Sampling design optimization for soil mapping with random forest

Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learnin...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 355; p. 113913
Main Authors Wadoux, Alexandre M.J-C., Brus, Dick J., Heuvelink, Gerard B.M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analyzed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small. •We investigate optimal sampling designs for mapping with random forest.•Five types of spatial sampling designs are tested for a range of sample sizes.•In our case study, conditioned Latin Hypercube sampling was not efficient for mapping with random forest.•Optimization of the design for the population mean squared error is worthwhile for small sample sizes.•Spreading the sample uniformly in the space spanned by important covariates improves spatial prediction.
AbstractList Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analysed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small.
Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analyzed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small. •We investigate optimal sampling designs for mapping with random forest.•Five types of spatial sampling designs are tested for a range of sample sizes.•In our case study, conditioned Latin Hypercube sampling was not efficient for mapping with random forest.•Optimization of the design for the population mean squared error is worthwhile for small sample sizes.•Spreading the sample uniformly in the space spanned by important covariates improves spatial prediction.
ArticleNumber 113913
Author Wadoux, Alexandre M.J-C.
Heuvelink, Gerard B.M.
Brus, Dick J.
Author_xml – sequence: 1
  givenname: Alexandre M.J-C.
  surname: Wadoux
  fullname: Wadoux, Alexandre M.J-C.
  email: alexandre.wadoux@wur.nl
  organization: Soil Geography and Landscape Group, Wageningen University & Research, the Netherlands
– sequence: 2
  givenname: Dick J.
  surname: Brus
  fullname: Brus, Dick J.
  organization: Biometris, Wageningen University & Research, the Netherlands
– sequence: 3
  givenname: Gerard B.M.
  surname: Heuvelink
  fullname: Heuvelink, Gerard B.M.
  organization: Soil Geography and Landscape Group, Wageningen University & Research, the Netherlands
BookMark eNqFkE1PwzAMhiM0JLbBX0A9cmmJk35KHIYmvqRJHIBzlCXOyNQ2JelA8OvpKFy47GRZfl5bfmZk0roWCTkHmgCF_HKbbNBp9I1MGIUqAeAV8CMyhbJgcc6yakKmdCDjguZwQmYhbIe2oIxOyeJJNl1t202kMdhNG7mut439kr11bWScj4KzddTIrttDH7Z_jbxstWv2Qwz9KTk2sg549lvn5OX25nl5H68e7x6W16tY8rzsY2no2oBOQRtAXmpQhaoU6jWX6dpUZZnKlDOVZ0atOVBWSV1kXBqJTBmokM_Jxbi38-5tNxwWjQ0K61q26HZBMA4ZKyvOswHNR1R5F4JHIzpvG-k_BVCxVya24k-Z2CsTo7IhePUvqGz_Y6L30taH44sxjoOHd4teBGWxHb60HlUvtLOHVnwDmNqP1g
CitedBy_id crossref_primary_10_1016_j_catena_2021_105509
crossref_primary_10_1016_j_geoderma_2022_116192
crossref_primary_10_1016_j_geoderma_2025_117208
crossref_primary_10_1016_j_apgeog_2021_102495
crossref_primary_10_1007_s11368_023_03633_5
crossref_primary_10_1007_s11119_024_10197_y
crossref_primary_10_1016_j_still_2024_106245
crossref_primary_10_1111_ejss_12998
crossref_primary_10_3390_agriengineering7010021
crossref_primary_10_1007_s12145_024_01467_4
crossref_primary_10_1002_ldr_5230
crossref_primary_10_1016_j_jag_2024_103932
crossref_primary_10_1016_j_geoderma_2023_116740
crossref_primary_10_3390_ijgi9040236
crossref_primary_10_3390_rs16152712
crossref_primary_10_1016_j_geodrs_2023_e00713
crossref_primary_10_1016_j_geoderma_2024_116888
crossref_primary_10_1016_j_ecoinf_2025_103057
crossref_primary_10_1016_j_jag_2023_103198
crossref_primary_10_1016_j_geoderma_2024_117053
crossref_primary_10_3390_min11111172
crossref_primary_10_1016_j_earscirev_2020_103359
crossref_primary_10_1016_j_ecolind_2021_107618
crossref_primary_10_1002_ldr_5105
crossref_primary_10_1016_j_geoderma_2020_114503
crossref_primary_10_1111_ejss_12909
crossref_primary_10_3390_land11122180
crossref_primary_10_1016_j_geoderma_2024_116970
crossref_primary_10_1016_j_gexplo_2022_106974
crossref_primary_10_3389_fpls_2023_1309171
crossref_primary_10_1016_j_jenvman_2024_120746
crossref_primary_10_1016_j_geoderma_2021_115567
crossref_primary_10_7717_peerj_19099
crossref_primary_10_3390_land13010114
crossref_primary_10_3390_rs15123070
crossref_primary_10_1186_s13021_021_00195_2
crossref_primary_10_1007_s11356_023_30452_5
crossref_primary_10_1080_13658816_2022_2125973
crossref_primary_10_1007_s11119_024_10122_3
crossref_primary_10_1016_j_geoderma_2021_115155
crossref_primary_10_5194_gmd_17_6007_2024
crossref_primary_10_1016_j_eja_2021_126447
crossref_primary_10_1007_s11368_023_03516_9
crossref_primary_10_1016_j_catena_2023_107086
crossref_primary_10_1111_ejss_12962
crossref_primary_10_1016_j_scitotenv_2021_148170
crossref_primary_10_3390_rs14122780
crossref_primary_10_1016_j_catena_2021_105702
crossref_primary_10_1016_j_geoderma_2023_116553
crossref_primary_10_1016_j_geoderma_2024_116795
crossref_primary_10_1016_j_geoderma_2024_116952
crossref_primary_10_1016_j_geodrs_2024_e00801
crossref_primary_10_3390_w14020210
crossref_primary_10_1016_j_envsoft_2023_105933
crossref_primary_10_3390_rs13204165
crossref_primary_10_3390_rs15041072
crossref_primary_10_1016_j_geoderma_2022_115749
crossref_primary_10_1007_s10457_023_00833_3
crossref_primary_10_1016_j_earscirev_2021_103542
crossref_primary_10_1016_j_geoderma_2021_115503
crossref_primary_10_4236_as_2023_147061
crossref_primary_10_3390_su16166976
crossref_primary_10_1016_j_geodrs_2022_e00495
crossref_primary_10_1016_j_geoderma_2021_115290
crossref_primary_10_1016_j_geodrs_2021_e00358
crossref_primary_10_1016_j_geodrs_2021_e00359
crossref_primary_10_3390_land14030545
crossref_primary_10_1016_j_envpol_2022_120931
crossref_primary_10_1016_j_spasta_2022_100639
crossref_primary_10_1051_e3sconf_202448103006
crossref_primary_10_1007_s11119_024_10200_6
crossref_primary_10_1088_1748_9326_aca41e
crossref_primary_10_1016_j_ecoinf_2023_102294
crossref_primary_10_3390_soilsystems7010027
crossref_primary_10_1016_j_geoderma_2022_116052
crossref_primary_10_1016_j_geoderma_2023_116652
crossref_primary_10_1016_j_geodrs_2023_e00747
crossref_primary_10_1016_j_jenvman_2023_117810
crossref_primary_10_1016_j_geoderma_2025_117261
crossref_primary_10_3390_rs12071197
crossref_primary_10_3390_land13030365
crossref_primary_10_1016_j_geodrs_2024_e00874
crossref_primary_10_3390_s22186890
crossref_primary_10_1016_j_scitotenv_2022_157489
crossref_primary_10_1111_ejss_13226
crossref_primary_10_1016_j_catena_2021_105178
crossref_primary_10_1016_j_compag_2023_108466
crossref_primary_10_1016_j_catena_2022_106900
crossref_primary_10_1007_s10980_021_01302_x
crossref_primary_10_1016_j_geodrs_2020_e00353
crossref_primary_10_1016_j_geoderma_2023_116763
crossref_primary_10_1007_s41742_024_00611_8
crossref_primary_10_1016_j_compag_2021_106094
crossref_primary_10_1080_10095020_2025_2454523
crossref_primary_10_1016_j_envsoft_2024_106269
crossref_primary_10_3390_mi13091440
crossref_primary_10_1016_j_spasta_2024_100820
crossref_primary_10_1016_j_geoderma_2020_114366
crossref_primary_10_3390_rs12101687
crossref_primary_10_1016_j_jenvman_2021_113357
crossref_primary_10_1016_j_watres_2023_121041
crossref_primary_10_1016_j_geoderma_2020_114809
Cites_doi 10.7717/peerj.5722
10.1016/j.geoderma.2019.05.012
10.1016/S0016-7061(98)00123-2
10.1162/neco.1992.4.4.590
10.1016/j.cageo.2005.12.009
10.1016/j.geoderma.2008.05.008
10.1371/journal.pone.0169748
10.1007/BF00058655
10.1097/SS.0000000000000115
10.1111/ejss.12797
10.1016/j.geoderma.2018.07.036
10.1016/j.geoderma.2006.10.016
10.1111/ejss.12499
10.1016/j.geoderma.2004.06.007
10.1093/bioinformatics/bty373
10.1023/A:1010933404324
10.1016/j.geoderma.2016.12.012
10.1111/j.1365-2389.2011.01364.x
10.1016/j.geoderma.2018.03.010
10.7717/peerj.5518
10.1002/jpln.200421414
10.1504/IJEP.2006.011223
10.1016/S0098-3004(98)00020-X
10.1111/ejss.12687
10.1016/S0016-7061(98)00056-1
10.1002/joc.5946
10.1016/j.geoderma.2014.05.013
10.1016/j.cageo.2010.04.005
10.1214/aoms/1177730491
10.2134/jeq1998.00472425002700050013x
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.113913
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2019_113913
S0016706119306792
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-af0bf1d41df1e38d1c7c9cedb3a4bf9884a432c65fcb31029ad753afae2cf19e3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 03:23:09 EDT 2025
Tue Jul 01 04:04:51 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Fri Feb 23 02:27:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spatial simulated annealing
k-means
Random forest
LUCAS
Uncertainty assessment
Pedometrics
Conditioned Latin Hypercube
Spatial coverage
Optimal design
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-af0bf1d41df1e38d1c7c9cedb3a4bf9884a432c65fcb31029ad753afae2cf19e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2315289335
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2315289335
crossref_primary_10_1016_j_geoderma_2019_113913
crossref_citationtrail_10_1016_j_geoderma_2019_113913
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_113913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Samuel-Rosa (bb0180) 2017
Castro-Franco, Costa, Peralta, Aparicio (bb0055) 2015; 180
Contreras, Ballari, De Bruin, Samaniego (bb0065) 2019; 39
Tóth, Jones, Montanarella (bb0190) 2013
MacKay (bb0125) 1992; 4
(bb0165) 2018
Gallego, Delincé (bb0080) 2010
Brus, Spätjens, De Gruijter (bb0050) 1999; 89
Wadoux, Marchant, Lark (bb0220) 2019
Hartigan, Wong (bb0090) 1979; 28
Breiman (bb0015) 1996; 24
Heuvelink, Brus, de Gruijter (bb0110) 2006; 31
Cochran (bb0060) 1977
Walvoort, Brus, De Gruijter (bb0225) 2010; 36
Brus (bb0030) 2019; 338
Brus, Kempen, Heuvelink (bb0045) 2011; 62
Henderson, Bui, Moran, Simon (bb0095) 2005; 124
Tuia, Pozdnoukhov, Foresti, Kanevski (bb0195) 2013
Louppe (bb0120) 2014
Deutsch (bb0070) 1997
Meinshausen (bb0135) 2006; 7
Minasny, McBratney (bb0140) 2006; 32
Wadoux (bb0210) 2019; 351
Breiman (bb0020) 2001; 45
Hengl, Nussbaum, Wright, Heuvelink, Gräler (bb0105) 2018; 6
Mann, Whitney (bb0130) 1947
Wright, Ziegler (bb0235) 2017; 77
Behrens, Förster, Scholten, Steinrücken, Spies, Goldschmitt (bb0005) 2005; 168
Behrens, Schmidt, Viscarra Rossel, Gries, Scholten, MacMillan (bb0010) 2018; 69
Ng, Minasny, Malone, Filippi (bb0150) 2018; 6
Pozdnoukhov, Kanevski (bb0160) 2006; 28
Nembrini, König, Wright (bb0145) 2018; 34
Roudier (bb0170) 2018
Brus, De Gruijter, Van Groenigen (bb0035) 2007; 31
Van Groenigen, Siderius, Stein (bb0200) 1999; 87
Wadoux, Brus, Heuvelink (bb0215) 2018; 324
Brus, Heuvelink (bb0040) 2007; 138
Van Groenigen, Stein (bb0205) 1998; 27
Domenech, Castro-Franco, Costa, Amiotti (bb0075) 2017; 290
Breiman (bb0025) 2017
Schmidt, Behrens, Daumann, Ramirez-Lopez, Werban, Dietrich, Scholten (bb0185) 2014; 232
Lopes (bb0115) 2015
Hengl, de Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger (bb0100) 2017; 12
Webster, Oliver (bb0230) 2007
Grimm, Behrens, Märker, Elsenbeer (bb0085) 2008; 146
Orgiazzi, Ballabio, Panagos, Jones, Fernández-Ugalde (bb0155) 2018; 69
Royle, Nychka (bb0175) 1998; 24
Breiman (10.1016/j.geoderma.2019.113913_bb0020) 2001; 45
Wright (10.1016/j.geoderma.2019.113913_bb0235) 2017; 77
Mann (10.1016/j.geoderma.2019.113913_bb0130) 1947
Van Groenigen (10.1016/j.geoderma.2019.113913_bb0200) 1999; 87
Brus (10.1016/j.geoderma.2019.113913_bb0050) 1999; 89
Castro-Franco (10.1016/j.geoderma.2019.113913_bb0055) 2015; 180
Tóth (10.1016/j.geoderma.2019.113913_bb0190) 2013
Nembrini (10.1016/j.geoderma.2019.113913_bb0145) 2018; 34
Hartigan (10.1016/j.geoderma.2019.113913_bb0090) 1979; 28
Lopes (10.1016/j.geoderma.2019.113913_bb0115) 2015
Behrens (10.1016/j.geoderma.2019.113913_bb0010) 2018; 69
Heuvelink (10.1016/j.geoderma.2019.113913_bb0110) 2006; 31
MacKay (10.1016/j.geoderma.2019.113913_bb0125) 1992; 4
Brus (10.1016/j.geoderma.2019.113913_bb0040) 2007; 138
Deutsch (10.1016/j.geoderma.2019.113913_bb0070) 1997
Roudier (10.1016/j.geoderma.2019.113913_bb0170)
Royle (10.1016/j.geoderma.2019.113913_bb0175) 1998; 24
Brus (10.1016/j.geoderma.2019.113913_bb0045) 2011; 62
Henderson (10.1016/j.geoderma.2019.113913_bb0095) 2005; 124
Minasny (10.1016/j.geoderma.2019.113913_bb0140) 2006; 32
Ng (10.1016/j.geoderma.2019.113913_bb0150) 2018; 6
Wadoux (10.1016/j.geoderma.2019.113913_bb0215) 2018; 324
Webster (10.1016/j.geoderma.2019.113913_bb0230) 2007
Hengl (10.1016/j.geoderma.2019.113913_bb0105) 2018; 6
Orgiazzi (10.1016/j.geoderma.2019.113913_bb0155) 2018; 69
Hengl (10.1016/j.geoderma.2019.113913_bb0100) 2017; 12
Louppe (10.1016/j.geoderma.2019.113913_bb0120) 2014
Breiman (10.1016/j.geoderma.2019.113913_bb0025) 2017
Cochran (10.1016/j.geoderma.2019.113913_bb0060) 1977
Wadoux (10.1016/j.geoderma.2019.113913_bb0220) 2019
Gallego (10.1016/j.geoderma.2019.113913_bb0080) 2010
Brus (10.1016/j.geoderma.2019.113913_bb0030) 2019; 338
Behrens (10.1016/j.geoderma.2019.113913_bb0005) 2005; 168
Samuel-Rosa (10.1016/j.geoderma.2019.113913_bb0180)
Contreras (10.1016/j.geoderma.2019.113913_bb0065) 2019; 39
Walvoort (10.1016/j.geoderma.2019.113913_bb0225) 2010; 36
Tuia (10.1016/j.geoderma.2019.113913_bb0195) 2013
Van Groenigen (10.1016/j.geoderma.2019.113913_bb0205) 1998; 27
Wadoux (10.1016/j.geoderma.2019.113913_bb0210) 2019; 351
Breiman (10.1016/j.geoderma.2019.113913_bb0015) 1996; 24
(10.1016/j.geoderma.2019.113913_bb0165) 2018
Brus (10.1016/j.geoderma.2019.113913_bb0035) 2007; 31
Domenech (10.1016/j.geoderma.2019.113913_bb0075) 2017; 290
Grimm (10.1016/j.geoderma.2019.113913_bb0085) 2008; 146
Schmidt (10.1016/j.geoderma.2019.113913_bb0185) 2014; 232
Pozdnoukhov (10.1016/j.geoderma.2019.113913_bb0160) 2006; 28
Meinshausen (10.1016/j.geoderma.2019.113913_bb0135) 2006; 7
References_xml – volume: 180
  start-page: 74
  year: 2015
  end-page: 85
  ident: bb0055
  article-title: Prediction of soil properties at farm scale using a model-based soil sampling scheme and random forest
  publication-title: Soil Sci.
– volume: 324
  start-page: 138
  year: 2018
  end-page: 147
  ident: bb0215
  article-title: Accounting for non-stationary variance in geostatistical mapping of soil properties
  publication-title: Geoderma
– volume: 6
  start-page: e5722
  year: 2018
  ident: bb0150
  article-title: In search of an optimum sampling algorithm for prediction of soil properties from infrared spectra
  publication-title: PeerJ
– volume: 28
  start-page: 465
  year: 2006
  end-page: 484
  ident: bb0160
  article-title: Monitoring network optimisation for spatial data classification using support vector machines
  publication-title: Int. J. Environ. Pollut.
– year: 2007
  ident: bb0230
  article-title: Geostatistics for Environmental Scientists
– year: 2019
  ident: bb0220
  article-title: Efficient sampling for geostatistical surveys
  publication-title: Eur. J. Soil Sci.
– volume: 290
  start-page: 75
  year: 2017
  end-page: 82
  ident: bb0075
  article-title: Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale
  publication-title: Geoderma
– volume: 31
  start-page: 183
  year: 2007
  end-page: 192
  ident: bb0035
  article-title: Designing spatial coverage samples using the k-means clustering algorithm
  publication-title: Dev. Soil Sci.
– volume: 89
  start-page: 129
  year: 1999
  end-page: 148
  ident: bb0050
  article-title: A sampling scheme for estimating the mean extractable phosphorus concentration of fields for environmental regulation
  publication-title: Geoderma
– volume: 232
  start-page: 243
  year: 2014
  end-page: 256
  ident: bb0185
  article-title: A comparison of calibration sampling schemes at the field scale
  publication-title: Geoderma
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: bb0090
  article-title: Algorithm AS 136: a k-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– volume: 39
  start-page: 2209
  year: 2019
  end-page: 2226
  ident: bb0065
  article-title: Rainfall monitoring network design using conditioned Latin Hypercube sampling and satellite precipitation estimates: an application in the ungauged Ecuadorian Amazon
  publication-title: Int. J. Climatol.
– start-page: 285
  year: 2013
  end-page: 318
  ident: bb0195
  article-title: Active learning for monitoring network optimization
  publication-title: Spatio-Temporal Design: Advances in Efficient Data Acquisition
– volume: 36
  start-page: 1261
  year: 2010
  end-page: 1267
  ident: bb0225
  article-title: An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means
  publication-title: Comput. Geosci.
– start-page: 115
  year: 1997
  end-page: 125
  ident: bb0070
  article-title: Direct assessment of local accuracy and precision
  publication-title: Geostatistics Wollongong’96
– volume: 4
  start-page: 590
  year: 1992
  end-page: 604
  ident: bb0125
  article-title: Information-based objective functions for active data selection
  publication-title: Neural Comput.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bb0015
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 138
  start-page: 86
  year: 2007
  end-page: 95
  ident: bb0040
  article-title: Optimization of sample patterns for universal kriging of environmental variables
  publication-title: Geoderma
– volume: 24
  start-page: 479
  year: 1998
  end-page: 488
  ident: bb0175
  article-title: An algorithm for the construction of spatial coverage designs with implementation in SPLUS
  publication-title: Comput. Geosci.
– volume: 168
  start-page: 21
  year: 2005
  end-page: 33
  ident: bb0005
  article-title: Digital soil mapping using artificial neural networks
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 6
  start-page: e5518
  year: 2018
  ident: bb0105
  article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ
– volume: 69
  start-page: 757
  year: 2018
  end-page: 770
  ident: bb0010
  article-title: Spatial modelling with Euclidean distance fields and machine learning
  publication-title: Eur. J. Soil Sci.
– volume: 27
  start-page: 1078
  year: 1998
  end-page: 1086
  ident: bb0205
  article-title: Constrained optimization of spatial sampling using continuous simulated annealing
  publication-title: J. Environ. Qual.
– year: 2017
  ident: bb0025
  article-title: Classification and Regression Trees
– volume: 124
  start-page: 383
  year: 2005
  end-page: 398
  ident: bb0095
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
– volume: 69
  start-page: 140
  year: 2018
  end-page: 153
  ident: bb0155
  article-title: LUCAS Soil, the largest expandable soil dataset for Europe: a review
  publication-title: Eur. J. Soil Sci.
– year: 2017
  ident: bb0180
  article-title: spsann: Optimization of Sample Configurations using Spatial Simulated Annealing
– volume: 32
  start-page: 1378
  year: 2006
  end-page: 1388
  ident: bb0140
  article-title: A conditioned latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
– year: 2018
  ident: bb0170
  article-title: Package “clhs”
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0020
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 62
  start-page: 394
  year: 2011
  end-page: 407
  ident: bb0045
  article-title: Sampling for validation of digital soil maps
  publication-title: Eur. J. Soil Sci.
– volume: 338
  start-page: 464
  year: 2019
  end-page: 480
  ident: bb0030
  article-title: Sampling for digital soil mapping: a tutorial supported by R scripts
  publication-title: Geoderma
– volume: 31
  start-page: 137
  year: 2006
  end-page: 151
  ident: bb0110
  article-title: Optimization of sample configurations for digital mapping of soil properties with universal kriging
  publication-title: Dev. Soil Sci.
– volume: 87
  start-page: 239
  year: 1999
  end-page: 259
  ident: bb0200
  article-title: Constrained optimisation of soil sampling for minimisation of the kriging variance
  publication-title: Geoderma
– start-page: 50
  year: 1947
  end-page: 60
  ident: bb0130
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann. Math. Stat.
– year: 2013
  ident: bb0190
  article-title: Lucas topsoil survey: methodology, data and results
  publication-title: Technical Report JRC
– start-page: 149
  year: 2010
  end-page: 168
  ident: bb0080
  article-title: The European land use and cover area-frame statistical survey
  publication-title: Agricultural Survey Methods
– volume: 7
  start-page: 983
  year: 2006
  end-page: 999
  ident: bb0135
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 146
  start-page: 102
  year: 2008
  end-page: 113
  ident: bb0085
  article-title: Soil organic carbon concentrations and stocks on Barro Colorado island-digital soil mapping using random forests analysis
  publication-title: Geoderma
– volume: 77
  year: 2017
  ident: bb0235
  article-title: ranger: a fast implementation of random forests for high dimensional data in C++ and R
  publication-title: JJ. Stat. Softw.
– year: 2015
  ident: bb0115
  article-title: Measuring the algorithmic convergence of random forests via bootstrap extrapolation
  publication-title: Technical Report
– year: 2018
  ident: bb0165
  article-title: R: A Language and Environment for Statistical Computing.
– volume: 351
  start-page: 59
  year: 2019
  end-page: 70
  ident: bb0210
  article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty
  publication-title: Geoderma
– volume: 34
  start-page: 3711
  year: 2018
  end-page: 3718
  ident: bb0145
  article-title: The revival of the Gini importance?
  publication-title: Bioinformatics
– year: 2014
  ident: bb0120
  article-title: Understanding Random Forests: From Theory to Practice
– year: 1977
  ident: bb0060
  article-title: Sampling Techniques
– volume: 12
  start-page: e0169748
  year: 2017
  ident: bb0100
  article-title: Soilgrids250m: global gridded soil information based on machine learning
  publication-title: PLoS one
– volume: 6
  start-page: e5722
  year: 2018
  ident: 10.1016/j.geoderma.2019.113913_bb0150
  article-title: In search of an optimum sampling algorithm for prediction of soil properties from infrared spectra
  publication-title: PeerJ
  doi: 10.7717/peerj.5722
– volume: 351
  start-page: 59
  year: 2019
  ident: 10.1016/j.geoderma.2019.113913_bb0210
  article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.012
– volume: 89
  start-page: 129
  year: 1999
  ident: 10.1016/j.geoderma.2019.113913_bb0050
  article-title: A sampling scheme for estimating the mean extractable phosphorus concentration of fields for environmental regulation
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(98)00123-2
– volume: 31
  start-page: 183
  year: 2007
  ident: 10.1016/j.geoderma.2019.113913_bb0035
  article-title: Designing spatial coverage samples using the k-means clustering algorithm
  publication-title: Dev. Soil Sci.
– volume: 4
  start-page: 590
  year: 1992
  ident: 10.1016/j.geoderma.2019.113913_bb0125
  article-title: Information-based objective functions for active data selection
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.4.590
– volume: 32
  start-page: 1378
  year: 2006
  ident: 10.1016/j.geoderma.2019.113913_bb0140
  article-title: A conditioned latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 146
  start-page: 102
  year: 2008
  ident: 10.1016/j.geoderma.2019.113913_bb0085
  article-title: Soil organic carbon concentrations and stocks on Barro Colorado island-digital soil mapping using random forests analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.008
– volume: 12
  start-page: e0169748
  year: 2017
  ident: 10.1016/j.geoderma.2019.113913_bb0100
  article-title: Soilgrids250m: global gridded soil information based on machine learning
  publication-title: PLoS one
  doi: 10.1371/journal.pone.0169748
– year: 2018
  ident: 10.1016/j.geoderma.2019.113913_bb0165
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.geoderma.2019.113913_bb0015
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– year: 2017
  ident: 10.1016/j.geoderma.2019.113913_bb0025
– volume: 180
  start-page: 74
  year: 2015
  ident: 10.1016/j.geoderma.2019.113913_bb0055
  article-title: Prediction of soil properties at farm scale using a model-based soil sampling scheme and random forest
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000115
– year: 2019
  ident: 10.1016/j.geoderma.2019.113913_bb0220
  article-title: Efficient sampling for geostatistical surveys
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12797
– volume: 338
  start-page: 464
  year: 2019
  ident: 10.1016/j.geoderma.2019.113913_bb0030
  article-title: Sampling for digital soil mapping: a tutorial supported by R scripts
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.036
– volume: 138
  start-page: 86
  year: 2007
  ident: 10.1016/j.geoderma.2019.113913_bb0040
  article-title: Optimization of sample patterns for universal kriging of environmental variables
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.10.016
– volume: 28
  start-page: 100
  year: 1979
  ident: 10.1016/j.geoderma.2019.113913_bb0090
  article-title: Algorithm AS 136: a k-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– volume: 69
  start-page: 140
  year: 2018
  ident: 10.1016/j.geoderma.2019.113913_bb0155
  article-title: LUCAS Soil, the largest expandable soil dataset for Europe: a review
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12499
– volume: 77
  year: 2017
  ident: 10.1016/j.geoderma.2019.113913_bb0235
  article-title: ranger: a fast implementation of random forests for high dimensional data in C++ and R
  publication-title: JJ. Stat. Softw.
– volume: 124
  start-page: 383
  year: 2005
  ident: 10.1016/j.geoderma.2019.113913_bb0095
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.06.007
– ident: 10.1016/j.geoderma.2019.113913_bb0170
– volume: 34
  start-page: 3711
  year: 2018
  ident: 10.1016/j.geoderma.2019.113913_bb0145
  article-title: The revival of the Gini importance?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty373
– year: 2015
  ident: 10.1016/j.geoderma.2019.113913_bb0115
  article-title: Measuring the algorithmic convergence of random forests via bootstrap extrapolation
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geoderma.2019.113913_bb0020
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2013
  ident: 10.1016/j.geoderma.2019.113913_bb0190
  article-title: Lucas topsoil survey: methodology, data and results
– volume: 290
  start-page: 75
  year: 2017
  ident: 10.1016/j.geoderma.2019.113913_bb0075
  article-title: Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.012
– volume: 62
  start-page: 394
  year: 2011
  ident: 10.1016/j.geoderma.2019.113913_bb0045
  article-title: Sampling for validation of digital soil maps
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2011.01364.x
– start-page: 285
  year: 2013
  ident: 10.1016/j.geoderma.2019.113913_bb0195
  article-title: Active learning for monitoring network optimization
– volume: 324
  start-page: 138
  year: 2018
  ident: 10.1016/j.geoderma.2019.113913_bb0215
  article-title: Accounting for non-stationary variance in geostatistical mapping of soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.03.010
– volume: 6
  start-page: e5518
  year: 2018
  ident: 10.1016/j.geoderma.2019.113913_bb0105
  article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ
  doi: 10.7717/peerj.5518
– start-page: 115
  year: 1997
  ident: 10.1016/j.geoderma.2019.113913_bb0070
  article-title: Direct assessment of local accuracy and precision
– volume: 7
  start-page: 983
  year: 2006
  ident: 10.1016/j.geoderma.2019.113913_bb0135
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 168
  start-page: 21
  year: 2005
  ident: 10.1016/j.geoderma.2019.113913_bb0005
  article-title: Digital soil mapping using artificial neural networks
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200421414
– year: 2007
  ident: 10.1016/j.geoderma.2019.113913_bb0230
– ident: 10.1016/j.geoderma.2019.113913_bb0180
– volume: 28
  start-page: 465
  year: 2006
  ident: 10.1016/j.geoderma.2019.113913_bb0160
  article-title: Monitoring network optimisation for spatial data classification using support vector machines
  publication-title: Int. J. Environ. Pollut.
  doi: 10.1504/IJEP.2006.011223
– volume: 31
  start-page: 137
  year: 2006
  ident: 10.1016/j.geoderma.2019.113913_bb0110
  article-title: Optimization of sample configurations for digital mapping of soil properties with universal kriging
  publication-title: Dev. Soil Sci.
– volume: 24
  start-page: 479
  year: 1998
  ident: 10.1016/j.geoderma.2019.113913_bb0175
  article-title: An algorithm for the construction of spatial coverage designs with implementation in SPLUS
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(98)00020-X
– volume: 69
  start-page: 757
  year: 2018
  ident: 10.1016/j.geoderma.2019.113913_bb0010
  article-title: Spatial modelling with Euclidean distance fields and machine learning
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12687
– start-page: 149
  year: 2010
  ident: 10.1016/j.geoderma.2019.113913_bb0080
  article-title: The European land use and cover area-frame statistical survey
– volume: 87
  start-page: 239
  year: 1999
  ident: 10.1016/j.geoderma.2019.113913_bb0200
  article-title: Constrained optimisation of soil sampling for minimisation of the kriging variance
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(98)00056-1
– volume: 39
  start-page: 2209
  year: 2019
  ident: 10.1016/j.geoderma.2019.113913_bb0065
  article-title: Rainfall monitoring network design using conditioned Latin Hypercube sampling and satellite precipitation estimates: an application in the ungauged Ecuadorian Amazon
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5946
– volume: 232
  start-page: 243
  year: 2014
  ident: 10.1016/j.geoderma.2019.113913_bb0185
  article-title: A comparison of calibration sampling schemes at the field scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.05.013
– volume: 36
  start-page: 1261
  year: 2010
  ident: 10.1016/j.geoderma.2019.113913_bb0225
  article-title: An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.04.005
– year: 1977
  ident: 10.1016/j.geoderma.2019.113913_bb0060
– start-page: 50
  year: 1947
  ident: 10.1016/j.geoderma.2019.113913_bb0130
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177730491
– volume: 27
  start-page: 1078
  year: 1998
  ident: 10.1016/j.geoderma.2019.113913_bb0205
  article-title: Constrained optimization of spatial sampling using continuous simulated annealing
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1998.00472425002700050013x
– year: 2014
  ident: 10.1016/j.geoderma.2019.113913_bb0120
SSID ssj0017020
Score 2.5798666
Snippet Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113913
SubjectTerms artificial intelligence
case studies
Conditioned Latin Hypercube
data collection
Europe
forestry equipment
k-means
LUCAS
Optimal design
Pedometrics
prediction
Random forest
soil map
soil organic carbon
soil properties
soil surveys
Spatial coverage
Spatial simulated annealing
Uncertainty assessment
Title Sampling design optimization for soil mapping with random forest
URI https://dx.doi.org/10.1016/j.geoderma.2019.113913
https://www.proquest.com/docview/2315289335
Volume 355
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPMVbRmINjWvn4Y2qAhUQLFCJzTrHdtWKJgjKym_nnDgVIKEOjHk4sT47352du-8IOc-kFJBoGeWp1JEAxiOwVkfGJrFwuKIQtaTQ_UM6HInb5-R5hQzaXBgfVhm4v-H0mq3DmW5As_s6mfgcX5ZmaI7QBfG7IZ6Hhcj8LL_4XIR5sCwO0owsjfzd37KEpzhGvuBYrT_EpC9vIhn_y0D9oura_lxvko3gONJ-07ctsmLLbbLeH78F8Qy7Qy4fwceHl2Nq6rgMWiEfzEKiJUXvlL5Xkxc6A6_JMKZ-C5aiqTLVzF_Ed-6S0fXV02AYhQoJEfA0n0fgYu2YEcw4ZnluWJEVEpHTHIR2Ms8FCN4r0sQVGv24ngSDyxNwYHuFY9LyPdIpq9LuExo7bUHgwPHCCMiszpwDiAuTp5kTPXdAkhYWVQT5cF_F4kW1cWJT1cKpPJyqgfOAdBftXhsBjaUtZIu6-jEVFLL80rZn7TAp_E78zw8obfXxrtCPTXBxyXly-I_nH5E1f9TEsxyTzvztw56gVzLXp_W0OyWr_Zu74cMXLafkbg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9VKUPQV-4Ej2mG8fOw4dKRW3R8rwUJG7uOLZXi9gEsYuqXvqn-gc7ThxEKyEOiGussaPPk5mx880MwGaplMTcqKQqlEkkcpGgcyaxLk-lpxOF7EoKHRwW42O5e5KfLMGfIRcm0Cqj7e9temet45NRRHN0Pp2GHF9elOSOKAQJtyFZZFbuuV8_6dw2_7TzlTb5Q5Ztfzv6Mk5ia4EERVEtEvSp8dxKbj13orK8LmtFSxqB0nhVVRKlyOoi97WhAChTaCmuR48uqz1XTtC8D2BFkrkIbRM-_r7ilfAyjbUgeZGE17uWlnxKShE6nHUFj7gK_VQUFzd5xP98Q-fwtp_Ckxipsq0ejFVYcs0zeLw1uYjVOtxz-PwdAyG9mTDbEUFYSwZoFjM7GYXDbN5Oz9gMQxGICQt3vox8o21nYZDWfAHH94LbS1hu2satAUu9cShJU0RtJZbOlN4jprWtitLLzK9DPsCi61ivPLTNONMDMe1UD3DqAKfu4VyH0ZXceV-x41YJNaCu_9E9TW7lVtn3wzZp-jDD3xZsXHs51xQ453SaFSJ_dYf5N-Dh-OhgX-_vHO69hkdhpCfTvIHlxcWle0sh0cK861SQwY_71vm_wCIizQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling+design+optimization+for+soil+mapping+with+random+forest&rft.jtitle=Geoderma&rft.au=Wadoux%2C+Alexandre+M.J-C.&rft.au=Brus%2C+Dick+J&rft.au=Heuvelink%2C+Gerard+B.M.&rft.date=2019-12-01&rft.issn=0016-7061&rft_id=info:doi/10.1016%2Fj.geoderma.2019.113913&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon