-page: 16 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0560 article-title: National versus global modelling the 3D distribution of soil organic carbon in mainland France publication-title: Geoderma doi: 10.1016/j.geoderma.2015.08.035 – volume: 5 start-page: 79 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0600 article-title: Using deep learning for digital soil mapping publication-title: SOIL doi: 10.5194/soil-5-79-2019 – volume: 261 start-page: 204 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0060 article-title: Digital mapping of soil carbon in a viticultural region of Southern Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.016 – volume: 12 start-page: 2825 issue: Oct year: 2011 ident: 10.1016/j.geoderma.2019.05.031_bb0615 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 146 start-page: 457 issue: 3 year: 2008 ident: 10.1016/j.geoderma.2019.05.031_bb0730 article-title: Long-term landscape – land use interactions as explaining factor for soil organic matter variability in Dutch agricultural landscapes publication-title: Geoderma doi: 10.1016/j.geoderma.2008.06.016 – volume: 7 start-page: 38 issue: 1 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0755 article-title: Mapping soil organic carbon content over New South Wales, Australia using local regression kriging publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2015.12.002 – volume: 318 start-page: 91 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0175 article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2014.01.003 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2019.05.031_bb0065 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 148 start-page: 46 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0470 article-title: Comparing geospatial techniques to predict SOC stocks publication-title: Soil Tillage Res. doi: 10.1016/j.still.2014.12.002 – volume: 27 start-page: 681 issue: 4 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0770 article-title: Mapping soil organic carbon using local terrain attributes: a comparison of different polynomial models publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60445-4 – year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0320 article-title: Land degradation neutrality: implications and opportunities for conservation – volume: 159 start-page: 63 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2019.05.031_bb0435 article-title: Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information? publication-title: Geoderma doi: 10.1016/j.geoderma.2010.06.017 – volume: 305 start-page: 250 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0880 article-title: Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.048 – start-page: 1673 year: 2011 ident: 10.1016/j.geoderma.2019.05.031_bb0125 article-title: Research on hydrology time series prediction based on grey theory and [epsilon]-support vector regression – volume: 55 start-page: 318 issue: 4 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0805 article-title: Prediction of soil properties by using geographically weighted regression at a regional scale publication-title: Soil Res. doi: 10.1071/SR16177 – volume: 45 start-page: 445 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2019.05.031_bb0195 article-title: The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication) publication-title: Eurasian Soil Sci. doi: 10.1134/S1064229312040047 – year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0275 article-title: GlobalSoilMap project history – volume: 7 start-page: 201 issue: 2 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0295 article-title: Geostatistical prediction and simulation of European soil property maps publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2016.04.002 – volume: 53 start-page: 845 issue: 8 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0845 article-title: The Australian three-dimensional soil grid: Australia's contribution to the GlobalSoilMap project publication-title: Soil Research doi: 10.1071/SR14366 – volume: 62 start-page: 1541 issue: 11 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0440 article-title: Spatial prediction of soil nutrient in a hilly area using artificial neural network model combined with kriging publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2016.1154543 – volume: 39 start-page: 120 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb1025 article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2013.12.015 – volume: 630 start-page: 389 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0120 article-title: Fine resolution map of top- and subsoil carbon sequestration potential in France publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.209 – volume: 318 start-page: 148 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0475 article-title: Modeling soil organic carbon with quantile regression: dissecting predictors' effects on carbon stocks publication-title: Geoderma doi: 10.1016/j.geoderma.2017.12.011 – volume: 10 start-page: 154 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0155 article-title: Spatial prediction of major soil properties using random forest techniques - a case study in semi-arid tropics of South India publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2017.07.005 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.geoderma.2019.05.031_bb0450 article-title: Classification and regression by randomForest publication-title: R News – volume: 281 start-page: 69 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb1005 article-title: Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method publication-title: Geoderma doi: 10.1016/j.geoderma.2016.06.033 – volume: 79 start-page: 1741 issue: 6 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0225 article-title: Factors controlling soil organic carbon stocks with depth in Eastern Australia publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.06.0224 – volume: 7 start-page: 167 issue: 2 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0685 article-title: Digital soil mapping of organic carbon concentration in paddy growing soils of Northern Sri Lanka publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2016.03.002 – volume: 7 start-page: 1197 issue: 3 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0570 article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1197-2014 – volume: 77 start-page: 139 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0585 article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.02.010 – volume: 9 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0110 article-title: Soil carbon stock and particle size fractions in the central Amazon predicted from remotely sensed relief, multispectral and radar data publication-title: Remote Sens. doi: 10.3390/rs9020124 – volume: 22 start-page: 837 issue: 6 year: 2007 ident: 10.1016/j.geoderma.2019.05.031_bb0410 article-title: Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models publication-title: Landsc. Ecol. doi: 10.1007/s10980-006-9058-2 – volume: 262 start-page: 187 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0025 article-title: Mapping soil carbon stocks across Scotland using a neural network model publication-title: Geoderma doi: 10.1016/j.geoderma.2015.08.034 – volume: 54 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0245 article-title: Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.09.002 – volume: 261 start-page: 11 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0765 article-title: Mapping soil organic carbon content by geographically weighted regression: a case study in the Heihe River Basin, China publication-title: Geoderma doi: 10.1016/j.geoderma.2015.06.024 – volume: 8 issue: 11 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0875 article-title: Spatial-temporal changes of soil organic carbon content in Wafangdian, China publication-title: Sustainability doi: 10.3390/su8111154 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0020 article-title: Digital mapping of soil organic carbon contents and stocks in Denmark publication-title: PLoS ONE doi: 10.1371/journal.pone.0105519 – volume: 609 start-page: 1411 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0690 article-title: Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.012 – volume: 26 start-page: 699 issue: 5 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0975 article-title: Mapping soil texture based on field soil moisture observations at a high temporal resolution in an oasis agricultural area publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60078-9 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2019.05.031_bb0055 article-title: Learning deep architectures for AI publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000006 – volume: 8 issue: 12 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0620 article-title: Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China publication-title: PLoS ONE doi: 10.1371/journal.pone.0083592 – volume: 340 start-page: 234 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0170 article-title: Land parcel-based digital soil mapping of soil nutrient properties in an alluvial-diluvia plain agricultural area in China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.018 – volume: 4 start-page: 20 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0825 article-title: Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France) publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2014.11.003 – year: 2002 ident: 10.1016/j.geoderma.2019.05.031_bb0205 – volume: 59 start-page: 91 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0870 article-title: Mapping soil organic matter with limited sample data using geographically weighted regression publication-title: J. Spat. Sci. doi: 10.1080/14498596.2013.812024 – volume: 334 start-page: 124 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb1035 article-title: Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s publication-title: Geoderma doi: 10.1016/j.geoderma.2018.07.037 – volume: 127 start-page: 49 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0385 article-title: Estimating spatial distribution of soil organic carbon for the Midwestern United States using historical database publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.027 – year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0915 – volume: 117 start-page: 3 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2019.05.031_bb0505 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 79 start-page: 155 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0005 article-title: Digital mapping of topsoil carbon content and changes in the Driftless area of Wisconsin, USA publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2014.09.0392 – volume: 66 start-page: 121 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0070 article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12193 – volume: 10 start-page: 8353 issue: 12 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0160 article-title: Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain publication-title: Biogeosciences doi: 10.5194/bg-10-8353-2013 – volume: 9 start-page: 29 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0680 article-title: Mapping soil organic carbon on a national scale: towards an improved and updated map of Madagascar publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2016.12.002 – volume: 28 start-page: 281 issue: 4 year: 1996 ident: 10.1016/j.geoderma.2019.05.031_bb0075 article-title: Geographically weighted regression: a method for exploring spatial nonstationarity publication-title: Geogr. Anal. doi: 10.1111/j.1538-4632.1996.tb00936.x – volume: 10 issue: 6 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0285 article-title: Mapping soil properties of Africa at 250m resolution: Random Forests significantly improve current predictions publication-title: PLoS ONE doi: 10.1371/journal.pone.0125814 – volume: 277 start-page: 69 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0645 article-title: Bayesian spatial modelling of soil properties and their uncertainty: the example of soil organic matter in Scotland using R-INLA publication-title: Geoderma doi: 10.1016/j.geoderma.2016.04.026 – volume: 37 start-page: 29 year: 1934 ident: 10.1016/j.geoderma.2019.05.031_bb0860 article-title: Estimation of soil organic carbon by the chromic acid titration method publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – volume: 84 start-page: 131 issue: 2 year: 2007 ident: 10.1016/j.geoderma.2019.05.031_bb0965 article-title: Storage, patterns and environmental controls of soil organic carbon in China publication-title: Biogeochemistry doi: 10.1007/s10533-007-9109-z – volume: 207–208 start-page: 256 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0270 article-title: Soil maps of the world publication-title: Geoderma doi: 10.1016/j.geoderma.2013.05.003 – volume: 9 start-page: 421 issue: 4 year: 1995 ident: 10.1016/j.geoderma.2019.05.031_bb0210 article-title: Soil-landscape modelling and spatial prediction of soil attributes publication-title: Int. J. Geogr. Inf. Syst. doi: 10.1080/02693799508902047 – volume: 326 start-page: 22 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0360 article-title: Regression kriging as a workhorse in the digital soil mapper's toolbox publication-title: Geoderma doi: 10.1016/j.geoderma.2018.04.004 – volume: 487 start-page: 578 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0830 article-title: Landscape scale estimation of soil carbon stock using 3D modelling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.02.061 – volume: 27 start-page: 437 issue: 4 year: 2011 ident: 10.1016/j.geoderma.2019.05.031_bb0960 article-title: Soil carbon and related soil properties along a soil type and land-use intensity gradient, New South Wales, Australia publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2011.00357.x – volume: 52 start-page: 394 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0920 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.12.028 – volume: 45 start-page: 184 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0140 article-title: Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.04.003 – volume: 254 start-page: 213 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0150 article-title: Baseline map of organic carbon stock in farmland topsoil in East China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.11.022 – volume: 120 start-page: 65 issue: 2 year: 1999 ident: 10.1016/j.geoderma.2019.05.031_bb0430 article-title: Artificial neural networks as a tool in ecological modelling, an introduction publication-title: Ecol. Model. doi: 10.1016/S0304-3800(99)00092-7 – volume: 6 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0985 article-title: Precise estimation of soil organic carbon stocks in the northeast Tibetan Plateau publication-title: Sci. Rep. – volume: 335 start-page: 47 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0445 article-title: National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.011 – volume: 53 start-page: 956 issue: 8 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0455 article-title: Predictive mapping of soil organic carbon stocks in South Australia's agricultural zone publication-title: Soil Research doi: 10.1071/SR15100 – volume: 189 issue: 3 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0035 article-title: Spatial 3D distribution of soil organic carbon under different land use types publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-017-5830-9 – volume: 47 start-page: 651 issue: 7 year: 2009 ident: 10.1016/j.geoderma.2019.05.031_bb0810 article-title: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model publication-title: Soil Research doi: 10.1071/SR08240 – volume: 27 start-page: 1223 issue: 4 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0165 article-title: Toward inventory-based estimates of soil organic carbon in forests of the United States publication-title: Ecol. Appl. doi: 10.1002/eap.1516 – volume: 313 start-page: 25 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0710 article-title: Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.018 – volume: 15 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0605 article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2018.e00195 – volume: 23 issue: 4 year: 2009 ident: 10.1016/j.geoderma.2019.05.031_bb0090 article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2009GB003506 – volume: 10 start-page: 1509 issue: 10 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0390 article-title: Google earth engine applications since inception: usage, trends, and potential publication-title: Remote Sens. doi: 10.3390/rs10101509 – volume: 43 start-page: 424 issue: 3 year: 2006 ident: 10.1016/j.geoderma.2019.05.031_bb0180 article-title: Modelling ecological niches with support vector machines publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2006.01141.x – volume: 601–602 start-page: 821 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0720 article-title: Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: the role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.239 – volume: 20 start-page: 2953 issue: 9 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0840 article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12569 – volume: 57 start-page: 329 issue: 4 year: 1993 ident: 10.1016/j.geoderma.2019.05.031_bb0510 article-title: A quantitative australian approach to medium and small-scale surveys based on soil stratigraphy and environmental correlation publication-title: Geoderma doi: 10.1016/0016-7061(93)90049-Q – volume: 14 start-page: 12 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0515 article-title: Large, climate-sensitive soil carbon stocks mapped with pedology-informed machine learning in the North Pacific coastal temperate rainforest publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aaed52 – year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0040 article-title: The GlobalSoilMap project specifications – volume: 10 issue: 10 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0970 article-title: Predictive mapping of topsoil organic Carbon in an Alpine environment aided by Landsat TM publication-title: PLoS ONE doi: 10.1371/journal.pone.0139042 – volume: 12 issue: 1 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0200 article-title: High resolution mapping of soil properties using Remote Sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models publication-title: PLoS ONE doi: 10.1371/journal.pone.0170478 – volume: 245–246 start-page: 65 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0700 article-title: Modelling and mapping organic carbon content of topsoils in an Atlantic area of southwestern Europe (Galicia, NW-Spain) publication-title: Geoderma doi: 10.1016/j.geoderma.2015.01.015 – volume: 10 start-page: 115 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0010 article-title: Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2017.07.003 – volume: 286 start-page: 35 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0725 article-title: Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region publication-title: Geoderma doi: 10.1016/j.geoderma.2016.10.019 – volume: 174 start-page: 248 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0905 article-title: A multi-factor weighted regression approach for estimating the spatial distribution of soil organic carbon in grasslands publication-title: Catena doi: 10.1016/j.catena.2018.10.050 – volume: 10 issue: 11 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0625 article-title: Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra publication-title: PLoS ONE doi: 10.1371/journal.pone.0142295 – volume: 647 start-page: 1230 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb1030 article-title: Land use and climate change effects on soil organic carbon in North and Northeast China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.016 – volume: 23 start-page: 280 issue: 2 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0400 article-title: Estimating the spatial distribution of organic carbon density for the soils of Ohio, USA publication-title: J. Geogr. Sci. doi: 10.1007/s11442-013-1010-1 – year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb1000 – volume: 152 start-page: 43 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2019.05.031_bb0520 article-title: Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium) publication-title: Geoderma doi: 10.1016/j.geoderma.2009.05.015 – start-page: 343 year: 1992 ident: 10.1016/j.geoderma.2019.05.031_bb0655 article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence publication-title: World Sci. – volume: 333 start-page: 149 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0945 article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales publication-title: Geoderma doi: 10.1016/j.geoderma.2018.07.026 – volume: 171–172 start-page: 64 year: 2012 ident: 10.1016/j.geoderma.2019.05.031_bb0650 article-title: Mapping soil organic matter in small low-relief catchments using fuzzy slope position information publication-title: Geoderma doi: 10.1016/j.geoderma.2011.06.006 – volume: 73 start-page: 274 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0525 article-title: Spatial prediction of soil properties in two contrasting physiographic regions in Brazil publication-title: Sci. Agric. doi: 10.1590/0103-9016-2015-0071 – volume: 5 start-page: 107 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0855 article-title: Multi-source data integration for soil mapping using deep learning publication-title: SOIL doi: 10.5194/soil-5-107-2019 – volume: 47 start-page: 718 issue: 4 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0135 article-title: Mapping soil organic carbon and organic matter fractions by geographically weighted regression publication-title: J. Environ. Qual. doi: 10.2134/jeq2017.04.0178 – start-page: 15 year: 2000 ident: 10.1016/j.geoderma.2019.05.031_bb0190 – volume: 340 start-page: 7 year: 2011 ident: 10.1016/j.geoderma.2019.05.031_bb0935 article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem publication-title: Plant Soil doi: 10.1007/s11104-010-0425-z – volume: 340 start-page: 337 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0215 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.007 – volume: 27 start-page: 877 issue: 5 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0930 article-title: A novel evolutionary genetic optimization-based adaptive neuro-fuzzy inference system and geographical information systems predict and map soil organic carbon stocks across an afromontane landscape publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60461-2 – volume: 36 start-page: 301 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0635 article-title: Estimation of soil organic matter by geostatistical methods: use of auxiliary information in agricultural and environmental assessment publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2013.08.009 – volume: 1 start-page: 67 issue: C year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0940 article-title: Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany) publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2014.09.001 – volume: 166 start-page: 298 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0310 article-title: Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso) publication-title: Catena doi: 10.1016/j.catena.2018.04.013 – volume: 269 start-page: 160 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0785 article-title: Digital mapping of soil organic and inorganic carbon status in India publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.002 – volume: 42 start-page: 577 issue: 3 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0780 article-title: Spatial assessment of soil organic carbon density through random forests based imputation publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-013-0332-x – volume: 53 start-page: 24 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0230 article-title: Pragmatic models for the prediction and digital mapping of soil properties in eastern Australia publication-title: Soil Research doi: 10.1071/SR13306 – ident: 10.1016/j.geoderma.2019.05.031_bb1050 – volume: 29 start-page: 26 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0900 article-title: Large-scale soil organic carbon mapping based on multivariate modelling: the case of grasslands on the Loess Plateau publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2833 – volume: 48 start-page: 421 issue: 5 year: 2010 ident: 10.1016/j.geoderma.2019.05.031_bb0955 article-title: Measurement and estimation of land-use effects on soil carbon and related properties for soil monitoring: a study on a basalt landscape of northern New South Wales, Australia publication-title: Soil Research doi: 10.1071/SR09146 – volume: 26 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0375 – volume: 54 start-page: 49 issue: 1 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0235 article-title: Digital mapping of pre-European soil carbon stocks and decline since clearing over New South Wales, Australia publication-title: Soil Research doi: 10.1071/SR14307 – volume: 337 start-page: 164 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0355 article-title: Mapping topsoil organic carbon concentrations and stocks for Tanzania publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.011 – volume: 314 start-page: 8 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0890 article-title: Spatial variations of soil organic carbon stocks in a coastal hilly area of China publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.052 – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0290 article-title: SoilGrids250m: Global gridded soil information based on machine learning publication-title: PLoS ONE doi: 10.1371/journal.pone.0169748 – volume: 226–227 start-page: 103 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0820 article-title: How to map soil organic carbon stocks in highly urbanized regions? publication-title: Geoderma doi: 10.1016/j.geoderma.2014.03.007 – volume: 14 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0715 article-title: Soil texture and organic carbon mapping using surface temperature and reflectance spectra in Southeast Brazil publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2018.e00174 – volume: 589 start-page: 153 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0590 article-title: Assessing top- and subsoil organic carbon stocks of low-input high-diversity systems using soil and vegetation characteristics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.02.116 – volume: 209–210 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0640 article-title: Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates publication-title: Geoderma doi: 10.1016/j.geoderma.2013.05.029 – volume: 77 start-page: 802 issue: 4 year: 2008 ident: 10.1016/j.geoderma.2019.05.031_bb0185 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – volume: 98 start-page: 109 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0610 article-title: The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.04.001 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.geoderma.2019.05.031_bb0130 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 67 start-page: 258 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2019.05.031_bb0550 article-title: Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2003.2580 – volume: 57 start-page: 443 issue: 2 year: 1993 ident: 10.1016/j.geoderma.2019.05.031_bb0540 article-title: Soil attribute prediction using terrain analysis publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1993.03615995005700020026x – volume: 573 start-page: 1352 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0555 article-title: GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.066 – volume: 15 start-page: 1663 issue: 6 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0735 article-title: High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment publication-title: Biogeosciences doi: 10.5194/bg-15-1663-2018 – volume: 77 start-page: 890 issue: 3 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0495 article-title: Spatial scaling for digital soil mapping publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0419 – volume: 88 start-page: 243 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2019.05.031_bb0145 article-title: Boosted trees for ecological modeling and prediction publication-title: Ecology doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 – volume: 171–172 start-page: 44 year: 2012 ident: 10.1016/j.geoderma.2019.05.031_bb0460 article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS publication-title: Geoderma doi: 10.1016/j.geoderma.2011.05.007 – year: 2008 ident: 10.1016/j.geoderma.2019.05.031_bb0480 article-title: Quantitative mapping of soil organic material using field spectrometer and hyperspectral remote sensing – volume: 340 start-page: 289 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0990 article-title: Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.015 – volume: 10 start-page: 1610 issue: 5 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0565 article-title: Soil organic carbon baselines for land degradation neutrality: map accuracy and cost tradeoffs with respect to complexity in Otjozondjupa, Namibia publication-title: Sustainability doi: 10.3390/su10051610 – volume: 46 start-page: 705 issue: 5 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0405 article-title: Geospatial mapping of soil organic carbon using regression kriging and remote sensing publication-title: Journal of the Indian Society of Remote Sensing doi: 10.1007/s12524-017-0738-y – volume: 230–231 start-page: 119 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0580 article-title: Spatial prediction of soil organic carbon stock using a linear model of coregionalisation publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.016 – volume: 338 start-page: 445 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb1010 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.006 – volume: 26 start-page: 102 issue: 1 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0925 article-title: Spatially distributed modelling and mapping of soil organic carbon and total nitrogen stocks in the Eastern Mau Forest Reserve, Kenya publication-title: J. Geogr. Sci. doi: 10.1007/s11442-016-1257-4 – volume: 4 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0575 article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates publication-title: SOIL doi: 10.5194/soil-4-1-2018 – start-page: 31 year: 1994 ident: 10.1016/j.geoderma.2019.05.031_bb0670 article-title: Tension between aggregation levels – volume: 45 start-page: 1910 issue: 6 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0370 article-title: Assessment of carbon stocks in the topsoil using random forest and remote sensing images publication-title: J. Environ. Qual. doi: 10.2134/jeq2016.03.0076 – volume: 156 start-page: 161 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0740 article-title: Comparing digital soil mapping techniques for organic carbon and clay content: case study in Burundi's central plateaus publication-title: Catena doi: 10.1016/j.catena.2017.04.003 – volume: 60 start-page: 870 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0980 article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.08.036 – volume: 237–238 start-page: 49 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0265 article-title: Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach publication-title: Geoderma doi: 10.1016/j.geoderma.2014.08.009 – volume: 337 start-page: 55 year: 2019 ident: 10.1016/j.geoderma.2019.05.031_bb0850 article-title: National soil organic carbon estimates can improve global estimates publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.005 – volume: 303 start-page: 118 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0790 article-title: Digital soil mapping based on wavelet decomposed components of environmental covariates publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.017 – volume: 188 start-page: 1 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0545 article-title: The effectiveness of digital soil mapping to predict soil properties over low-relief areas publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5204-8 – volume: 630 start-page: 367 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0885 article-title: High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.204 – start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0530 article-title: Digital mapping of soil carbon doi: 10.1016/B978-0-12-405942-9.00001-3 – volume: 51 start-page: 645 issue: 8 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0045 article-title: Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia publication-title: Soil Research doi: 10.1071/SR12358 – volume: 82 start-page: 186 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0675 article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2017.04.0122 – volume: 145 start-page: 118 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0535 article-title: Spatial variability of soil organic matter using remote sensing data publication-title: Catena doi: 10.1016/j.catena.2016.05.023 – volume: 9 start-page: 17 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0595 article-title: Chile and the Chilean soil grid: a contribution to GlobalSoilMap publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2016.12.001 – volume: 171–172 start-page: 35 year: 2012 ident: 10.1016/j.geoderma.2019.05.031_bb1015 article-title: Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information publication-title: Geoderma doi: 10.1016/j.geoderma.2011.07.012 – volume: 77 issue: 5 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0345 article-title: Digital soil mapping in a Himalayan watershed using remote sensing and terrain parameters employing artificial neural network model publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7367-9 – volume: 152 start-page: 195 issue: 3 year: 2009 ident: 10.1016/j.geoderma.2019.05.031_bb0250 article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches publication-title: Geoderma doi: 10.1016/j.geoderma.2009.06.003 – volume: 154 start-page: 73 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0335 article-title: Spatial soil nutrients prediction using three supervised learning methods for assessment of land potentials in complex terrain publication-title: Catena doi: 10.1016/j.catena.2017.02.006 – volume: 120 start-page: 75 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2019.05.031_bb0280 article-title: A generic framework for spatial prediction of soil variables based on regression-kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2003.08.018 – volume: 5 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0665 article-title: Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia publication-title: Sci. Rep. doi: 10.1038/srep17866 – volume: 74 start-page: 861 issue: 3 year: 2010 ident: 10.1016/j.geoderma.2019.05.031_bb1040 article-title: Differentiation of soil conditions over low relief areas using feedback dynamic patterns publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0411 – volume: 271 start-page: 202 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0030 article-title: Total soil organic carbon and carbon sequestration potential in Nigeria publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.021 – volume: 4 start-page: 173 issue: 3 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0260 article-title: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America publication-title: Soil doi: 10.5194/soil-4-173-2018 – volume: 11 start-page: 475 issue: 5 year: 1997 ident: 10.1016/j.geoderma.2019.05.031_bb0395 article-title: Modelling topographic variation in solar radiation in a GIS environment publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/136588197242266 – volume: 53 start-page: 932 issue: 8 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0365 article-title: Eighty-metre resolution 3D soil-attribute maps for Tasmania, Australia publication-title: Soil Research doi: 10.1071/SR14268 – volume: 51 start-page: 668 issue: 8 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0950 article-title: Land-use and historical management effects on soil organic carbon in grazing systems on the Northern Tablelands of New South Wales publication-title: Soil Research doi: 10.1071/SR12376 – year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0255 – volume: 9 start-page: 73 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0115 article-title: Mapping soil organic carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia) publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2016.12.006 – volume: 38 start-page: 706 issue: 3 year: 2014 ident: 10.1016/j.geoderma.2019.05.031_bb0100 article-title: Evaluation of statistical and geostatistical models of digital soil properties mapping in tropical mountain regions publication-title: Rev. Bras. Cienc. Solo doi: 10.1590/S0100-06832014000300003 – volume: 189 issue: 10 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0490 article-title: Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-017-6197-7 – volume: 127 start-page: 168 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2019.05.031_bb1045 article-title: Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils publication-title: Geoderma doi: 10.1016/j.geoderma.2005.02.010 – volume: 22 start-page: 342 issue: 4 year: 2006 ident: 10.1016/j.geoderma.2019.05.031_bb0745 article-title: Regional simulation of long-term organic carbon stock changes in cropland soils using the DNDC model: 1. Large-scale model validation against a spatially explicit data set publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2006.00045.x – volume: 87 start-page: 111 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2019.05.031_bb0315 article-title: Managing carbon sequestration in soils: concepts and terminology publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00145-1 – volume: 9 issue: 5 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0775 article-title: Spatial prediction of soil organic matter using a hybrid geostatistical model of an extreme learning machine and ordinary kriging publication-title: Sustainability doi: 10.3390/su9050754 – volume: 266 start-page: 98 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0795 article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.003 – volume: 285 start-page: 94 year: 2017 ident: 10.1016/j.geoderma.2019.05.031_bb0500 article-title: Hyper-temporal remote sensing for digital soil mapping: characterizing soil-vegetation response to climatic variability publication-title: Geoderma doi: 10.1016/j.geoderma.2016.09.024 – volume: 5 start-page: 7 issue: 1 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0325 article-title: A methodology for systematic mapping in environmental sciences publication-title: Environ. Evid. doi: 10.1186/s13750-016-0059-6 – volume: 47 start-page: 151 issue: 2 year: 1996 ident: 10.1016/j.geoderma.2019.05.031_bb0050 article-title: Total carbon and nitrogen in the soils of the world publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1996.tb01386.x – start-page: 236 year: 1993 ident: 10.1016/j.geoderma.2019.05.031_bb0660 article-title: Combining instance-based and model-based learning – year: 1996 ident: 10.1016/j.geoderma.2019.05.031_bb0750 – volume: 62 start-page: 394 issue: 3 year: 2011 ident: 10.1016/j.geoderma.2019.05.031_bb0080 article-title: Sampling for validation of digital soil maps publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2011.01364.x – volume: 390 start-page: 111 issue: 1–2 year: 2015 ident: 10.1016/j.geoderma.2019.05.031_bb0305 article-title: Drivers of soil organic carbon storage and vertical distribution in Eastern Australia publication-title: Plant Soil doi: 10.1007/s11104-015-2380-1 – year: 1941 ident: 10.1016/j.geoderma.2019.05.031_bb0330 – volume: 557–558 start-page: 838 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0995 article-title: Assessment of soil organic carbon stocks under future climate and land cover changes in Europe publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.03.085 – volume: 304 start-page: 1623 issue: 5677 year: 2004 ident: 10.1016/j.geoderma.2019.05.031_bb0420 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science doi: 10.1126/science.1097396 – volume: 80 start-page: 1296 issue: 5 year: 2016 ident: 10.1016/j.geoderma.2019.05.031_bb0220 article-title: Change in soil organic carbon stocks under 12 climate change projections over New South Wales, Australia publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2016.02.0038 – volume: 22 start-page: 394 issue: 3 year: 2012 ident: 10.1016/j.geoderma.2019.05.031_bb0865 article-title: Mapping Soil texture of a plain area using fuzzy-c-means clustering method based on land surface diurnal temperature difference publication-title: Pedosphere doi: 10.1016/S1002-0160(12)60025-3 – volume: 77 start-page: 860 issue: 3 year: 2013 ident: 10.1016/j.geoderma.2019.05.031_bb0015 article-title: High-resolution 3-D mapping of soil texture in Denmark publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0275 – year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0380 – volume: 71 start-page: 29 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2019.05.031_bb0350 article-title: The role of geology in the spatial prediction of soil properties in the watershed of Lake Balaton, Hungary publication-title: Geol. Croat. doi: 10.4154/gc.2018.04 – volume: 158 start-page: 46 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2019.05.031_bb0835 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.025 |
SSID | ssj0017020 |
Score | 2.677316 |
SecondaryResourceType | review_article |
Snippet | This article reviews the current research and applications of various digital soil mapping (DSM) techniques used to map Soil Organic Carbon (SOC) concentration... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 395 |
SubjectTerms | Algorithms Australia China climate computer-aided mapping Covariates data collection Digital soil mapping kriging land use linear models prediction regression analysis Soil organic carbon soil surveys support vector machines Systematic mapping topography uncertainty United States Validation vegetation index |
Title | Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.05.031 https://www.proquest.com/docview/2271874002 |
Volume | 352 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMAB8RTjMQWJa1mTLE3LbQKmAYITSLtFSdqOTluLtsGR347dBy8JceDYKq4qx7U_N_5sQk5jJWJfcOWlxuCvG6s8GzHj9TizEOEcJCXIRr67D4aPvZuRHLXIRcOFwbLK2vdXPr301vWdbq3N7nOWIceXBQrCEUCQEnggg72n0MrP3j7KPJjy69aMLPBw9ReW8AT2CAeOlf2HWFR28BTstwD1w1WX8WewSTZq4Ej71bttkVaSb5P1_nheN89IdkhxmY1xBghdFNmUzgy2XhhTMx0X82z5NFtQk8fUFa-QHiPCpIBXq6XVaCdHnZnbIv-UhOXlQQLNvtSdn9M-rQgvu-RxcPVwMfTqgQqeEUG49KxjTBieSOkg8wBoJFMjWMp56sON0ApjTcAVTxWAFIfIJ3TCAEJMkNCjjNgjK3mRJ_uEphBcozhkCiyg56fSxniED9lbyoIolHGbyEaL2tXdxnHoxVQ3ZWUT3Whfo_a1LzVov026H3LPVb-NPyWiZpP0N8vREBT-lD1pdlXDZ4VnJSZPipeF5lyV0wp9fvCP5x-SNbzCWMfkEVlZzl-SYwAxS9sprbRDVvvXt8P7d8f-8sM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9VKUPlb5wpfaYbmyv46RSD6tStJTHCSRuru0kS9CSoN2lVS_8Kf5gZxIHKBLiUHF1MlY0Hs_3OZ4HwMdcyzyWQkeltfTrxunIZdxGQ8EdIpzHQwllI-_uJeOD4Y9DdbgEF30uDIVVBt_f-fTWW4eRQdDm4LSqKMeXJxrhCClISzxCZOV28ec3ntvmX7c2cJE_CbH5ff_bOAqtBSIrk3QROc-5tKJQyiMHR5KgSit5KUQZ40DqpHU2EVqUGuHaEwdIvbTIlQpKbdFW4rwPYGWI7oLaJnw-v4wr4ToOtSB5EtHnXUtLPkajoA5nbcEjnrUlQyW_DRFvYEMLeJtP4UlgqmzUKWMVlor6GTweTWahWkfxHJqNakJNR9i8qabsxFKthwmz00kzqxZHJ3Nm65z55heex4nSMiTI3atdLynPvJ25pr6SxNfbmwtWXQt0_8JGrMuweQEH96Lml7BcN3XxCliJaJ7lKddocsO4VC6nmAE8LpY8yVKVr4HqtWh8KG9OXTampo9jOza99g1p38TKoPbXYHApd9oV-LhTIusXyfxjqgZR6E7ZD_2qGtzHdDlj66I5mxshdNseMRav_2P-dXg43t_dMTtbe9tv4BE9IaDl6i0sL2ZnxTtkUAv3vrVYBj_ve4v8BVXZLII |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+soil+mapping+algorithms+and+covariates+for+soil+organic+carbon+mapping+and+their+implications%3A+A+review&rft.jtitle=Geoderma&rft.au=Lamichhane%2C+Sushil&rft.au=Kumar%2C+Lalit&rft.au=Wilson%2C+Brian&rft.date=2019-10-15&rft.issn=0016-7061&rft.volume=352+p.395-413&rft.spage=395&rft.epage=413&rft_id=info:doi/10.1016%2Fj.geoderma.2019.05.031&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |