Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau
Surface temperature is critical for the simulation of climate change impacts on the ecology, environment, and particularly permafrost in the cryosphere. Virtually, surface temperatures are different in the near-surface air temperature (Ta) measured at a screen-height of 1.5–2m, the land surface temp...
Saved in:
Published in | Geoderma Vol. 312; pp. 74 - 85 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2017.09.037 |
Cover
Loading…
Abstract | Surface temperature is critical for the simulation of climate change impacts on the ecology, environment, and particularly permafrost in the cryosphere. Virtually, surface temperatures are different in the near-surface air temperature (Ta) measured at a screen-height of 1.5–2m, the land surface temperature (LST) on the top canopy layer, and the ground surface temperature (GST) 0–5 cm beneath the surface cover. However, not enough attention has been concentrated on the difference in these surface temperatures. This study aims at quantifying the distinction of surface temperatures by the comparisons and numerical simulations of observational field data collected in a discontinuous permafrost region on the northeastern Qinghai-Tibet Plateau (QTP). We compared the hourly, seasonal and yearly differences between Ta, LST, GST, and ground temperatures, as well as the freezing and thawing indices, the N-factors, and the surface and thermal offsets derived from these temperatures. The results showed that the peak hourly LST was reached earliest, closely followed by the hourly Ta. Mean annual LST (MALST) was moderately comparable to mean annual Ta (MAAT), and both were lower than mean annual GST (MAGST). Surface offsets (MAGST-MAAT) were all within 3.5 °C, which are somewhat consistent with other parts of the QTP but smaller than those in the Arctic and Subarctic regions with dense vegetation and thick, long-duration snow cover. Thermal offsets, the mean annual differences between the ground surface and the permafrost surface, were within −0.3°C, and one site was even reversed, which may be relevant to equally thawed to frozen thermal conductivities of the soils. Even with identical Ta (comparable to MAAT of −3.27 and −3.17°C), the freezing and thawing processes of the active layer were distinctly different, due to the complex influence of surface characteristics and soil textures. Furthermore, we employed the Geophysical Institute Permafrost Lab (GIPL) model to numerically simulate the dynamics of ground temperature driven by Ta, LST, and GST, respectively. Simulated results demonstrated that GST was a reliable driving indicator for the thermal regime of frozen ground, even if no thermal effects of surface characteristics were taken into account. However, great biases of mean annual ground temperatures, being as large as 3°C, were induced on the basis of simulations with LST and Ta when the thermal effect of surface characteristics was neglected. We conclude that quantitative calculation of the thermal effect of surface characteristics on GST is indispensable for the permafrost simulations based on the Ta datasets and the LST products that derived from thermal infrared remote sensing.
•First comparisons of three different surface temperatures to soil science•Simulate ground temperature by near-surface air, land and ground surface temperatures.•Emphasize the importance of surface characteristics on mapping & modeling permafrost.•Suggest the ground surface temperature as a reliable indicator for permafrost. |
---|---|
AbstractList | Surface temperature is critical for the simulation of climate change impacts on the ecology, environment, and particularly permafrost in the cryosphere. Virtually, surface temperatures are different in the near-surface air temperature (Ta) measured at a screen-height of 1.5–2m, the land surface temperature (LST) on the top canopy layer, and the ground surface temperature (GST) 0–5 cm beneath the surface cover. However, not enough attention has been concentrated on the difference in these surface temperatures. This study aims at quantifying the distinction of surface temperatures by the comparisons and numerical simulations of observational field data collected in a discontinuous permafrost region on the northeastern Qinghai-Tibet Plateau (QTP). We compared the hourly, seasonal and yearly differences between Ta, LST, GST, and ground temperatures, as well as the freezing and thawing indices, the N-factors, and the surface and thermal offsets derived from these temperatures. The results showed that the peak hourly LST was reached earliest, closely followed by the hourly Ta. Mean annual LST (MALST) was moderately comparable to mean annual Ta (MAAT), and both were lower than mean annual GST (MAGST). Surface offsets (MAGST-MAAT) were all within 3.5 °C, which are somewhat consistent with other parts of the QTP but smaller than those in the Arctic and Subarctic regions with dense vegetation and thick, long-duration snow cover. Thermal offsets, the mean annual differences between the ground surface and the permafrost surface, were within −0.3°C, and one site was even reversed, which may be relevant to equally thawed to frozen thermal conductivities of the soils. Even with identical Ta (comparable to MAAT of −3.27 and −3.17°C), the freezing and thawing processes of the active layer were distinctly different, due to the complex influence of surface characteristics and soil textures. Furthermore, we employed the Geophysical Institute Permafrost Lab (GIPL) model to numerically simulate the dynamics of ground temperature driven by Ta, LST, and GST, respectively. Simulated results demonstrated that GST was a reliable driving indicator for the thermal regime of frozen ground, even if no thermal effects of surface characteristics were taken into account. However, great biases of mean annual ground temperatures, being as large as 3°C, were induced on the basis of simulations with LST and Ta when the thermal effect of surface characteristics was neglected. Quantitative calculation of the thermal effect of surface characteristics on GST is indispensable for the purposes of engineering project designs and permafrost simulations based on the Ta datasets and the LST products derived from thermal infrared remote sensing. Surface temperature is critical for the simulation of climate change impacts on the ecology, environment, and particularly permafrost in the cryosphere. Virtually, surface temperatures are different in the near-surface air temperature (Ta) measured at a screen-height of 1.5–2m, the land surface temperature (LST) on the top canopy layer, and the ground surface temperature (GST) 0–5 cm beneath the surface cover. However, not enough attention has been concentrated on the difference in these surface temperatures. This study aims at quantifying the distinction of surface temperatures by the comparisons and numerical simulations of observational field data collected in a discontinuous permafrost region on the northeastern Qinghai-Tibet Plateau (QTP). We compared the hourly, seasonal and yearly differences between Ta, LST, GST, and ground temperatures, as well as the freezing and thawing indices, the N-factors, and the surface and thermal offsets derived from these temperatures. The results showed that the peak hourly LST was reached earliest, closely followed by the hourly Ta. Mean annual LST (MALST) was moderately comparable to mean annual Ta (MAAT), and both were lower than mean annual GST (MAGST). Surface offsets (MAGST-MAAT) were all within 3.5 °C, which are somewhat consistent with other parts of the QTP but smaller than those in the Arctic and Subarctic regions with dense vegetation and thick, long-duration snow cover. Thermal offsets, the mean annual differences between the ground surface and the permafrost surface, were within −0.3°C, and one site was even reversed, which may be relevant to equally thawed to frozen thermal conductivities of the soils. Even with identical Ta (comparable to MAAT of −3.27 and −3.17°C), the freezing and thawing processes of the active layer were distinctly different, due to the complex influence of surface characteristics and soil textures. Furthermore, we employed the Geophysical Institute Permafrost Lab (GIPL) model to numerically simulate the dynamics of ground temperature driven by Ta, LST, and GST, respectively. Simulated results demonstrated that GST was a reliable driving indicator for the thermal regime of frozen ground, even if no thermal effects of surface characteristics were taken into account. However, great biases of mean annual ground temperatures, being as large as 3°C, were induced on the basis of simulations with LST and Ta when the thermal effect of surface characteristics was neglected. We conclude that quantitative calculation of the thermal effect of surface characteristics on GST is indispensable for the permafrost simulations based on the Ta datasets and the LST products that derived from thermal infrared remote sensing. •First comparisons of three different surface temperatures to soil science•Simulate ground temperature by near-surface air, land and ground surface temperatures.•Emphasize the importance of surface characteristics on mapping & modeling permafrost.•Suggest the ground surface temperature as a reliable indicator for permafrost. |
Author | Jin, Huijun Luo, Dongliang Marchenko, Sergey S. Romanovsky, Vladimir E. |
Author_xml | – sequence: 1 givenname: Dongliang surname: Luo fullname: Luo, Dongliang email: luodongliang@lzb.ac.cn organization: State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 2 givenname: Huijun surname: Jin fullname: Jin, Huijun organization: State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 3 givenname: Sergey S. surname: Marchenko fullname: Marchenko, Sergey S. organization: State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 4 givenname: Vladimir E. surname: Romanovsky fullname: Romanovsky, Vladimir E. organization: Permafrost Laboratory, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA |
BookMark | eNqFUdFuFCEUJU1N3Nb-QjOPfXBGmNmBJemDprVq0kRN6jNh4LJlMwvrhanRL-nnyriraXzp04XDOQc454QchxiAkHNGG0YZf7Np1hAt4FY3LWWiobKhnTgiC7YSbc3bXh6TBS3MWlDOXpKTlDZlK2hLF-Tx2jsHCMFANUD-ARCqABrrNKHTBdQeX1ejDrb6h5T1GuP0BMqw3QHqPCGkP-f5HjxWPrhxmq1TFcOMVQ7jr3LDQX4Av_qwvte-vvPlBdWXUWfQ0yvywukxwdlhnpJvN-_vrj7Wt58_fLp6d1vrjq9yveqYWXbcQefcYB0waSU1rB_0shVS8tXSAvAepOGizMHowfDeSjuUYHqju1NysffdYfw-Qcpq65OBsXwZ4pRUiZS2rei5LFS-pxqMKSE4tUO_1fhTMarmKtRG_a1i1glFpSpVFOHlf0Ljs84-hozaj8_L3-7lUHJ48IAqGT_Haj2CycpG_5zFb7LBsAs |
CitedBy_id | crossref_primary_10_1016_j_accre_2023_04_001 crossref_primary_10_1016_j_scitotenv_2024_171446 crossref_primary_10_1016_j_geoderma_2023_116753 crossref_primary_10_1016_j_geoderma_2023_116634 crossref_primary_10_1016_j_ejrh_2024_101850 crossref_primary_10_1088_1757_899X_603_5_052024 crossref_primary_10_1016_j_quaint_2019_06_007 crossref_primary_10_1029_2017MS001264 crossref_primary_10_1007_s42865_024_00085_8 crossref_primary_10_1016_j_compag_2020_105738 crossref_primary_10_1016_j_atmosres_2024_107706 crossref_primary_10_3390_w13131749 crossref_primary_10_1007_s00382_021_05860_3 crossref_primary_10_1016_j_accre_2024_12_005 crossref_primary_10_1016_j_coldregions_2022_103709 crossref_primary_10_1016_j_scitotenv_2022_156214 crossref_primary_10_1016_j_catena_2022_106844 crossref_primary_10_3390_rs15071894 crossref_primary_10_1016_j_coldregions_2019_04_007 crossref_primary_10_1016_j_scitotenv_2019_03_090 crossref_primary_10_1007_s11676_021_01403_y crossref_primary_10_1029_2020JF005865 crossref_primary_10_1016_j_atmosres_2022_106195 crossref_primary_10_3390_rs15143478 crossref_primary_10_1002_ppp_2068 crossref_primary_10_1002_joc_6849 crossref_primary_10_1002_joc_7899 crossref_primary_10_3390_su142416899 crossref_primary_10_1016_j_accre_2021_06_007 crossref_primary_10_1016_j_quascirev_2020_106172 crossref_primary_10_1029_2022JD036551 crossref_primary_10_1002_ppp_1988 crossref_primary_10_1007_s11629_020_6475_7 crossref_primary_10_1007_s00704_022_04083_8 crossref_primary_10_1002_ppp_2157 crossref_primary_10_1016_j_coldregions_2022_103684 crossref_primary_10_1186_s13071_021_05017_5 crossref_primary_10_1016_j_geoderma_2020_114397 crossref_primary_10_1016_j_geoderma_2024_117141 crossref_primary_10_3389_fevo_2021_750961 crossref_primary_10_1088_1748_9326_acf1b4 crossref_primary_10_1007_s11629_020_6335_5 crossref_primary_10_1016_j_catena_2021_105772 crossref_primary_10_5194_tc_17_3363_2023 crossref_primary_10_1016_j_rse_2024_114574 crossref_primary_10_1088_1748_9326_abb731 crossref_primary_10_1007_s11430_020_9685_3 crossref_primary_10_1016_j_atmosres_2022_106373 crossref_primary_10_1007_s00704_022_04344_6 crossref_primary_10_1007_s11629_018_5318_2 crossref_primary_10_1002_ldr_4637 crossref_primary_10_1007_s00704_020_03291_4 crossref_primary_10_1016_j_geoderma_2021_115670 crossref_primary_10_1029_2023JD040369 crossref_primary_10_1653_024_104_0202 crossref_primary_10_1016_j_jenvman_2020_110302 crossref_primary_10_1016_j_accre_2023_01_002 crossref_primary_10_1016_j_scitotenv_2019_134631 crossref_primary_10_1016_j_catena_2022_106811 crossref_primary_10_1016_j_gloplacha_2020_103222 crossref_primary_10_1016_j_agrformet_2022_109219 crossref_primary_10_3390_atmos13071031 crossref_primary_10_1016_j_agrformet_2019_107819 crossref_primary_10_1016_j_coldregions_2020_103067 crossref_primary_10_1080_17538947_2022_2088873 crossref_primary_10_1016_j_rse_2024_114075 crossref_primary_10_1109_JSTARS_2023_3268326 crossref_primary_10_3390_rs15010208 crossref_primary_10_1016_j_geoderma_2020_114531 crossref_primary_10_1016_j_accre_2025_03_004 crossref_primary_10_1016_j_scs_2018_06_034 crossref_primary_10_1016_j_geoderma_2018_07_011 crossref_primary_10_1016_j_scitotenv_2019_06_427 crossref_primary_10_2139_ssrn_4067275 crossref_primary_10_3389_feart_2022_1066662 crossref_primary_10_1088_1748_9326_ac1819 crossref_primary_10_3390_rs16214091 crossref_primary_10_3390_rs12111825 crossref_primary_10_1002_ldr_4212 crossref_primary_10_3390_rs11242889 crossref_primary_10_1155_2022_2230372 crossref_primary_10_5194_essd_15_3905_2023 crossref_primary_10_1360_TB_2022_0849 crossref_primary_10_3390_rs13010149 crossref_primary_10_3390_land12020350 crossref_primary_10_1016_j_jhydrol_2023_130501 crossref_primary_10_3389_feart_2020_560403 crossref_primary_10_1007_s11629_020_6240_y crossref_primary_10_1016_j_coldregions_2022_103485 crossref_primary_10_29244_jpsl_15_2_243 crossref_primary_10_3390_rs13234829 crossref_primary_10_3390_su152416768 crossref_primary_10_1016_j_coldregions_2022_103522 crossref_primary_10_3390_rs14246350 crossref_primary_10_1016_j_coldregions_2022_103524 crossref_primary_10_1016_j_catena_2019_104304 crossref_primary_10_5194_esurf_9_1381_2021 crossref_primary_10_1016_j_catena_2024_108449 crossref_primary_10_1029_2018JD028298 crossref_primary_10_1002_hyp_13677 crossref_primary_10_3390_land13030368 crossref_primary_10_1016_j_agrformet_2020_108271 crossref_primary_10_1002_ppp_2129 crossref_primary_10_1002_ppp_2001 crossref_primary_10_1016_j_scitotenv_2023_164914 crossref_primary_10_1088_1748_9326_ad1d9a crossref_primary_10_1002_joc_7918 crossref_primary_10_3390_land10111127 crossref_primary_10_1007_s11442_022_2011_8 crossref_primary_10_1016_j_accre_2020_10_003 crossref_primary_10_1016_j_scitotenv_2022_160381 |
Cites_doi | 10.1002/ppp.615 10.1016/j.scitotenv.2016.12.155 10.1080/1088937X.2012.706756 10.1007/BF02893300 10.3354/cr030079 10.1002/ppp.606 10.5194/tc-6-221-2012 10.1657/AAAR00C-13-306 10.1080/10889370802175895 10.5194/tc-10-1591-2016 10.1016/j.geomorph.2016.06.024 10.1002/ppp.1758 10.1002/ppp.511 10.1139/e75-129 10.1002/joc.3479 10.1029/93RG01249 10.1002/ppp.3430060404 10.1002/ppp.1772 10.1657/1523-0430(2004)036[0347:VITGHA]2.0.CO;2 10.1016/j.quaint.2014.06.064 10.1029/2012JF002358 10.1002/ppp.410 10.1088/1748-9326/4/4/045206 10.5194/tc-9-1025-2015 10.1002/ppp.1840 10.1088/1748-9326/8/3/035030 10.1016/j.agrformet.2016.01.138 10.1002/ppp.672 10.1139/e04-082 10.1002/ppp.3430050203 |
ContentType | Journal Article |
Copyright | 2017 |
Copyright_xml | – notice: 2017 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2017.09.037 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Engineering |
EISSN | 1872-6259 |
EndPage | 85 |
ExternalDocumentID | 10_1016_j_geoderma_2017_09_037 S001670611730455X |
GeographicLocations | Arctic region China |
GeographicLocations_xml | – name: Arctic region – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-831c436fe3ffbdfe19d90c15ba42799684dee65e9c67e65bcabc65d9db6255ca3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 07:19:44 EDT 2025 Tue Jul 01 04:04:45 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Fri Feb 23 02:30:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Land surface temperature (LST) Qinghai-Tibet Plateau (QTP) Near-surface air temperature (Ta) Ground surface temperature (GST) Elevational permafrost |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-831c436fe3ffbdfe19d90c15ba42799684dee65e9c67e65bcabc65d9db6255ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2010227569 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2010227569 crossref_primary_10_1016_j_geoderma_2017_09_037 crossref_citationtrail_10_1016_j_geoderma_2017_09_037 elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_09_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-15 |
PublicationDateYYYYMMDD | 2018-02-15 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lin, Burn, Niu, Luo, Liu, Yin (bb0085) 2015; 26 Jafarov, Romanovsky, Genet, McGuire, Marchenko (bb0060) 2013; 8 Lunardini (bb0090) 1978 Fukui, Sone, Yamagata, Otsuki, Sawada, Vetrova, Vyatkina (bb0035) 2008; 19 Bense, Read, Verhoef (bb0005) 2016; 220 Hasler, Geertsema, Foord, Gruber, Noetzli (bb0055) 2015; 9 Muller, French, Nelson (bb0110) 2008 Yin, Niu, Lin, Luo, Liu (bb0190) 2017; 581-582 Xu, Wang, Zhang (bb0180) 2010 Smith, Riseborough (bb0150) 2002; 13 Yershov (bb0185) 2004 Pollack, Hurter, Johnson (bb0125) 1993; 31 Ran, Li, Jin, Guo (bb0130) 2015; 47 Tedesco (bb0160) 2015 Luo, Jin, Jin, Yang, Lü (bb0100) 2014; 349 Carlson (bb0010) 1952 Gruber (bb0045) 2012; 6 Karunaratne, Burn (bb0070) 2004; 41 Wu, Zhao, Li, Wang, Xie, Pang (bb0175) 2013; 33 Wang, French (bb0165) 1994; 5 Marchenko, Romanovsky, Tipenko (bb0105) 2008 Etzelmüller (bb0025) 2013; 24 Smith (bb0145) 1975; 12 Hachem, Allard, Duguay (bb0050) 2009; 20 Førland, Skaugen, Benestad, Hanssen-Bauer, Tveito (bb0030) 2004; 36 Willmott, Matsuura (bb0170) 2005; 30 Klene, Nelson, Hinkel (bb0075) 2013; 36 Li, Sheng, Wu, Feng, Ning, Hu, Zhang (bb0080) 2016; 269 Zhou, Qiu, Guo, Cheng, Li (bb0200) 2000 Jin, He, Cheng, Wu, Wang, Lü, Chang (bb0065) 2009; 4 Zhang, Barry, Knowles, Heginbottom, Brown (bb0195) 2008; 31 Nicolsky, Romanovsky, Romanovskii, Kholodov, Shakhova, Semiletov (bb0115) 2012; 117 Cheng (bb0015) 2004; 47 Romanovsky, Osterkamp (bb0140) 1995; 6 Smith, Burgess, Riseborough, Mark Nixon (bb0155) 2005; 16 Riseborough, Shiklomanov, Etzelmuller, Gruber, Marchenko (bb0135) 2008; 19 Goodrich (bb0040) 1978 Cheng, Zhao, Zhou, Chen (bb0020) 2012; 23 Pan, Li, Yu, Shi, Yang, Roth (bb0120) 2016; 10 Luo, Jin, Lin, You, Yang, Wang (bb0095) 2013; 33 Pan (10.1016/j.geoderma.2017.09.037_bb0120) 2016; 10 Cheng (10.1016/j.geoderma.2017.09.037_bb0015) 2004; 47 Willmott (10.1016/j.geoderma.2017.09.037_bb0170) 2005; 30 Smith (10.1016/j.geoderma.2017.09.037_bb0150) 2002; 13 Zhou (10.1016/j.geoderma.2017.09.037_bb0200) 2000 Yershov (10.1016/j.geoderma.2017.09.037_bb0185) 2004 Karunaratne (10.1016/j.geoderma.2017.09.037_bb0070) 2004; 41 Luo (10.1016/j.geoderma.2017.09.037_bb0100) 2014; 349 Hasler (10.1016/j.geoderma.2017.09.037_bb0055) 2015; 9 Luo (10.1016/j.geoderma.2017.09.037_bb0095) 2013; 33 Tedesco (10.1016/j.geoderma.2017.09.037_bb0160) 2015 Zhang (10.1016/j.geoderma.2017.09.037_bb0195) 2008; 31 Wang (10.1016/j.geoderma.2017.09.037_bb0165) 1994; 5 Etzelmüller (10.1016/j.geoderma.2017.09.037_bb0025) 2013; 24 Marchenko (10.1016/j.geoderma.2017.09.037_bb0105) 2008 Jafarov (10.1016/j.geoderma.2017.09.037_bb0060) 2013; 8 Smith (10.1016/j.geoderma.2017.09.037_bb0145) 1975; 12 Bense (10.1016/j.geoderma.2017.09.037_bb0005) 2016; 220 Carlson (10.1016/j.geoderma.2017.09.037_bb0010) 1952 Xu (10.1016/j.geoderma.2017.09.037_bb0180) 2010 Riseborough (10.1016/j.geoderma.2017.09.037_bb0135) 2008; 19 Yin (10.1016/j.geoderma.2017.09.037_bb0190) 2017; 581-582 Cheng (10.1016/j.geoderma.2017.09.037_bb0020) 2012; 23 Muller (10.1016/j.geoderma.2017.09.037_bb0110) 2008 Hachem (10.1016/j.geoderma.2017.09.037_bb0050) 2009; 20 Lin (10.1016/j.geoderma.2017.09.037_bb0085) 2015; 26 Pollack (10.1016/j.geoderma.2017.09.037_bb0125) 1993; 31 Li (10.1016/j.geoderma.2017.09.037_bb0080) 2016; 269 Jin (10.1016/j.geoderma.2017.09.037_bb0065) 2009; 4 Fukui (10.1016/j.geoderma.2017.09.037_bb0035) 2008; 19 Klene (10.1016/j.geoderma.2017.09.037_bb0075) 2013; 36 Smith (10.1016/j.geoderma.2017.09.037_bb0155) 2005; 16 Førland (10.1016/j.geoderma.2017.09.037_bb0030) 2004; 36 Gruber (10.1016/j.geoderma.2017.09.037_bb0045) 2012; 6 Ran (10.1016/j.geoderma.2017.09.037_bb0130) 2015; 47 Wu (10.1016/j.geoderma.2017.09.037_bb0175) 2013; 33 Romanovsky (10.1016/j.geoderma.2017.09.037_bb0140) 1995; 6 Nicolsky (10.1016/j.geoderma.2017.09.037_bb0115) 2012; 117 Lunardini (10.1016/j.geoderma.2017.09.037_bb0090) 1978 Goodrich (10.1016/j.geoderma.2017.09.037_bb0040) 1978 |
References_xml | – start-page: 190 year: 2008 end-page: 204 ident: bb0105 publication-title: Numerical modeling of spatial permafrost dynamics in Alaska – volume: 10 start-page: 1591 year: 2016 end-page: 1603 ident: bb0120 article-title: Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghai–Tibet Plateau publication-title: Cryosphere – volume: 8 year: 2013 ident: bb0060 article-title: The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate publication-title: Environ. Res. Lett. – volume: 47 start-page: 255 year: 2015 end-page: 265 ident: bb0130 article-title: Remote sensing of the mean annual surface temperature and surface frost number for mapping permafrost in China publication-title: Arct. Antarct. Alp. Res. – volume: 12 start-page: 1421 year: 1975 end-page: 1438 ident: bb0145 article-title: Microclimatic influences on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest Territories publication-title: Can. J. Earth Sci. – volume: 33 start-page: 920 year: 2013 end-page: 930 ident: bb0175 article-title: Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau publication-title: Int. J. Climatol. – volume: 33 start-page: 635 year: 2013 end-page: 640 ident: bb0095 article-title: Distributive features and controlling factors of permafrost and the active layer thickness in the Bayan Har Mountains along the Qinghai-Kangding Highway on northeastern Qinghai-Tibet Plateau publication-title: Sci. Geogr. Sin. – volume: 31 start-page: 267 year: 1993 end-page: 280 ident: bb0125 article-title: Heat flow from the Earth's interior: analysis of the global data set publication-title: Rev. Geophys. – volume: 16 start-page: 19 year: 2005 end-page: 30 ident: bb0155 article-title: Recent trends from Canadian permafrost thermal monitoring network sites publication-title: Permafr. Periglac. Process. – volume: 36 start-page: 183 year: 2013 end-page: 201 ident: bb0075 article-title: Urban–rural contrasts in summer soil-surface temperature and active-layer thickness, Barrow, Alaska, USA publication-title: Polar Geogr. – volume: 36 start-page: 347 year: 2004 end-page: 356 ident: bb0030 article-title: Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050 publication-title: Arct. Antarct. Alp. Res. – start-page: 29 year: 1978 end-page: 34 ident: bb0040 publication-title: Some results of a numerical study of ground thermal regimes, Third International Conference on Permafrost – volume: 220 start-page: 207 year: 2016 end-page: 215 ident: bb0005 article-title: Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux publication-title: Agric. For. Meteorol. – volume: 269 start-page: 104 year: 2016 end-page: 111 ident: bb0080 article-title: Landform-related permafrost characteristics in the source area of the Yellow River, eastern Qinghai-Tibet Plateau publication-title: Geomorphology – year: 2010 ident: bb0180 article-title: Physics of Frozen Soils (in Chinese) – year: 2008 ident: bb0110 article-title: Frozen in Time: Permafrost and Engineering Problems – volume: 6 start-page: 313 year: 1995 end-page: 335 ident: bb0140 article-title: Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska publication-title: Permafr. Periglac. Process. – volume: 4 year: 2009 ident: bb0065 article-title: Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts publication-title: Environ. Res. Lett. – volume: 26 start-page: 142 year: 2015 end-page: 159 ident: bb0085 article-title: The thermal regime, including a reversed thermal offset, of arid permafrost sites with variations in vegetation cover density, Wudaoliang Basin, Qinghai-Tibet Plateau publication-title: Permafr. Periglac. Process. – volume: 581-582 start-page: 472 year: 2017 end-page: 485 ident: bb0190 article-title: Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China publication-title: Sci. Total Environ. – volume: 31 start-page: 47 year: 2008 end-page: 68 ident: bb0195 article-title: Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere publication-title: Polar Geogr. – volume: 20 start-page: 407 year: 2009 end-page: 416 ident: bb0050 article-title: Using the MODIS land surface temperature product for mapping permafrost: an application to Northern Quebec and Labrador, Canada publication-title: Permafr. Periglac. Process. – volume: 30 start-page: 79 year: 2005 end-page: 82 ident: bb0170 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. – volume: 13 start-page: 1 year: 2002 end-page: 15 ident: bb0150 article-title: Climate and the limits of permafrost: a zonal analysis publication-title: Permafr. Periglac. Process. – volume: 19 start-page: 85 year: 2008 end-page: 92 ident: bb0035 article-title: Relationships between permafrost distribution and surface organic layers near Esso, central Kamchatka, Russian Far East publication-title: Permafr. Periglac. Process. – volume: 6 start-page: 221 year: 2012 end-page: 233 ident: bb0045 article-title: Derivation and analysis of a high-resolution estimate of global permafrost zonation publication-title: Cryosphere – volume: 9 start-page: 1025 year: 2015 end-page: 1038 ident: bb0055 article-title: The influence of surface characteristics, topography and continentality on mountain permafrost in British Columbia publication-title: Cryosphere – start-page: 192 year: 1952 end-page: 223 ident: bb0010 article-title: Calculation of depth of thaw in frozen ground publication-title: Frost Action in Soils: A Symposium Highway Research Board Special Report 2 – year: 2004 ident: bb0185 publication-title: General Geocryology – volume: 47 start-page: 704 year: 2004 end-page: 709 ident: bb0015 article-title: Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design publication-title: Sci. China Earth Sci. – volume: 41 start-page: 1437 year: 2004 end-page: 1451 ident: bb0070 article-title: Relations between air and surface temperature in discontinuous permafrost terrain near Mayo, Yukon Territory publication-title: Can. J. Earth Sci. – volume: 117 year: 2012 ident: bb0115 article-title: Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Laptev Sea region publication-title: J. Geophys. Res. – volume: 349 start-page: 187 year: 2014 end-page: 195 ident: bb0100 article-title: Spatiotemporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices publication-title: Quat. Int. – volume: 24 start-page: 99 year: 2013 end-page: 107 ident: bb0025 article-title: Recent advances in mountain permafrost research publication-title: Permafr. Periglac. Process. – volume: 5 start-page: 87 year: 1994 end-page: 100 ident: bb0165 article-title: Climate controls and high-altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China publication-title: Permafr. Periglac. Process. – year: 2015 ident: bb0160 article-title: Remote Sensing of the Cryosphere – year: 2000 ident: bb0200 article-title: Geocryology in China (in Chinese) – volume: 19 start-page: 137 year: 2008 end-page: 156 ident: bb0135 article-title: Recent advances in permafrost modelling publication-title: Permafr. Periglac. Process. – start-page: 40 year: 1978 end-page: 46 ident: bb0090 publication-title: Theory of n-factors and correlation of data – volume: 23 start-page: 292 year: 2012 end-page: 300 ident: bb0020 article-title: Simulation of the decadal permafrost distribution on the Qinghai-Tibet Plateau (China) over the past 50 publication-title: Permafr. Periglac. Process. – volume: 19 start-page: 137 issue: 2 year: 2008 ident: 10.1016/j.geoderma.2017.09.037_bb0135 article-title: Recent advances in permafrost modelling publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.615 – volume: 581-582 start-page: 472 year: 2017 ident: 10.1016/j.geoderma.2017.09.037_bb0190 article-title: Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.12.155 – volume: 36 start-page: 183 issue: 3 year: 2013 ident: 10.1016/j.geoderma.2017.09.037_bb0075 article-title: Urban–rural contrasts in summer soil-surface temperature and active-layer thickness, Barrow, Alaska, USA publication-title: Polar Geogr. doi: 10.1080/1088937X.2012.706756 – start-page: 190 year: 2008 ident: 10.1016/j.geoderma.2017.09.037_bb0105 – volume: 47 start-page: 704 issue: 8 year: 2004 ident: 10.1016/j.geoderma.2017.09.037_bb0015 article-title: Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design publication-title: Sci. China Earth Sci. doi: 10.1007/BF02893300 – year: 2008 ident: 10.1016/j.geoderma.2017.09.037_bb0110 – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2017.09.037_bb0170 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – volume: 19 start-page: 85 year: 2008 ident: 10.1016/j.geoderma.2017.09.037_bb0035 article-title: Relationships between permafrost distribution and surface organic layers near Esso, central Kamchatka, Russian Far East publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.606 – volume: 6 start-page: 221 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2017.09.037_bb0045 article-title: Derivation and analysis of a high-resolution estimate of global permafrost zonation publication-title: Cryosphere doi: 10.5194/tc-6-221-2012 – volume: 47 start-page: 255 issue: 2 year: 2015 ident: 10.1016/j.geoderma.2017.09.037_bb0130 article-title: Remote sensing of the mean annual surface temperature and surface frost number for mapping permafrost in China publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/AAAR00C-13-306 – volume: 31 start-page: 47 issue: 1–2 year: 2008 ident: 10.1016/j.geoderma.2017.09.037_bb0195 article-title: Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere publication-title: Polar Geogr. doi: 10.1080/10889370802175895 – start-page: 192 year: 1952 ident: 10.1016/j.geoderma.2017.09.037_bb0010 article-title: Calculation of depth of thaw in frozen ground – volume: 10 start-page: 1591 issue: 4 year: 2016 ident: 10.1016/j.geoderma.2017.09.037_bb0120 article-title: Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghai–Tibet Plateau publication-title: Cryosphere doi: 10.5194/tc-10-1591-2016 – volume: 269 start-page: 104 year: 2016 ident: 10.1016/j.geoderma.2017.09.037_bb0080 article-title: Landform-related permafrost characteristics in the source area of the Yellow River, eastern Qinghai-Tibet Plateau publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.06.024 – volume: 23 start-page: 292 year: 2012 ident: 10.1016/j.geoderma.2017.09.037_bb0020 article-title: Simulation of the decadal permafrost distribution on the Qinghai-Tibet Plateau (China) over the past 50years publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.1758 – start-page: 40 year: 1978 ident: 10.1016/j.geoderma.2017.09.037_bb0090 – volume: 16 start-page: 19 year: 2005 ident: 10.1016/j.geoderma.2017.09.037_bb0155 article-title: Recent trends from Canadian permafrost thermal monitoring network sites publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.511 – volume: 12 start-page: 1421 issue: 8 year: 1975 ident: 10.1016/j.geoderma.2017.09.037_bb0145 article-title: Microclimatic influences on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest Territories publication-title: Can. J. Earth Sci. doi: 10.1139/e75-129 – volume: 33 start-page: 920 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2017.09.037_bb0175 article-title: Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau publication-title: Int. J. Climatol. doi: 10.1002/joc.3479 – volume: 31 start-page: 267 issue: 3 year: 1993 ident: 10.1016/j.geoderma.2017.09.037_bb0125 article-title: Heat flow from the Earth's interior: analysis of the global data set publication-title: Rev. Geophys. doi: 10.1029/93RG01249 – volume: 6 start-page: 313 year: 1995 ident: 10.1016/j.geoderma.2017.09.037_bb0140 article-title: Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.3430060404 – year: 2010 ident: 10.1016/j.geoderma.2017.09.037_bb0180 – volume: 24 start-page: 99 year: 2013 ident: 10.1016/j.geoderma.2017.09.037_bb0025 article-title: Recent advances in mountain permafrost research publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.1772 – volume: 36 start-page: 347 issue: 3 year: 2004 ident: 10.1016/j.geoderma.2017.09.037_bb0030 article-title: Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050 publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1523-0430(2004)036[0347:VITGHA]2.0.CO;2 – volume: 349 start-page: 187 year: 2014 ident: 10.1016/j.geoderma.2017.09.037_bb0100 article-title: Spatiotemporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices publication-title: Quat. Int. doi: 10.1016/j.quaint.2014.06.064 – volume: 33 start-page: 635 issue: 5 year: 2013 ident: 10.1016/j.geoderma.2017.09.037_bb0095 article-title: Distributive features and controlling factors of permafrost and the active layer thickness in the Bayan Har Mountains along the Qinghai-Kangding Highway on northeastern Qinghai-Tibet Plateau publication-title: Sci. Geogr. Sin. – volume: 117 issue: F3 year: 2012 ident: 10.1016/j.geoderma.2017.09.037_bb0115 article-title: Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Laptev Sea region publication-title: J. Geophys. Res. doi: 10.1029/2012JF002358 – volume: 13 start-page: 1 year: 2002 ident: 10.1016/j.geoderma.2017.09.037_bb0150 article-title: Climate and the limits of permafrost: a zonal analysis publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.410 – volume: 4 issue: 4 year: 2009 ident: 10.1016/j.geoderma.2017.09.037_bb0065 article-title: Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/4/4/045206 – year: 2015 ident: 10.1016/j.geoderma.2017.09.037_bb0160 – volume: 9 start-page: 1025 issue: 3 year: 2015 ident: 10.1016/j.geoderma.2017.09.037_bb0055 article-title: The influence of surface characteristics, topography and continentality on mountain permafrost in British Columbia publication-title: Cryosphere doi: 10.5194/tc-9-1025-2015 – volume: 26 start-page: 142 year: 2015 ident: 10.1016/j.geoderma.2017.09.037_bb0085 article-title: The thermal regime, including a reversed thermal offset, of arid permafrost sites with variations in vegetation cover density, Wudaoliang Basin, Qinghai-Tibet Plateau publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.1840 – volume: 8 issue: 3 year: 2013 ident: 10.1016/j.geoderma.2017.09.037_bb0060 article-title: The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/8/3/035030 – start-page: 29 year: 1978 ident: 10.1016/j.geoderma.2017.09.037_bb0040 – year: 2004 ident: 10.1016/j.geoderma.2017.09.037_bb0185 – volume: 220 start-page: 207 year: 2016 ident: 10.1016/j.geoderma.2017.09.037_bb0005 article-title: Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.01.138 – volume: 20 start-page: 407 year: 2009 ident: 10.1016/j.geoderma.2017.09.037_bb0050 article-title: Using the MODIS land surface temperature product for mapping permafrost: an application to Northern Quebec and Labrador, Canada publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.672 – year: 2000 ident: 10.1016/j.geoderma.2017.09.037_bb0200 – volume: 41 start-page: 1437 issue: 12 year: 2004 ident: 10.1016/j.geoderma.2017.09.037_bb0070 article-title: Relations between air and surface temperature in discontinuous permafrost terrain near Mayo, Yukon Territory publication-title: Can. J. Earth Sci. doi: 10.1139/e04-082 – volume: 5 start-page: 87 year: 1994 ident: 10.1016/j.geoderma.2017.09.037_bb0165 article-title: Climate controls and high-altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.3430050203 |
SSID | ssj0017020 |
Score | 2.5710988 |
Snippet | Surface temperature is critical for the simulation of climate change impacts on the ecology, environment, and particularly permafrost in the cryosphere.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 74 |
SubjectTerms | air air temperature Arctic region canopy China climate change data collection Elevational permafrost engineering freezing geophysics Ground surface temperature (GST) Land surface temperature (LST) mathematical models Near-surface air temperature (Ta) permafrost Qinghai-Tibet Plateau (QTP) remote sensing snowpack soil texture surface temperature thawing vegetation |
Title | Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau |
URI | https://dx.doi.org/10.1016/j.geoderma.2017.09.037 https://www.proquest.com/docview/2010227569 |
Volume | 312 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhubSH0jYNTR9BhRyrrGU9fVzyYNtCaCGBvQlZllqH4A3e3UsP_R39uZ3xyksaKDn0ZHuksYVmPCOhmW8IOS6lqFVTJWZLEZgUUrLKqsSaAry3bbyGVoy2uNSza_l5ruY75HTMhcGwymz7NzZ9sNaZMsmzOblrW8zx5dqAO-IGT_vUHDPYpUEtP_m1DfPgpsjQjFwz7H0vS_gGZIQFxwb8IW42eKfmXw7qgake_M_Fc_IsLxzpdDO2F2Qndi_J0-n3PoNnxH3y-yxXOwmR5vgr2oEms-W6Tx6Ivu0_UgxlpFsK3GNixz0SglVlpOXl0D6cJdB2rGaypIsOaTT1i5_whcyeid_AFf7wLbtqYQT06y0sZf36Fbm-OL86nbFceYF5oe2KWcGDFDpFkVLdpMirpioCV7WXpYEdkpVNjFrFKmgD1zr4OmgQeVPDdkoFLw7Ibrfo4mtCG25qUUThy5RkYaONAjbCQhmpRckTPyRqnG4XMiw5Vse4dWP82Y0bxeRQTK6oHIjpkEy2fHcbYI5HOapRmu4vFXPgPR7l_TCK38H_h4cqvouL9RI7IQqj0tWb_3j_W_IEniyGg3P1juyu-nV8D6udVX00qPMR2Zt--jK7_ANfUQMP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBa69LDtMHQvrFu7akCPE2JZTx-DPpA-FrRACuQmyLK0uSicwkku-yX7uaMcOWgHFD3sZIMybUGUSQokPyJ0mHNWiqoIROfMEc44J4UWgVQZWG9dWQmjMdtiIsc3_HwmZlvoqK-FiWmVSfevdXqnrRNlmFZzeF_XscaXSgXmiKoY7ROzF2g7olOJAdoenV2MJ5tggsoSOiOVJDI8KBS-BTHFnmMdBBFVa8hT9ZSN-kdbdybodAe9Sb4jHq2n9xZt-eYdej362Sb8DP8e_TlODU-cxykFCzewmcli1QYLRFu333HMZsQbCtzH2o4HpIhXlcCWF914F07Add_QZIHnTaTh0M5_wxcSeyJegzX8ZWsyrWEG-OoOvFm7-oBuTk-mR2OSmi8Qy6ReEs2o40wGz0Ioq-BpURWZo6K0PFdwSNK88l4KXzip4Fo6WzoJUq9KOFEJZ9lHNGjmjf-EcEVVyTLPbB4Cz7TXnsFZmAnFJctpoLtI9MttXEImjw0y7kyfgnZrejGZKCaTFQbEtIuGG777NTbHsxxFL03zaJcZMCDP8n7rxW_gF4xxFdv4-WoRH4pAjEIWn__j_Qfo5Xj649Jcnk0uvqBXMKJjdjgVe2iwbFd-H5yfZfk1be6_Lk8FwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Difference+between+near-surface+air%2C+land+surface+and+ground+surface+temperatures+and+their+influences+on+the+frozen+ground+on+the+Qinghai-Tibet+Plateau&rft.jtitle=Geoderma&rft.au=Luo%2C+Dongliang&rft.au=Jin%2C+Huijun&rft.au=Marchenko%2C+Sergey+S.&rft.au=Romanovsky%2C+Vladimir+E.&rft.date=2018-02-15&rft.issn=0016-7061&rft.volume=312&rft.spage=74&rft.epage=85&rft_id=info:doi/10.1016%2Fj.geoderma.2017.09.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2017_09_037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |