Four years of continuous use of soil-biodegradable plastic mulch: impact on soil and groundwater quality
•Environmental impact of soil-biodegradable plastic mulch (SBPM) was assessed.•SBPM increased soil aggregate stability by 6–16% than no mulching.•SBPM increased water infiltration rate by 10–12% than no mulching.•SBPM reduced 4-7 kg ha−1 of nitrate and nitrite leached into groundwater.•The downside,...
Saved in:
Published in | Geoderma Vol. 381; p. 114665 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Environmental impact of soil-biodegradable plastic mulch (SBPM) was assessed.•SBPM increased soil aggregate stability by 6–16% than no mulching.•SBPM increased water infiltration rate by 10–12% than no mulching.•SBPM reduced 4-7 kg ha−1 of nitrate and nitrite leached into groundwater.•The downside, SBPM reduced soil burst CO2-C by 4-54 g kg−1 day−1.
There is an increased interest in the use of soil-biodegradable plastic mulch due to limited disposal options for conventional polyethylene mulch. However, information about the impact of continuous use of soil-biodegradable plastic mulch on the environment is limited. Here, we show the effects on soil and groundwater quality from the use of soil-biodegradable plastic mulches for crop production for four consecutive seasons. Two soil-biodegradable plastic mulch products were assessed at two locations (Knoxville, TN and Mount Vernon, WA) having different climates (humid subtropical and cool Mediterranean), with cellulosic-paper mulch, polyethylene mulch, and no-mulch included as control treatments. Soil physical, chemical, and biological properties were first assessed in the spring of 2015 (prior to any field operations), and then a few days after harvest in the fall of 2015, 2016, 2017, and 2018. Water samples were collected in the fall of 2018 from lysimeters installed at 55-cm depth and analyzed for nutrient composition. Compared to the no-mulch treatment, the soil-biodegradable plastic mulches and polyethylene mulch increased the soil aggregate stability (by 6–16%) and water infiltration rate (by 10–12%) by protecting the soil surface from disturbance. Residual nitrate and nitrite under the plastic mulch after harvest were lower than under no-mulch (by 4.1 kg ha−1 to 7.3 kg ha−1) due to increased yield and associated enhanced nutrient uptake. However, plastic mulching, especially the polyethylene mulch, reduced soil microbial activity, measured as burst CO2-C by 6 g kg−1 day−1 to 54 kg−1 day−1, but had no effect on extractable organic carbon concentrations nor specific extracellular enzyme activity rates. Within the four-year period, the soil-biodegradable plastic mulches had overall positive effects on soil and groundwater quality, except for reduced burst microbial respiration, which was more pronounced in Mount Vernon. |
---|---|
AbstractList | •Environmental impact of soil-biodegradable plastic mulch (SBPM) was assessed.•SBPM increased soil aggregate stability by 6–16% than no mulching.•SBPM increased water infiltration rate by 10–12% than no mulching.•SBPM reduced 4-7 kg ha−1 of nitrate and nitrite leached into groundwater.•The downside, SBPM reduced soil burst CO2-C by 4-54 g kg−1 day−1.
There is an increased interest in the use of soil-biodegradable plastic mulch due to limited disposal options for conventional polyethylene mulch. However, information about the impact of continuous use of soil-biodegradable plastic mulch on the environment is limited. Here, we show the effects on soil and groundwater quality from the use of soil-biodegradable plastic mulches for crop production for four consecutive seasons. Two soil-biodegradable plastic mulch products were assessed at two locations (Knoxville, TN and Mount Vernon, WA) having different climates (humid subtropical and cool Mediterranean), with cellulosic-paper mulch, polyethylene mulch, and no-mulch included as control treatments. Soil physical, chemical, and biological properties were first assessed in the spring of 2015 (prior to any field operations), and then a few days after harvest in the fall of 2015, 2016, 2017, and 2018. Water samples were collected in the fall of 2018 from lysimeters installed at 55-cm depth and analyzed for nutrient composition. Compared to the no-mulch treatment, the soil-biodegradable plastic mulches and polyethylene mulch increased the soil aggregate stability (by 6–16%) and water infiltration rate (by 10–12%) by protecting the soil surface from disturbance. Residual nitrate and nitrite under the plastic mulch after harvest were lower than under no-mulch (by 4.1 kg ha−1 to 7.3 kg ha−1) due to increased yield and associated enhanced nutrient uptake. However, plastic mulching, especially the polyethylene mulch, reduced soil microbial activity, measured as burst CO2-C by 6 g kg−1 day−1 to 54 kg−1 day−1, but had no effect on extractable organic carbon concentrations nor specific extracellular enzyme activity rates. Within the four-year period, the soil-biodegradable plastic mulches had overall positive effects on soil and groundwater quality, except for reduced burst microbial respiration, which was more pronounced in Mount Vernon. There is an increased interest in the use of soil-biodegradable plastic mulch due to limited disposal options for conventional polyethylene mulch. However, information about the impact of continuous use of soil-biodegradable plastic mulch on the environment is limited. Here, we show the effects on soil and groundwater quality from the use of soil-biodegradable plastic mulches for crop production for four consecutive seasons. Two soil-biodegradable plastic mulch products were assessed at two locations (Knoxville, TN and Mount Vernon, WA) having different climates (humid subtropical and cool Mediterranean), with cellulosic-paper mulch, polyethylene mulch, and no-mulch included as control treatments. Soil physical, chemical, and biological properties were first assessed in the spring of 2015 (prior to any field operations), and then a few days after harvest in the fall of 2015, 2016, 2017, and 2018. Water samples were collected in the fall of 2018 from lysimeters installed at 55-cm depth and analyzed for nutrient composition. Compared to the no-mulch treatment, the soil-biodegradable plastic mulches and polyethylene mulch increased the soil aggregate stability (by 6–16%) and water infiltration rate (by 10–12%) by protecting the soil surface from disturbance. Residual nitrate and nitrite under the plastic mulch after harvest were lower than under no-mulch (by 4.1 kg ha⁻¹ to 7.3 kg ha⁻¹) due to increased yield and associated enhanced nutrient uptake. However, plastic mulching, especially the polyethylene mulch, reduced soil microbial activity, measured as burst CO₂-C by 6 g kg⁻¹ day⁻¹ to 54 kg⁻¹ day⁻¹, but had no effect on extractable organic carbon concentrations nor specific extracellular enzyme activity rates. Within the four-year period, the soil-biodegradable plastic mulches had overall positive effects on soil and groundwater quality, except for reduced burst microbial respiration, which was more pronounced in Mount Vernon. |
ArticleNumber | 114665 |
Author | Bary, Andy Miles, Carol A. Flury, Markus DeBruyn, Jennifer M. English, Marie E. Liquet y González, José E. Bandopadhyay, Sreejata Schaeffer, Sean M. Sintim, Henry Y. |
Author_xml | – sequence: 1 givenname: Henry Y. surname: Sintim fullname: Sintim, Henry Y. email: hsintim@uga.edu organization: Department of Crop & Soil Sciences, Washington State University, Puyallup, WA 98371, United States – sequence: 2 givenname: Sreejata surname: Bandopadhyay fullname: Bandopadhyay, Sreejata organization: Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States – sequence: 3 givenname: Marie E. surname: English fullname: English, Marie E. organization: Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States – sequence: 4 givenname: Andy surname: Bary fullname: Bary, Andy organization: Department of Crop & Soil Sciences, Washington State University, Puyallup, WA 98371, United States – sequence: 5 givenname: José E. surname: Liquet y González fullname: Liquet y González, José E. organization: Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States – sequence: 6 givenname: Jennifer M. surname: DeBruyn fullname: DeBruyn, Jennifer M. organization: Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States – sequence: 7 givenname: Sean M. surname: Schaeffer fullname: Schaeffer, Sean M. organization: Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States – sequence: 8 givenname: Carol A. surname: Miles fullname: Miles, Carol A. organization: Department of Horticulture, Washington State University, Mount Vernon, WA 98273, United States – sequence: 9 givenname: Markus surname: Flury fullname: Flury, Markus organization: Department of Crop & Soil Sciences, Washington State University, Puyallup, WA 98371, United States |
BookMark | eNqFkM1uGyEURlGVSnXcvELFMptxgPHAuMqiVZSfSpG6adfoDtxxsBhwgGnlty-Ok003WSE-znevOOfkLMSAhHzhbMUZl1e71RajxTTBSjBRQ76WsvtAFrxXopGi25yRBatko5jkn8h5zrt6VZVdkKe7OCd6QEiZxpGaGIoLc5wznTMekxydbwZXF2wTWBg80r2HXJyh0-zN01fqpj2YQmN4YSkES7cpzsH-hYKJPs_gXTl8Jh9H8BkvXs8l-X13--vmoXn8ef_j5vtjA63sS6PsMIxKDrJvuWqxV63aMGON2UgLIJQZDFhW8_rKR6G6fhS2F5ZxzjpjZLskl6e5-xSfZ8xFTy4b9B4C1m9p0XWCrTmToqLyhJoUc0446n1yE6SD5kwf1eqdflOrj2r1SW0tXv9XNK5AcVVeAuffr3871bF6-OMw6WwcBoPWJTRF2-jeG_EP8xqdOQ |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_128347 crossref_primary_10_3390_agronomy12061333 crossref_primary_10_1016_j_scitotenv_2021_151312 crossref_primary_10_4081_ija_2022_1979 crossref_primary_10_3389_fsufs_2022_1055636 crossref_primary_10_3390_agronomy12040793 crossref_primary_10_1016_j_cogsc_2021_100490 crossref_primary_10_1016_j_scitotenv_2022_154021 crossref_primary_10_1016_j_jhazmat_2020_124979 crossref_primary_10_1016_j_envres_2025_121086 crossref_primary_10_1016_j_scitotenv_2022_158311 crossref_primary_10_1007_s10924_021_02088_4 crossref_primary_10_1016_j_fcr_2021_108270 crossref_primary_10_1002_agj2_21649 crossref_primary_10_1088_1748_9326_ac652d crossref_primary_10_1016_j_jhazmat_2023_132923 crossref_primary_10_1016_j_pedsph_2023_03_010 crossref_primary_10_1080_00103624_2022_2069801 crossref_primary_10_3390_su131911026 crossref_primary_10_1016_j_jhazmat_2022_128503 crossref_primary_10_1016_j_jhazmat_2024_133680 crossref_primary_10_3389_fsufs_2022_921496 crossref_primary_10_3390_environments10100179 crossref_primary_10_1002_agj2_21497 crossref_primary_10_1002_fes3_463 crossref_primary_10_1016_j_jenvman_2023_118033 crossref_primary_10_1016_j_agwat_2022_107868 crossref_primary_10_1016_j_ijbiomac_2024_132945 crossref_primary_10_1088_1748_9326_ad0a1a crossref_primary_10_1016_j_scitotenv_2024_170299 crossref_primary_10_1134_S1064229322601536 crossref_primary_10_1016_j_envres_2025_120895 crossref_primary_10_1016_j_jenvman_2022_115473 crossref_primary_10_35633_inmateh_74_61 crossref_primary_10_1016_j_geoderma_2022_115969 crossref_primary_10_1016_j_jhazmat_2023_132024 crossref_primary_10_1016_j_agwat_2021_107173 crossref_primary_10_1007_s13580_024_00661_z crossref_primary_10_1007_s11368_021_03037_3 crossref_primary_10_1016_j_hpj_2024_05_018 crossref_primary_10_1007_s13593_021_00685_0 crossref_primary_10_1007_s00374_023_01781_x crossref_primary_10_1016_j_scitotenv_2021_151525 crossref_primary_10_1080_21683565_2022_2146254 crossref_primary_10_5194_soil_9_499_2023 crossref_primary_10_1016_j_eja_2023_126882 crossref_primary_10_1017_S1742170522000217 crossref_primary_10_1016_j_envpol_2022_119608 crossref_primary_10_1016_j_coche_2021_100695 crossref_primary_10_1016_j_envpol_2024_124367 crossref_primary_10_1016_j_jafr_2024_101160 crossref_primary_10_1039_D1RA00880C crossref_primary_10_3390_agriculture12060865 crossref_primary_10_1109_TGRS_2024_3382352 crossref_primary_10_1021_acs_est_4c14716 crossref_primary_10_1002_sae2_70007 crossref_primary_10_3390_agriculture13010197 crossref_primary_10_3390_agronomy14102379 |
Cites_doi | 10.2136/sssaj2004.6690 10.1016/j.scitotenv.2017.12.144 10.1007/s10924-008-0091-x 10.1016/j.agwat.2018.03.027 10.2134/agronj1997.00021962008900040019x 10.3389/fmicb.2018.00819 10.1021/es302011r 10.1016/j.scitotenv.2016.01.153 10.1016/j.scienta.2008.01.007 10.1007/978-3-030-19416-1_11 10.1021/acs.est.0c00909 10.21273/HORTTECH.26.2.148 10.1016/j.still.2019.03.004 10.1016/j.agwat.2018.09.026 10.21273/HORTTECH.3.1.35 10.21273/HORTSCI13942-19 10.1021/acs.est.6b06042 10.21273/HORTSCI.39.7.1588 10.1016/S0378-3774(02)00168-3 10.21273/HORTSCI.47.9.1270 10.1016/j.scitotenv.2018.04.054 10.1097/01.ss.0000187353.24364.a8 10.1007/s13593-011-0068-3 10.21273/HORTSCI14667-19 10.21273/HORTSCI12630-17 10.1021/acs.est.5b05478 10.32614/CRAN.package.emmeans 10.1016/j.envsci.2016.12.014 10.1016/j.agwat.2008.09.012 10.1016/j.agrformet.2017.05.010 10.1016/j.agee.2018.12.002 10.21273/HORTTECH04393-19 10.1007/978-3-662-54130-2_4 10.2136/sssaj2000.6441479x 10.1016/j.apsoil.2014.02.012 10.1016/j.foodres.2018.08.013 10.1016/j.scienta.2014.04.020 10.1088/1748-9326/9/9/091001 10.1016/j.scitotenv.2020.138668 10.3390/agronomy9010036 10.1016/j.scitotenv.2019.04.179 10.7717/peerj.9015 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114665 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114665 S0016706120302731 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-7dbbf76b683173e873790cdcc96daa27cbcad0e871731f2758f2d82d01105cc63 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 05:10:43 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Tue Jul 01 04:04:53 EDT 2025 Fri Feb 23 02:46:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-7dbbf76b683173e873790cdcc96daa27cbcad0e871731f2758f2d82d01105cc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2552041062 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2552041062 crossref_primary_10_1016_j_geoderma_2020_114665 crossref_citationtrail_10_1016_j_geoderma_2020_114665 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114665 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Filipović, Bristow, Filipović, Wang, Sintim, Flury, Šimnek (b0055) 2020; 54 Hayes, D.G., Anunciado, M.B., Debruyn, J.M., Bandopadhyay, S., Schaeffer, S., English, M., Ghimire, S., Miles, C., Flury, M., Sintim, H.Y., 2019. Biodegradable plastic mulch films for sustainable specialty crop production. In: T. J. Gutiérrez (Ed.), Polym. Agri-Food Appl. Springer, Cham, Switzerland, chapter 11, pp. 183–213. Huerta Lwanga, Gertsen, Gooren, Peters, Salánki, Van Der Ploeg, Besseling, Koelmans, Geissen (b0090) 2016; 50 Romic, Romic, Borosic, Poljak (b0195) 2003; 60 Wortman, Kadoma, Crandall (b0255) 2016; 26 Wang, Xie, Malhi, Vera, Zhang, Wang (b0245) 2009; 96 Lamont (b0115) 1993; 3 Dong, Dang, Guo, Hao (b0035) 2019; 213 Velandia, M., Smith, A., Wszelaki, A., Galinato, S., Marsh, T., 2018. The economics of adopting biodegradable plastic mulch films. Publication W650, University of Tennessee Institute of Agriculture, Knoxville, TN. Ranells, Wagger (b0185) 1997; 89 Sintim, Flury (b0205) 2017; 51 USDA-NRCS, 2001. Soil quality test kit guide. number August, USDA-Natural Resources Conservation Service, Washington D.C. Sintim, Bary, Hayes, English, Schaeffer, Miles, Zelenyuk, Suski, Flury (b0215) 2019; 675 Costa, Saraiva, Carvalho, Duarte (b0030) 2014; 173 Guo, Zhang, Yang, Hua, Cai (b0075) 2019; 11 Kapanen, Schettini, Giuliano, Itävaara (b0105) 2008; 16 Ghimire, S., Scheenstra, E., Miles, C.A., 2020. Mulches for growth, yield, and quality of sweet corn in a Mediterranean-type climate. HortScience horts pp. 1–9. Goldberger, J.R., DeVetter, L.W., Dentzman, K.E., 2019. Polyethylene and Biodegradable Plastic Mulches for Strawberry Production in the United States: Experiences and Opinions of Growers in Three Regions. HortTechnology pp. 1–10. Woods End Laboratories (b0250) 2016 Li, Moore-Kucera, Lee, Corbin, Brodhagen, Inglis (b0125) 2014; 79 Moreno, Moreno (b0165) 2008; 116 Brodhagen, Goldberger, Hayes, Inglis, Marsh, Miles (b0015) 2017; 69 Lenth, R., 2018. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.1.2. Vienna, Austria. Chen, Marsh, Tozer, Galinato (b0020) 2019; 116 R Core Team (b0180) 2020 Bandopadhyay, Sintim, DeBruyn (b0010) 2020; 8 Marí, Pardo, Cirujeda, Martínez (b0135) 2019; 9 Zhang, Li, Zhang, Li, Qi (b0260) 2017; 244–245 Kasirajan, Ngouajio (b0110) 2012; 32 Zhang, Sintim, Bary, Hayes, Wadsworth, Anunciado, Flury (b0265) 2018; 635 NCERA, 2015. Recommended chemical soil test procedures for the North Central Region. North Central Regional Res. Publ. No. 221 ed. North Central Extension and Research Activity, Madison, WI. Moore, Wszelaki (b0155) 2019; 54 Bandopadhyay, Martin-Closas, Pelacho, DeBruyn (b0005) 2018; 9 Martín-Closas, Costa, Pelacho (b0140) 2017 Moore-Kucera (b0160) 2012; 47 Sintim, Bandopadhyay, English, Bary, DeBruyn, Schaeffer, Miles, Reganold, Flury (b0210) 2019; 273 Hegan, Tong, Zhiquan, Qinming, Ru (b0085) 2015; 36 Sithole, Magwaza, Thibaud (b0225) 2019; 190 Ghimire, Wszelaki, Moore, Inglis, Miles (b0065) 2018; 53 Elrashidi, Mays, Fares, Seybold, Harder, Peaslee, VanNeste (b0050) 2005; 170 Jiang, Li, Zhu, Wang, Guo, Misselbrook, Hatano (b0100) 2018; 203 Moebius-Clune, Moebius-Clune, Gugino, Idowu, Schindelbeck, Ristow, van Es, Thies, Shayler, McBride, Kurtz, Wolfe, Abawi (b0150) 2016 Miles, Wallace, Wszelaki, Martin, Cowan, Walters, Inglis (b0145) 2012; 47 Chenu, Le Bissonnais, Arrouays (b0025) 2000; 64 Steinmetz, Wollmann, Schaefer, Buchmann, David, Tröger, Munoz, Frör, Schaumann (b0230) 2016; 550 Doyle, Weintraub, Schimel (b0040) 2004; 68 Duiker, S.W., 2002. Diagnosing soil compaction using a penetrometer (soil compaction tester). Penn State Extention, Agronomy Facts 63, State College, PA. Shogren, Hochmuth (b0200) 2004; 39 Huerta Lwanga, Thapa, Yang, Gertsen, Salánki, Geissen, Garbeva (b0095) 2018; 624 Sintim, Bary, Hayes, Wadsworth, Anunciado, English, Bandopadhyay, Schaeffer, DeBruyn, Miles, Reganold, Flury (b0220) 2020; 727 Rillig (b0190) 2012; 46 Liu, He, Yan (b0130) 2014; 9 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R_Core_Team, 2018. nlme: Linear and Nonlinear Mixed Effects Models. R package. R package version 3.1-131.1. Vienna, Austria. Wortman (10.1016/j.geoderma.2020.114665_b0255) 2016; 26 Moore (10.1016/j.geoderma.2020.114665_b0155) 2019; 54 10.1016/j.geoderma.2020.114665_b0235 Moreno (10.1016/j.geoderma.2020.114665_b0165) 2008; 116 Rillig (10.1016/j.geoderma.2020.114665_b0190) 2012; 46 10.1016/j.geoderma.2020.114665_b0045 Moore-Kucera (10.1016/j.geoderma.2020.114665_b0160) 2012; 47 Elrashidi (10.1016/j.geoderma.2020.114665_b0050) 2005; 170 10.1016/j.geoderma.2020.114665_b0240 10.1016/j.geoderma.2020.114665_b0120 10.1016/j.geoderma.2020.114665_b0080 Hegan (10.1016/j.geoderma.2020.114665_b0085) 2015; 36 Bandopadhyay (10.1016/j.geoderma.2020.114665_b0010) 2020; 8 Shogren (10.1016/j.geoderma.2020.114665_b0200) 2004; 39 Sintim (10.1016/j.geoderma.2020.114665_b0210) 2019; 273 Moebius-Clune (10.1016/j.geoderma.2020.114665_b0150) 2016 Sintim (10.1016/j.geoderma.2020.114665_b0205) 2017; 51 Zhang (10.1016/j.geoderma.2020.114665_b0265) 2018; 635 Li (10.1016/j.geoderma.2020.114665_b0125) 2014; 79 Ranells (10.1016/j.geoderma.2020.114665_b0185) 1997; 89 Liu (10.1016/j.geoderma.2020.114665_b0130) 2014; 9 Sithole (10.1016/j.geoderma.2020.114665_b0225) 2019; 190 Miles (10.1016/j.geoderma.2020.114665_b0145) 2012; 47 Romic (10.1016/j.geoderma.2020.114665_b0195) 2003; 60 Martín-Closas (10.1016/j.geoderma.2020.114665_b0140) 2017 Dong (10.1016/j.geoderma.2020.114665_b0035) 2019; 213 10.1016/j.geoderma.2020.114665_b0175 R Core Team (10.1016/j.geoderma.2020.114665_b0180) 2020 Chen (10.1016/j.geoderma.2020.114665_b0020) 2019; 116 10.1016/j.geoderma.2020.114665_b0170 Filipović (10.1016/j.geoderma.2020.114665_b0055) 2020; 54 Sintim (10.1016/j.geoderma.2020.114665_b0220) 2020; 727 Jiang (10.1016/j.geoderma.2020.114665_b0100) 2018; 203 Kapanen (10.1016/j.geoderma.2020.114665_b0105) 2008; 16 Wang (10.1016/j.geoderma.2020.114665_b0245) 2009; 96 Chenu (10.1016/j.geoderma.2020.114665_b0025) 2000; 64 Marí (10.1016/j.geoderma.2020.114665_b0135) 2019; 9 Woods End Laboratories (10.1016/j.geoderma.2020.114665_b0250) 2016 10.1016/j.geoderma.2020.114665_b0060 Brodhagen (10.1016/j.geoderma.2020.114665_b0015) 2017; 69 Kasirajan (10.1016/j.geoderma.2020.114665_b0110) 2012; 32 Doyle (10.1016/j.geoderma.2020.114665_b0040) 2004; 68 Huerta Lwanga (10.1016/j.geoderma.2020.114665_b0095) 2018; 624 Bandopadhyay (10.1016/j.geoderma.2020.114665_b0005) 2018; 9 Ghimire (10.1016/j.geoderma.2020.114665_b0065) 2018; 53 Costa (10.1016/j.geoderma.2020.114665_b0030) 2014; 173 Lamont (10.1016/j.geoderma.2020.114665_b0115) 1993; 3 Steinmetz (10.1016/j.geoderma.2020.114665_b0230) 2016; 550 Huerta Lwanga (10.1016/j.geoderma.2020.114665_b0090) 2016; 50 10.1016/j.geoderma.2020.114665_b0070 Sintim (10.1016/j.geoderma.2020.114665_b0215) 2019; 675 Zhang (10.1016/j.geoderma.2020.114665_b0260) 2017; 244–245 Guo (10.1016/j.geoderma.2020.114665_b0075) 2019; 11 |
References_xml | – volume: 36 start-page: 677 year: 2015 end-page: 684 ident: b0085 article-title: Determination time limits of continous film mulching and examining residual effects on cotton yield and soil properties publication-title: J. Environ. Biol. – reference: Hayes, D.G., Anunciado, M.B., Debruyn, J.M., Bandopadhyay, S., Schaeffer, S., English, M., Ghimire, S., Miles, C., Flury, M., Sintim, H.Y., 2019. Biodegradable plastic mulch films for sustainable specialty crop production. In: T. J. Gutiérrez (Ed.), Polym. Agri-Food Appl. Springer, Cham, Switzerland, chapter 11, pp. 183–213. – volume: 213 start-page: 803 year: 2019 end-page: 808 ident: b0035 article-title: Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau publication-title: Agric. Water Manag. – volume: 39 start-page: 1588 year: 2004 end-page: 1591 ident: b0200 article-title: Field evaluation of watermelon grown on paper-polymerized vegetable oil mulches publication-title: HortScience – volume: 8 year: 2020 ident: b0010 article-title: Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems publication-title: PeerJ – volume: 203 start-page: 277 year: 2018 end-page: 288 ident: b0100 article-title: Effects of the ridge mulched system on soil water and inorganic nitrogen distribution in the Loess Plateau of China publication-title: Agric. Water Manag. – volume: 3 start-page: 35 year: 1993 end-page: 39 ident: b0115 article-title: Plastic mulches for the production of vegetable crops publication-title: HortTechnology – volume: 51 start-page: 1068 year: 2017 end-page: 1069 ident: b0205 article-title: Is biodegradable plastic mulch the solution to agriculture’s plastic problem? publication-title: Environ. Sci. Technol. – volume: 47 start-page: S71 year: 2012 end-page: S72 ident: b0160 article-title: Biodegradable mulches and soil quality publication-title: Korean J. Soil Sci. Fert. – year: 2016 ident: b0150 article-title: Comprehensive Assessment of Soil Health-The Cornell Framework – reference: NCERA, 2015. Recommended chemical soil test procedures for the North Central Region. North Central Regional Res. Publ. No. 221 ed. North Central Extension and Research Activity, Madison, WI. – volume: 96 start-page: 374 year: 2009 end-page: 382 ident: b0245 article-title: Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China publication-title: Water Manag. – volume: 550 start-page: 690 year: 2016 end-page: 705 ident: b0230 article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? publication-title: Sci. Total Environ. – volume: 68 start-page: 669 year: 2004 end-page: 676 ident: b0040 article-title: Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts publication-title: Soil Sci. Soc. Am. J. – volume: 32 start-page: 501 year: 2012 end-page: 529 ident: b0110 article-title: Polyethylene and biodegradable mulches for agricultural applications: a review publication-title: Agron. Sustain. Dev. – reference: Goldberger, J.R., DeVetter, L.W., Dentzman, K.E., 2019. Polyethylene and Biodegradable Plastic Mulches for Strawberry Production in the United States: Experiences and Opinions of Growers in Three Regions. HortTechnology pp. 1–10. – volume: 244–245 start-page: 33 year: 2017 end-page: 41 ident: b0260 article-title: Ridgefurrow mulched with plastic film increases little in carbon dioxide efflux but much significant in biomass in a semiarid rainfed farming system publication-title: Agric. For. Meteorol. – reference: Duiker, S.W., 2002. Diagnosing soil compaction using a penetrometer (soil compaction tester). Penn State Extention, Agronomy Facts 63, State College, PA. – volume: 64 start-page: 1479 year: 2000 end-page: 1486 ident: b0025 article-title: Organic matter influence on clay wettability and soil aggregate stability publication-title: Soil Sci. Soc. Am. J. – volume: 50 start-page: 2685 year: 2016 end-page: 2691 ident: b0090 article-title: Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae) publication-title: Environ. Sci. Technol. – volume: 11 start-page: 1 year: 2019 end-page: 17 ident: b0075 article-title: Aggregate stability under long-term fertilization practices: the case of eroded ultisols of south-central China publication-title: Sustain. – reference: Velandia, M., Smith, A., Wszelaki, A., Galinato, S., Marsh, T., 2018. The economics of adopting biodegradable plastic mulch films. Publication W650, University of Tennessee Institute of Agriculture, Knoxville, TN. – volume: 116 start-page: 256 year: 2008 end-page: 263 ident: b0165 article-title: Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop publication-title: Sci. Hortic. – volume: 54 start-page: 4709 year: 2020 end-page: 4711 ident: b0055 article-title: Sprayable biodegradable polymer membrane technology for cropping systems: challenges and opportunities publication-title: Environ. Sci. Technol. – volume: 54 start-page: 1031 year: 2019 end-page: 1038 ident: b0155 article-title: The use of biodegradable mulches in pepper production in the Southeastern United States publication-title: HortScience – volume: 69 start-page: 81 year: 2017 end-page: 84 ident: b0015 article-title: Policy considerations for limiting unintended residual plastic in agricultural soils publication-title: Environ. Sci. Policy – volume: 190 start-page: 147 year: 2019 end-page: 156 ident: b0225 article-title: Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions publication-title: Soil Tillage Res. – volume: 26 start-page: 148 year: 2016 end-page: 155 ident: b0255 article-title: Biodegradable plastic and fabric mulch performance in field and high tunnel cucumber production publication-title: HortTechnology – volume: 116 start-page: 200 year: 2019 end-page: 210 ident: b0020 article-title: Biotechnology to sustainability: consumer preferences for food products grown on biodegradable mulches publication-title: Food Res. Int. – reference: Ghimire, S., Scheenstra, E., Miles, C.A., 2020. Mulches for growth, yield, and quality of sweet corn in a Mediterranean-type climate. HortScience horts pp. 1–9. – volume: 60 start-page: 87 year: 2003 end-page: 97 ident: b0195 article-title: Mulching decreases nitrate leaching in bell pepper (Capsicum annuum L.) cultivation publication-title: Agric. Water Manag. – volume: 89 start-page: 659 year: 1997 end-page: 665 ident: b0185 article-title: Grass-legume bicultures as winter annual cover crops publication-title: Agron. J. – year: 2016 ident: b0250 article-title: Soil CO – volume: 9 start-page: 1 year: 2018 end-page: 7 ident: b0005 article-title: Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions publication-title: Front. Microbiol. – volume: 16 start-page: 109 year: 2008 end-page: 122 ident: b0105 article-title: Performance and environmental impact of biodegradable films in agriculture: A field study on protected cultivation publication-title: J. Polym. Environ. – volume: 9 year: 2014 ident: b0130 article-title: White revolution to white pollution—agricultural plastic film mulch in China publication-title: Environ. Res. Lett. – volume: 79 start-page: 59 year: 2014 end-page: 69 ident: b0125 article-title: Effects of biodegradable mulch on soil quality publication-title: Appl. Soil Ecol. – reference: Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R_Core_Team, 2018. nlme: Linear and Nonlinear Mixed Effects Models. R package. R package version 3.1-131.1. Vienna, Austria. – volume: 273 start-page: 36 year: 2019 end-page: 49 ident: b0210 article-title: Impacts of biodegradable plastic mulches on soil health publication-title: Ecosyst. Environ. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: b0135 article-title: Economic evaluation of biodegradable plastic films and paper mulches used in open-air grown pepper (Capsicum annum L.) crop publication-title: Agronomy – volume: 173 start-page: 65 year: 2014 end-page: 70 ident: b0030 article-title: The use of biodegradable mulch films on strawberry crop in Portugal publication-title: Sci. Hortic. (Amsterdam) – reference: Lenth, R., 2018. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.1.2. Vienna, Austria. – volume: 624 start-page: 753 year: 2018 end-page: 757 ident: b0095 article-title: Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration publication-title: Sci. Total Environ. – volume: 46 start-page: 6453 year: 2012 end-page: 6454 ident: b0190 article-title: Microplastic in terrestrial ecosystems and the soil? publication-title: Environ. Sci. Technol. – volume: 727 year: 2020 ident: b0220 article-title: In situ degradation of biodegradable plastic mulch films in compost and agricultural soils publication-title: Sci. Total Environ. – year: 2020 ident: b0180 article-title: R: A Language and Environment for Statistical Computing – volume: 635 start-page: 1600 year: 2018 end-page: 1608 ident: b0265 article-title: Interaction of Lumbricus terrestris with macroscopic polyethylene and biodegradable plastic mulch publication-title: Sci. Total Environ. – volume: 47 start-page: 1270 year: 2012 end-page: 1277 ident: b0145 article-title: Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions publication-title: HortScience – volume: 53 start-page: 288 year: 2018 end-page: 294 ident: b0065 article-title: The use of biodegradable mulches in pie pumpkin crop production in two diverse climates publication-title: HortScience – reference: USDA-NRCS, 2001. Soil quality test kit guide. number August, USDA-Natural Resources Conservation Service, Washington D.C. – volume: 675 start-page: 686 year: 2019 end-page: 693 ident: b0215 article-title: Release of micro- and nanoparticles from biodegradable plastic during in situ composting publication-title: Sci. Total Environ. – volume: 170 start-page: 969 year: 2005 end-page: 984 ident: b0050 article-title: Loss of nitrate-nitrogen by runoff and leaching for agricultural watersheds publication-title: Soil Sci. – start-page: 67 year: 2017 end-page: 104 ident: b0140 article-title: Agronomic effects of biodegradable films on crop and field environment publication-title: Soil Degrad. Bioplastics a Sustain. Mod. Agric. Green Chem. Sustain. Technol. – volume: 68 start-page: 669 year: 2004 ident: 10.1016/j.geoderma.2020.114665_b0040 article-title: Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2004.6690 – ident: 10.1016/j.geoderma.2020.114665_b0045 – volume: 624 start-page: 753 year: 2018 ident: 10.1016/j.geoderma.2020.114665_b0095 article-title: Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.144 – volume: 36 start-page: 677 year: 2015 ident: 10.1016/j.geoderma.2020.114665_b0085 article-title: Determination time limits of continous film mulching and examining residual effects on cotton yield and soil properties publication-title: J. Environ. Biol. – volume: 16 start-page: 109 year: 2008 ident: 10.1016/j.geoderma.2020.114665_b0105 article-title: Performance and environmental impact of biodegradable films in agriculture: A field study on protected cultivation publication-title: J. Polym. Environ. doi: 10.1007/s10924-008-0091-x – volume: 203 start-page: 277 year: 2018 ident: 10.1016/j.geoderma.2020.114665_b0100 article-title: Effects of the ridge mulched system on soil water and inorganic nitrogen distribution in the Loess Plateau of China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.03.027 – volume: 89 start-page: 659 year: 1997 ident: 10.1016/j.geoderma.2020.114665_b0185 article-title: Grass-legume bicultures as winter annual cover crops publication-title: Agron. J. doi: 10.2134/agronj1997.00021962008900040019x – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2020.114665_b0005 article-title: Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00819 – volume: 46 start-page: 6453 year: 2012 ident: 10.1016/j.geoderma.2020.114665_b0190 article-title: Microplastic in terrestrial ecosystems and the soil? publication-title: Environ. Sci. Technol. doi: 10.1021/es302011r – volume: 550 start-page: 690 year: 2016 ident: 10.1016/j.geoderma.2020.114665_b0230 article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.01.153 – volume: 116 start-page: 256 year: 2008 ident: 10.1016/j.geoderma.2020.114665_b0165 article-title: Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2008.01.007 – ident: 10.1016/j.geoderma.2020.114665_b0080 doi: 10.1007/978-3-030-19416-1_11 – volume: 54 start-page: 4709 year: 2020 ident: 10.1016/j.geoderma.2020.114665_b0055 article-title: Sprayable biodegradable polymer membrane technology for cropping systems: challenges and opportunities publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c00909 – volume: 26 start-page: 148 year: 2016 ident: 10.1016/j.geoderma.2020.114665_b0255 article-title: Biodegradable plastic and fabric mulch performance in field and high tunnel cucumber production publication-title: HortTechnology doi: 10.21273/HORTTECH.26.2.148 – volume: 190 start-page: 147 year: 2019 ident: 10.1016/j.geoderma.2020.114665_b0225 article-title: Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.03.004 – year: 2016 ident: 10.1016/j.geoderma.2020.114665_b0150 – volume: 213 start-page: 803 year: 2019 ident: 10.1016/j.geoderma.2020.114665_b0035 article-title: Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.09.026 – volume: 3 start-page: 35 year: 1993 ident: 10.1016/j.geoderma.2020.114665_b0115 article-title: Plastic mulches for the production of vegetable crops publication-title: HortTechnology doi: 10.21273/HORTTECH.3.1.35 – volume: 54 start-page: 1031 year: 2019 ident: 10.1016/j.geoderma.2020.114665_b0155 article-title: The use of biodegradable mulches in pepper production in the Southeastern United States publication-title: HortScience doi: 10.21273/HORTSCI13942-19 – year: 2020 ident: 10.1016/j.geoderma.2020.114665_b0180 – ident: 10.1016/j.geoderma.2020.114665_b0240 – volume: 51 start-page: 1068 year: 2017 ident: 10.1016/j.geoderma.2020.114665_b0205 article-title: Is biodegradable plastic mulch the solution to agriculture’s plastic problem? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06042 – volume: 39 start-page: 1588 year: 2004 ident: 10.1016/j.geoderma.2020.114665_b0200 article-title: Field evaluation of watermelon grown on paper-polymerized vegetable oil mulches publication-title: HortScience doi: 10.21273/HORTSCI.39.7.1588 – volume: 60 start-page: 87 year: 2003 ident: 10.1016/j.geoderma.2020.114665_b0195 article-title: Mulching decreases nitrate leaching in bell pepper (Capsicum annuum L.) cultivation publication-title: Agric. Water Manag. doi: 10.1016/S0378-3774(02)00168-3 – volume: 47 start-page: 1270 year: 2012 ident: 10.1016/j.geoderma.2020.114665_b0145 article-title: Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions publication-title: HortScience doi: 10.21273/HORTSCI.47.9.1270 – volume: 635 start-page: 1600 year: 2018 ident: 10.1016/j.geoderma.2020.114665_b0265 article-title: Interaction of Lumbricus terrestris with macroscopic polyethylene and biodegradable plastic mulch publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.054 – volume: 170 start-page: 969 year: 2005 ident: 10.1016/j.geoderma.2020.114665_b0050 article-title: Loss of nitrate-nitrogen by runoff and leaching for agricultural watersheds publication-title: Soil Sci. doi: 10.1097/01.ss.0000187353.24364.a8 – volume: 32 start-page: 501 year: 2012 ident: 10.1016/j.geoderma.2020.114665_b0110 article-title: Polyethylene and biodegradable mulches for agricultural applications: a review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-011-0068-3 – ident: 10.1016/j.geoderma.2020.114665_b0060 doi: 10.21273/HORTSCI14667-19 – volume: 53 start-page: 288 year: 2018 ident: 10.1016/j.geoderma.2020.114665_b0065 article-title: The use of biodegradable mulches in pie pumpkin crop production in two diverse climates publication-title: HortScience doi: 10.21273/HORTSCI12630-17 – volume: 50 start-page: 2685 year: 2016 ident: 10.1016/j.geoderma.2020.114665_b0090 article-title: Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05478 – ident: 10.1016/j.geoderma.2020.114665_b0120 doi: 10.32614/CRAN.package.emmeans – ident: 10.1016/j.geoderma.2020.114665_b0175 – volume: 69 start-page: 81 year: 2017 ident: 10.1016/j.geoderma.2020.114665_b0015 article-title: Policy considerations for limiting unintended residual plastic in agricultural soils publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2016.12.014 – volume: 47 start-page: S71 issue: 9 year: 2012 ident: 10.1016/j.geoderma.2020.114665_b0160 article-title: Biodegradable mulches and soil quality publication-title: Korean J. Soil Sci. Fert. – volume: 96 start-page: 374 year: 2009 ident: 10.1016/j.geoderma.2020.114665_b0245 article-title: Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China publication-title: Water Manag. doi: 10.1016/j.agwat.2008.09.012 – volume: 244–245 start-page: 33 year: 2017 ident: 10.1016/j.geoderma.2020.114665_b0260 article-title: Ridgefurrow mulched with plastic film increases little in carbon dioxide efflux but much significant in biomass in a semiarid rainfed farming system publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.05.010 – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.geoderma.2020.114665_b0075 article-title: Aggregate stability under long-term fertilization practices: the case of eroded ultisols of south-central China publication-title: Sustain. – volume: 273 start-page: 36 year: 2019 ident: 10.1016/j.geoderma.2020.114665_b0210 article-title: Impacts of biodegradable plastic mulches on soil health publication-title: Ecosyst. Environ. doi: 10.1016/j.agee.2018.12.002 – ident: 10.1016/j.geoderma.2020.114665_b0070 doi: 10.21273/HORTTECH04393-19 – start-page: 67 year: 2017 ident: 10.1016/j.geoderma.2020.114665_b0140 article-title: Agronomic effects of biodegradable films on crop and field environment doi: 10.1007/978-3-662-54130-2_4 – volume: 64 start-page: 1479 year: 2000 ident: 10.1016/j.geoderma.2020.114665_b0025 article-title: Organic matter influence on clay wettability and soil aggregate stability publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.6441479x – volume: 79 start-page: 59 year: 2014 ident: 10.1016/j.geoderma.2020.114665_b0125 article-title: Effects of biodegradable mulch on soil quality publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.02.012 – volume: 116 start-page: 200 year: 2019 ident: 10.1016/j.geoderma.2020.114665_b0020 article-title: Biotechnology to sustainability: consumer preferences for food products grown on biodegradable mulches publication-title: Food Res. Int. doi: 10.1016/j.foodres.2018.08.013 – volume: 173 start-page: 65 year: 2014 ident: 10.1016/j.geoderma.2020.114665_b0030 article-title: The use of biodegradable mulch films on strawberry crop in Portugal publication-title: Sci. Hortic. (Amsterdam) doi: 10.1016/j.scienta.2014.04.020 – volume: 9 year: 2014 ident: 10.1016/j.geoderma.2020.114665_b0130 article-title: White revolution to white pollution—agricultural plastic film mulch in China publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/9/091001 – volume: 727 year: 2020 ident: 10.1016/j.geoderma.2020.114665_b0220 article-title: In situ degradation of biodegradable plastic mulch films in compost and agricultural soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138668 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.geoderma.2020.114665_b0135 article-title: Economic evaluation of biodegradable plastic films and paper mulches used in open-air grown pepper (Capsicum annum L.) crop publication-title: Agronomy doi: 10.3390/agronomy9010036 – ident: 10.1016/j.geoderma.2020.114665_b0170 – volume: 675 start-page: 686 year: 2019 ident: 10.1016/j.geoderma.2020.114665_b0215 article-title: Release of micro- and nanoparticles from biodegradable plastic during in situ composting publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.04.179 – year: 2016 ident: 10.1016/j.geoderma.2020.114665_b0250 – volume: 8 year: 2020 ident: 10.1016/j.geoderma.2020.114665_b0010 article-title: Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems publication-title: PeerJ doi: 10.7717/peerj.9015 – ident: 10.1016/j.geoderma.2020.114665_b0235 |
SSID | ssj0017020 |
Score | 2.5687938 |
Snippet | •Environmental impact of soil-biodegradable plastic mulch (SBPM) was assessed.•SBPM increased soil aggregate stability by 6–16% than no mulching.•SBPM... There is an increased interest in the use of soil-biodegradable plastic mulch due to limited disposal options for conventional polyethylene mulch. However,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114665 |
SubjectTerms | aggregate stability crop production enzyme activity extracellular enzymes infiltration rate lysimeters microbial activity nitrates nitrites nutrient content nutrient uptake organic carbon plastic film mulches soil aggregates spring water quality |
Title | Four years of continuous use of soil-biodegradable plastic mulch: impact on soil and groundwater quality |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114665 https://www.proquest.com/docview/2552041062 |
Volume | 381 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LXvQgPvG5RPBat0mzaeNtEZdV0ZOCt5Am6T5Yu8s-EC_-dmf6EBVhD156SJMQZtKZb5r5JoRcGKUES0MbMGVlIDg8EhexQBnwbtZbnqRIFH54lL1ncffSfmmQ65oLg2mVle0vbXphrauWViXN1nQ4RI4vkzF66BDP3goutRAx7vLLj680DxaHVWlGJgPs_Y0lPAId4YVjRf0hXpbNRSfzt4P6ZaoL_9PdJlsVcKSdcm07pOHzXbLZ6c-q4hl-jwy60Im-w96d00lGMQt9mC8htKfLuceW-WQ4hlAYVtOfGYekKToF9Awz0tfl2A6uaEmapJO86EtN7ijyPnL3Bph0RksK5vs-ee7ePF33guomhcBEMlkEsUvTLJapTAAuRD6Jo1iF1lmrpDOGxza1xoXQDm9ZxiGGyLhLuENw0LZWRgdkLZ_k_pBQJbjPEgiElAMwI5hyTihuASZkUnlmj0i7Fp-2VZlxvO1irOt8spGuxa5R7LoU-xFpfY2bloU2Vo5QtXb0jy2jwRusHHteq1PD94SHJCb3oBANIRYPBQTK_Pgf85-QDY7JL8W_mlOytpgt_Rmgl0XaLLZnk6x3bu97j598DfA3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKf64GEkOIaNnawTI3GogNWWPk6t1JtxbKfdaklWm42qvfCn-IPMJE4FCKkH1EsOjm1F39jzzcQzY4C3RqmUF7GNuLIySgU-cpfwSBlkN-utyAtKFD46ltPT9OvZ-GwDfg65MBRWGXR_r9M7bR1aRgHN0WI2oxxfLjNi6JjO3hIeIisP_PoK_bbm4_5nFPI7ISZfTj5No3C1QGQSma-izBVFmclC5sific-zJFOxddYq6YwRmS2scTG241teCjSqS-Fy4Ygtx9bKBOe9A3dTVBd0bcL7H9dxJTyLQy1ILiP6vN_Ski9xUdANZ13BI9HX6SVW-zcj_sUNHeFNHsHDYKmyvR6Mx7DhqyfwYO98Gap1-KdwMcFObI2ANKwuGYW9z6q2bhvWNp5amno2R98bv-Z8aRxlabEFmus4I_vezu3FB9ZnabK66voyUzlGiSaVu0IjeMn6nM_1Mzi9FXyfw2ZVV34LmEqFL3P0vJRD6ynlyrlUCYt2SSmV53YbxgN82oa65nS9xlwPAWyXeoBdE-y6h30bRtfjFn1ljxtHqEE6-o81qpF-bhz7ZhCnxg1MpzKm8igQjT6diFP0zMXOf8z_Gu5NT44O9eH-8cEu3BcUedP9KHoBm6tl61-i6bQqXnVLlcG3294bvwDk3iwY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four+years+of+continuous+use+of+soil-biodegradable+plastic+mulch%3A+impact+on+soil+and+groundwater+quality&rft.jtitle=Geoderma&rft.au=Sintim%2C+Henry+Y.&rft.au=Bandopadhyay%2C+Sreejata&rft.au=English%2C+Marie+E.&rft.au=Bary%2C+Andy&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=381&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114665&rft.externalDocID=S0016706120302731 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |