Characterizing dissolved organic matter in eroded sediments from a loess hilly catchment using fluorescence EEM-PARAFAC and UV–Visible absorption: Insights from source identification and carbon cycling
The chemical characteristics of dissolved organic matter (DOM) in soils that experience erosion and deposition are key to the biogeochemical cycle of carbon on the earth's surface. However, data related to the transport and fate of DOM from soils that experience erosion and different management...
Saved in:
Published in | Geoderma Vol. 334; pp. 37 - 48 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The chemical characteristics of dissolved organic matter (DOM) in soils that experience erosion and deposition are key to the biogeochemical cycle of carbon on the earth's surface. However, data related to the transport and fate of DOM from soils that experience erosion and different management practices are scarce, particularly at catchment scales. In this study, soil samples (uppermost 10 cm) were collected from uplands representing four land use types (cropland, fallow, grassland, and forests) as well as gullies, and sediment samples (100 cm sampled at 10 depths) were collected from sediments retained by a check dam. Chemical characteristics of DOM in soils and sediments, as well as subsequent source identification, were inferred from UV–Visible absorption and fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC) as well as principal component analysis (PCA). The results indicated higher aromaticity, hydrophobic fraction, and molecular size in DOM from forest soils than those from other land use types and gullies. These factors were also higher in soils at the eroding sites than in sediments. EEM-PARAFAC analysis demonstrated that more protein-like components (tyrosine-like and tryptophan-like combined, accounting for >42.77%) were present in sediments compared to soils with terrestrial humic-like substances. PCA results revealed that approximately 72% of the variance in the DOM characteristics was explained by the first two principal components and that the DOM in upland and gully soils had a negligible contribution to DOM in sediments. Combined our results indicate that, despite the large amount of sediment-associated carbon that is transported by erosion and trapped in check dams, DOM is likely mineralized during soil transport. Furthermore, biological production of new organic compounds (autochthonous sources) are likely the major source of sediment DOM in depositional settings.
•UV-Visible absorption and EEMs-PARAFAC were used to characterize the sources of DOM.•Forest soils had greater aromaticity and hydrophobic fraction than other land uses.•Higher aromaticity was present in soils at eroding sites than at depositional sites.•DOM in sediments was mainly sourced from autochthonous sources. |
---|---|
AbstractList | The chemical characteristics of dissolved organic matter (DOM) in soils that experience erosion and deposition are key to the biogeochemical cycle of carbon on the earth's surface. However, data related to the transport and fate of DOM from soils that experience erosion and different management practices are scarce, particularly at catchment scales. In this study, soil samples (uppermost 10 cm) were collected from uplands representing four land use types (cropland, fallow, grassland, and forests) as well as gullies, and sediment samples (100 cm sampled at 10 depths) were collected from sediments retained by a check dam. Chemical characteristics of DOM in soils and sediments, as well as subsequent source identification, were inferred from UV–Visible absorption and fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC) as well as principal component analysis (PCA). The results indicated higher aromaticity, hydrophobic fraction, and molecular size in DOM from forest soils than those from other land use types and gullies. These factors were also higher in soils at the eroding sites than in sediments. EEM-PARAFAC analysis demonstrated that more protein-like components (tyrosine-like and tryptophan-like combined, accounting for >42.77%) were present in sediments compared to soils with terrestrial humic-like substances. PCA results revealed that approximately 72% of the variance in the DOM characteristics was explained by the first two principal components and that the DOM in upland and gully soils had a negligible contribution to DOM in sediments. Combined our results indicate that, despite the large amount of sediment-associated carbon that is transported by erosion and trapped in check dams, DOM is likely mineralized during soil transport. Furthermore, biological production of new organic compounds (autochthonous sources) are likely the major source of sediment DOM in depositional settings. The chemical characteristics of dissolved organic matter (DOM) in soils that experience erosion and deposition are key to the biogeochemical cycle of carbon on the earth's surface. However, data related to the transport and fate of DOM from soils that experience erosion and different management practices are scarce, particularly at catchment scales. In this study, soil samples (uppermost 10 cm) were collected from uplands representing four land use types (cropland, fallow, grassland, and forests) as well as gullies, and sediment samples (100 cm sampled at 10 depths) were collected from sediments retained by a check dam. Chemical characteristics of DOM in soils and sediments, as well as subsequent source identification, were inferred from UV–Visible absorption and fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC) as well as principal component analysis (PCA). The results indicated higher aromaticity, hydrophobic fraction, and molecular size in DOM from forest soils than those from other land use types and gullies. These factors were also higher in soils at the eroding sites than in sediments. EEM-PARAFAC analysis demonstrated that more protein-like components (tyrosine-like and tryptophan-like combined, accounting for >42.77%) were present in sediments compared to soils with terrestrial humic-like substances. PCA results revealed that approximately 72% of the variance in the DOM characteristics was explained by the first two principal components and that the DOM in upland and gully soils had a negligible contribution to DOM in sediments. Combined our results indicate that, despite the large amount of sediment-associated carbon that is transported by erosion and trapped in check dams, DOM is likely mineralized during soil transport. Furthermore, biological production of new organic compounds (autochthonous sources) are likely the major source of sediment DOM in depositional settings. •UV-Visible absorption and EEMs-PARAFAC were used to characterize the sources of DOM.•Forest soils had greater aromaticity and hydrophobic fraction than other land uses.•Higher aromaticity was present in soils at eroding sites than at depositional sites.•DOM in sediments was mainly sourced from autochthonous sources. |
Author | Xiao, Haibing Peng, Hao Li, Zhongwu Zeng, Guangming Liu, Chun Wang, Danyang Berhe, Asmeret Asefaw Liu, Lin |
Author_xml | – sequence: 1 givenname: Chun surname: Liu fullname: Liu, Chun organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 2 givenname: Zhongwu surname: Li fullname: Li, Zhongwu email: lizw@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 3 givenname: Asmeret Asefaw orcidid: 0000-0002-6986-7943 surname: Berhe fullname: Berhe, Asmeret Asefaw organization: School of Natural Sciences, Life and Environmental Sciences Unit, University of California, Merced 95343, CA, USA – sequence: 4 givenname: Haibing surname: Xiao fullname: Xiao, Haibing organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, PR China – sequence: 5 givenname: Lin surname: Liu fullname: Liu, Lin organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, PR China – sequence: 6 givenname: Danyang surname: Wang fullname: Wang, Danyang organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 7 givenname: Hao surname: Peng fullname: Peng, Hao organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 8 givenname: Guangming surname: Zeng fullname: Zeng, Guangming organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China |
BookMark | eNqFkc1uEzEUhUeoSKSFV0BespnU9mR-glgQRSlUKgIh2q3lsa-TG3nsYHsqhRXvwGPxFjwJnoZu2HRlW_d859g-58WZ8w6K4jWjc0ZZc7mfb8FrCIOcc8q6OW3nlC-fFTPWtbxseL08K2Y0K8uWNuxFcR7jPh9byums-L3eySBVgoA_0G2Jxhi9vQdNfNhKh4oMMuUpQUcg5BhNImgcwKVITPADkcR6iJHs0NojUTKp3TQlY5z8jB19gKjAKSCbzafyy-rr6mq1JtJpcnv35-evO4zYWyCyjz4cEnr3lly7iNvdY0L0Y8g06myLBnNEFj0YKBn6vFVHZXPYy-K5kTbCq3_rRXF7tfm2_ljefP5wvV7dlLJqulS2AIqDUVDXzBhpln1LF2BaCa02nal7XVe1MrzqVMV6pTrKudQtLCivJKNVdVG8Ofkegv8-QkxiwPxCa6UDP0bBGWu6plt0iyx9d5Kq4GMMYITC9HD_FCRawaiYOhR78dihmDoUtBW5w4w3_-GHgIMMx6fB9ycQ8j_cIwQRFU4daAygktAen7L4C2lwxF4 |
CitedBy_id | crossref_primary_10_3390_agronomy12123228 crossref_primary_10_1016_j_jhazmat_2025_137094 crossref_primary_10_1016_j_envres_2022_113980 crossref_primary_10_1016_j_apsoil_2023_105126 crossref_primary_10_1016_j_orggeochem_2024_104924 crossref_primary_10_1016_j_ecolind_2021_107500 crossref_primary_10_1016_j_cej_2024_151386 crossref_primary_10_1016_j_envres_2023_115482 crossref_primary_10_1016_j_jclepro_2021_128676 crossref_primary_10_1016_j_agee_2021_107606 crossref_primary_10_1016_j_ecolind_2019_03_038 crossref_primary_10_1016_j_envpol_2022_118811 crossref_primary_10_1007_s11368_021_02956_5 crossref_primary_10_1039_D0RA04839A crossref_primary_10_1016_j_jhazmat_2024_135754 crossref_primary_10_3390_agronomy14091979 crossref_primary_10_1016_j_jhazmat_2021_126594 crossref_primary_10_1016_j_scitotenv_2021_151960 crossref_primary_10_1016_j_envres_2022_114267 crossref_primary_10_1016_j_jenvman_2022_116476 crossref_primary_10_1016_j_scitotenv_2024_173114 crossref_primary_10_1016_j_envres_2020_109925 crossref_primary_10_1016_j_ecoenv_2019_109633 crossref_primary_10_1016_j_still_2024_106099 crossref_primary_10_1111_sum_13067 crossref_primary_10_1016_j_jece_2022_107499 crossref_primary_10_3390_land12040887 crossref_primary_10_1016_j_cej_2024_151391 crossref_primary_10_1016_j_scitotenv_2023_165434 crossref_primary_10_1016_j_watres_2021_117962 crossref_primary_10_1016_j_jenvrad_2019_106124 crossref_primary_10_1016_j_jenvman_2024_121834 crossref_primary_10_1016_j_envres_2023_115468 crossref_primary_10_1016_j_envres_2023_117129 crossref_primary_10_1016_j_agee_2023_108569 crossref_primary_10_1016_j_ecolind_2022_109386 crossref_primary_10_1016_j_scitotenv_2019_05_235 crossref_primary_10_1016_j_scitotenv_2023_168139 crossref_primary_10_1007_s11356_024_32602_9 crossref_primary_10_1016_j_jes_2024_03_055 crossref_primary_10_1016_j_scitotenv_2024_177086 crossref_primary_10_1016_j_earscirev_2021_103889 crossref_primary_10_1016_j_envpol_2022_118996 crossref_primary_10_1016_j_jia_2023_10_001 crossref_primary_10_1038_s41598_024_83372_w crossref_primary_10_1016_j_catena_2024_108000 crossref_primary_10_1111_1462_2920_15955 crossref_primary_10_1051_e3sconf_202343603005 crossref_primary_10_1016_j_ecolind_2022_109275 crossref_primary_10_1016_j_scitotenv_2019_05_240 crossref_primary_10_1016_j_jenvman_2024_124018 crossref_primary_10_18307_2023_0426 crossref_primary_10_1007_s11270_019_4368_6 crossref_primary_10_1007_s11104_023_05931_w crossref_primary_10_1016_j_scitotenv_2021_146712 crossref_primary_10_1016_j_jhazmat_2024_133589 crossref_primary_10_1002_ldr_3783 crossref_primary_10_1039_D1EM00015B crossref_primary_10_1016_j_scitotenv_2022_161159 crossref_primary_10_1016_j_ecolind_2020_107103 crossref_primary_10_1016_j_jenvman_2024_122761 crossref_primary_10_1016_j_scitotenv_2020_142053 crossref_primary_10_1080_10408347_2023_2200855 crossref_primary_10_1002_ldr_5281 crossref_primary_10_1016_j_jhydrol_2023_129825 crossref_primary_10_1016_j_jhydrol_2021_126518 crossref_primary_10_1016_j_chemosphere_2023_140091 crossref_primary_10_1016_j_scitotenv_2024_177502 crossref_primary_10_1016_j_watres_2025_123478 crossref_primary_10_1016_j_jenvman_2024_120883 crossref_primary_10_2139_ssrn_4159668 crossref_primary_10_1016_j_agee_2024_109155 crossref_primary_10_1016_j_jhydrol_2023_130407 crossref_primary_10_1016_j_geoderma_2023_116393 crossref_primary_10_1007_s11356_022_22757_8 crossref_primary_10_1016_j_jhydrol_2021_126949 crossref_primary_10_1016_j_biombioe_2025_107619 crossref_primary_10_1016_j_catena_2022_106483 crossref_primary_10_1016_j_scitotenv_2020_138262 crossref_primary_10_1016_j_watres_2021_117515 crossref_primary_10_1016_j_psep_2024_05_102 crossref_primary_10_1007_s11356_023_26773_0 crossref_primary_10_1007_s11368_023_03642_4 crossref_primary_10_1080_02705060_2024_2423617 crossref_primary_10_1016_j_indcrop_2023_116764 crossref_primary_10_1016_j_still_2019_104352 crossref_primary_10_1002_saj2_20077 crossref_primary_10_1016_j_jenvman_2023_117984 crossref_primary_10_3390_jmse9090997 crossref_primary_10_1016_j_envpol_2022_119949 crossref_primary_10_3390_ijerph19063210 crossref_primary_10_1016_j_scitotenv_2020_141933 crossref_primary_10_1016_j_watres_2020_116096 crossref_primary_10_1016_j_jhazmat_2024_136998 crossref_primary_10_1016_j_jenvman_2022_114489 crossref_primary_10_1007_s10653_024_02131_y crossref_primary_10_1016_j_geoderma_2020_114704 crossref_primary_10_1002_hyp_13660 crossref_primary_10_1007_s11356_020_10456_1 crossref_primary_10_1016_j_jenvman_2024_122964 crossref_primary_10_1038_s41467_022_35671_x crossref_primary_10_1016_j_iswcr_2022_01_002 crossref_primary_10_1016_j_jhydrol_2021_125993 crossref_primary_10_1016_j_chemosphere_2022_134869 crossref_primary_10_1016_j_scitotenv_2022_155892 crossref_primary_10_1016_j_chemosphere_2020_127371 crossref_primary_10_1007_s11356_021_14670_3 crossref_primary_10_1134_S1064229324600593 crossref_primary_10_1016_j_jhydrol_2022_127818 crossref_primary_10_1016_j_jhazmat_2023_130763 crossref_primary_10_1016_j_marpolbul_2021_113060 crossref_primary_10_2139_ssrn_3944514 crossref_primary_10_1016_j_jia_2024_07_018 crossref_primary_10_1016_j_catena_2020_104623 crossref_primary_10_1016_j_scitotenv_2021_148493 crossref_primary_10_1111_1462_2920_15520 crossref_primary_10_1016_j_catena_2022_106846 crossref_primary_10_1016_j_scitotenv_2020_141717 crossref_primary_10_1016_j_cej_2021_128519 crossref_primary_10_1016_j_chemgeo_2018_12_040 crossref_primary_10_1016_j_marpolbul_2024_117254 crossref_primary_10_1016_j_catena_2024_107903 crossref_primary_10_1016_j_catena_2023_107449 crossref_primary_10_1016_j_scitotenv_2021_150843 |
Cites_doi | 10.1007/BF02837376 10.1016/S0160-4120(02)00192-7 10.1111/j.1365-2486.2012.02680.x 10.1016/S0043-1354(02)00365-2 10.1016/j.desal.2007.02.021 10.1016/j.chemgeo.2016.04.025 10.1016/j.epsl.2014.11.036 10.1016/j.watres.2017.01.023 10.1029/2000GB001341 10.1016/j.scitotenv.2016.03.028 10.1016/j.geomorph.2014.08.017 10.1016/S0169-7439(97)00032-4 10.1016/j.soilbio.2012.03.011 10.1016/j.scitotenv.2017.10.097 10.1016/S0038-0717(01)00117-1 10.1016/j.agee.2017.10.028 10.1016/j.chemosphere.2015.02.028 10.1641/B570408 10.1016/S0045-6535(98)00166-0 10.1134/S009780780702011X 10.1016/j.jhydrol.2014.02.066 10.1016/j.watres.2007.05.045 10.4319/lom.2008.6.572 10.1016/j.scitotenv.2016.08.196 10.1016/j.geoderma.2004.01.032 10.2136/vzj2017.11.0194 10.1016/S0167-1987(02)00010-7 10.1111/j.1475-2743.2008.00151.x 10.1021/es030360x 10.1016/j.orggeochem.2006.07.024 10.1016/j.ecoleng.2014.06.023 10.1016/j.ecoleng.2012.03.020 10.1002/cem.978 10.1016/j.catena.2016.09.016 10.1021/es0155276 10.1002/esp.3408 10.1038/ngeo2602 10.1002/2016JG003597 10.1007/s11356-015-4656-7 10.1016/j.watres.2014.04.018 10.1016/j.still.2017.08.010 10.5194/bg-13-4735-2016 10.1016/j.scitotenv.2015.12.146 10.1016/S0016-7061(02)00365-8 10.4319/lo.2008.53.3.0955 10.1016/j.soilbio.2012.04.002 10.1016/j.ecoleng.2017.01.036 10.1007/s11270-010-0491-0 10.1016/S0016-7061(02)00361-0 10.1016/S0399-1784(00)00119-5 10.1146/annurev-earth-082517-010018 10.1016/j.catena.2014.05.009 10.1007/s10533-008-9200-0 10.1016/S0016-7061(02)00370-1 10.1021/cr050350+ 10.4319/lo.2001.46.1.0038 10.1016/j.jhydrol.2017.07.006 10.1177/0309133310369434 10.1016/j.jhazmat.2017.10.022 10.1016/j.chemosphere.2011.06.068 10.1029/2011JG001790 10.1016/S0003-2670(96)00412-6 10.1016/j.proenv.2010.10.017 10.1016/S0967-0645(98)00068-X 10.1021/es3007723 10.1016/j.orggeochem.2009.03.002 10.1016/j.still.2016.10.004 10.1038/ngeo618 10.1016/j.geoderma.2017.05.038 10.1366/000370209788964548 10.1016/S0016-7061(02)00360-9 10.1016/j.catena.2015.01.028 10.1016/0304-4203(95)00062-3 10.1021/es2038992 10.1016/j.geomorph.2014.07.023 10.1039/C3AY41935E 10.1021/es102362t 10.1016/j.ecoleng.2015.05.031 10.1016/S0304-4203(03)00072-0 10.1007/s10021-007-9101-4 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2018.07.029 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 48 |
ExternalDocumentID | 10_1016_j_geoderma_2018_07_029 S0016706118301873 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-7eec2efce551ffaf9b704ef7ae7df8f5bd535cf238c31bcc8022ad7e4023a1033 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 14:50:01 EDT 2025 Tue Jul 01 04:04:47 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Fri Feb 23 02:49:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluorescence Soil erosion Dissolved organic matter Land use types Source fingerprinting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-7eec2efce551ffaf9b704ef7ae7df8f5bd535cf238c31bcc8022ad7e4023a1033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6986-7943 |
PQID | 2116868484 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2116868484 crossref_citationtrail_10_1016_j_geoderma_2018_07_029 crossref_primary_10_1016_j_geoderma_2018_07_029 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_07_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-15 |
PublicationDateYYYYMMDD | 2019-01-15 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kaiser, Kalbitz (bb0170) 2012; 52 Eilers, Debenport, Anderson, Fierer (bb0110) 2012; 50 He, Jung, Lee, Hur (bb0135) 2016; 547 Kuzyakov, Cheng (bb0185) 2001; 33 Fernando, Rosario-Ortiza, Shane, Snydera (bb0120) 2007; 41 Li, Liu, Dong, Chang, Nie, Liu, Xiao, Lu, Zeng (bb0215) 2017; 166 Jin, Cornelis, Schiette, Lu, Buysse, Baert, Wu, Yao, Cai, Jin, De Neve, Hartmann, Gabriels (bb0165) 2008; 24 Lozovik, Morozov, Zobkov, Dukhovicheva, Osipova (bb0245) 2007; 34 Ohno (bb0300) 2002; 36 Berhe, Kleber (bb0020) 2013; 38 Berhe, Harden, Torn, Harte (bb0030) 2008; 13 Miao, Ni, Borthwick (bb0275) 2010; 34 Osburn, Handsel, Mikan, Paerl, Montgomery (bb0305) 2012; 46 Fissore, DalzellB, Berhe, Voegtle, Evans, Wu (bb0125) 2017; 149 Berhe, Harden, Torn, Kleber, Burton, Harte (bb0035) 2012; 117 Kalbitz, Schmerwitz, Schwesig, Matzner (bb0175) 2003; 113 Xin, Qin, Yu (bb0390) 2016; 137 McCorkle, Berhe, Hunsaker (bb0260) 2016; 445 Derrien, Yang, Hur (bb0090) 2017; 112 Berhe, Barnes, Six, Marín-Spiotta (bb9000) 2018; 46 McKnight, Boyer, Westerhoff, Doran, Kulbe, Andersen (bb0270) 2001; 46 Doetterl, Six, Wesemael, Van Oost (bb0100) 2012; 18 Nie, Li, Huang, Liu, Xiao, Liu, Zeng (bb0295) 2018; 175 Hur (bb0155) 2011; 215 Peuravuori, Pihlaja (bb0310) 1997; 337 Smith, Renwick, Buddemeier, Crossland (bb0325) 2001; 15 Bahram, Bro, Stedmon, Afkhami (bb0010) 2006; 20 Carter (bb0050) 1993 Chen, Fang, Shi (bb0065) 2016; 557–558 Liu, Li, Chang, Nie, Liu, Xiao, Wang, Peng, Zeng (bb0240) 2018; 621 Assouline, Govers, Nearing (bb0005) 2017; 16 Huguet, Vacher, Relexans, Saubusse, Froidefond, Parlanti (bb0150) 2009; 40 Lee, Chen, Fane (bb9005) 2008; 218 Santos, Russell, Berhe (bb0315) 2016; 121 Berhe, Harte, Harden, Torn (bb0025) 2007; 57 Wang, Fu, Piao, Lv, Ciais, Feng, Wang (bb0365) 2016; 9 Lawaetz, Stedmon (bb0205) 2009; 63 Chantigny (bb0055) 2003; 113 Lal (bb0190) 1995 Coble (bb0070) 1996; 51 Cory, Miller, McKnight, Guerard, Miller (bb0085) 2010; 8 Kirkels, Cammeraat, Kuhn (bb0180) 2014; 226 Wang, Shi, Wang, Fang, Wu, Zhang (bb0355) 2014; 512 Lü, Sun, Fu, Wang (bb0250) 2012; 44 Huang, Li, Huang, Luo, Zhang, Zhai, Zeng (bb0145) 2018; 344 Murphy, Butler, Spencer, Stedmon, Boehme, Aiken (bb0280) 2010; 44 Liu, Liu (bb0220) 2010; 2 Liu, Li, Dong, Chang, Nie, Liu, Xiao, Zeng (bb0225) 2017; 101 Zhao, Van Oos, Chen, Govers (bb0405) 2016; 13 FAO (bb0115) 2014 Jacinthe, Lal, Kimble (bb0160) 2002; 66 Wang, Fu, Chen, Lü, Gao (bb0350) 2011; 45 Wang, Guo, Sun (bb0360) 2015; 82 Yang, Han, Lee, Hur (bb0400) 2015; 127 Wieder, Cleveland, Townsend (bb0385) 2008; 88 Liu, Li, Chang, He, Nie, Liu, Xiao, Wang, Peng, Zeng (bb0235) 2018; 253 Nguyen, Hur (bb0290) 2011; 85 Liu, Li, Dong, Chang, Nie, Liu, Xiao, Wang, Peng (bb0230) 2017; 552 Weishaar, Aiken, Bergamaschi, Fram, Fujii, Mopper (bb0375) 2003; 37 Battin, Luyssaert, Kaplan, Aufdenkampe, Richter, Tranvik (bb0015) 2009; 2 Helms, Stubbins, Ritchie, Minor, Kieber, Mopper (bb0140) 2008; 53 Li, Quine, Yu, Govers, Six, Gong, Wang, Zhang, VanOost (bb0210) 2015; 411 Zhou, Shi, Zhang, Jeppesen, Liu, Zhou, Wu, Tang, Zhu (bb0410) 2017; 574 Chen, Lee, Hur (bb0060) 2015; 22 Lal (bb0195) 2003; 29 McDowell (bb0265) 2003; 113 Murphy, Stedmon, Wenig, Bro (bb0285) 2014; 6 Zsolnay, Baigar, Jimenez, Steinweg, Saccomandi (bb0420) 1999; 38 Stedmon, Bro (bb0330) 2008; 6 Stedmon, Markager, Bro (bb0335) 2003; 82 Wickland, Neff, Aiken (bb0380) 2007; 10 Shafiquzzaman, Ahmed, Shafiul Azam, Razzak, Askri, Hassan, Ravikumar, Okuda (bb0320) 2014; 70 Sun, Shao, Liu, Zhai (bb0340) 2014; 121 Szymański (bb0345) 2017; 305 Lal (bb0200) 2004; 123 Coble, Del Castillo, Avril (bb0080) 1998; 45 Dilling, Kaiser (bb0095) 2002; 36 Durrieu, Madron, Abassi, Heussner, Monaco, Aloisi, Radakovitch, Giresse, Buscail, Kerherve (bb0105) 2000; 23 Coble (bb0075) 2007; 107 Ma, Li, Ding, Huang, Nie, Zeng, Wang, Liu (bb0255) 2014; 226 Zsolnay (bb0415) 2003; 113 Cai (bb0045) 2001; 11 Bro (bb0040) 1997; 38 Yang, Hur (bb0395) 2014; 59 Fuentes, Gonzalez-Gaitano, Garcia-Mina (bb0130) 2006; 37 Fernando (10.1016/j.geoderma.2018.07.029_bb0120) 2007; 41 Kaiser (10.1016/j.geoderma.2018.07.029_bb0170) 2012; 52 Zhou (10.1016/j.geoderma.2018.07.029_bb0410) 2017; 574 Chantigny (10.1016/j.geoderma.2018.07.029_bb0055) 2003; 113 Sun (10.1016/j.geoderma.2018.07.029_bb0340) 2014; 121 Helms (10.1016/j.geoderma.2018.07.029_bb0140) 2008; 53 Jin (10.1016/j.geoderma.2018.07.029_bb0165) 2008; 24 Fissore (10.1016/j.geoderma.2018.07.029_bb0125) 2017; 149 Berhe (10.1016/j.geoderma.2018.07.029_bb0025) 2007; 57 Berhe (10.1016/j.geoderma.2018.07.029_bb9000) 2018; 46 Li (10.1016/j.geoderma.2018.07.029_bb0215) 2017; 166 Stedmon (10.1016/j.geoderma.2018.07.029_bb0330) 2008; 6 Osburn (10.1016/j.geoderma.2018.07.029_bb0305) 2012; 46 Murphy (10.1016/j.geoderma.2018.07.029_bb0280) 2010; 44 McCorkle (10.1016/j.geoderma.2018.07.029_bb0260) 2016; 445 McKnight (10.1016/j.geoderma.2018.07.029_bb0270) 2001; 46 Lee (10.1016/j.geoderma.2018.07.029_bb9005) 2008; 218 Ma (10.1016/j.geoderma.2018.07.029_bb0255) 2014; 226 Hur (10.1016/j.geoderma.2018.07.029_bb0155) 2011; 215 Berhe (10.1016/j.geoderma.2018.07.029_bb0030) 2008; 13 Carter (10.1016/j.geoderma.2018.07.029_bb0050) 1993 Dilling (10.1016/j.geoderma.2018.07.029_bb0095) 2002; 36 Lal (10.1016/j.geoderma.2018.07.029_bb0200) 2004; 123 Shafiquzzaman (10.1016/j.geoderma.2018.07.029_bb0320) 2014; 70 Weishaar (10.1016/j.geoderma.2018.07.029_bb0375) 2003; 37 Chen (10.1016/j.geoderma.2018.07.029_bb0060) 2015; 22 Doetterl (10.1016/j.geoderma.2018.07.029_bb0100) 2012; 18 Yang (10.1016/j.geoderma.2018.07.029_bb0400) 2015; 127 Lozovik (10.1016/j.geoderma.2018.07.029_bb0245) 2007; 34 Zsolnay (10.1016/j.geoderma.2018.07.029_bb0420) 1999; 38 Bro (10.1016/j.geoderma.2018.07.029_bb0040) 1997; 38 Wang (10.1016/j.geoderma.2018.07.029_bb0360) 2015; 82 Ohno (10.1016/j.geoderma.2018.07.029_bb0300) 2002; 36 Lal (10.1016/j.geoderma.2018.07.029_bb0195) 2003; 29 Murphy (10.1016/j.geoderma.2018.07.029_bb0285) 2014; 6 Smith (10.1016/j.geoderma.2018.07.029_bb0325) 2001; 15 Coble (10.1016/j.geoderma.2018.07.029_bb0080) 1998; 45 Lawaetz (10.1016/j.geoderma.2018.07.029_bb0205) 2009; 63 Li (10.1016/j.geoderma.2018.07.029_bb0210) 2015; 411 Yang (10.1016/j.geoderma.2018.07.029_bb0395) 2014; 59 Derrien (10.1016/j.geoderma.2018.07.029_bb0090) 2017; 112 Liu (10.1016/j.geoderma.2018.07.029_bb0230) 2017; 552 Nguyen (10.1016/j.geoderma.2018.07.029_bb0290) 2011; 85 McDowell (10.1016/j.geoderma.2018.07.029_bb0265) 2003; 113 Coble (10.1016/j.geoderma.2018.07.029_bb0075) 2007; 107 Szymański (10.1016/j.geoderma.2018.07.029_bb0345) 2017; 305 Wang (10.1016/j.geoderma.2018.07.029_bb0365) 2016; 9 Kuzyakov (10.1016/j.geoderma.2018.07.029_bb0185) 2001; 33 Bahram (10.1016/j.geoderma.2018.07.029_bb0010) 2006; 20 Cai (10.1016/j.geoderma.2018.07.029_bb0045) 2001; 11 Liu (10.1016/j.geoderma.2018.07.029_bb0235) 2018; 253 Coble (10.1016/j.geoderma.2018.07.029_bb0070) 1996; 51 Wang (10.1016/j.geoderma.2018.07.029_bb0355) 2014; 512 Huguet (10.1016/j.geoderma.2018.07.029_bb0150) 2009; 40 Zsolnay (10.1016/j.geoderma.2018.07.029_bb0415) 2003; 113 Lü (10.1016/j.geoderma.2018.07.029_bb0250) 2012; 44 Battin (10.1016/j.geoderma.2018.07.029_bb0015) 2009; 2 Huang (10.1016/j.geoderma.2018.07.029_bb0145) 2018; 344 Wang (10.1016/j.geoderma.2018.07.029_bb0350) 2011; 45 Peuravuori (10.1016/j.geoderma.2018.07.029_bb0310) 1997; 337 Wieder (10.1016/j.geoderma.2018.07.029_bb0385) 2008; 88 Liu (10.1016/j.geoderma.2018.07.029_bb0220) 2010; 2 Durrieu (10.1016/j.geoderma.2018.07.029_bb0105) 2000; 23 Miao (10.1016/j.geoderma.2018.07.029_bb0275) 2010; 34 Wickland (10.1016/j.geoderma.2018.07.029_bb0380) 2007; 10 Cory (10.1016/j.geoderma.2018.07.029_bb0085) 2010; 8 Berhe (10.1016/j.geoderma.2018.07.029_bb0035) 2012; 117 Chen (10.1016/j.geoderma.2018.07.029_bb0065) 2016; 557–558 Berhe (10.1016/j.geoderma.2018.07.029_bb0020) 2013; 38 Fuentes (10.1016/j.geoderma.2018.07.029_bb0130) 2006; 37 Liu (10.1016/j.geoderma.2018.07.029_bb0225) 2017; 101 Stedmon (10.1016/j.geoderma.2018.07.029_bb0335) 2003; 82 Assouline (10.1016/j.geoderma.2018.07.029_bb0005) 2017; 16 Liu (10.1016/j.geoderma.2018.07.029_bb0240) 2018; 621 He (10.1016/j.geoderma.2018.07.029_bb0135) 2016; 547 FAO (10.1016/j.geoderma.2018.07.029_bb0115) 2014 Nie (10.1016/j.geoderma.2018.07.029_bb0295) 2018; 175 Eilers (10.1016/j.geoderma.2018.07.029_bb0110) 2012; 50 Kalbitz (10.1016/j.geoderma.2018.07.029_bb0175) 2003; 113 Jacinthe (10.1016/j.geoderma.2018.07.029_bb0160) 2002; 66 Zhao (10.1016/j.geoderma.2018.07.029_bb0405) 2016; 13 Xin (10.1016/j.geoderma.2018.07.029_bb0390) 2016; 137 Santos (10.1016/j.geoderma.2018.07.029_bb0315) 2016; 121 Kirkels (10.1016/j.geoderma.2018.07.029_bb0180) 2014; 226 Lal (10.1016/j.geoderma.2018.07.029_bb0190) 1995 |
References_xml | – volume: 445 start-page: 172 year: 2016 end-page: 184 ident: bb0260 article-title: Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes publication-title: Chem. Geol. – volume: 46 start-page: 521 year: 2018 end-page: 548 ident: bb9000 article-title: Role of Soil Erosion in Biogeochemical Cycling of Essential Elements: Carbon, Nitrogen, and Phosphorus publication-title: Ann. Rev. Earth Pl. Sc. – volume: 2 start-page: 134 year: 2010 end-page: 148 ident: bb0220 article-title: Sensitivity analysis of soil erosion in the northern Loess Plateau publication-title: Procedia Environ Sci – volume: 6 start-page: 572 year: 2008 end-page: 579 ident: bb0330 article-title: Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial publication-title: Limnol. Oceanogr. Methods – volume: 46 start-page: 38 year: 2001 end-page: 48 ident: bb0270 article-title: Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity publication-title: Limnol. Oceanogr. – volume: 38 start-page: 149 year: 1997 end-page: 171 ident: bb0040 article-title: PARAFAC. Tutorial and applications publication-title: Chemom. Intell. Lab. – volume: 512 start-page: 168 year: 2014 end-page: 176 ident: bb0355 article-title: Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: a case study of clay loam soil from the Loess Plateau, China publication-title: J. Hydrol. – volume: 175 start-page: 82 year: 2018 end-page: 90 ident: bb0295 article-title: Thermal stability of organic carbon in soil aggregates as affected by soil erosion and deposition publication-title: Soil Tillage Res. – volume: 85 start-page: 782 year: 2011 end-page: 789 ident: bb0290 article-title: Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools publication-title: Chemosphere – volume: 18 start-page: 2218 year: 2012 end-page: 2232 ident: bb0100 article-title: Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization publication-title: Glob. Chang. Biol. – volume: 36 start-page: 5037 year: 2002 end-page: 5044 ident: bb0095 article-title: Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry publication-title: Water Res. – volume: 13 start-page: 4735 year: 2016 end-page: 4750 ident: bb0405 article-title: Moderate topsoil erosion rates constrain the magnitude of the erosion-induced carbon sink and agricultural productivity losses on the Chinese Loess Plateau publication-title: Biogeosciences – volume: 113 start-page: 357 year: 2003 end-page: 380 ident: bb0055 article-title: Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices publication-title: Geoderma – volume: 51 start-page: 325 year: 1996 end-page: 346 ident: bb0070 article-title: Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy publication-title: Mar. Chem. – volume: 44 start-page: 9405 year: 2010 end-page: 9412 ident: bb0280 article-title: Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison publication-title: Environ. Sci. Technol. – volume: 15 start-page: 697 year: 2001 end-page: 707 ident: bb0325 article-title: Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States publication-title: Glob. Biogeochem. Cycles – volume: 127 start-page: 222 year: 2015 end-page: 228 ident: bb0400 article-title: Characterizing treated wastewaters of different industries using clustered fluorescence EEM-PARAFAC and FT-IR spectroscopy: implications for downstream impact and source identification publication-title: Chemosphere – volume: 123 start-page: 1 year: 2004 end-page: 22 ident: bb0200 article-title: Soil carbon sequestration to mitigate climate change publication-title: Geoderma – volume: 11 start-page: 53 year: 2001 end-page: 70 ident: bb0045 article-title: Soil erosion and management on the Loess Plateau publication-title: J. Geogr. Sci. – volume: 218 start-page: 257 year: 2008 end-page: 270 ident: bb9005 article-title: Natural organic matter (NOM) fouling in low pressure membrane filtration-effect of membranes and operation modes publication-title: Desalination – volume: 38 start-page: 908 year: 2013 end-page: 912 ident: bb0020 article-title: Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology publication-title: Earth Surf. Process. Landf. – volume: 22 start-page: 14841 year: 2015 end-page: 14851 ident: bb0060 article-title: Effects of sampling methods on the quantity and quality of dissolved organic matter in sediment pore waters as revealed by absorption and fluorescence spectroscopy publication-title: Environ. Sci. Pollut. Res. – volume: 2 start-page: 598 year: 2009 end-page: 600 ident: bb0015 article-title: The boundless carbon cycle publication-title: Nat. Geosci. – volume: 305 start-page: 30 year: 2017 end-page: 39 ident: bb0345 article-title: Quantity and chemistry of water-extractable organic matter in surface horizons of Arctic soils under different types of tundra vegetation – a case study from the Fuglebergsletta coastal plain (SW Spitsbergen) publication-title: Geoderma – volume: 40 start-page: 706 year: 2009 end-page: 719 ident: bb0150 article-title: Properties of fluorescent dissolved organic matter in the Gironde Estuary publication-title: Org. Geochem. – volume: 112 start-page: 58 year: 2017 end-page: 71 ident: bb0090 article-title: Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: a review publication-title: Water Res. – volume: 34 start-page: 541 year: 2010 end-page: 561 ident: bb0275 article-title: Recent changes of water discharge and sediment load in the Yellow River basin, China publication-title: Prog. Phys. Geogr. – volume: 29 start-page: 437 year: 2003 end-page: 450 ident: bb0195 article-title: Soil erosion and the global carbon budget publication-title: Environ. Int. – volume: 13 year: 2008 ident: bb0030 article-title: Role of landform position in erosion-induced terrestrial carbon sequestration publication-title: J. Geophys. Res. Biogeosci. – volume: 552 start-page: 376 year: 2017 end-page: 386 ident: bb0230 article-title: Response of sedimentary organic matter source to rainfall events using stable carbon and nitrogen isotopes in a typical loess hilly-gully catchment of China publication-title: J. Hydrol. – volume: 337 start-page: 133 year: 1997 end-page: 149 ident: bb0310 article-title: Molecular size distribution and spectroscopic properties of aquatic humic substances publication-title: Anal. Chim. Acta – volume: 57 start-page: 337 year: 2007 end-page: 346 ident: bb0025 article-title: The significance of the erosion-induced terrestrial carbon sink publication-title: Bioscience – volume: 50 start-page: 58 year: 2012 end-page: 65 ident: bb0110 article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil publication-title: Soil Biol. Biochem. – year: 1993 ident: bb0050 article-title: Soil Sampling and Methods of Analysis – volume: 344 start-page: 539 year: 2018 end-page: 548 ident: bb0145 article-title: Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM-PARAFAC combined with two-dimensional FTIR correlation analyses publication-title: J. Hazard. Mater. – volume: 253 start-page: 11 year: 2018 end-page: 22 ident: bb0235 article-title: Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: a case study in a loess hilly-gully catchment, China publication-title: Agric. Ecosyst. Environ. – volume: 46 start-page: 8628 year: 2012 end-page: 8636 ident: bb0305 article-title: Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary publication-title: Environ. Sci. Technol. – volume: 41 start-page: 4115 year: 2007 end-page: 4128 ident: bb0120 article-title: Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries publication-title: Water Res. – volume: 82 start-page: 239 year: 2003 end-page: 254 ident: bb0335 article-title: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy publication-title: Mar. Chem. – volume: 226 start-page: 94 year: 2014 end-page: 105 ident: bb0180 article-title: The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes-a review of different concepts publication-title: Geomorphology – volume: 36 start-page: 742 year: 2002 end-page: 746 ident: bb0300 article-title: Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter publication-title: Environ. Sci. Technol. – volume: 59 start-page: 80 year: 2014 end-page: 89 ident: bb0395 article-title: Critical evaluation of spectroscopic indices for organic matter source tracing via end member mixing analysis based on two contrasting sources publication-title: Water Res. – year: 2014 ident: bb0115 article-title: World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports 106 – volume: 66 start-page: 23 year: 2002 end-page: 33 ident: bb0160 article-title: Carbon dioxide evolution in runoff from simulated rainfall on long-term no-till and plowed soils in southwestern Ohio publication-title: Soil Tillage Res. – volume: 52 start-page: 29 year: 2012 end-page: 32 ident: bb0170 article-title: Cycling downwards-dissolved organic matter in soils publication-title: Soil Biol. Biochem. – volume: 547 start-page: 1 year: 2016 end-page: 8 ident: bb0135 article-title: Differences in spectroscopic characteristics between dissolved and particulate organic matters in sediments: insight into distribution behavior of sediment organic matter publication-title: Sci. Total Environ. – volume: 53 start-page: 955 year: 2008 end-page: 969 ident: bb0140 article-title: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter publication-title: Limnol. Oceanogr. – volume: 34 start-page: 204 year: 2007 end-page: 216 ident: bb0245 article-title: Allochthonous and autochthonous organic matter in surface waters in Karelia publication-title: Water Res. – volume: 6 start-page: 658 year: 2014 end-page: 661 ident: bb0285 article-title: OpenFluor - an online spectrallibrary of auto-fluorescence by organic compounds in the environment publication-title: Anal. Methods – volume: 574 start-page: 1588 year: 2017 end-page: 1598 ident: bb0410 article-title: Fluorescence peak integration ratio IC: IT as a new potential indicator tracing the compositional changes in chromophoric dissolved organic matter publication-title: Sci. Total Environ. – volume: 38 start-page: 45 year: 1999 end-page: 50 ident: bb0420 article-title: Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying publication-title: Chemosphere – volume: 411 start-page: 281 year: 2015 end-page: 289 ident: bb0210 article-title: Sustained high magnitude erosional forcing generates an organic carbon sink Test and implications in the Loess Plateau, China publication-title: Earth Planet. Sci. Lett. – volume: 63 start-page: 936 year: 2009 end-page: 940 ident: bb0205 article-title: Fluorescence intensity calibration using the Raman scatter peak of water publication-title: Appl. Spectrosc. – volume: 121 start-page: 2877 year: 2016 end-page: 2885 ident: bb0315 article-title: Thermal alteration of water extractable organic matter in climosequence soils from the Sierra Nevada, California publication-title: J. Geophys. Res. Biogeosci. – volume: 20 start-page: 99 year: 2006 end-page: 105 ident: bb0010 article-title: Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation publication-title: J. Chemom. – volume: 37 start-page: 1949 year: 2006 end-page: 1959 ident: bb0130 article-title: The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts publication-title: Org. Geochem. – volume: 23 start-page: 717 year: 2000 end-page: 730 ident: bb0105 article-title: Particulate matter and organic carbon budgets for the Gulf of Lions (NW Mediterranean) publication-title: Oceanol. Acta – volume: 44 start-page: 139 year: 2012 end-page: 146 ident: bb0250 article-title: Carbon retention by check dams: regional scale estimation publication-title: Ecol. Eng. – volume: 113 start-page: 273 year: 2003 end-page: 291 ident: bb0175 article-title: Biodegradation of soil-derived dissolved organic matter as related to its properties publication-title: Geoderma – volume: 45 start-page: 2195 year: 1998 end-page: 2223 ident: bb0080 article-title: Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon publication-title: Deep-Sea Res. Part 2 – volume: 82 start-page: 547 year: 2015 end-page: 554 ident: bb0360 article-title: Soil organic carbon sequestration potential of artificial and natural vegetation in the hilly regions of Loess Plateau publication-title: Ecol. Eng. – volume: 33 start-page: 1915 year: 2001 end-page: 1925 ident: bb0185 article-title: Photosynthesis controls of rhizosphere respiration and organic matter decomposition publication-title: Soil Biol. Biochem. – volume: 121 start-page: 151 year: 2014 end-page: 163 ident: bb0340 article-title: Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China publication-title: Catena – volume: 37 start-page: 4702 year: 2003 end-page: 4708 ident: bb0375 article-title: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon publication-title: Environ. Sci. Technol. – volume: 117 year: 2012 ident: bb0035 article-title: Persistence of soil organic matter in eroding versus depositional landform positions publication-title: J. Geophys. Res. Biogeosci. – volume: 621 start-page: 1310 year: 2018 end-page: 1319 ident: bb0240 article-title: Apportioning source of erosion-induced organic matter in the hilly-gully region of Loess Plateau in China: insight from lipid biomarker and isotopic signature analysis publication-title: Sci. Total Environ. – start-page: 131 year: 1995 end-page: 142 ident: bb0190 article-title: Global soil erosion by water and carbon dynamics publication-title: Soils Glob. Chang. – volume: 226 start-page: 217 year: 2014 end-page: 225 ident: bb0255 article-title: Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation publication-title: Geomorphology – volume: 10 start-page: 1323 year: 2007 end-page: 1340 ident: bb0380 article-title: Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability publication-title: Ecosystems – volume: 557–558 start-page: 123 year: 2016 end-page: 133 ident: bb0065 article-title: Using biomarkers as fingerprint properties to identify sediment sources in a small catchment publication-title: Sci. Total Environ. – volume: 113 start-page: 179 year: 2003 end-page: 186 ident: bb0265 article-title: Dissolved organic matter in soils-future directions and unanswered questions publication-title: Geoderma – volume: 24 start-page: 181 year: 2008 end-page: 191 ident: bb0165 article-title: Redistribution and loss of soil organic carbon by overland flow under various soil management practices on the Chinese Loess Plateau publication-title: Soil Use Manag. – volume: 16 year: 2017 ident: bb0005 article-title: Erosion and lateral surface processes publication-title: Vadose Zone J. – volume: 70 start-page: 459 year: 2014 end-page: 464 ident: bb0320 article-title: Identification and characterization of dissolved organic matter sources in Kushiro river impacted by a wetland publication-title: Ecol. Eng. – volume: 45 start-page: 10,298 year: 2011 end-page: 10,299 ident: bb0350 article-title: Check dam in the Loess Plateau of China: engineering for environmental services and food security publication-title: Environ. Sci. Technol. – volume: 113 start-page: 187 year: 2003 end-page: 209 ident: bb0415 article-title: Dissolved organic matter: artefacts, definitions, and functions publication-title: Geoderma – volume: 149 start-page: 140 year: 2017 end-page: 149 ident: bb0125 article-title: Influence of topography on soil organic carbon dynamics in a Southern California grassland publication-title: Catena – volume: 215 start-page: 465 year: 2011 end-page: 476 ident: bb0155 article-title: Microbial changes in selected operational descriptors of dissolved organic matters from various sources in a watershed publication-title: Water Air Soil Pollut. – volume: 9 start-page: 38 year: 2016 end-page: 41 ident: bb0365 article-title: Reduced sediment transport in the Yellow River due to anthropogenic changes publication-title: Nat. Geosci. – volume: 137 start-page: 660 year: 2016 end-page: 669 ident: bb0390 article-title: Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China publication-title: Catena – volume: 166 start-page: 1 year: 2017 end-page: 9 ident: bb0215 article-title: Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China publication-title: Soil Tillage Res. – volume: 107 start-page: 402 year: 2007 end-page: 418 ident: bb0075 article-title: Marine optical biogeochemistry: the chemistry of ocean color publication-title: Chem. Rev. – volume: 101 start-page: 220 year: 2017 end-page: 226 ident: bb0225 article-title: Do check dam construction and land use change affect a real estimate of soil carbon and nitrogen stocks on the Loess Plateau of China? publication-title: Ecol. Eng. – volume: 88 start-page: 127 year: 2008 end-page: 138 ident: bb0385 article-title: Tropical tree species composition affects the oxidation of dissolved organic matter from litter publication-title: Biogeochemistry – volume: 8 start-page: 67 year: 2010 end-page: 78 ident: bb0085 article-title: Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra publication-title: Limnol. Oceanogr. Methods – volume: 11 start-page: 53 year: 2001 ident: 10.1016/j.geoderma.2018.07.029_bb0045 article-title: Soil erosion and management on the Loess Plateau publication-title: J. Geogr. Sci. doi: 10.1007/BF02837376 – volume: 29 start-page: 437 year: 2003 ident: 10.1016/j.geoderma.2018.07.029_bb0195 article-title: Soil erosion and the global carbon budget publication-title: Environ. Int. doi: 10.1016/S0160-4120(02)00192-7 – volume: 18 start-page: 2218 year: 2012 ident: 10.1016/j.geoderma.2018.07.029_bb0100 article-title: Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02680.x – volume: 36 start-page: 5037 year: 2002 ident: 10.1016/j.geoderma.2018.07.029_bb0095 article-title: Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry publication-title: Water Res. doi: 10.1016/S0043-1354(02)00365-2 – volume: 218 start-page: 257 year: 2008 ident: 10.1016/j.geoderma.2018.07.029_bb9005 article-title: Natural organic matter (NOM) fouling in low pressure membrane filtration-effect of membranes and operation modes publication-title: Desalination doi: 10.1016/j.desal.2007.02.021 – volume: 445 start-page: 172 year: 2016 ident: 10.1016/j.geoderma.2018.07.029_bb0260 article-title: Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2016.04.025 – volume: 411 start-page: 281 year: 2015 ident: 10.1016/j.geoderma.2018.07.029_bb0210 article-title: Sustained high magnitude erosional forcing generates an organic carbon sink Test and implications in the Loess Plateau, China publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2014.11.036 – volume: 112 start-page: 58 year: 2017 ident: 10.1016/j.geoderma.2018.07.029_bb0090 article-title: Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: a review publication-title: Water Res. doi: 10.1016/j.watres.2017.01.023 – year: 1993 ident: 10.1016/j.geoderma.2018.07.029_bb0050 – volume: 15 start-page: 697 year: 2001 ident: 10.1016/j.geoderma.2018.07.029_bb0325 article-title: Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2000GB001341 – volume: 557–558 start-page: 123 year: 2016 ident: 10.1016/j.geoderma.2018.07.029_bb0065 article-title: Using biomarkers as fingerprint properties to identify sediment sources in a small catchment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.03.028 – volume: 8 start-page: 67 year: 2010 ident: 10.1016/j.geoderma.2018.07.029_bb0085 article-title: Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra publication-title: Limnol. Oceanogr. Methods – volume: 226 start-page: 217 year: 2014 ident: 10.1016/j.geoderma.2018.07.029_bb0255 article-title: Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.08.017 – volume: 38 start-page: 149 year: 1997 ident: 10.1016/j.geoderma.2018.07.029_bb0040 article-title: PARAFAC. Tutorial and applications publication-title: Chemom. Intell. Lab. doi: 10.1016/S0169-7439(97)00032-4 – volume: 50 start-page: 58 year: 2012 ident: 10.1016/j.geoderma.2018.07.029_bb0110 article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.03.011 – volume: 621 start-page: 1310 year: 2018 ident: 10.1016/j.geoderma.2018.07.029_bb0240 article-title: Apportioning source of erosion-induced organic matter in the hilly-gully region of Loess Plateau in China: insight from lipid biomarker and isotopic signature analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.097 – volume: 33 start-page: 1915 year: 2001 ident: 10.1016/j.geoderma.2018.07.029_bb0185 article-title: Photosynthesis controls of rhizosphere respiration and organic matter decomposition publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00117-1 – volume: 253 start-page: 11 year: 2018 ident: 10.1016/j.geoderma.2018.07.029_bb0235 article-title: Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: a case study in a loess hilly-gully catchment, China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.10.028 – volume: 127 start-page: 222 year: 2015 ident: 10.1016/j.geoderma.2018.07.029_bb0400 article-title: Characterizing treated wastewaters of different industries using clustered fluorescence EEM-PARAFAC and FT-IR spectroscopy: implications for downstream impact and source identification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.02.028 – volume: 57 start-page: 337 year: 2007 ident: 10.1016/j.geoderma.2018.07.029_bb0025 article-title: The significance of the erosion-induced terrestrial carbon sink publication-title: Bioscience doi: 10.1641/B570408 – volume: 38 start-page: 45 year: 1999 ident: 10.1016/j.geoderma.2018.07.029_bb0420 article-title: Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying publication-title: Chemosphere doi: 10.1016/S0045-6535(98)00166-0 – volume: 34 start-page: 204 year: 2007 ident: 10.1016/j.geoderma.2018.07.029_bb0245 article-title: Allochthonous and autochthonous organic matter in surface waters in Karelia publication-title: Water Res. doi: 10.1134/S009780780702011X – volume: 512 start-page: 168 year: 2014 ident: 10.1016/j.geoderma.2018.07.029_bb0355 article-title: Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: a case study of clay loam soil from the Loess Plateau, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.02.066 – volume: 13 year: 2008 ident: 10.1016/j.geoderma.2018.07.029_bb0030 article-title: Role of landform position in erosion-induced terrestrial carbon sequestration publication-title: J. Geophys. Res. Biogeosci. – volume: 41 start-page: 4115 year: 2007 ident: 10.1016/j.geoderma.2018.07.029_bb0120 article-title: Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries publication-title: Water Res. doi: 10.1016/j.watres.2007.05.045 – volume: 6 start-page: 572 year: 2008 ident: 10.1016/j.geoderma.2018.07.029_bb0330 article-title: Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial publication-title: Limnol. Oceanogr. Methods doi: 10.4319/lom.2008.6.572 – volume: 574 start-page: 1588 year: 2017 ident: 10.1016/j.geoderma.2018.07.029_bb0410 article-title: Fluorescence peak integration ratio IC: IT as a new potential indicator tracing the compositional changes in chromophoric dissolved organic matter publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.08.196 – volume: 123 start-page: 1 year: 2004 ident: 10.1016/j.geoderma.2018.07.029_bb0200 article-title: Soil carbon sequestration to mitigate climate change publication-title: Geoderma doi: 10.1016/j.geoderma.2004.01.032 – volume: 16 year: 2017 ident: 10.1016/j.geoderma.2018.07.029_bb0005 article-title: Erosion and lateral surface processes publication-title: Vadose Zone J. doi: 10.2136/vzj2017.11.0194 – volume: 66 start-page: 23 year: 2002 ident: 10.1016/j.geoderma.2018.07.029_bb0160 article-title: Carbon dioxide evolution in runoff from simulated rainfall on long-term no-till and plowed soils in southwestern Ohio publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(02)00010-7 – volume: 24 start-page: 181 year: 2008 ident: 10.1016/j.geoderma.2018.07.029_bb0165 article-title: Redistribution and loss of soil organic carbon by overland flow under various soil management practices on the Chinese Loess Plateau publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2008.00151.x – volume: 37 start-page: 4702 year: 2003 ident: 10.1016/j.geoderma.2018.07.029_bb0375 article-title: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon publication-title: Environ. Sci. Technol. doi: 10.1021/es030360x – volume: 37 start-page: 1949 year: 2006 ident: 10.1016/j.geoderma.2018.07.029_bb0130 article-title: The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2006.07.024 – volume: 70 start-page: 459 year: 2014 ident: 10.1016/j.geoderma.2018.07.029_bb0320 article-title: Identification and characterization of dissolved organic matter sources in Kushiro river impacted by a wetland publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.06.023 – volume: 44 start-page: 139 year: 2012 ident: 10.1016/j.geoderma.2018.07.029_bb0250 article-title: Carbon retention by check dams: regional scale estimation publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2012.03.020 – volume: 20 start-page: 99 year: 2006 ident: 10.1016/j.geoderma.2018.07.029_bb0010 article-title: Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation publication-title: J. Chemom. doi: 10.1002/cem.978 – volume: 149 start-page: 140 year: 2017 ident: 10.1016/j.geoderma.2018.07.029_bb0125 article-title: Influence of topography on soil organic carbon dynamics in a Southern California grassland publication-title: Catena doi: 10.1016/j.catena.2016.09.016 – volume: 36 start-page: 742 year: 2002 ident: 10.1016/j.geoderma.2018.07.029_bb0300 article-title: Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es0155276 – volume: 38 start-page: 908 year: 2013 ident: 10.1016/j.geoderma.2018.07.029_bb0020 article-title: Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3408 – volume: 9 start-page: 38 year: 2016 ident: 10.1016/j.geoderma.2018.07.029_bb0365 article-title: Reduced sediment transport in the Yellow River due to anthropogenic changes publication-title: Nat. Geosci. doi: 10.1038/ngeo2602 – volume: 121 start-page: 2877 year: 2016 ident: 10.1016/j.geoderma.2018.07.029_bb0315 article-title: Thermal alteration of water extractable organic matter in climosequence soils from the Sierra Nevada, California publication-title: J. Geophys. Res. Biogeosci. doi: 10.1002/2016JG003597 – volume: 22 start-page: 14841 year: 2015 ident: 10.1016/j.geoderma.2018.07.029_bb0060 article-title: Effects of sampling methods on the quantity and quality of dissolved organic matter in sediment pore waters as revealed by absorption and fluorescence spectroscopy publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4656-7 – volume: 59 start-page: 80 year: 2014 ident: 10.1016/j.geoderma.2018.07.029_bb0395 article-title: Critical evaluation of spectroscopic indices for organic matter source tracing via end member mixing analysis based on two contrasting sources publication-title: Water Res. doi: 10.1016/j.watres.2014.04.018 – volume: 175 start-page: 82 year: 2018 ident: 10.1016/j.geoderma.2018.07.029_bb0295 article-title: Thermal stability of organic carbon in soil aggregates as affected by soil erosion and deposition publication-title: Soil Tillage Res. doi: 10.1016/j.still.2017.08.010 – volume: 13 start-page: 4735 year: 2016 ident: 10.1016/j.geoderma.2018.07.029_bb0405 article-title: Moderate topsoil erosion rates constrain the magnitude of the erosion-induced carbon sink and agricultural productivity losses on the Chinese Loess Plateau publication-title: Biogeosciences doi: 10.5194/bg-13-4735-2016 – volume: 547 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2018.07.029_bb0135 article-title: Differences in spectroscopic characteristics between dissolved and particulate organic matters in sediments: insight into distribution behavior of sediment organic matter publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.12.146 – volume: 113 start-page: 273 year: 2003 ident: 10.1016/j.geoderma.2018.07.029_bb0175 article-title: Biodegradation of soil-derived dissolved organic matter as related to its properties publication-title: Geoderma doi: 10.1016/S0016-7061(02)00365-8 – volume: 53 start-page: 955 year: 2008 ident: 10.1016/j.geoderma.2018.07.029_bb0140 article-title: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2008.53.3.0955 – volume: 52 start-page: 29 year: 2012 ident: 10.1016/j.geoderma.2018.07.029_bb0170 article-title: Cycling downwards-dissolved organic matter in soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.04.002 – year: 2014 ident: 10.1016/j.geoderma.2018.07.029_bb0115 – volume: 101 start-page: 220 year: 2017 ident: 10.1016/j.geoderma.2018.07.029_bb0225 article-title: Do check dam construction and land use change affect a real estimate of soil carbon and nitrogen stocks on the Loess Plateau of China? publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2017.01.036 – volume: 215 start-page: 465 year: 2011 ident: 10.1016/j.geoderma.2018.07.029_bb0155 article-title: Microbial changes in selected operational descriptors of dissolved organic matters from various sources in a watershed publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-010-0491-0 – volume: 113 start-page: 187 year: 2003 ident: 10.1016/j.geoderma.2018.07.029_bb0415 article-title: Dissolved organic matter: artefacts, definitions, and functions publication-title: Geoderma doi: 10.1016/S0016-7061(02)00361-0 – volume: 23 start-page: 717 year: 2000 ident: 10.1016/j.geoderma.2018.07.029_bb0105 article-title: Particulate matter and organic carbon budgets for the Gulf of Lions (NW Mediterranean) publication-title: Oceanol. Acta doi: 10.1016/S0399-1784(00)00119-5 – volume: 46 start-page: 521 year: 2018 ident: 10.1016/j.geoderma.2018.07.029_bb9000 article-title: Role of Soil Erosion in Biogeochemical Cycling of Essential Elements: Carbon, Nitrogen, and Phosphorus publication-title: Ann. Rev. Earth Pl. Sc. doi: 10.1146/annurev-earth-082517-010018 – volume: 121 start-page: 151 year: 2014 ident: 10.1016/j.geoderma.2018.07.029_bb0340 article-title: Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China publication-title: Catena doi: 10.1016/j.catena.2014.05.009 – volume: 88 start-page: 127 year: 2008 ident: 10.1016/j.geoderma.2018.07.029_bb0385 article-title: Tropical tree species composition affects the oxidation of dissolved organic matter from litter publication-title: Biogeochemistry doi: 10.1007/s10533-008-9200-0 – volume: 113 start-page: 357 year: 2003 ident: 10.1016/j.geoderma.2018.07.029_bb0055 article-title: Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices publication-title: Geoderma doi: 10.1016/S0016-7061(02)00370-1 – volume: 107 start-page: 402 year: 2007 ident: 10.1016/j.geoderma.2018.07.029_bb0075 article-title: Marine optical biogeochemistry: the chemistry of ocean color publication-title: Chem. Rev. doi: 10.1021/cr050350+ – volume: 46 start-page: 38 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2018.07.029_bb0270 article-title: Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2001.46.1.0038 – volume: 552 start-page: 376 year: 2017 ident: 10.1016/j.geoderma.2018.07.029_bb0230 article-title: Response of sedimentary organic matter source to rainfall events using stable carbon and nitrogen isotopes in a typical loess hilly-gully catchment of China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.07.006 – volume: 34 start-page: 541 year: 2010 ident: 10.1016/j.geoderma.2018.07.029_bb0275 article-title: Recent changes of water discharge and sediment load in the Yellow River basin, China publication-title: Prog. Phys. Geogr. doi: 10.1177/0309133310369434 – volume: 344 start-page: 539 year: 2018 ident: 10.1016/j.geoderma.2018.07.029_bb0145 article-title: Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM-PARAFAC combined with two-dimensional FTIR correlation analyses publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.10.022 – volume: 85 start-page: 782 year: 2011 ident: 10.1016/j.geoderma.2018.07.029_bb0290 article-title: Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.06.068 – volume: 117 year: 2012 ident: 10.1016/j.geoderma.2018.07.029_bb0035 article-title: Persistence of soil organic matter in eroding versus depositional landform positions publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2011JG001790 – volume: 337 start-page: 133 year: 1997 ident: 10.1016/j.geoderma.2018.07.029_bb0310 article-title: Molecular size distribution and spectroscopic properties of aquatic humic substances publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(96)00412-6 – volume: 2 start-page: 134 year: 2010 ident: 10.1016/j.geoderma.2018.07.029_bb0220 article-title: Sensitivity analysis of soil erosion in the northern Loess Plateau publication-title: Procedia Environ Sci doi: 10.1016/j.proenv.2010.10.017 – volume: 45 start-page: 2195 year: 1998 ident: 10.1016/j.geoderma.2018.07.029_bb0080 article-title: Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon publication-title: Deep-Sea Res. Part 2 doi: 10.1016/S0967-0645(98)00068-X – volume: 46 start-page: 8628 year: 2012 ident: 10.1016/j.geoderma.2018.07.029_bb0305 article-title: Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary publication-title: Environ. Sci. Technol. doi: 10.1021/es3007723 – volume: 40 start-page: 706 year: 2009 ident: 10.1016/j.geoderma.2018.07.029_bb0150 article-title: Properties of fluorescent dissolved organic matter in the Gironde Estuary publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2009.03.002 – volume: 166 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2018.07.029_bb0215 article-title: Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China publication-title: Soil Tillage Res. doi: 10.1016/j.still.2016.10.004 – volume: 2 start-page: 598 year: 2009 ident: 10.1016/j.geoderma.2018.07.029_bb0015 article-title: The boundless carbon cycle publication-title: Nat. Geosci. doi: 10.1038/ngeo618 – volume: 305 start-page: 30 year: 2017 ident: 10.1016/j.geoderma.2018.07.029_bb0345 article-title: Quantity and chemistry of water-extractable organic matter in surface horizons of Arctic soils under different types of tundra vegetation – a case study from the Fuglebergsletta coastal plain (SW Spitsbergen) publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.038 – volume: 63 start-page: 936 issue: 8 year: 2009 ident: 10.1016/j.geoderma.2018.07.029_bb0205 article-title: Fluorescence intensity calibration using the Raman scatter peak of water publication-title: Appl. Spectrosc. doi: 10.1366/000370209788964548 – volume: 113 start-page: 179 year: 2003 ident: 10.1016/j.geoderma.2018.07.029_bb0265 article-title: Dissolved organic matter in soils-future directions and unanswered questions publication-title: Geoderma doi: 10.1016/S0016-7061(02)00360-9 – volume: 137 start-page: 660 year: 2016 ident: 10.1016/j.geoderma.2018.07.029_bb0390 article-title: Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China publication-title: Catena doi: 10.1016/j.catena.2015.01.028 – start-page: 131 year: 1995 ident: 10.1016/j.geoderma.2018.07.029_bb0190 article-title: Global soil erosion by water and carbon dynamics publication-title: Soils Glob. Chang. – volume: 51 start-page: 325 year: 1996 ident: 10.1016/j.geoderma.2018.07.029_bb0070 article-title: Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy publication-title: Mar. Chem. doi: 10.1016/0304-4203(95)00062-3 – volume: 45 start-page: 10,298 year: 2011 ident: 10.1016/j.geoderma.2018.07.029_bb0350 article-title: Check dam in the Loess Plateau of China: engineering for environmental services and food security publication-title: Environ. Sci. Technol. doi: 10.1021/es2038992 – volume: 226 start-page: 94 year: 2014 ident: 10.1016/j.geoderma.2018.07.029_bb0180 article-title: The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes-a review of different concepts publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.07.023 – volume: 6 start-page: 658 year: 2014 ident: 10.1016/j.geoderma.2018.07.029_bb0285 article-title: OpenFluor - an online spectrallibrary of auto-fluorescence by organic compounds in the environment publication-title: Anal. Methods doi: 10.1039/C3AY41935E – volume: 44 start-page: 9405 year: 2010 ident: 10.1016/j.geoderma.2018.07.029_bb0280 article-title: Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison publication-title: Environ. Sci. Technol. doi: 10.1021/es102362t – volume: 82 start-page: 547 year: 2015 ident: 10.1016/j.geoderma.2018.07.029_bb0360 article-title: Soil organic carbon sequestration potential of artificial and natural vegetation in the hilly regions of Loess Plateau publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2015.05.031 – volume: 82 start-page: 239 year: 2003 ident: 10.1016/j.geoderma.2018.07.029_bb0335 article-title: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy publication-title: Mar. Chem. doi: 10.1016/S0304-4203(03)00072-0 – volume: 10 start-page: 1323 year: 2007 ident: 10.1016/j.geoderma.2018.07.029_bb0380 article-title: Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability publication-title: Ecosystems doi: 10.1007/s10021-007-9101-4 |
SSID | ssj0017020 |
Score | 2.5776508 |
Snippet | The chemical characteristics of dissolved organic matter (DOM) in soils that experience erosion and deposition are key to the biogeochemical cycle of carbon on... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 37 |
SubjectTerms | absorption biological production carbon carbon cycle cropland Dissolved organic matter factor analysis fallow Fluorescence forest soils forests grasslands highlands humic substances hydrophobicity land use Land use types loess molecular weight principal component analysis ravines Soil erosion soil sampling Source fingerprinting variance watersheds |
Title | Characterizing dissolved organic matter in eroded sediments from a loess hilly catchment using fluorescence EEM-PARAFAC and UV–Visible absorption: Insights from source identification and carbon cycling |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.07.029 https://www.proquest.com/docview/2116868484 |
Volume | 334 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqcoED4lcUSmUkrmHjjRMnvUWrXW1BrRBiq94s27GXrdKkyu4ilQPiHXgs3oInYcZxVoCQeuCWxD9JPOOZsT3zDSGvdQFDb2B-W2dExEWlo4LDFRj3Ls0E00bhhv7pWTZf8LcX6cUemQyxMOhWGWR_L9O9tA5PRmE0R9erFcb4skyAOgKmxMxyiPjJuUAuf_N15-bBRBygGVkWYe3fooQvgUaYcMzjD7Hcg3h6U_OfCuovUe31z-wBuR8MR1r23_aQ7NnmEblXLrsAnmEfkx-THfryF9BIFM_a2_qzrWifu8nQK4-mSVcNtSA4oWAN_--D3CjGmVBF6xZEH8UjghtqQEx_wlKK3vFL6upt23n4J2PpdHoavS8_lLNyQlVT0cX5z2_fz1cww2pLlV63nRdGx_SkWeMGQHhDf1hAV1XwUvKM4TswqtNwaW4wWHP5hCxm04-TeRSSNUQqyfJNJKw1YyC4BRPMOeUKLWJunVBWVA7orqs0SY0DC8EkwAEGQ3xVJSysXxPF4iR5SvabtrHPCDW6YLnNCwW1-ThWeswV0xxWaswVaVIdkHSgkDQByRwTatRycFm7lANlJVJWxkICZQ_IaNfuusfyuLVFMTCA_IMrJSicW9u-GjhGwpTFcxjV2Ha7lrDmzvIs5zl__h_9vyB34Q6d3SKWHpL9Tbe1L8FA2ugjPwOOyJ3y5N387BcV_Bf1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELaW7gE4IH7FLn-DxDVq0vw44RZVrVp2WyG0Xe3Nsh27ZBWSVdqutJx4Bx6Lt-BJGDtOBQhpD9ysOHYiz3hm7Jn5hpB3IsOll7i_lZbUi2ghvCzCFhr3Ok5oICQ3F_qLZTJbRR8u4osDMu5zYUxYpZP9nUy30to9GbrVHF6VpcnxDRKK6giZ0lSWC--QQ4NOFQ_IYT4_mS33zgTqO3TGIPHMgN8ShS-RTKbmmIUgClKL42mtzX_qqL-ktVVB04fkgbMdIe9-7xE5UPVjcj9ftw4_Qz0hP8Z7AOavqJTAuNub6loV0JVvkvDFAmpCWYNC2YkdG1wCm-cGJtUEOFQNSj8wXoIbkCipP5teMAHya9DVrmktApRUMJksvI_5p3yaj4HXBazOf377fl7iJqsUcLFpWiuP3sO83pg7APeFzl8AZeEClSxv2AkkbwU25Y3J11w_Javp5Gw881y9Bo-HSbr1qFJyhDRXaIVpzXUmqB8pTbmihUbSiyIOY6nRSJAhMoE0Wb68oAqPsCEP_DB8RgZ1U6vnBKTIglSlGce3o5HPxSjigYjwsBboLA6LIxL3FGLSgZmbmhoV66PWLllPWWYoy3zKkLJHZLgfd9XBedw6IusZgP3BmAx1zq1j3_Ycw3DXGlcMr1Wz2zA8didpkkZpdPwf878hd2dni1N2Ol-evCD3sMfEvnlB_JIMtu1OvUJ7aSteu_3wC4o_GqY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+dissolved+organic+matter+in+eroded+sediments+from+a+loess+hilly+catchment+using+fluorescence+EEM-PARAFAC+and+UV%E2%80%93Visible+absorption%3A+Insights+from+source+identification+and+carbon+cycling&rft.jtitle=Geoderma&rft.au=Liu%2C+Chun&rft.au=Li%2C+Zhongwu&rft.au=Berhe%2C+Asmeret+Asefaw&rft.au=Xiao%2C+Haibing&rft.date=2019-01-15&rft.issn=0016-7061&rft.volume=334+p.37-48&rft.spage=37&rft.epage=48&rft_id=info:doi/10.1016%2Fj.geoderma.2018.07.029&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |