Sampling design optimization for soil mapping with random forest
Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learnin...
Saved in:
Published in | Geoderma Vol. 355; p. 113913 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analyzed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small.
•We investigate optimal sampling designs for mapping with random forest.•Five types of spatial sampling designs are tested for a range of sample sizes.•In our case study, conditioned Latin Hypercube sampling was not efficient for mapping with random forest.•Optimization of the design for the population mean squared error is worthwhile for small sample sizes.•Spreading the sample uniformly in the space spanned by important covariates improves spatial prediction. |
---|---|
AbstractList | Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analysed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small. Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analyzed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small. •We investigate optimal sampling designs for mapping with random forest.•Five types of spatial sampling designs are tested for a range of sample sizes.•In our case study, conditioned Latin Hypercube sampling was not efficient for mapping with random forest.•Optimization of the design for the population mean squared error is worthwhile for small sample sizes.•Spreading the sample uniformly in the space spanned by important covariates improves spatial prediction. |
ArticleNumber | 113913 |
Author | Wadoux, Alexandre M.J-C. Heuvelink, Gerard B.M. Brus, Dick J. |
Author_xml | – sequence: 1 givenname: Alexandre M.J-C. surname: Wadoux fullname: Wadoux, Alexandre M.J-C. email: alexandre.wadoux@wur.nl organization: Soil Geography and Landscape Group, Wageningen University & Research, the Netherlands – sequence: 2 givenname: Dick J. surname: Brus fullname: Brus, Dick J. organization: Biometris, Wageningen University & Research, the Netherlands – sequence: 3 givenname: Gerard B.M. surname: Heuvelink fullname: Heuvelink, Gerard B.M. organization: Soil Geography and Landscape Group, Wageningen University & Research, the Netherlands |
BookMark | eNqFkE1PwzAMhiM0JLbBX0A9cmmJk35KHIYmvqRJHIBzlCXOyNQ2JelA8OvpKFy47GRZfl5bfmZk0roWCTkHmgCF_HKbbNBp9I1MGIUqAeAV8CMyhbJgcc6yakKmdCDjguZwQmYhbIe2oIxOyeJJNl1t202kMdhNG7mut439kr11bWScj4KzddTIrttDH7Z_jbxstWv2Qwz9KTk2sg549lvn5OX25nl5H68e7x6W16tY8rzsY2no2oBOQRtAXmpQhaoU6jWX6dpUZZnKlDOVZ0atOVBWSV1kXBqJTBmokM_Jxbi38-5tNxwWjQ0K61q26HZBMA4ZKyvOswHNR1R5F4JHIzpvG-k_BVCxVya24k-Z2CsTo7IhePUvqGz_Y6L30taH44sxjoOHd4teBGWxHb60HlUvtLOHVnwDmNqP1g |
CitedBy_id | crossref_primary_10_1016_j_catena_2021_105509 crossref_primary_10_1016_j_geoderma_2022_116192 crossref_primary_10_1016_j_geoderma_2025_117208 crossref_primary_10_1016_j_apgeog_2021_102495 crossref_primary_10_1007_s11368_023_03633_5 crossref_primary_10_1007_s11119_024_10197_y crossref_primary_10_1016_j_still_2024_106245 crossref_primary_10_1111_ejss_12998 crossref_primary_10_3390_agriengineering7010021 crossref_primary_10_1007_s12145_024_01467_4 crossref_primary_10_1002_ldr_5230 crossref_primary_10_1016_j_jag_2024_103932 crossref_primary_10_1016_j_geoderma_2023_116740 crossref_primary_10_3390_ijgi9040236 crossref_primary_10_3390_rs16152712 crossref_primary_10_1016_j_geodrs_2023_e00713 crossref_primary_10_1016_j_geoderma_2024_116888 crossref_primary_10_1016_j_ecoinf_2025_103057 crossref_primary_10_1016_j_jag_2023_103198 crossref_primary_10_1016_j_geoderma_2024_117053 crossref_primary_10_3390_min11111172 crossref_primary_10_1016_j_earscirev_2020_103359 crossref_primary_10_1016_j_ecolind_2021_107618 crossref_primary_10_1002_ldr_5105 crossref_primary_10_1016_j_geoderma_2020_114503 crossref_primary_10_1111_ejss_12909 crossref_primary_10_3390_land11122180 crossref_primary_10_1016_j_geoderma_2024_116970 crossref_primary_10_1016_j_gexplo_2022_106974 crossref_primary_10_3389_fpls_2023_1309171 crossref_primary_10_1016_j_jenvman_2024_120746 crossref_primary_10_1016_j_geoderma_2021_115567 crossref_primary_10_7717_peerj_19099 crossref_primary_10_3390_land13010114 crossref_primary_10_3390_rs15123070 crossref_primary_10_1186_s13021_021_00195_2 crossref_primary_10_1007_s11356_023_30452_5 crossref_primary_10_1080_13658816_2022_2125973 crossref_primary_10_1007_s11119_024_10122_3 crossref_primary_10_1016_j_geoderma_2021_115155 crossref_primary_10_5194_gmd_17_6007_2024 crossref_primary_10_1016_j_eja_2021_126447 crossref_primary_10_1007_s11368_023_03516_9 crossref_primary_10_1016_j_catena_2023_107086 crossref_primary_10_1111_ejss_12962 crossref_primary_10_1016_j_scitotenv_2021_148170 crossref_primary_10_3390_rs14122780 crossref_primary_10_1016_j_catena_2021_105702 crossref_primary_10_1016_j_geoderma_2023_116553 crossref_primary_10_1016_j_geoderma_2024_116795 crossref_primary_10_1016_j_geoderma_2024_116952 crossref_primary_10_1016_j_geodrs_2024_e00801 crossref_primary_10_3390_w14020210 crossref_primary_10_1016_j_envsoft_2023_105933 crossref_primary_10_3390_rs13204165 crossref_primary_10_3390_rs15041072 crossref_primary_10_1016_j_geoderma_2022_115749 crossref_primary_10_1007_s10457_023_00833_3 crossref_primary_10_1016_j_earscirev_2021_103542 crossref_primary_10_1016_j_geoderma_2021_115503 crossref_primary_10_4236_as_2023_147061 crossref_primary_10_3390_su16166976 crossref_primary_10_1016_j_geodrs_2022_e00495 crossref_primary_10_1016_j_geoderma_2021_115290 crossref_primary_10_1016_j_geodrs_2021_e00358 crossref_primary_10_1016_j_geodrs_2021_e00359 crossref_primary_10_3390_land14030545 crossref_primary_10_1016_j_envpol_2022_120931 crossref_primary_10_1016_j_spasta_2022_100639 crossref_primary_10_1051_e3sconf_202448103006 crossref_primary_10_1007_s11119_024_10200_6 crossref_primary_10_1088_1748_9326_aca41e crossref_primary_10_1016_j_ecoinf_2023_102294 crossref_primary_10_3390_soilsystems7010027 crossref_primary_10_1016_j_geoderma_2022_116052 crossref_primary_10_1016_j_geoderma_2023_116652 crossref_primary_10_1016_j_geodrs_2023_e00747 crossref_primary_10_1016_j_jenvman_2023_117810 crossref_primary_10_1016_j_geoderma_2025_117261 crossref_primary_10_3390_rs12071197 crossref_primary_10_3390_land13030365 crossref_primary_10_1016_j_geodrs_2024_e00874 crossref_primary_10_3390_s22186890 crossref_primary_10_1016_j_scitotenv_2022_157489 crossref_primary_10_1111_ejss_13226 crossref_primary_10_1016_j_catena_2021_105178 crossref_primary_10_1016_j_compag_2023_108466 crossref_primary_10_1016_j_catena_2022_106900 crossref_primary_10_1007_s10980_021_01302_x crossref_primary_10_1016_j_geodrs_2020_e00353 crossref_primary_10_1016_j_geoderma_2023_116763 crossref_primary_10_1007_s41742_024_00611_8 crossref_primary_10_1016_j_compag_2021_106094 crossref_primary_10_1080_10095020_2025_2454523 crossref_primary_10_1016_j_envsoft_2024_106269 crossref_primary_10_3390_mi13091440 crossref_primary_10_1016_j_spasta_2024_100820 crossref_primary_10_1016_j_geoderma_2020_114366 crossref_primary_10_3390_rs12101687 crossref_primary_10_1016_j_jenvman_2021_113357 crossref_primary_10_1016_j_watres_2023_121041 crossref_primary_10_1016_j_geoderma_2020_114809 |
Cites_doi | 10.7717/peerj.5722 10.1016/j.geoderma.2019.05.012 10.1016/S0016-7061(98)00123-2 10.1162/neco.1992.4.4.590 10.1016/j.cageo.2005.12.009 10.1016/j.geoderma.2008.05.008 10.1371/journal.pone.0169748 10.1007/BF00058655 10.1097/SS.0000000000000115 10.1111/ejss.12797 10.1016/j.geoderma.2018.07.036 10.1016/j.geoderma.2006.10.016 10.1111/ejss.12499 10.1016/j.geoderma.2004.06.007 10.1093/bioinformatics/bty373 10.1023/A:1010933404324 10.1016/j.geoderma.2016.12.012 10.1111/j.1365-2389.2011.01364.x 10.1016/j.geoderma.2018.03.010 10.7717/peerj.5518 10.1002/jpln.200421414 10.1504/IJEP.2006.011223 10.1016/S0098-3004(98)00020-X 10.1111/ejss.12687 10.1016/S0016-7061(98)00056-1 10.1002/joc.5946 10.1016/j.geoderma.2014.05.013 10.1016/j.cageo.2010.04.005 10.1214/aoms/1177730491 10.2134/jeq1998.00472425002700050013x |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.113913 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2019_113913 S0016706119306792 |
GeographicLocations | Europe |
GeographicLocations_xml | – name: Europe |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-af0bf1d41df1e38d1c7c9cedb3a4bf9884a432c65fcb31029ad753afae2cf19e3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 03:23:09 EDT 2025 Tue Jul 01 04:04:51 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Fri Feb 23 02:27:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spatial simulated annealing k-means Random forest LUCAS Uncertainty assessment Pedometrics Conditioned Latin Hypercube Spatial coverage Optimal design |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-af0bf1d41df1e38d1c7c9cedb3a4bf9884a432c65fcb31029ad753afae2cf19e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2315289335 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2315289335 crossref_primary_10_1016_j_geoderma_2019_113913 crossref_citationtrail_10_1016_j_geoderma_2019_113913 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_113913 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Samuel-Rosa (bb0180) 2017 Castro-Franco, Costa, Peralta, Aparicio (bb0055) 2015; 180 Contreras, Ballari, De Bruin, Samaniego (bb0065) 2019; 39 Tóth, Jones, Montanarella (bb0190) 2013 MacKay (bb0125) 1992; 4 (bb0165) 2018 Gallego, Delincé (bb0080) 2010 Brus, Spätjens, De Gruijter (bb0050) 1999; 89 Wadoux, Marchant, Lark (bb0220) 2019 Hartigan, Wong (bb0090) 1979; 28 Breiman (bb0015) 1996; 24 Heuvelink, Brus, de Gruijter (bb0110) 2006; 31 Cochran (bb0060) 1977 Walvoort, Brus, De Gruijter (bb0225) 2010; 36 Brus (bb0030) 2019; 338 Brus, Kempen, Heuvelink (bb0045) 2011; 62 Henderson, Bui, Moran, Simon (bb0095) 2005; 124 Tuia, Pozdnoukhov, Foresti, Kanevski (bb0195) 2013 Louppe (bb0120) 2014 Deutsch (bb0070) 1997 Meinshausen (bb0135) 2006; 7 Minasny, McBratney (bb0140) 2006; 32 Wadoux (bb0210) 2019; 351 Breiman (bb0020) 2001; 45 Hengl, Nussbaum, Wright, Heuvelink, Gräler (bb0105) 2018; 6 Mann, Whitney (bb0130) 1947 Wright, Ziegler (bb0235) 2017; 77 Behrens, Förster, Scholten, Steinrücken, Spies, Goldschmitt (bb0005) 2005; 168 Behrens, Schmidt, Viscarra Rossel, Gries, Scholten, MacMillan (bb0010) 2018; 69 Ng, Minasny, Malone, Filippi (bb0150) 2018; 6 Pozdnoukhov, Kanevski (bb0160) 2006; 28 Nembrini, König, Wright (bb0145) 2018; 34 Roudier (bb0170) 2018 Brus, De Gruijter, Van Groenigen (bb0035) 2007; 31 Van Groenigen, Siderius, Stein (bb0200) 1999; 87 Wadoux, Brus, Heuvelink (bb0215) 2018; 324 Brus, Heuvelink (bb0040) 2007; 138 Van Groenigen, Stein (bb0205) 1998; 27 Domenech, Castro-Franco, Costa, Amiotti (bb0075) 2017; 290 Breiman (bb0025) 2017 Schmidt, Behrens, Daumann, Ramirez-Lopez, Werban, Dietrich, Scholten (bb0185) 2014; 232 Lopes (bb0115) 2015 Hengl, de Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger (bb0100) 2017; 12 Webster, Oliver (bb0230) 2007 Grimm, Behrens, Märker, Elsenbeer (bb0085) 2008; 146 Orgiazzi, Ballabio, Panagos, Jones, Fernández-Ugalde (bb0155) 2018; 69 Royle, Nychka (bb0175) 1998; 24 Breiman (10.1016/j.geoderma.2019.113913_bb0020) 2001; 45 Wright (10.1016/j.geoderma.2019.113913_bb0235) 2017; 77 Mann (10.1016/j.geoderma.2019.113913_bb0130) 1947 Van Groenigen (10.1016/j.geoderma.2019.113913_bb0200) 1999; 87 Brus (10.1016/j.geoderma.2019.113913_bb0050) 1999; 89 Castro-Franco (10.1016/j.geoderma.2019.113913_bb0055) 2015; 180 Tóth (10.1016/j.geoderma.2019.113913_bb0190) 2013 Nembrini (10.1016/j.geoderma.2019.113913_bb0145) 2018; 34 Hartigan (10.1016/j.geoderma.2019.113913_bb0090) 1979; 28 Lopes (10.1016/j.geoderma.2019.113913_bb0115) 2015 Behrens (10.1016/j.geoderma.2019.113913_bb0010) 2018; 69 Heuvelink (10.1016/j.geoderma.2019.113913_bb0110) 2006; 31 MacKay (10.1016/j.geoderma.2019.113913_bb0125) 1992; 4 Brus (10.1016/j.geoderma.2019.113913_bb0040) 2007; 138 Deutsch (10.1016/j.geoderma.2019.113913_bb0070) 1997 Roudier (10.1016/j.geoderma.2019.113913_bb0170) Royle (10.1016/j.geoderma.2019.113913_bb0175) 1998; 24 Brus (10.1016/j.geoderma.2019.113913_bb0045) 2011; 62 Henderson (10.1016/j.geoderma.2019.113913_bb0095) 2005; 124 Minasny (10.1016/j.geoderma.2019.113913_bb0140) 2006; 32 Ng (10.1016/j.geoderma.2019.113913_bb0150) 2018; 6 Wadoux (10.1016/j.geoderma.2019.113913_bb0215) 2018; 324 Webster (10.1016/j.geoderma.2019.113913_bb0230) 2007 Hengl (10.1016/j.geoderma.2019.113913_bb0105) 2018; 6 Orgiazzi (10.1016/j.geoderma.2019.113913_bb0155) 2018; 69 Hengl (10.1016/j.geoderma.2019.113913_bb0100) 2017; 12 Louppe (10.1016/j.geoderma.2019.113913_bb0120) 2014 Breiman (10.1016/j.geoderma.2019.113913_bb0025) 2017 Cochran (10.1016/j.geoderma.2019.113913_bb0060) 1977 Wadoux (10.1016/j.geoderma.2019.113913_bb0220) 2019 Gallego (10.1016/j.geoderma.2019.113913_bb0080) 2010 Brus (10.1016/j.geoderma.2019.113913_bb0030) 2019; 338 Behrens (10.1016/j.geoderma.2019.113913_bb0005) 2005; 168 Samuel-Rosa (10.1016/j.geoderma.2019.113913_bb0180) Contreras (10.1016/j.geoderma.2019.113913_bb0065) 2019; 39 Walvoort (10.1016/j.geoderma.2019.113913_bb0225) 2010; 36 Tuia (10.1016/j.geoderma.2019.113913_bb0195) 2013 Van Groenigen (10.1016/j.geoderma.2019.113913_bb0205) 1998; 27 Wadoux (10.1016/j.geoderma.2019.113913_bb0210) 2019; 351 Breiman (10.1016/j.geoderma.2019.113913_bb0015) 1996; 24 (10.1016/j.geoderma.2019.113913_bb0165) 2018 Brus (10.1016/j.geoderma.2019.113913_bb0035) 2007; 31 Domenech (10.1016/j.geoderma.2019.113913_bb0075) 2017; 290 Grimm (10.1016/j.geoderma.2019.113913_bb0085) 2008; 146 Schmidt (10.1016/j.geoderma.2019.113913_bb0185) 2014; 232 Pozdnoukhov (10.1016/j.geoderma.2019.113913_bb0160) 2006; 28 Meinshausen (10.1016/j.geoderma.2019.113913_bb0135) 2006; 7 |
References_xml | – volume: 180 start-page: 74 year: 2015 end-page: 85 ident: bb0055 article-title: Prediction of soil properties at farm scale using a model-based soil sampling scheme and random forest publication-title: Soil Sci. – volume: 324 start-page: 138 year: 2018 end-page: 147 ident: bb0215 article-title: Accounting for non-stationary variance in geostatistical mapping of soil properties publication-title: Geoderma – volume: 6 start-page: e5722 year: 2018 ident: bb0150 article-title: In search of an optimum sampling algorithm for prediction of soil properties from infrared spectra publication-title: PeerJ – volume: 28 start-page: 465 year: 2006 end-page: 484 ident: bb0160 article-title: Monitoring network optimisation for spatial data classification using support vector machines publication-title: Int. J. Environ. Pollut. – year: 2007 ident: bb0230 article-title: Geostatistics for Environmental Scientists – year: 2019 ident: bb0220 article-title: Efficient sampling for geostatistical surveys publication-title: Eur. J. Soil Sci. – volume: 290 start-page: 75 year: 2017 end-page: 82 ident: bb0075 article-title: Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale publication-title: Geoderma – volume: 31 start-page: 183 year: 2007 end-page: 192 ident: bb0035 article-title: Designing spatial coverage samples using the k-means clustering algorithm publication-title: Dev. Soil Sci. – volume: 89 start-page: 129 year: 1999 end-page: 148 ident: bb0050 article-title: A sampling scheme for estimating the mean extractable phosphorus concentration of fields for environmental regulation publication-title: Geoderma – volume: 232 start-page: 243 year: 2014 end-page: 256 ident: bb0185 article-title: A comparison of calibration sampling schemes at the field scale publication-title: Geoderma – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: bb0090 article-title: Algorithm AS 136: a k-means clustering algorithm publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat. – volume: 39 start-page: 2209 year: 2019 end-page: 2226 ident: bb0065 article-title: Rainfall monitoring network design using conditioned Latin Hypercube sampling and satellite precipitation estimates: an application in the ungauged Ecuadorian Amazon publication-title: Int. J. Climatol. – start-page: 285 year: 2013 end-page: 318 ident: bb0195 article-title: Active learning for monitoring network optimization publication-title: Spatio-Temporal Design: Advances in Efficient Data Acquisition – volume: 36 start-page: 1261 year: 2010 end-page: 1267 ident: bb0225 article-title: An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means publication-title: Comput. Geosci. – start-page: 115 year: 1997 end-page: 125 ident: bb0070 article-title: Direct assessment of local accuracy and precision publication-title: Geostatistics Wollongong’96 – volume: 4 start-page: 590 year: 1992 end-page: 604 ident: bb0125 article-title: Information-based objective functions for active data selection publication-title: Neural Comput. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bb0015 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 138 start-page: 86 year: 2007 end-page: 95 ident: bb0040 article-title: Optimization of sample patterns for universal kriging of environmental variables publication-title: Geoderma – volume: 24 start-page: 479 year: 1998 end-page: 488 ident: bb0175 article-title: An algorithm for the construction of spatial coverage designs with implementation in SPLUS publication-title: Comput. Geosci. – volume: 168 start-page: 21 year: 2005 end-page: 33 ident: bb0005 article-title: Digital soil mapping using artificial neural networks publication-title: J. Plant Nutr. Soil Sci. – volume: 6 start-page: e5518 year: 2018 ident: bb0105 article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables publication-title: PeerJ – volume: 69 start-page: 757 year: 2018 end-page: 770 ident: bb0010 article-title: Spatial modelling with Euclidean distance fields and machine learning publication-title: Eur. J. Soil Sci. – volume: 27 start-page: 1078 year: 1998 end-page: 1086 ident: bb0205 article-title: Constrained optimization of spatial sampling using continuous simulated annealing publication-title: J. Environ. Qual. – year: 2017 ident: bb0025 article-title: Classification and Regression Trees – volume: 124 start-page: 383 year: 2005 end-page: 398 ident: bb0095 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma – volume: 69 start-page: 140 year: 2018 end-page: 153 ident: bb0155 article-title: LUCAS Soil, the largest expandable soil dataset for Europe: a review publication-title: Eur. J. Soil Sci. – year: 2017 ident: bb0180 article-title: spsann: Optimization of Sample Configurations using Spatial Simulated Annealing – volume: 32 start-page: 1378 year: 2006 end-page: 1388 ident: bb0140 article-title: A conditioned latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. – year: 2018 ident: bb0170 article-title: Package “clhs” – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0020 article-title: Random forests publication-title: Mach. Learn. – volume: 62 start-page: 394 year: 2011 end-page: 407 ident: bb0045 article-title: Sampling for validation of digital soil maps publication-title: Eur. J. Soil Sci. – volume: 338 start-page: 464 year: 2019 end-page: 480 ident: bb0030 article-title: Sampling for digital soil mapping: a tutorial supported by R scripts publication-title: Geoderma – volume: 31 start-page: 137 year: 2006 end-page: 151 ident: bb0110 article-title: Optimization of sample configurations for digital mapping of soil properties with universal kriging publication-title: Dev. Soil Sci. – volume: 87 start-page: 239 year: 1999 end-page: 259 ident: bb0200 article-title: Constrained optimisation of soil sampling for minimisation of the kriging variance publication-title: Geoderma – start-page: 50 year: 1947 end-page: 60 ident: bb0130 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Ann. Math. Stat. – year: 2013 ident: bb0190 article-title: Lucas topsoil survey: methodology, data and results publication-title: Technical Report JRC – start-page: 149 year: 2010 end-page: 168 ident: bb0080 article-title: The European land use and cover area-frame statistical survey publication-title: Agricultural Survey Methods – volume: 7 start-page: 983 year: 2006 end-page: 999 ident: bb0135 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 146 start-page: 102 year: 2008 end-page: 113 ident: bb0085 article-title: Soil organic carbon concentrations and stocks on Barro Colorado island-digital soil mapping using random forests analysis publication-title: Geoderma – volume: 77 year: 2017 ident: bb0235 article-title: ranger: a fast implementation of random forests for high dimensional data in C++ and R publication-title: JJ. Stat. Softw. – year: 2015 ident: bb0115 article-title: Measuring the algorithmic convergence of random forests via bootstrap extrapolation publication-title: Technical Report – year: 2018 ident: bb0165 article-title: R: A Language and Environment for Statistical Computing. – volume: 351 start-page: 59 year: 2019 end-page: 70 ident: bb0210 article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty publication-title: Geoderma – volume: 34 start-page: 3711 year: 2018 end-page: 3718 ident: bb0145 article-title: The revival of the Gini importance? publication-title: Bioinformatics – year: 2014 ident: bb0120 article-title: Understanding Random Forests: From Theory to Practice – year: 1977 ident: bb0060 article-title: Sampling Techniques – volume: 12 start-page: e0169748 year: 2017 ident: bb0100 article-title: Soilgrids250m: global gridded soil information based on machine learning publication-title: PLoS one – volume: 6 start-page: e5722 year: 2018 ident: 10.1016/j.geoderma.2019.113913_bb0150 article-title: In search of an optimum sampling algorithm for prediction of soil properties from infrared spectra publication-title: PeerJ doi: 10.7717/peerj.5722 – volume: 351 start-page: 59 year: 2019 ident: 10.1016/j.geoderma.2019.113913_bb0210 article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.012 – volume: 89 start-page: 129 year: 1999 ident: 10.1016/j.geoderma.2019.113913_bb0050 article-title: A sampling scheme for estimating the mean extractable phosphorus concentration of fields for environmental regulation publication-title: Geoderma doi: 10.1016/S0016-7061(98)00123-2 – volume: 31 start-page: 183 year: 2007 ident: 10.1016/j.geoderma.2019.113913_bb0035 article-title: Designing spatial coverage samples using the k-means clustering algorithm publication-title: Dev. Soil Sci. – volume: 4 start-page: 590 year: 1992 ident: 10.1016/j.geoderma.2019.113913_bb0125 article-title: Information-based objective functions for active data selection publication-title: Neural Comput. doi: 10.1162/neco.1992.4.4.590 – volume: 32 start-page: 1378 year: 2006 ident: 10.1016/j.geoderma.2019.113913_bb0140 article-title: A conditioned latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 146 start-page: 102 year: 2008 ident: 10.1016/j.geoderma.2019.113913_bb0085 article-title: Soil organic carbon concentrations and stocks on Barro Colorado island-digital soil mapping using random forests analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.008 – volume: 12 start-page: e0169748 year: 2017 ident: 10.1016/j.geoderma.2019.113913_bb0100 article-title: Soilgrids250m: global gridded soil information based on machine learning publication-title: PLoS one doi: 10.1371/journal.pone.0169748 – year: 2018 ident: 10.1016/j.geoderma.2019.113913_bb0165 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.geoderma.2019.113913_bb0015 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – year: 2017 ident: 10.1016/j.geoderma.2019.113913_bb0025 – volume: 180 start-page: 74 year: 2015 ident: 10.1016/j.geoderma.2019.113913_bb0055 article-title: Prediction of soil properties at farm scale using a model-based soil sampling scheme and random forest publication-title: Soil Sci. doi: 10.1097/SS.0000000000000115 – year: 2019 ident: 10.1016/j.geoderma.2019.113913_bb0220 article-title: Efficient sampling for geostatistical surveys publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12797 – volume: 338 start-page: 464 year: 2019 ident: 10.1016/j.geoderma.2019.113913_bb0030 article-title: Sampling for digital soil mapping: a tutorial supported by R scripts publication-title: Geoderma doi: 10.1016/j.geoderma.2018.07.036 – volume: 138 start-page: 86 year: 2007 ident: 10.1016/j.geoderma.2019.113913_bb0040 article-title: Optimization of sample patterns for universal kriging of environmental variables publication-title: Geoderma doi: 10.1016/j.geoderma.2006.10.016 – volume: 28 start-page: 100 year: 1979 ident: 10.1016/j.geoderma.2019.113913_bb0090 article-title: Algorithm AS 136: a k-means clustering algorithm publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat. – volume: 69 start-page: 140 year: 2018 ident: 10.1016/j.geoderma.2019.113913_bb0155 article-title: LUCAS Soil, the largest expandable soil dataset for Europe: a review publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12499 – volume: 77 year: 2017 ident: 10.1016/j.geoderma.2019.113913_bb0235 article-title: ranger: a fast implementation of random forests for high dimensional data in C++ and R publication-title: JJ. Stat. Softw. – volume: 124 start-page: 383 year: 2005 ident: 10.1016/j.geoderma.2019.113913_bb0095 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma doi: 10.1016/j.geoderma.2004.06.007 – ident: 10.1016/j.geoderma.2019.113913_bb0170 – volume: 34 start-page: 3711 year: 2018 ident: 10.1016/j.geoderma.2019.113913_bb0145 article-title: The revival of the Gini importance? publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty373 – year: 2015 ident: 10.1016/j.geoderma.2019.113913_bb0115 article-title: Measuring the algorithmic convergence of random forests via bootstrap extrapolation – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geoderma.2019.113913_bb0020 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2013 ident: 10.1016/j.geoderma.2019.113913_bb0190 article-title: Lucas topsoil survey: methodology, data and results – volume: 290 start-page: 75 year: 2017 ident: 10.1016/j.geoderma.2019.113913_bb0075 article-title: Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.012 – volume: 62 start-page: 394 year: 2011 ident: 10.1016/j.geoderma.2019.113913_bb0045 article-title: Sampling for validation of digital soil maps publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2011.01364.x – start-page: 285 year: 2013 ident: 10.1016/j.geoderma.2019.113913_bb0195 article-title: Active learning for monitoring network optimization – volume: 324 start-page: 138 year: 2018 ident: 10.1016/j.geoderma.2019.113913_bb0215 article-title: Accounting for non-stationary variance in geostatistical mapping of soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2018.03.010 – volume: 6 start-page: e5518 year: 2018 ident: 10.1016/j.geoderma.2019.113913_bb0105 article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables publication-title: PeerJ doi: 10.7717/peerj.5518 – start-page: 115 year: 1997 ident: 10.1016/j.geoderma.2019.113913_bb0070 article-title: Direct assessment of local accuracy and precision – volume: 7 start-page: 983 year: 2006 ident: 10.1016/j.geoderma.2019.113913_bb0135 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 168 start-page: 21 year: 2005 ident: 10.1016/j.geoderma.2019.113913_bb0005 article-title: Digital soil mapping using artificial neural networks publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200421414 – year: 2007 ident: 10.1016/j.geoderma.2019.113913_bb0230 – ident: 10.1016/j.geoderma.2019.113913_bb0180 – volume: 28 start-page: 465 year: 2006 ident: 10.1016/j.geoderma.2019.113913_bb0160 article-title: Monitoring network optimisation for spatial data classification using support vector machines publication-title: Int. J. Environ. Pollut. doi: 10.1504/IJEP.2006.011223 – volume: 31 start-page: 137 year: 2006 ident: 10.1016/j.geoderma.2019.113913_bb0110 article-title: Optimization of sample configurations for digital mapping of soil properties with universal kriging publication-title: Dev. Soil Sci. – volume: 24 start-page: 479 year: 1998 ident: 10.1016/j.geoderma.2019.113913_bb0175 article-title: An algorithm for the construction of spatial coverage designs with implementation in SPLUS publication-title: Comput. Geosci. doi: 10.1016/S0098-3004(98)00020-X – volume: 69 start-page: 757 year: 2018 ident: 10.1016/j.geoderma.2019.113913_bb0010 article-title: Spatial modelling with Euclidean distance fields and machine learning publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12687 – start-page: 149 year: 2010 ident: 10.1016/j.geoderma.2019.113913_bb0080 article-title: The European land use and cover area-frame statistical survey – volume: 87 start-page: 239 year: 1999 ident: 10.1016/j.geoderma.2019.113913_bb0200 article-title: Constrained optimisation of soil sampling for minimisation of the kriging variance publication-title: Geoderma doi: 10.1016/S0016-7061(98)00056-1 – volume: 39 start-page: 2209 year: 2019 ident: 10.1016/j.geoderma.2019.113913_bb0065 article-title: Rainfall monitoring network design using conditioned Latin Hypercube sampling and satellite precipitation estimates: an application in the ungauged Ecuadorian Amazon publication-title: Int. J. Climatol. doi: 10.1002/joc.5946 – volume: 232 start-page: 243 year: 2014 ident: 10.1016/j.geoderma.2019.113913_bb0185 article-title: A comparison of calibration sampling schemes at the field scale publication-title: Geoderma doi: 10.1016/j.geoderma.2014.05.013 – volume: 36 start-page: 1261 year: 2010 ident: 10.1016/j.geoderma.2019.113913_bb0225 article-title: An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.04.005 – year: 1977 ident: 10.1016/j.geoderma.2019.113913_bb0060 – start-page: 50 year: 1947 ident: 10.1016/j.geoderma.2019.113913_bb0130 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177730491 – volume: 27 start-page: 1078 year: 1998 ident: 10.1016/j.geoderma.2019.113913_bb0205 article-title: Constrained optimization of spatial sampling using continuous simulated annealing publication-title: J. Environ. Qual. doi: 10.2134/jeq1998.00472425002700050013x – year: 2014 ident: 10.1016/j.geoderma.2019.113913_bb0120 |
SSID | ssj0017020 |
Score | 2.5798666 |
Snippet | Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113913 |
SubjectTerms | artificial intelligence case studies Conditioned Latin Hypercube data collection Europe forestry equipment k-means LUCAS Optimal design Pedometrics prediction Random forest soil map soil organic carbon soil properties soil surveys Spatial coverage Spatial simulated annealing Uncertainty assessment |
Title | Sampling design optimization for soil mapping with random forest |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.113913 https://www.proquest.com/docview/2315289335 |
Volume | 355 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPMVbRmINjWvn4Y2qAhUQLFCJzTrHdtWKJgjKym_nnDgVIKEOjHk4sT47352du-8IOc-kFJBoGeWp1JEAxiOwVkfGJrFwuKIQtaTQ_UM6HInb5-R5hQzaXBgfVhm4v-H0mq3DmW5As_s6mfgcX5ZmaI7QBfG7IZ6Hhcj8LL_4XIR5sCwO0owsjfzd37KEpzhGvuBYrT_EpC9vIhn_y0D9oura_lxvko3gONJ-07ctsmLLbbLeH78F8Qy7Qy4fwceHl2Nq6rgMWiEfzEKiJUXvlL5Xkxc6A6_JMKZ-C5aiqTLVzF_Ed-6S0fXV02AYhQoJEfA0n0fgYu2YEcw4ZnluWJEVEpHTHIR2Ms8FCN4r0sQVGv24ngSDyxNwYHuFY9LyPdIpq9LuExo7bUHgwPHCCMiszpwDiAuTp5kTPXdAkhYWVQT5cF_F4kW1cWJT1cKpPJyqgfOAdBftXhsBjaUtZIu6-jEVFLL80rZn7TAp_E78zw8obfXxrtCPTXBxyXly-I_nH5E1f9TEsxyTzvztw56gVzLXp_W0OyWr_Zu74cMXLafkbg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9VKUPQV-4Ej2mG8fOw4dKRW3R8rwUJG7uOLZXi9gEsYuqXvqn-gc7ThxEKyEOiGussaPPk5mx880MwGaplMTcqKQqlEkkcpGgcyaxLk-lpxOF7EoKHRwW42O5e5KfLMGfIRcm0Cqj7e9temet45NRRHN0Pp2GHF9elOSOKAQJtyFZZFbuuV8_6dw2_7TzlTb5Q5Ztfzv6Mk5ia4EERVEtEvSp8dxKbj13orK8LmtFSxqB0nhVVRKlyOoi97WhAChTaCmuR48uqz1XTtC8D2BFkrkIbRM-_r7ilfAyjbUgeZGE17uWlnxKShE6nHUFj7gK_VQUFzd5xP98Q-fwtp_Ckxipsq0ejFVYcs0zeLw1uYjVOtxz-PwdAyG9mTDbEUFYSwZoFjM7GYXDbN5Oz9gMQxGICQt3vox8o21nYZDWfAHH94LbS1hu2satAUu9cShJU0RtJZbOlN4jprWtitLLzK9DPsCi61ivPLTNONMDMe1UD3DqAKfu4VyH0ZXceV-x41YJNaCu_9E9TW7lVtn3wzZp-jDD3xZsXHs51xQ453SaFSJ_dYf5N-Dh-OhgX-_vHO69hkdhpCfTvIHlxcWle0sh0cK861SQwY_71vm_wCIizQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling+design+optimization+for+soil+mapping+with+random+forest&rft.jtitle=Geoderma&rft.au=Wadoux%2C+Alexandre+M.J-C.&rft.au=Brus%2C+Dick+J&rft.au=Heuvelink%2C+Gerard+B.M.&rft.date=2019-12-01&rft.issn=0016-7061&rft_id=info:doi/10.1016%2Fj.geoderma.2019.113913&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |