Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques

“Spatial contraindication” is what exactly landslide susceptibility models have been seeking. They are designed for depicting perilous land activities, be it natural or anthropological. To find this pattern, three well-known machine learning models namely maximum entropy (MaxEnt), support vector mac...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 305; pp. 314 - 327
Main Authors Chen, Wei, Pourghasemi, Hamid Reza, Kornejady, Aiding, Zhang, Ning
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract “Spatial contraindication” is what exactly landslide susceptibility models have been seeking. They are designed for depicting perilous land activities, be it natural or anthropological. To find this pattern, three well-known machine learning models namely maximum entropy (MaxEnt), support vector machine (SVM), and Artificial Neural Network (ANN) were used accompanied by their ensembles (i.e. ANN-SVM, ANN-MaxEnt, ANN-MaxEnt-SVM, and SVM-MaxEnt) in Wanyuan area, China. The models were designed by eleven conditioning factors such as elevation, slope degree, slope aspect, profile and plan curvatures, topographic wetness index, distance to roads, distance to rivers, normalized difference vegetation index (NDVI), land use/land cover (LU/LC), and lithology along with two sets of training (213#) and testing (91#) landslide data. A statistical index (SI) model was implemented to examine the mutual relationship between classes of each factor and the landslide occurrences. Concerning the areal differentiation, the chi-square test was used where SVM and MaxEnt gained the highest and the lowest values, respectively. Afterward, the practicality — as an indicator of producing a focused susceptibility map and addressing highly susceptible classes (IV and V) in a compendious manner with a reduced spatial area — was calculated for models. Accordingly, SVM and MaxEnt were found to be the most and the least practical models having the highest and the lowest spatial area in highly susceptible classes, respectively. The receiver operating characteristic (ROC) curve was used to examine generalization and prediction accuracy of the models. As a result, in the case of validating models separately, ANN gained the highest area under the curve (AUC) with a value of 0.824, followed by SVM (0.819), and MaxEnt (0.75). In the case of validating ensemble models, the ANN-SVM had the highest AUC of all (0.826), followed by ANN-MaxEnt (0.803), SVM-MaxEnt (0.792), and ANN-MaxEnt-SVM (0.811). With regard to the premier model results, three factors namely distance from roads, elevation, and distance from rivers had the highest effect on landslide occurrence. The results of the SI values showed that the spatial combination of the main drivers namely farmlands, −0.06–0.2 range in NDVI, rocks with inter-bedded limestone and other susceptible classes therein can make at least a prone area of about 30% to landsliding. Such spatial combination of environmental condition and human-made activities can be considered as a contraindication for the residents of the study area, especially at highly susceptible locations. This also addresses areas that further mitigation plans should be taken into account with urgency. •Landslide spatial modeling using machine learning techniques•Introducing some new ensemble models of ANN, MaxEnt, and SVM machine learning techniques•Selection of the best single or ensemble models for regional modeling of landslide
AbstractList “Spatial contraindication” is what exactly landslide susceptibility models have been seeking. They are designed for depicting perilous land activities, be it natural or anthropological. To find this pattern, three well-known machine learning models namely maximum entropy (MaxEnt), support vector machine (SVM), and Artificial Neural Network (ANN) were used accompanied by their ensembles (i.e. ANN-SVM, ANN-MaxEnt, ANN-MaxEnt-SVM, and SVM-MaxEnt) in Wanyuan area, China. The models were designed by eleven conditioning factors such as elevation, slope degree, slope aspect, profile and plan curvatures, topographic wetness index, distance to roads, distance to rivers, normalized difference vegetation index (NDVI), land use/land cover (LU/LC), and lithology along with two sets of training (213#) and testing (91#) landslide data. A statistical index (SI) model was implemented to examine the mutual relationship between classes of each factor and the landslide occurrences. Concerning the areal differentiation, the chi-square test was used where SVM and MaxEnt gained the highest and the lowest values, respectively. Afterward, the practicality — as an indicator of producing a focused susceptibility map and addressing highly susceptible classes (IV and V) in a compendious manner with a reduced spatial area — was calculated for models. Accordingly, SVM and MaxEnt were found to be the most and the least practical models having the highest and the lowest spatial area in highly susceptible classes, respectively. The receiver operating characteristic (ROC) curve was used to examine generalization and prediction accuracy of the models. As a result, in the case of validating models separately, ANN gained the highest area under the curve (AUC) with a value of 0.824, followed by SVM (0.819), and MaxEnt (0.75). In the case of validating ensemble models, the ANN-SVM had the highest AUC of all (0.826), followed by ANN-MaxEnt (0.803), SVM-MaxEnt (0.792), and ANN-MaxEnt-SVM (0.811). With regard to the premier model results, three factors namely distance from roads, elevation, and distance from rivers had the highest effect on landslide occurrence. The results of the SI values showed that the spatial combination of the main drivers namely farmlands, −0.06–0.2 range in NDVI, rocks with inter-bedded limestone and other susceptible classes therein can make at least a prone area of about 30% to landsliding. Such spatial combination of environmental condition and human-made activities can be considered as a contraindication for the residents of the study area, especially at highly susceptible locations. This also addresses areas that further mitigation plans should be taken into account with urgency.
“Spatial contraindication” is what exactly landslide susceptibility models have been seeking. They are designed for depicting perilous land activities, be it natural or anthropological. To find this pattern, three well-known machine learning models namely maximum entropy (MaxEnt), support vector machine (SVM), and Artificial Neural Network (ANN) were used accompanied by their ensembles (i.e. ANN-SVM, ANN-MaxEnt, ANN-MaxEnt-SVM, and SVM-MaxEnt) in Wanyuan area, China. The models were designed by eleven conditioning factors such as elevation, slope degree, slope aspect, profile and plan curvatures, topographic wetness index, distance to roads, distance to rivers, normalized difference vegetation index (NDVI), land use/land cover (LU/LC), and lithology along with two sets of training (213#) and testing (91#) landslide data. A statistical index (SI) model was implemented to examine the mutual relationship between classes of each factor and the landslide occurrences. Concerning the areal differentiation, the chi-square test was used where SVM and MaxEnt gained the highest and the lowest values, respectively. Afterward, the practicality — as an indicator of producing a focused susceptibility map and addressing highly susceptible classes (IV and V) in a compendious manner with a reduced spatial area — was calculated for models. Accordingly, SVM and MaxEnt were found to be the most and the least practical models having the highest and the lowest spatial area in highly susceptible classes, respectively. The receiver operating characteristic (ROC) curve was used to examine generalization and prediction accuracy of the models. As a result, in the case of validating models separately, ANN gained the highest area under the curve (AUC) with a value of 0.824, followed by SVM (0.819), and MaxEnt (0.75). In the case of validating ensemble models, the ANN-SVM had the highest AUC of all (0.826), followed by ANN-MaxEnt (0.803), SVM-MaxEnt (0.792), and ANN-MaxEnt-SVM (0.811). With regard to the premier model results, three factors namely distance from roads, elevation, and distance from rivers had the highest effect on landslide occurrence. The results of the SI values showed that the spatial combination of the main drivers namely farmlands, −0.06–0.2 range in NDVI, rocks with inter-bedded limestone and other susceptible classes therein can make at least a prone area of about 30% to landsliding. Such spatial combination of environmental condition and human-made activities can be considered as a contraindication for the residents of the study area, especially at highly susceptible locations. This also addresses areas that further mitigation plans should be taken into account with urgency. •Landslide spatial modeling using machine learning techniques•Introducing some new ensemble models of ANN, MaxEnt, and SVM machine learning techniques•Selection of the best single or ensemble models for regional modeling of landslide
Author Chen, Wei
Pourghasemi, Hamid Reza
Kornejady, Aiding
Zhang, Ning
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: College of Geology & Environment, Xi'an University of Science and Technology, Xi'an 710054, China
– sequence: 2
  givenname: Hamid Reza
  orcidid: 0000-0003-2328-2998
  surname: Pourghasemi
  fullname: Pourghasemi, Hamid Reza
  email: hr.pourghasemi@shirazu.ac.ir
  organization: Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
– sequence: 3
  givenname: Aiding
  surname: Kornejady
  fullname: Kornejady, Aiding
  organization: Department of Watershed Sciences and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
– sequence: 4
  givenname: Ning
  surname: Zhang
  fullname: Zhang, Ning
  organization: College of Geology & Environment, Xi'an University of Science and Technology, Xi'an 710054, China
BookMark eNqFkMFO3DAURS1EpQ6UX6i8ZEHCczKxk6qLIkQL0kAXpd1ajv0MHjn21M4U-vf1aGDTDaunK91zn3SOyGGIAQn5yKBmwPj5un7AaDBNqm6AiRp4DQ0ckAXrRVPxphsOyQJKsxLA2XtylPO6RFFKC-JWKpjsnUGaN2p2ytOpjHkXHj7RmzCnaLa6BBrwiWLIOI0eM42WXtzdndFb9XwV5jNaRuiPX7d0UvrRBaQeVQo7bEb9GNzvLeYP5J1VPuPJyz0mP79e3V9eV6vv324uL1aVank_V8KwBkdrUevR9rzttNK9XTYlLgfsB7DD2OEousFAa8SojYKGs9aCZiDasT0mp_vdTYq7v7OcXNbovQoYt1k2ALDsYBBtqfJ9VaeYc0IrN8lNKv2VDOTOrVzLV7dy51YCl0VbAT__B2o3F3uxCFPOv41_2eNYPPxxmGTWDoNG4xLqWZro3pr4B8i1naU
CitedBy_id crossref_primary_10_1007_s10064_023_03176_6
crossref_primary_10_3390_agronomy12122930
crossref_primary_10_1007_s12145_021_00738_8
crossref_primary_10_1080_10106049_2019_1585482
crossref_primary_10_1007_s11629_022_7698_6
crossref_primary_10_1007_s12145_024_01539_5
crossref_primary_10_1016_j_catena_2019_104240
crossref_primary_10_1109_ACCESS_2019_2936669
crossref_primary_10_1002_ldr_4268
crossref_primary_10_1007_s10346_019_01320_6
crossref_primary_10_3389_feart_2021_722491
crossref_primary_10_1016_j_catena_2019_104364
crossref_primary_10_1016_j_scitotenv_2018_11_235
crossref_primary_10_19111_bulletinofmre_649758
crossref_primary_10_1007_s10064_018_1401_8
crossref_primary_10_1016_j_ifacol_2018_09_581
crossref_primary_10_1080_19475705_2017_1401560
crossref_primary_10_1016_j_scitotenv_2017_09_262
crossref_primary_10_1007_s10668_022_02314_6
crossref_primary_10_1007_s10064_022_02761_5
crossref_primary_10_1016_j_catena_2018_08_025
crossref_primary_10_1016_j_cosrev_2020_100237
crossref_primary_10_1007_s10064_024_03980_8
crossref_primary_10_3390_rs14010211
crossref_primary_10_1007_s00477_023_02521_1
crossref_primary_10_1007_s11069_024_06696_w
crossref_primary_10_1007_s11356_020_11406_7
crossref_primary_10_1007_s12665_017_7177_5
crossref_primary_10_3390_sym12111848
crossref_primary_10_1007_s12665_018_7268_y
crossref_primary_10_1139_cgj_2023_0105
crossref_primary_10_3799_dqkx_2022_419
crossref_primary_10_1016_j_chemphys_2025_112603
crossref_primary_10_1007_s12665_021_09510_z
crossref_primary_10_17491_jgsi_2024_173894
crossref_primary_10_1016_j_ecolind_2020_106300
crossref_primary_10_1016_j_catena_2019_104221
crossref_primary_10_1016_j_ijdrr_2021_102614
crossref_primary_10_1111_tgis_13202
crossref_primary_10_1590_01047760202228012976
crossref_primary_10_1016_j_catena_2018_12_035
crossref_primary_10_1080_10106049_2022_2136255
crossref_primary_10_1016_j_ecolind_2022_109390
crossref_primary_10_1515_geo_2020_0206
crossref_primary_10_1371_journal_pone_0235780
crossref_primary_10_3390_s21134254
crossref_primary_10_3799_dqkx_2022_407
crossref_primary_10_1007_s13201_022_01599_2
crossref_primary_10_3389_feart_2022_861057
crossref_primary_10_1016_j_aiig_2022_07_001
crossref_primary_10_3390_e21070695
crossref_primary_10_1007_s12665_019_8415_9
crossref_primary_10_1080_19475705_2021_1955018
crossref_primary_10_3390_molecules25235529
crossref_primary_10_1016_j_geomorph_2021_107660
crossref_primary_10_3390_ijerph16152801
crossref_primary_10_1016_j_ecolind_2020_106096
crossref_primary_10_1007_s11069_021_05013_z
crossref_primary_10_1016_j_geomorph_2023_108795
crossref_primary_10_1016_j_ecolind_2019_04_034
crossref_primary_10_14710_jwl_11_1_92_107
crossref_primary_10_1016_j_pce_2021_103052
crossref_primary_10_1080_19475705_2023_2227324
crossref_primary_10_1002_ppp_2135
crossref_primary_10_3390_app10114016
crossref_primary_10_1093_jrsssc_qlad077
crossref_primary_10_3390_sym12061047
crossref_primary_10_1007_s11629_020_6497_1
crossref_primary_10_1007_s13595_020_00992_8
crossref_primary_10_1007_s42452_020_3060_1
crossref_primary_10_1080_17499518_2022_2088803
crossref_primary_10_1080_15481603_2024_2349343
crossref_primary_10_1007_s10064_018_1403_6
crossref_primary_10_1016_j_geomorph_2017_09_007
crossref_primary_10_1016_j_catena_2018_01_005
crossref_primary_10_1016_j_ecolind_2024_111920
crossref_primary_10_1007_s00168_021_01101_x
crossref_primary_10_1109_JSTARS_2020_3045278
crossref_primary_10_3390_rs13244966
crossref_primary_10_1007_s12517_024_12022_2
crossref_primary_10_3390_su14148426
crossref_primary_10_3390_cli13010011
crossref_primary_10_3390_e21040372
crossref_primary_10_3390_s19030542
crossref_primary_10_3390_en14164850
crossref_primary_10_1016_j_catena_2018_01_012
crossref_primary_10_1007_s11069_020_04429_3
crossref_primary_10_1007_s11709_021_0727_7
crossref_primary_10_15531_KSCCR_2024_15_4_477
crossref_primary_10_1016_j_rsase_2025_101520
crossref_primary_10_3390_su15129467
crossref_primary_10_1177_0144598718822400
crossref_primary_10_3390_land13071039
crossref_primary_10_3390_rs12111890
crossref_primary_10_1007_s11069_023_05857_7
crossref_primary_10_1016_j_jmst_2020_12_010
crossref_primary_10_1007_s00477_018_1518_0
crossref_primary_10_1002_ppp_2232
crossref_primary_10_1007_s11069_024_06673_3
crossref_primary_10_3390_rs13244991
crossref_primary_10_1007_s11356_023_27799_0
crossref_primary_10_3390_rs14194899
crossref_primary_10_1007_s10661_024_13284_9
crossref_primary_10_3390_min10121126
crossref_primary_10_1016_j_frl_2023_104251
crossref_primary_10_1007_s11004_023_10044_2
crossref_primary_10_1007_s12665_021_09788_z
crossref_primary_10_1108_SR_02_2019_0051
crossref_primary_10_3390_rs14225658
crossref_primary_10_1016_j_ecoleng_2025_107581
crossref_primary_10_1016_j_scitotenv_2019_04_306
crossref_primary_10_1007_s11356_024_34501_5
crossref_primary_10_1007_s12040_020_1342_z
crossref_primary_10_1002_gj_4683
crossref_primary_10_1038_s41598_021_03743_5
crossref_primary_10_1007_s11069_020_04371_4
crossref_primary_10_3390_rs13112166
crossref_primary_10_1007_s11069_022_05325_8
crossref_primary_10_1016_j_catena_2019_104150
crossref_primary_10_1088_1755_1315_767_1_012042
crossref_primary_10_15531_KSCCR_2023_14_2_145
crossref_primary_10_3390_app132312817
crossref_primary_10_1002_esp_4999
crossref_primary_10_3390_land11030317
crossref_primary_10_1016_j_geoderma_2020_114367
crossref_primary_10_1016_j_envsoft_2018_01_004
crossref_primary_10_1063_1_5090915
crossref_primary_10_1080_10106049_2018_1425738
crossref_primary_10_1007_s11069_018_3356_2
crossref_primary_10_1016_j_catena_2019_104396
crossref_primary_10_1016_j_catena_2021_105189
crossref_primary_10_1007_s12145_024_01496_z
crossref_primary_10_3390_app9010171
crossref_primary_10_3390_rs15071886
crossref_primary_10_1080_19475705_2017_1362038
crossref_primary_10_1155_2020_4310791
crossref_primary_10_9798_KOSHAM_2021_21_3_141
crossref_primary_10_1007_s12665_017_7207_3
crossref_primary_10_3389_fenvs_2022_1028373
crossref_primary_10_3390_app10010016
crossref_primary_10_1007_s00500_021_06105_5
crossref_primary_10_1007_s12665_021_09650_2
crossref_primary_10_1016_j_catena_2022_106161
crossref_primary_10_1144_qjegh2023_144
crossref_primary_10_3390_rs14225795
crossref_primary_10_1007_s10462_022_10283_5
crossref_primary_10_1016_j_jenvman_2023_119727
crossref_primary_10_1016_j_geomorph_2021_108027
crossref_primary_10_1080_19475683_2022_2040587
crossref_primary_10_1016_j_cscm_2023_e01952
crossref_primary_10_1016_j_jhydrol_2019_124536
crossref_primary_10_1016_j_rsase_2020_100323
crossref_primary_10_3390_w13010107
crossref_primary_10_21923_jesd_1391818
crossref_primary_10_1007_s11356_021_17956_8
crossref_primary_10_3390_w11102049
crossref_primary_10_1007_s11629_020_6277_y
crossref_primary_10_1016_j_hydres_2024_04_001
crossref_primary_10_1088_1755_1315_884_1_012006
crossref_primary_10_1007_s12517_021_06843_8
crossref_primary_10_3390_s19102274
crossref_primary_10_1080_19475705_2023_2213807
crossref_primary_10_3390_s22155587
crossref_primary_10_1007_s00477_021_02035_8
crossref_primary_10_3390_ijgi9120696
crossref_primary_10_1007_s12665_021_10033_w
crossref_primary_10_1016_j_catena_2023_107781
crossref_primary_10_3389_feart_2023_1135018
crossref_primary_10_52547_jwmr_11_21_249
crossref_primary_10_3390_rs15204952
crossref_primary_10_1016_j_ecolind_2020_106591
crossref_primary_10_3390_su11123452
crossref_primary_10_3390_su15010006
crossref_primary_10_1016_j_geomorph_2024_109522
crossref_primary_10_55779_ng2352
crossref_primary_10_3390_app122010544
crossref_primary_10_3390_rs12030486
crossref_primary_10_3390_w13192632
crossref_primary_10_1007_s10712_020_09609_1
crossref_primary_10_1016_j_ecolind_2020_106825
crossref_primary_10_3390_w11102013
crossref_primary_10_1038_s41598_023_30009_z
crossref_primary_10_1007_s11629_018_5168_y
crossref_primary_10_1002_ldr_3794
crossref_primary_10_1016_j_ijdrr_2020_101642
crossref_primary_10_3390_app15063386
crossref_primary_10_1007_s11629_019_5839_3
crossref_primary_10_1007_s11356_023_28575_w
crossref_primary_10_1016_j_fuel_2020_118684
crossref_primary_10_1007_s12665_023_10952_w
crossref_primary_10_1080_12265934_2021_1997633
crossref_primary_10_1155_2021_4832864
crossref_primary_10_3390_land13101583
crossref_primary_10_1007_s12524_018_0800_4
crossref_primary_10_3390_w10040385
crossref_primary_10_1016_j_scitotenv_2019_03_496
crossref_primary_10_1007_s12524_022_01649_x
crossref_primary_10_1080_10106049_2018_1489422
crossref_primary_10_1016_j_scitotenv_2018_02_170
crossref_primary_10_1016_j_rsase_2022_100905
crossref_primary_10_1016_j_scitotenv_2018_01_124
crossref_primary_10_1007_s11600_024_01470_9
crossref_primary_10_1007_s12583_021_1511_2
crossref_primary_10_3390_w11030579
crossref_primary_10_1016_j_scitotenv_2020_138595
crossref_primary_10_1007_s11600_022_00767_x
crossref_primary_10_1016_j_cageo_2020_104470
crossref_primary_10_1017_S0376892921000291
crossref_primary_10_1016_j_apgeog_2021_102598
crossref_primary_10_1007_s12517_021_08871_w
crossref_primary_10_1016_j_enbuild_2022_112502
crossref_primary_10_1007_s10064_019_01572_5
crossref_primary_10_1016_j_scitotenv_2017_10_114
crossref_primary_10_3390_w13040488
crossref_primary_10_3390_ijerph16030368
crossref_primary_10_3390_s18082464
crossref_primary_10_1016_j_frl_2024_106136
crossref_primary_10_1080_10106049_2020_1730451
crossref_primary_10_1016_j_frl_2022_103143
crossref_primary_10_1155_2021_7998417
crossref_primary_10_3390_w15071292
crossref_primary_10_2166_nh_2019_090
crossref_primary_10_1007_s11069_020_04264_6
crossref_primary_10_3390_rs16040642
crossref_primary_10_1007_s11069_021_04601_3
crossref_primary_10_1007_s11042_023_15121_6
crossref_primary_10_1016_j_catena_2021_105317
crossref_primary_10_1007_s11069_021_04812_8
crossref_primary_10_1007_s11356_024_33287_w
crossref_primary_10_1016_j_catena_2019_104450
crossref_primary_10_3390_w15173134
crossref_primary_10_3390_d13100490
crossref_primary_10_1007_s11069_019_03617_0
crossref_primary_10_1007_s10064_020_01915_7
crossref_primary_10_1016_j_jenvman_2019_02_020
crossref_primary_10_1016_j_geoderma_2018_12_042
crossref_primary_10_1007_s12665_017_6981_2
crossref_primary_10_3390_geosciences8020039
crossref_primary_10_1007_s11069_021_04862_y
crossref_primary_10_1016_j_gsf_2021_101175
crossref_primary_10_3390_batteries9040228
crossref_primary_10_1007_s10064_020_01849_0
crossref_primary_10_1007_s12665_021_09889_9
crossref_primary_10_1007_s12665_020_09238_2
crossref_primary_10_1016_j_catena_2019_104425
crossref_primary_10_1016_j_scitotenv_2017_07_198
crossref_primary_10_3390_molecules27238126
crossref_primary_10_1016_j_catena_2019_104421
crossref_primary_10_1016_j_geosus_2024_05_004
crossref_primary_10_1080_10286608_2019_1568418
crossref_primary_10_3390_rs11242995
crossref_primary_10_3389_feart_2023_1184038
crossref_primary_10_3390_agronomy14061134
crossref_primary_10_3390_s22093107
crossref_primary_10_1007_s12665_021_09599_2
crossref_primary_10_1155_2021_8854606
crossref_primary_10_3390_e21020106
crossref_primary_10_1080_10106049_2021_1986579
crossref_primary_10_34088_kojose_1117817
crossref_primary_10_1080_19475705_2017_1403974
crossref_primary_10_3390_rs14153620
crossref_primary_10_1038_s41598_021_95978_5
crossref_primary_10_1080_00330124_2023_2287167
crossref_primary_10_3390_rs13224515
crossref_primary_10_1016_j_envsoft_2019_104565
crossref_primary_10_1080_10106049_2022_2144475
crossref_primary_10_3390_land11081265
crossref_primary_10_1007_s00477_021_02036_7
crossref_primary_10_1016_j_rsase_2019_02_006
crossref_primary_10_1007_s10668_020_00783_1
crossref_primary_10_3390_rs14194803
crossref_primary_10_3390_w10081019
crossref_primary_10_1016_j_geogeo_2024_100253
crossref_primary_10_21523_gcj1_2024080101
crossref_primary_10_1016_j_scs_2024_105237
crossref_primary_10_1016_j_catena_2020_104751
crossref_primary_10_1049_iet_rpg_2020_0224
crossref_primary_10_1007_s10064_018_1281_y
Cites_doi 10.1007/s12517-008-0022-0
10.1016/S0167-8809(01)00187-6
10.1016/j.enggeo.2005.07.011
10.1007/s12517-015-2150-7
10.1016/j.ecoleng.2010.06.020
10.1016/j.geomorph.2008.02.011
10.1007/s12665-015-4028-0
10.1007/s12665-010-0724-y
10.1007/s11069-015-1915-3
10.1007/s100640050066
10.1016/S0013-7952(03)00142-X
10.1080/01431160010014260
10.1007/s10346-012-0320-1
10.1007/s11069-014-1245-x
10.1016/j.enggeo.2006.03.004
10.1007/s11069-014-1285-2
10.1016/j.neunet.2006.01.001
10.1029/2006RG000200
10.1007/s12665-015-4866-9
10.1007/s10346-015-0565-6
10.1155/2012/974638
10.1016/j.enggeo.2011.09.006
10.1103/PhysRev.106.620
10.1073/pnas.97.1.262
10.1007/s10346-013-0436-y
10.1007/s12303-014-0032-8
10.1007/s10346-015-0557-6
10.1016/j.cageo.2012.08.023
10.1002/esp.3998
10.1016/j.ecolmodel.2005.03.026
10.1007/s11069-016-2591-7
10.1007/s12665-015-4950-1
10.1007/s11069-010-9569-7
10.1080/10106040108542202
10.1007/s12665-015-5047-6
10.1007/s10064-009-0188-z
10.1016/j.catena.2015.10.010
10.1155/2010/901095
10.1016/j.catena.2015.05.019
10.1016/j.geomorph.2006.04.007
10.1016/j.geomorph.2006.10.033
10.1007/s12665-014-3442-z
10.1007/s12517-015-1891-7
10.1007/s12303-015-0026-1
10.1007/s11069-012-0217-2
10.1016/j.asr.2012.04.010
10.1016/j.jafrearsci.2016.02.019
10.1007/s12665-016-5919-4
10.1007/s10346-014-0547-0
10.1080/10106049.2016.1140824
10.1103/PhysRev.108.171
10.1016/j.geomorph.2016.03.006
10.1016/j.catena.2016.11.032
10.1007/s10346-014-0466-0
10.1016/j.rse.2014.05.013
10.1016/j.ecolmodel.2004.07.012
10.1016/j.catena.2015.07.020
10.3319/TAO.2014.12.02.07(EOSI)
10.1007/s13762-013-0464-0
10.1007/s10064-015-0734-9
10.1016/j.catena.2017.01.010
10.1007/s12665-015-4048-9
10.1007/s12665-014-3289-3
10.1007/s12517-012-0807-z
10.1007/s12517-009-0089-2
10.1111/2041-210X.12252
10.1016/j.geomorph.2004.06.010
10.1016/j.geomorph.2016.02.012
10.1016/j.catena.2016.06.004
10.1016/j.catena.2014.02.005
10.1007/s10462-009-9124-7
10.1080/01431160110040323
10.1007/s10346-015-0614-1
10.1108/09653561011052547
10.1016/j.jseaes.2012.12.014
10.1007/s12517-015-2142-7
10.1007/s11069-012-0347-6
10.1007/s10346-006-0047-y
10.1080/01431161.2016.1148282
10.1007/s12665-011-1477-y
10.1007/s11069-011-9844-2
10.1016/j.enggeo.2007.01.005
10.1111/j.0906-7590.2008.5203.x
10.1016/j.geomorph.2010.02.017
10.1016/j.enggeo.2005.02.002
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2017.06.020
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 327
ExternalDocumentID 10_1016_j_geoderma_2017_06_020
S0016706117303890
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-7d12ebffeccbf8635cac8f42ccb49e890f9b5eb759d03d7bcda02613f0c1073b3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 12:15:20 EDT 2025
Tue Jul 01 04:04:44 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Fri Feb 23 02:27:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
Ensemble models
SVM
Maximum entropy
Spatial modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-7d12ebffeccbf8635cac8f42ccb49e890f9b5eb759d03d7bcda02613f0c1073b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2328-2998
PQID 2000450973
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2000450973
crossref_primary_10_1016_j_geoderma_2017_06_020
crossref_citationtrail_10_1016_j_geoderma_2017_06_020
elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_06_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Devkota, Regmi, Pourghasemi, Yoshida, Pradhan, Ryu, Dhital, Althuwaynee (bb0120) 2013; 65
Statnikov, Aliferis, Hardin, Guyon (bb0440) 2011
Ayalew, Yamagishi (bb0035) 2005; 65
Tien Bui, Tuan, Klempe, Pradhan, Revhaug (bb0475) 2016; 13
Pourghasemi, Pradhan, Gokceoglu (bb0370) 2012; 63
Akgun, Erkan (bb0010) 2016; 9
Wang, Guo, Sawada, Lin, Zhang (bb0505) 2016; 20
Tehrany, Lee, Pradhan, Jebur, Lee (bb0450) 2014; 72
Hong, Pourghasemi, Pourtaghi (bb0180) 2016; 259
Phillips, Dudík (bb0345) 2008; 31
Colkesen, Sahin, Kavzoglu (bb0095) 2016; 118
Moosavi, Niazi (bb0305) 2016; 13
Guo, Kelly, Graham (bb0165) 2005; 182
Rokach (bb0420) 2010; 33
Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (bb0535) 2016; 13
Tsangaratos, Benardos (bb0480) 2014; 74
Yao, Tham, Dai (bb0510) 2008; 101
Lee, Pradhan (bb0260) 2007; 4
Felicísimo, Cuartero, Remondo, Quirós (bb0145) 2013; 10
Jaynes (bb0215) 1957; 106
Phillips, Miroslav, Schapire (bb0350) 2004
Kornejady, Ownegh, Bahremand (bb0250) 2017; 152
Lombardo, Cama, Maerker, Rotigliano (bb0280) 2014; 74
Statnikov, Aliferis, Hardin, Guyon (bb0445) 2013
Hong, Pradhan, Jebur, Bui, Xu, Akgun (bb0185) 2016; 75
Nasiri Aghdam, Varzandeh, Pradhan (bb0310) 2016; 75
Park (bb0335) 2015; 73
Cristianini, Lkopf (bb0110) 2002; 23
Guillera Arroita, Lahoz Monfort, Elith (bb0160) 2015; 5
Lee, Ryu, Won, Park (bb0265) 2004; 71
Youssef, Al-Kathery, Pradhan (bb0525) 2015; 19
Regmi, Devkota, Yoshida, Pradhan, Pourghasemi, Kumamoto, Akgun (bb0410) 2014; 7
Blahut, Westen, Sterlacchini (bb0045) 2010; 119
Aleotti, Chowdhury (bb0015) 1999; 58
Tien Bui, Lofman, Revhaug, Dick (bb0455) 2011; 59
Zhao, Chen, Wang, Wu, Yang (bb0540) 2015; 8
Chen, Li, Chai, Hou, Li, Ding (bb0070) 2016; 75
Chen, Pourghasemi, Zhao (bb0080) 2017; 32
Carrara, Crosta, Frattini (bb0060) 2008; 94
Guzzetti, Reichenbach, Ardizzone, Cardinali, Galli (bb0170) 2006; 81
Raja, Çiçek, Türkoğlu, Aydin, Kawasaki (bb0405) 2017; 85
Arora, Mathur (bb0030) 2001; 16
Bell (bb0040) 1998; 114
Lombardo, Bachofer, Cama, Märker, Rotigliano (bb0290) 2016; 41
Cherkassky, Krasnopolsky, Solomatine, Valdes (bb0090) 2006; 19
Tien Bui, Ho, Pradhan, Pham, Nhu, Revhaug (bb0470) 2016; 75
Yesilnacar, Topal (bb0515) 2005; 79
Singh (bb0435) 2010; 19
Abdi, Majnounian, Genet, Rahimi (bb0005) 2010; 36
Kecman (bb0240) 2005
Pham, Tien Bui, Pourghasemi, Indra, Dholakia (bb0340) 2015
Mandal, Maiti (bb0295) 2015
Marjanović, Kovačević, Bajat, Voženílek (bb0300) 2011; 123
Raja, Çiçek, Türkoğlu, Aydin, Kawasaki (bb0400) 2016
Pourghasemi, Kerle (bb0360) 2016; 75
Lee, Choi, Oh, Won, Park, Lee (bb0270) 2012; 67
Varnes (bb0500) 1978
Jaynes (bb0220) 1957; 108
Tsangaratos, Ilia (bb0485) 2016; 145
Pradhan, Youssef (bb0385) 2010; 3
Jakkula (bb0210) 2006; 37
Pradhan (bb0380) 2013; 51
Rgjr, Schneider (bb0415) 2001; 85
Chen, Xie, Wang, Pradhan, Hong, Bui, Duan, Ma (bb0085) 2017; 151
Rahmati, Pourghasemi, Melesse (bb0395) 2016; 137
Saha, Gupta, Arora (bb0425) 2002; 23
Althuwaynee, Pradhan, Park, Lee (bb0020) 2014; 11
Shahabi, Hashim, Ahmad (bb0430) 2015; 73
Althuwaynee, Pradhan, Lee (bb0025) 2016; 37
Jebur, Pradhan, Tehrany (bb0225) 2014; 152
Ozdemir, Altural (bb0330) 2013; 64
Hong, Chen, Xu, Youssef, Pradhan, Tien Bui (bb0190) 2017; 32
Conoscenti, Rotigliano, Cama, Caraballo-Arias, Lombardo, Agnesi (bb0100) 2016; 261
Prasad, Pandey, Singh, Singh, Mishra, Singh (bb0390) 2012; 50
Dudík, Phillips, Schapire (bb0135) 2004
Youssef, Pourghasemi, El-Haddad, Dhahry (bb0530) 2016; 75
Jaafari, Najafi, Pourghasemi, Rezaeian, Sattarian (bb0205) 2014; 11
Phillips, Anderson, Schapire (bb0355) 2006; 190
Tien Bui, Pradhan, Revhaug, Tran (bb0465) 2014
Kelarestaghi, Ahmadi (bb0245) 2009; 2
Tien Bui, Pradhan, Lofman, Revhaug (bb0460) 2012; 2012
Chen, Wang, Xie, Hong, Trung, Bui, Wang, Li (bb0075) 2016
Lombardo, Cama, Conoscenti, Märker, Rotigliano (bb0285) 2015; 79
Dou, Paudel, Oguchi, Uchiyama, Hayakavva (bb0130) 2015; 26
Lee, Park, Lee (bb0275) 2015; 74
Dehnavi, Aghdam, Pradhan, Varzandeh (bb0115) 2015; 135
Chen, Chai, Sun, Wang, Ding, Hong (bb0065) 2016; 9
Hong, Pradhan, Xu, Tien Bui (bb0175) 2015; 133
Huang, Davis, Townshend (bb0195) 2002; 23
Ohlmacher (bb0325) 2007; 91
Constantin, Bednarik, Jurchescu, Vlaicu (bb0105) 2011; 63
Hungr, Leroueil, Picarelli (bb0200) 2014; 11
Nefeslioglu, Sezer, Gokceoglu, Bozkir, Duman (bb0315) 2010; 2010
Umar, Pradhan, Ahmad, Jebur, Tehrany (bb0495) 2014; 118
Ngadisih, Bhandary, Yatabe, Dahal (bb0320) 2016
Tsangaratos, Ilia (bb0490) 2016; 13
Brown, Grundy, Lin, Cristianini, Sugnet, Furey, A., Haussler (bb0050) 2000; 97
Cama, Conoscenti, Lombardo, Rotigliano (bb0055) 2016; 75
Dou, Oguchi, Hayakawa, Uchiyama, Saito, Paudel (bb0125) 2014
Ghimire (bb0150) 2011; 56
Kanungo, Arora, Sarkar, Gupta (bb0235) 2006; 85
Pourghasemi, Rossi (bb0365) 2016
Gokceoglu, Sonmez, Nefeslioglu, Duman, Can (bb0155) 2005; 81
Yilmaz, Keskin (bb0520) 2009; 68
Joachims (bb0230) 1998; 1398
Krasnopolsky (bb0255) 2007; 45
Tehrany (10.1016/j.geoderma.2017.06.020_bb0450) 2014; 72
Chen (10.1016/j.geoderma.2017.06.020_bb0070) 2016; 75
Tien Bui (10.1016/j.geoderma.2017.06.020_bb0460) 2012; 2012
Cherkassky (10.1016/j.geoderma.2017.06.020_bb0090) 2006; 19
Singh (10.1016/j.geoderma.2017.06.020_bb0435) 2010; 19
Althuwaynee (10.1016/j.geoderma.2017.06.020_bb0025) 2016; 37
Huang (10.1016/j.geoderma.2017.06.020_bb0195) 2002; 23
Hong (10.1016/j.geoderma.2017.06.020_bb0190) 2017; 32
Pham (10.1016/j.geoderma.2017.06.020_bb0340) 2015
Nasiri Aghdam (10.1016/j.geoderma.2017.06.020_bb0310) 2016; 75
Blahut (10.1016/j.geoderma.2017.06.020_bb0045) 2010; 119
Cama (10.1016/j.geoderma.2017.06.020_bb0055) 2016; 75
Carrara (10.1016/j.geoderma.2017.06.020_bb0060) 2008; 94
Shahabi (10.1016/j.geoderma.2017.06.020_bb0430) 2015; 73
Youssef (10.1016/j.geoderma.2017.06.020_bb0530) 2016; 75
Akgun (10.1016/j.geoderma.2017.06.020_bb0010) 2016; 9
Statnikov (10.1016/j.geoderma.2017.06.020_bb0440) 2011
Joachims (10.1016/j.geoderma.2017.06.020_bb0230) 1998; 1398
Marjanović (10.1016/j.geoderma.2017.06.020_bb0300) 2011; 123
Abdi (10.1016/j.geoderma.2017.06.020_bb0005) 2010; 36
Phillips (10.1016/j.geoderma.2017.06.020_bb0355) 2006; 190
Ayalew (10.1016/j.geoderma.2017.06.020_bb0035) 2005; 65
Moosavi (10.1016/j.geoderma.2017.06.020_bb0305) 2016; 13
Jaynes (10.1016/j.geoderma.2017.06.020_bb0215) 1957; 106
Lee (10.1016/j.geoderma.2017.06.020_bb0270) 2012; 67
Arora (10.1016/j.geoderma.2017.06.020_bb0030) 2001; 16
Tsangaratos (10.1016/j.geoderma.2017.06.020_bb0485) 2016; 145
Lombardo (10.1016/j.geoderma.2017.06.020_bb0285) 2015; 79
Kelarestaghi (10.1016/j.geoderma.2017.06.020_bb0245) 2009; 2
Phillips (10.1016/j.geoderma.2017.06.020_bb0350) 2004
Tien Bui (10.1016/j.geoderma.2017.06.020_bb0455) 2011; 59
Jakkula (10.1016/j.geoderma.2017.06.020_bb0210) 2006; 37
Hungr (10.1016/j.geoderma.2017.06.020_bb0200) 2014; 11
Felicísimo (10.1016/j.geoderma.2017.06.020_bb0145) 2013; 10
Ghimire (10.1016/j.geoderma.2017.06.020_bb0150) 2011; 56
Mandal (10.1016/j.geoderma.2017.06.020_bb0295) 2015
Tsangaratos (10.1016/j.geoderma.2017.06.020_bb0490) 2016; 13
Hong (10.1016/j.geoderma.2017.06.020_bb0175) 2015; 133
Devkota (10.1016/j.geoderma.2017.06.020_bb0120) 2013; 65
Hong (10.1016/j.geoderma.2017.06.020_bb0180) 2016; 259
Colkesen (10.1016/j.geoderma.2017.06.020_bb0095) 2016; 118
Ohlmacher (10.1016/j.geoderma.2017.06.020_bb0325) 2007; 91
Kecman (10.1016/j.geoderma.2017.06.020_bb0240) 2005
Yilmaz (10.1016/j.geoderma.2017.06.020_bb0520) 2009; 68
Bell (10.1016/j.geoderma.2017.06.020_bb0040) 1998; 114
Wang (10.1016/j.geoderma.2017.06.020_bb0505) 2016; 20
Prasad (10.1016/j.geoderma.2017.06.020_bb0390) 2012; 50
Jebur (10.1016/j.geoderma.2017.06.020_bb0225) 2014; 152
Statnikov (10.1016/j.geoderma.2017.06.020_bb0445) 2013
Yao (10.1016/j.geoderma.2017.06.020_bb0510) 2008; 101
Guillera Arroita (10.1016/j.geoderma.2017.06.020_bb0160) 2015; 5
Nefeslioglu (10.1016/j.geoderma.2017.06.020_bb0315) 2010; 2010
Hong (10.1016/j.geoderma.2017.06.020_bb0185) 2016; 75
Saha (10.1016/j.geoderma.2017.06.020_bb0425) 2002; 23
Tien Bui (10.1016/j.geoderma.2017.06.020_bb0470) 2016; 75
Althuwaynee (10.1016/j.geoderma.2017.06.020_bb0020) 2014; 11
Yesilnacar (10.1016/j.geoderma.2017.06.020_bb0515) 2005; 79
Jaafari (10.1016/j.geoderma.2017.06.020_bb0205) 2014; 11
Lee (10.1016/j.geoderma.2017.06.020_bb0265) 2004; 71
Brown (10.1016/j.geoderma.2017.06.020_bb0050) 2000; 97
Chen (10.1016/j.geoderma.2017.06.020_bb0065) 2016; 9
Regmi (10.1016/j.geoderma.2017.06.020_bb0410) 2014; 7
Guzzetti (10.1016/j.geoderma.2017.06.020_bb0170) 2006; 81
Jaynes (10.1016/j.geoderma.2017.06.020_bb0220) 1957; 108
Guo (10.1016/j.geoderma.2017.06.020_bb0165) 2005; 182
Conoscenti (10.1016/j.geoderma.2017.06.020_bb0100) 2016; 261
Youssef (10.1016/j.geoderma.2017.06.020_bb0535) 2016; 13
Krasnopolsky (10.1016/j.geoderma.2017.06.020_bb0255) 2007; 45
Ozdemir (10.1016/j.geoderma.2017.06.020_bb0330) 2013; 64
Chen (10.1016/j.geoderma.2017.06.020_bb0085) 2017; 151
Raja (10.1016/j.geoderma.2017.06.020_bb0405) 2017; 85
Rgjr (10.1016/j.geoderma.2017.06.020_bb0415) 2001; 85
Constantin (10.1016/j.geoderma.2017.06.020_bb0105) 2011; 63
Lee (10.1016/j.geoderma.2017.06.020_bb0275) 2015; 74
Park (10.1016/j.geoderma.2017.06.020_bb0335) 2015; 73
Zhao (10.1016/j.geoderma.2017.06.020_bb0540) 2015; 8
Varnes (10.1016/j.geoderma.2017.06.020_bb0500) 1978
Pourghasemi (10.1016/j.geoderma.2017.06.020_bb0370) 2012; 63
Aleotti (10.1016/j.geoderma.2017.06.020_bb0015) 1999; 58
Lombardo (10.1016/j.geoderma.2017.06.020_bb0290) 2016; 41
Youssef (10.1016/j.geoderma.2017.06.020_bb0525) 2015; 19
Phillips (10.1016/j.geoderma.2017.06.020_bb0345) 2008; 31
Kornejady (10.1016/j.geoderma.2017.06.020_bb0250) 2017; 152
Dou (10.1016/j.geoderma.2017.06.020_bb0125) 2014
Dou (10.1016/j.geoderma.2017.06.020_bb0130) 2015; 26
Raja (10.1016/j.geoderma.2017.06.020_bb0400) 2016
Ngadisih (10.1016/j.geoderma.2017.06.020_bb0320) 2016
Pradhan (10.1016/j.geoderma.2017.06.020_bb0380) 2013; 51
Dehnavi (10.1016/j.geoderma.2017.06.020_bb0115) 2015; 135
Pradhan (10.1016/j.geoderma.2017.06.020_bb0385) 2010; 3
Chen (10.1016/j.geoderma.2017.06.020_bb0075) 2016
Dudík (10.1016/j.geoderma.2017.06.020_bb0135) 2004
Pourghasemi (10.1016/j.geoderma.2017.06.020_bb0365) 2016
Kanungo (10.1016/j.geoderma.2017.06.020_bb0235) 2006; 85
Tien Bui (10.1016/j.geoderma.2017.06.020_bb0465) 2014
Cristianini (10.1016/j.geoderma.2017.06.020_bb0110) 2002; 23
Tien Bui (10.1016/j.geoderma.2017.06.020_bb0475) 2016; 13
Chen (10.1016/j.geoderma.2017.06.020_bb0080) 2017; 32
Lee (10.1016/j.geoderma.2017.06.020_bb0260) 2007; 4
Lombardo (10.1016/j.geoderma.2017.06.020_bb0280) 2014; 74
Rokach (10.1016/j.geoderma.2017.06.020_bb0420) 2010; 33
Pourghasemi (10.1016/j.geoderma.2017.06.020_bb0360) 2016; 75
Rahmati (10.1016/j.geoderma.2017.06.020_bb0395) 2016; 137
Tsangaratos (10.1016/j.geoderma.2017.06.020_bb0480) 2014; 74
Gokceoglu (10.1016/j.geoderma.2017.06.020_bb0155) 2005; 81
Umar (10.1016/j.geoderma.2017.06.020_bb0495) 2014; 118
References_xml – volume: 261
  start-page: 222
  year: 2016
  end-page: 235
  ident: bb0100
  article-title: Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy
  publication-title: Geomorphology
– volume: 97
  start-page: 262
  year: 2000
  end-page: 267
  ident: bb0050
  article-title: Knowledge-based analysis of microarray gene expression data by using support vector machines
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 64
  start-page: 180
  year: 2013
  end-page: 197
  ident: bb0330
  article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey
  publication-title: J. Asian Earth Sci.
– volume: 74
  start-page: 1951
  year: 2014
  end-page: 1989
  ident: bb0280
  article-title: A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster
  publication-title: Nat. Hazards
– volume: 75
  start-page: 1
  year: 2016
  end-page: 14
  ident: bb0070
  article-title: GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China
  publication-title: Environ. Earth Sci.
– volume: 68
  start-page: 459
  year: 2009
  end-page: 471
  ident: bb0520
  article-title: GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey)
  publication-title: Bull. Eng. Geol. Environ.
– volume: 152
  start-page: 150
  year: 2014
  end-page: 165
  ident: bb0225
  article-title: Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 319
  year: 2010
  end-page: 326
  ident: bb0385
  article-title: Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models
  publication-title: Arab. J. Geosci.
– volume: 10
  start-page: 175
  year: 2013
  end-page: 189
  ident: bb0145
  article-title: Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study
  publication-title: Landslides
– volume: 79
  start-page: 251
  year: 2005
  end-page: 266
  ident: bb0515
  article-title: Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)
  publication-title: Eng. Geol.
– volume: 114
  year: 1998
  ident: bb0040
  article-title: Environmental geology: principles and practice
  publication-title: Geophys. Monogr.
– volume: 26
  year: 2015
  ident: bb0130
  article-title: Shallow and deep-seated landslide differentiation using support vector machines: a case study of the Chuetsu Area, Japan
  publication-title: Terr. Atmos. Ocean. Sci.
– volume: 75
  start-page: 1
  year: 2016
  end-page: 17
  ident: bb0360
  article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran
  publication-title: Environ. Earth Sci.
– volume: 32
  start-page: 139
  year: 2017
  end-page: 154
  ident: bb0190
  article-title: Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy
  publication-title: Geocarto Int.
– start-page: 1
  year: 2015
  end-page: 19
  ident: bb0340
  article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods
  publication-title: Theor. Appl. Climatol.
– volume: 135
  start-page: 122
  year: 2015
  end-page: 148
  ident: bb0115
  article-title: A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran
  publication-title: Catena
– volume: 37
  year: 2006
  ident: bb0210
  article-title: Tutorial on Support Vector Machine (svm)
– volume: 33
  start-page: 1
  year: 2010
  end-page: 39
  ident: bb0420
  article-title: Ensemble-based classifiers
  publication-title: Artif. Intell. Rev.
– volume: 65
  start-page: 135
  year: 2013
  end-page: 165
  ident: bb0120
  article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya
  publication-title: Nat. Hazards
– volume: 4
  start-page: 33
  year: 2007
  end-page: 41
  ident: bb0260
  article-title: Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models
  publication-title: Landslides
– volume: 74
  start-page: 413
  year: 2015
  end-page: 429
  ident: bb0275
  article-title: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea
  publication-title: Environ. Earth Sci.
– volume: 9
  start-page: 1
  year: 2016
  end-page: 15
  ident: bb0010
  article-title: Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: in an artificial reservoir area at Northern Turkey
  publication-title: Arab. J. Geosci.
– volume: 11
  start-page: 1063
  year: 2014
  end-page: 1078
  ident: bb0020
  article-title: A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping
  publication-title: Landslides
– volume: 119
  start-page: 36
  year: 2010
  end-page: 51
  ident: bb0045
  article-title: Analysis of landslide inventories for accurate prediction of debris-flow source areas
  publication-title: Geomorphology
– volume: 2
  start-page: 95
  year: 2009
  end-page: 101
  ident: bb0245
  article-title: Landslide susceptibility analysis with a bivariate approach and GIS in Northern Iran
  publication-title: Arab. J. Geosci.
– start-page: 75
  year: 2016
  ident: bb0075
  article-title: Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions
  publication-title: Environ. Earth Sci.
– volume: 19
  start-page: 113
  year: 2015
  end-page: 134
  ident: bb0525
  article-title: Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models
  publication-title: Geosci. J.
– volume: 9
  start-page: 1
  year: 2016
  end-page: 16
  ident: bb0065
  article-title: A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping
  publication-title: Arab. J. Geosci.
– volume: 259
  start-page: 105
  year: 2016
  end-page: 118
  ident: bb0180
  article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models
  publication-title: Geomorphology
– volume: 94
  start-page: 353
  year: 2008
  end-page: 378
  ident: bb0060
  article-title: Comparing models of debris-flow susceptibility in the alpine environment
  publication-title: Geomorphology
– volume: 81
  start-page: 65
  year: 2005
  end-page: 83
  ident: bb0155
  article-title: The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity
  publication-title: Eng. Geol.
– volume: 152
  start-page: 144
  year: 2017
  end-page: 162
  ident: bb0250
  article-title: Landslide susceptibility assessment using maximum entropy model with two different data sampling methods
  publication-title: Catena
– volume: 73
  start-page: 1
  year: 2015
  end-page: 22
  ident: bb0430
  article-title: Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran
  publication-title: Environ. Earth Sci.
– volume: 13
  start-page: 839
  year: 2016
  end-page: 856
  ident: bb0535
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
– start-page: 11
  year: 1978
  end-page: 33
  ident: bb0500
  article-title: Slope movement types and processes
  publication-title: Landslides, Analysis and Control, Special Report 176: Transportation Research Board
– volume: 67
  start-page: 23
  year: 2012
  end-page: 37
  ident: bb0270
  article-title: Ensemble-based landslide susceptibility maps in Jinbu area, Korea
  publication-title: Environ. Earth Sci.
– volume: 101
  start-page: 572
  year: 2008
  end-page: 582
  ident: bb0510
  article-title: Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China
  publication-title: Geomorphology
– volume: 72
  start-page: 4001
  year: 2014
  end-page: 4015
  ident: bb0450
  article-title: Flood susceptibility mapping using integrated bivariate and multivariate statistical models
  publication-title: Environ. Earth Sci.
– volume: 85
  start-page: 347
  year: 2006
  end-page: 366
  ident: bb0235
  article-title: A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas
  publication-title: Eng. Geol.
– volume: 145
  start-page: 164
  year: 2016
  end-page: 179
  ident: bb0485
  article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size
  publication-title: Catena
– volume: 8
  start-page: 9079
  year: 2015
  end-page: 9088
  ident: bb0540
  article-title: A comparative study of statistical index and certainty factor models in landslide susceptibility mapping: a case study for the Shangzhou District, Shaanxi Province, China
  publication-title: Arab. J. Geosci.
– volume: 118
  start-page: 124
  year: 2014
  end-page: 135
  ident: bb0495
  article-title: Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia
  publication-title: Catena
– volume: 13
  start-page: 305
  year: 2016
  end-page: 320
  ident: bb0490
  article-title: Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece
  publication-title: Landslides
– volume: 1398
  start-page: 137
  year: 1998
  end-page: 142
  ident: bb0230
  article-title: Text categorization with support vector machines: learning with many relevant features
  publication-title: Proceedings of European Conference on Machine Learning
– volume: 23
  start-page: 31
  year: 2002
  end-page: 41
  ident: bb0110
  article-title: Support vector machines and Kernel methods: the new generation of learning machines
  publication-title: AI Mag.
– volume: 13
  start-page: 97
  year: 2016
  end-page: 114
  ident: bb0305
  article-title: Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping
  publication-title: Landslides
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  ident: bb0355
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecol. Model.
– volume: 63
  start-page: 965
  year: 2012
  end-page: 996
  ident: bb0370
  article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Nat. Hazards
– volume: 56
  start-page: 299
  year: 2011
  end-page: 320
  ident: bb0150
  article-title: Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins
  publication-title: Nat. Hazards
– volume: 59
  start-page: 1413
  year: 2011
  end-page: 1444
  ident: bb0455
  article-title: Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression
  publication-title: Nat. Hazards
– year: 2014
  ident: bb0465
  article-title: A Comparative Assessment Between the Application of Fuzzy Unordered Rules Induction Algorithm and J48 Decision Tree Models in Spatial Prediction of Shallow Landslides at Lang Son City
– volume: 23
  start-page: 725
  year: 2002
  end-page: 749
  ident: bb0195
  article-title: An assessment of support vector machines for land cover classification
  publication-title: Int. J. Remote Sens.
– volume: 41
  start-page: 1776
  year: 2016
  end-page: 1789
  ident: bb0290
  article-title: Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy)
  publication-title: Earth Surf. Process. Landf.
– start-page: 1
  year: 2016
  end-page: 25
  ident: bb0365
  article-title: Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods
  publication-title: Theor. Appl. Climatol.
– year: 2013
  ident: bb0445
  article-title: A Gentle Introduction to Support Vector Machines in Biomedicine: Volume 2: Case Studies and Benchmarks
– volume: 32
  start-page: 367
  year: 2017
  end-page: 385
  ident: bb0080
  article-title: A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping
  publication-title: Geocarto Int.
– start-page: 472
  year: 2004
  end-page: 486
  ident: bb0135
  article-title: Performance guarantees for regularized maximum entropy density estimation
  publication-title: Learning Theory, Conference on Learning Theory, COLT 2004, Banff, Canada, July 1–4, 2004, Proceedings
– volume: 2012
  year: 2012
  ident: bb0460
  article-title: Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes models
  publication-title: Math. Probl. Eng.
– volume: 151
  start-page: 147
  year: 2017
  end-page: 160
  ident: bb0085
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: Catena
– volume: 63
  start-page: 397
  year: 2011
  end-page: 406
  ident: bb0105
  article-title: Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania)
  publication-title: Environ. Earth Sci.
– volume: 11
  start-page: 167
  year: 2014
  end-page: 194
  ident: bb0200
  article-title: The Varnes classification of landslide types, an update
  publication-title: Landslides
– volume: 74
  start-page: 1489
  year: 2014
  end-page: 1516
  ident: bb0480
  article-title: Estimating landslide susceptibility through an artificial neural network classifier
  publication-title: Nat. Hazards
– volume: 81
  start-page: 166
  year: 2006
  end-page: 184
  ident: bb0170
  article-title: Estimating the quality of landslide susceptibility models
  publication-title: Geomorphology
– volume: 11
  start-page: 909
  year: 2014
  end-page: 926
  ident: bb0205
  article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 5
  start-page: 1192
  year: 2015
  end-page: 1197
  ident: bb0160
  article-title: Maxent is not a presence–absence method: a comment on Thibaud et al.
  publication-title: Methods Ecol. Evol.
– volume: 133
  start-page: 266
  year: 2015
  end-page: 281
  ident: bb0175
  article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines
  publication-title: Catena
– volume: 13
  start-page: 361
  year: 2016
  end-page: 378
  ident: bb0475
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
– volume: 85
  start-page: 239
  year: 2001
  end-page: 248
  ident: bb0415
  article-title: Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA
  publication-title: Agric. Ecosyst. Environ.
– volume: 75
  start-page: 1
  year: 2016
  end-page: 20
  ident: bb0310
  article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran)
  publication-title: Environ. Earth Sci.
– volume: 75
  start-page: 1
  year: 2016
  end-page: 22
  ident: bb0470
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
  publication-title: Environ. Earth Sci.
– start-page: 419
  year: 2014
  end-page: 424
  ident: bb0125
  article-title: GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan
  publication-title: Landslide Science for a Safer Geoenvironment
– volume: 73
  start-page: 937
  year: 2015
  end-page: 949
  ident: bb0335
  article-title: Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets
  publication-title: Environ. Earth Sci.
– volume: 45
  start-page: 685
  year: 2007
  end-page: 693
  ident: bb0255
  article-title: Neural network emulations for complex multidimensional geophysical mappings: applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling
  publication-title: Rev. Geophys.
– volume: 2010
  start-page: 242
  year: 2010
  end-page: 256
  ident: bb0315
  article-title: Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey
  publication-title: Math. Probl. Eng.
– volume: 19
  start-page: 113
  year: 2006
  ident: bb0090
  article-title: 2006 special issue: computational intelligence in earth sciences and environmental applications: issues and challenges
  publication-title: Neural Netw.
– volume: 19
  start-page: 384
  year: 2010
  end-page: 397
  ident: bb0435
  article-title: Bioengineering techniques of slope stabilization and landslide mitigation
  publication-title: Disaster Prev Manag
– volume: 79
  start-page: 1621
  year: 2015
  end-page: 1648
  ident: bb0285
  article-title: Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy)
  publication-title: Nat. Hazards
– volume: 31
  start-page: 161
  year: 2008
  end-page: 175
  ident: bb0345
  article-title: Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation
  publication-title: Ecography
– volume: 75
  start-page: 1
  year: 2016
  end-page: 21
  ident: bb0055
  article-title: Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy)
  publication-title: Environ. Earth Sci.
– volume: 91
  start-page: 117
  year: 2007
  end-page: 134
  ident: bb0325
  article-title: Plan curvature and landslide probability in regions dominated by earth flows and earth slides
  publication-title: Eng. Geol.
– start-page: 1730
  year: 2016
  ident: bb0320
  article-title: Logistic Regression and Artificial Neural Network Models for Mapping of Regional-scale Landslide Susceptibility in Volcanic Mountains of West Java (Indonesia)
– volume: 71
  start-page: 289
  year: 2004
  end-page: 302
  ident: bb0265
  article-title: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network
  publication-title: Eng. Geol.
– volume: 75
  start-page: 1
  year: 2016
  end-page: 14
  ident: bb0185
  article-title: Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines
  publication-title: Environ. Earth Sci.
– volume: 37
  start-page: 1190
  year: 2016
  end-page: 1209
  ident: bb0025
  article-title: A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison
  publication-title: Int. J. Remote Sens.
– year: 2015
  ident: bb0295
  article-title: Application of Analytical Hierarchy Process (AHP) and Frequency Ratio (FR) Model in Assessing Landslide Susceptibility and Risk
– volume: 65
  start-page: 15
  year: 2005
  end-page: 31
  ident: bb0035
  article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan
  publication-title: Geomorphology
– volume: 118
  start-page: 53
  year: 2016
  end-page: 64
  ident: bb0095
  article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression
  publication-title: J. Afr. Earth Sci.
– volume: 20
  start-page: 117
  year: 2016
  end-page: 136
  ident: bb0505
  article-title: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network
  publication-title: Geosci. J.
– year: 2005
  ident: bb0240
  article-title: Support Vector Machines – An Introduction
– volume: 106
  start-page: 620
  year: 1957
  ident: bb0215
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
– start-page: 1
  year: 2016
  end-page: 24
  ident: bb0400
  article-title: Landslide susceptibility mapping of the Sera River Basin using logistic regression model
  publication-title: Nat. Hazards
– volume: 23
  start-page: 357
  year: 2002
  end-page: 369
  ident: bb0425
  article-title: GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas
  publication-title: Int. J. Remote Sens.
– volume: 7
  start-page: 725
  year: 2014
  end-page: 742
  ident: bb0410
  article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya
  publication-title: Arab. J. Geosci.
– volume: 108
  start-page: 171
  year: 1957
  ident: bb0220
  article-title: Information theory and statistical mechanics. II
  publication-title: Phys. Rev.
– volume: 85
  start-page: 1323
  year: 2017
  end-page: 1346
  ident: bb0405
  article-title: Landslide susceptibility mapping of the Sera River Basin using logistic regression model
  publication-title: Nat. Hazards
– volume: 16
  start-page: 37
  year: 2001
  end-page: 44
  ident: bb0030
  article-title: Multi-source classification using artificial neural network in a rugged terrain
  publication-title: Geocarto Int.
– year: 2011
  ident: bb0440
  article-title: A Gentle Introduction to Support Vector Machines in Biomedicine: Volume 1: Theory and Methods
– volume: 137
  start-page: 360
  year: 2016
  end-page: 372
  ident: bb0395
  article-title: Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran
  publication-title: Catena
– volume: 58
  start-page: 21
  year: 1999
  end-page: 44
  ident: bb0015
  article-title: Landslide hazard assessment: summary review and new perspectives
  publication-title: Bull. Eng. Geol. Environ.
– start-page: 83
  year: 2004
  ident: bb0350
  article-title: A maximum entropy approach to species distribution modeling
  publication-title: International Conference on Machine Learning
– volume: 51
  start-page: 350
  year: 2013
  end-page: 365
  ident: bb0380
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
– volume: 36
  start-page: 1409
  year: 2010
  end-page: 1416
  ident: bb0005
  article-title: Quantifying the effects of root reinforcement of Persian ironwood (
  publication-title: Ecol. Eng.
– volume: 75
  start-page: 63
  year: 2016
  end-page: 87
  ident: bb0530
  article-title: Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia
  publication-title: Bull. Eng. Geol. Environ.
– volume: 123
  start-page: 225
  year: 2011
  end-page: 234
  ident: bb0300
  article-title: Landslide susceptibility assessment using SVM machine learning algorithm
  publication-title: Eng. Geol.
– volume: 182
  start-page: 75
  year: 2005
  end-page: 90
  ident: bb0165
  article-title: Support vector machines for predicting distribution of Sudden Oak Death in California
  publication-title: Ecol. Model.
– volume: 50
  start-page: 363
  year: 2012
  end-page: 370
  ident: bb0390
  article-title: Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: a comparison of different transfer functions
  publication-title: Adv. Space Res.
– start-page: 1730
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0320
– volume: 2
  start-page: 95
  year: 2009
  ident: 10.1016/j.geoderma.2017.06.020_bb0245
  article-title: Landslide susceptibility analysis with a bivariate approach and GIS in Northern Iran
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-008-0022-0
– volume: 85
  start-page: 239
  year: 2001
  ident: 10.1016/j.geoderma.2017.06.020_bb0415
  article-title: Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(01)00187-6
– volume: 81
  start-page: 65
  year: 2005
  ident: 10.1016/j.geoderma.2017.06.020_bb0155
  article-title: The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2005.07.011
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0065
  article-title: A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-015-2150-7
– volume: 36
  start-page: 1409
  year: 2010
  ident: 10.1016/j.geoderma.2017.06.020_bb0005
  article-title: Quantifying the effects of root reinforcement of Persian ironwood (Parrotia persica) on slope stability; a case study: hillslope of Hyrcanian forests, northern Iran
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2010.06.020
– volume: 101
  start-page: 572
  year: 2008
  ident: 10.1016/j.geoderma.2017.06.020_bb0510
  article-title: Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.02.011
– volume: 75
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0310
  article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran)
  publication-title: Environ. Earth Sci.
– volume: 73
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0430
  article-title: Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4028-0
– volume: 63
  start-page: 397
  year: 2011
  ident: 10.1016/j.geoderma.2017.06.020_bb0105
  article-title: Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania)
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-010-0724-y
– volume: 79
  start-page: 1621
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0285
  article-title: Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy)
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1915-3
– volume: 58
  start-page: 21
  year: 1999
  ident: 10.1016/j.geoderma.2017.06.020_bb0015
  article-title: Landslide hazard assessment: summary review and new perspectives
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s100640050066
– start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0400
  article-title: Landslide susceptibility mapping of the Sera River Basin using logistic regression model
  publication-title: Nat. Hazards
– volume: 71
  start-page: 289
  year: 2004
  ident: 10.1016/j.geoderma.2017.06.020_bb0265
  article-title: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(03)00142-X
– year: 2013
  ident: 10.1016/j.geoderma.2017.06.020_bb0445
– year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0295
– volume: 23
  start-page: 357
  year: 2002
  ident: 10.1016/j.geoderma.2017.06.020_bb0425
  article-title: GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160010014260
– volume: 10
  start-page: 175
  year: 2013
  ident: 10.1016/j.geoderma.2017.06.020_bb0145
  article-title: Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study
  publication-title: Landslides
  doi: 10.1007/s10346-012-0320-1
– volume: 74
  start-page: 1489
  issue: 3
  year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0480
  article-title: Estimating landslide susceptibility through an artificial neural network classifier
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1245-x
– volume: 85
  start-page: 347
  year: 2006
  ident: 10.1016/j.geoderma.2017.06.020_bb0235
  article-title: A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2006.03.004
– volume: 74
  start-page: 1951
  issue: 3
  year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0280
  article-title: A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1285-2
– start-page: 83
  year: 2004
  ident: 10.1016/j.geoderma.2017.06.020_bb0350
  article-title: A maximum entropy approach to species distribution modeling
– volume: 32
  start-page: 139
  year: 2017
  ident: 10.1016/j.geoderma.2017.06.020_bb0190
  article-title: Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy
  publication-title: Geocarto Int.
– volume: 19
  start-page: 113
  year: 2006
  ident: 10.1016/j.geoderma.2017.06.020_bb0090
  article-title: 2006 special issue: computational intelligence in earth sciences and environmental applications: issues and challenges
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2006.01.001
– start-page: 472
  year: 2004
  ident: 10.1016/j.geoderma.2017.06.020_bb0135
  article-title: Performance guarantees for regularized maximum entropy density estimation
– volume: 45
  start-page: 685
  year: 2007
  ident: 10.1016/j.geoderma.2017.06.020_bb0255
  article-title: Neural network emulations for complex multidimensional geophysical mappings: applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling
  publication-title: Rev. Geophys.
  doi: 10.1029/2006RG000200
– volume: 75
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0185
  article-title: Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4866-9
– volume: 37
  year: 2006
  ident: 10.1016/j.geoderma.2017.06.020_bb0210
– volume: 13
  start-page: 305
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0490
  article-title: Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece
  publication-title: Landslides
  doi: 10.1007/s10346-015-0565-6
– volume: 2012
  year: 2012
  ident: 10.1016/j.geoderma.2017.06.020_bb0460
  article-title: Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes models
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2012/974638
– volume: 123
  start-page: 225
  year: 2011
  ident: 10.1016/j.geoderma.2017.06.020_bb0300
  article-title: Landslide susceptibility assessment using SVM machine learning algorithm
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2011.09.006
– volume: 106
  start-page: 620
  year: 1957
  ident: 10.1016/j.geoderma.2017.06.020_bb0215
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.620
– volume: 97
  start-page: 262
  year: 2000
  ident: 10.1016/j.geoderma.2017.06.020_bb0050
  article-title: Knowledge-based analysis of microarray gene expression data by using support vector machines
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.97.1.262
– volume: 23
  start-page: 31
  year: 2002
  ident: 10.1016/j.geoderma.2017.06.020_bb0110
  article-title: Support vector machines and Kernel methods: the new generation of learning machines
  publication-title: AI Mag.
– volume: 11
  start-page: 167
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0200
  article-title: The Varnes classification of landslide types, an update
  publication-title: Landslides
  doi: 10.1007/s10346-013-0436-y
– volume: 19
  start-page: 113
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0525
  article-title: Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models
  publication-title: Geosci. J.
  doi: 10.1007/s12303-014-0032-8
– volume: 13
  start-page: 361
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0475
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
  doi: 10.1007/s10346-015-0557-6
– volume: 51
  start-page: 350
  year: 2013
  ident: 10.1016/j.geoderma.2017.06.020_bb0380
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.023
– volume: 41
  start-page: 1776
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0290
  article-title: Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy)
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.3998
– volume: 190
  start-page: 231
  year: 2006
  ident: 10.1016/j.geoderma.2017.06.020_bb0355
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2005.03.026
– volume: 85
  start-page: 1323
  year: 2017
  ident: 10.1016/j.geoderma.2017.06.020_bb0405
  article-title: Landslide susceptibility mapping of the Sera River Basin using logistic regression model
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2591-7
– year: 2011
  ident: 10.1016/j.geoderma.2017.06.020_bb0440
– volume: 75
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0360
  article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4950-1
– volume: 56
  start-page: 299
  year: 2011
  ident: 10.1016/j.geoderma.2017.06.020_bb0150
  article-title: Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-010-9569-7
– volume: 16
  start-page: 37
  year: 2001
  ident: 10.1016/j.geoderma.2017.06.020_bb0030
  article-title: Multi-source classification using artificial neural network in a rugged terrain
  publication-title: Geocarto Int.
  doi: 10.1080/10106040108542202
– volume: 75
  start-page: 1
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0055
  article-title: Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy)
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-5047-6
– volume: 68
  start-page: 459
  year: 2009
  ident: 10.1016/j.geoderma.2017.06.020_bb0520
  article-title: GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey)
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-009-0188-z
– volume: 137
  start-page: 360
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0395
  article-title: Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2015.10.010
– volume: 2010
  start-page: 242
  year: 2010
  ident: 10.1016/j.geoderma.2017.06.020_bb0315
  article-title: Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2010/901095
– volume: 133
  start-page: 266
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0175
  article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines
  publication-title: Catena
  doi: 10.1016/j.catena.2015.05.019
– volume: 81
  start-page: 166
  year: 2006
  ident: 10.1016/j.geoderma.2017.06.020_bb0170
  article-title: Estimating the quality of landslide susceptibility models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.04.007
– volume: 94
  start-page: 353
  year: 2008
  ident: 10.1016/j.geoderma.2017.06.020_bb0060
  article-title: Comparing models of debris-flow susceptibility in the alpine environment
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.10.033
– year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0465
– volume: 73
  start-page: 937
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0335
  article-title: Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-014-3442-z
– volume: 114
  year: 1998
  ident: 10.1016/j.geoderma.2017.06.020_bb0040
  article-title: Environmental geology: principles and practice
  publication-title: Geophys. Monogr.
– volume: 8
  start-page: 9079
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0540
  article-title: A comparative study of statistical index and certainty factor models in landslide susceptibility mapping: a case study for the Shangzhou District, Shaanxi Province, China
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-015-1891-7
– volume: 20
  start-page: 117
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0505
  article-title: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network
  publication-title: Geosci. J.
  doi: 10.1007/s12303-015-0026-1
– volume: 63
  start-page: 965
  year: 2012
  ident: 10.1016/j.geoderma.2017.06.020_bb0370
  article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0217-2
– start-page: 11
  year: 1978
  ident: 10.1016/j.geoderma.2017.06.020_bb0500
  article-title: Slope movement types and processes
– volume: 50
  start-page: 363
  year: 2012
  ident: 10.1016/j.geoderma.2017.06.020_bb0390
  article-title: Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: a comparison of different transfer functions
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2012.04.010
– volume: 118
  start-page: 53
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0095
  article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression
  publication-title: J. Afr. Earth Sci.
  doi: 10.1016/j.jafrearsci.2016.02.019
– volume: 75
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0470
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5919-4
– start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0365
  article-title: Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods
  publication-title: Theor. Appl. Climatol.
– volume: 13
  start-page: 97
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0305
  article-title: Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping
  publication-title: Landslides
  doi: 10.1007/s10346-014-0547-0
– volume: 32
  start-page: 367
  year: 2017
  ident: 10.1016/j.geoderma.2017.06.020_bb0080
  article-title: A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2016.1140824
– volume: 108
  start-page: 171
  year: 1957
  ident: 10.1016/j.geoderma.2017.06.020_bb0220
  article-title: Information theory and statistical mechanics. II
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.171
– volume: 261
  start-page: 222
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0100
  article-title: Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.03.006
– volume: 151
  start-page: 147
  year: 2017
  ident: 10.1016/j.geoderma.2017.06.020_bb0085
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2016.11.032
– volume: 11
  start-page: 1063
  year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0020
  article-title: A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping
  publication-title: Landslides
  doi: 10.1007/s10346-014-0466-0
– volume: 152
  start-page: 150
  year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0225
  article-title: Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.05.013
– volume: 182
  start-page: 75
  year: 2005
  ident: 10.1016/j.geoderma.2017.06.020_bb0165
  article-title: Support vector machines for predicting distribution of Sudden Oak Death in California
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2004.07.012
– volume: 135
  start-page: 122
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0115
  article-title: A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2015.07.020
– volume: 26
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0130
  article-title: Shallow and deep-seated landslide differentiation using support vector machines: a case study of the Chuetsu Area, Japan
  publication-title: Terr. Atmos. Ocean. Sci.
  doi: 10.3319/TAO.2014.12.02.07(EOSI)
– volume: 11
  start-page: 909
  year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0205
  article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-013-0464-0
– volume: 75
  start-page: 63
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0530
  article-title: Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-015-0734-9
– year: 2005
  ident: 10.1016/j.geoderma.2017.06.020_bb0240
– volume: 152
  start-page: 144
  year: 2017
  ident: 10.1016/j.geoderma.2017.06.020_bb0250
  article-title: Landslide susceptibility assessment using maximum entropy model with two different data sampling methods
  publication-title: Catena
  doi: 10.1016/j.catena.2017.01.010
– volume: 74
  start-page: 413
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0275
  article-title: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4048-9
– volume: 72
  start-page: 4001
  year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0450
  article-title: Flood susceptibility mapping using integrated bivariate and multivariate statistical models
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-014-3289-3
– volume: 7
  start-page: 725
  year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0410
  article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0807-z
– volume: 3
  start-page: 319
  year: 2010
  ident: 10.1016/j.geoderma.2017.06.020_bb0385
  article-title: Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-009-0089-2
– volume: 5
  start-page: 1192
  issue: 11
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0160
  article-title: Maxent is not a presence–absence method: a comment on Thibaud et al.
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12252
– start-page: 75
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0075
  article-title: Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions
  publication-title: Environ. Earth Sci.
– start-page: 419
  year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0125
  article-title: GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan
– volume: 65
  start-page: 15
  year: 2005
  ident: 10.1016/j.geoderma.2017.06.020_bb0035
  article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 259
  start-page: 105
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0180
  article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– volume: 145
  start-page: 164
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0485
  article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size
  publication-title: Catena
  doi: 10.1016/j.catena.2016.06.004
– volume: 118
  start-page: 124
  year: 2014
  ident: 10.1016/j.geoderma.2017.06.020_bb0495
  article-title: Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia
  publication-title: Catena
  doi: 10.1016/j.catena.2014.02.005
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.geoderma.2017.06.020_bb0420
  article-title: Ensemble-based classifiers
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-009-9124-7
– volume: 23
  start-page: 725
  year: 2002
  ident: 10.1016/j.geoderma.2017.06.020_bb0195
  article-title: An assessment of support vector machines for land cover classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110040323
– start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2017.06.020_bb0340
  article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods
  publication-title: Theor. Appl. Climatol.
– volume: 75
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0070
  article-title: GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China
  publication-title: Environ. Earth Sci.
– volume: 13
  start-page: 839
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0535
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– volume: 1398
  start-page: 137
  year: 1998
  ident: 10.1016/j.geoderma.2017.06.020_bb0230
  article-title: Text categorization with support vector machines: learning with many relevant features
– volume: 19
  start-page: 384
  year: 2010
  ident: 10.1016/j.geoderma.2017.06.020_bb0435
  article-title: Bioengineering techniques of slope stabilization and landslide mitigation
  publication-title: Disaster Prev Manag
  doi: 10.1108/09653561011052547
– volume: 64
  start-page: 180
  year: 2013
  ident: 10.1016/j.geoderma.2017.06.020_bb0330
  article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2012.12.014
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0010
  article-title: Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: in an artificial reservoir area at Northern Turkey
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-015-2142-7
– volume: 65
  start-page: 135
  year: 2013
  ident: 10.1016/j.geoderma.2017.06.020_bb0120
  article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0347-6
– volume: 4
  start-page: 33
  year: 2007
  ident: 10.1016/j.geoderma.2017.06.020_bb0260
  article-title: Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models
  publication-title: Landslides
  doi: 10.1007/s10346-006-0047-y
– volume: 37
  start-page: 1190
  year: 2016
  ident: 10.1016/j.geoderma.2017.06.020_bb0025
  article-title: A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1148282
– volume: 67
  start-page: 23
  year: 2012
  ident: 10.1016/j.geoderma.2017.06.020_bb0270
  article-title: Ensemble-based landslide susceptibility maps in Jinbu area, Korea
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1477-y
– volume: 59
  start-page: 1413
  year: 2011
  ident: 10.1016/j.geoderma.2017.06.020_bb0455
  article-title: Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-011-9844-2
– volume: 91
  start-page: 117
  year: 2007
  ident: 10.1016/j.geoderma.2017.06.020_bb0325
  article-title: Plan curvature and landslide probability in regions dominated by earth flows and earth slides
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2007.01.005
– volume: 31
  start-page: 161
  year: 2008
  ident: 10.1016/j.geoderma.2017.06.020_bb0345
  article-title: Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation
  publication-title: Ecography
  doi: 10.1111/j.0906-7590.2008.5203.x
– volume: 119
  start-page: 36
  year: 2010
  ident: 10.1016/j.geoderma.2017.06.020_bb0045
  article-title: Analysis of landslide inventories for accurate prediction of debris-flow source areas
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.02.017
– volume: 79
  start-page: 251
  year: 2005
  ident: 10.1016/j.geoderma.2017.06.020_bb0515
  article-title: Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2005.02.002
SSID ssj0017020
Score 2.6281052
Snippet “Spatial contraindication” is what exactly landslide susceptibility models have been seeking. They are designed for depicting perilous land activities, be it...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 314
SubjectTerms agricultural land
ANN
chi-square distribution
China
Ensemble models
environmental factors
land cover
land use
landslides
limestone
Maximum entropy
neural networks
normalized difference vegetation index
prediction
rivers
roads
Spatial modeling
support vector machines
SVM
topography
Title Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques
URI https://dx.doi.org/10.1016/j.geoderma.2017.06.020
https://www.proquest.com/docview/2000450973
Volume 305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvQgPvFZVvBobLPZvLyV0lIfzcUHvYXsq7S0qdgUPPnbnUk3RUXoweOG3SXMTOZBvvmGkCtXaC65zx0Bsd3h0jVOpCQkcl7GMsYgiS55CvpJ0Hvh9wN_sEHaVS8Mwiqt71_69NJb2ycNK83G22iEPb5uEEI4csFIIexi3c55iFZ-87mCebhh01IzuoGDu791CY9BRzhwrOQfcsOSxxPnfv8doH656jL-dHfJjk0caWv5bntkQ-f7ZLs1fLfkGfqAjB6xb3cyUprOESgN28tBNxCdbukdQtLVQsKCQipNoXzVUzHRczoztJUk17SffXTy4prCJfTptU-nJc5SUztYYkhXfK_zQ_LS7Ty3e44dpeBkXhAVTqhcpgUiRKQwESQZMpOR4QyWPNYgPBMLX4vQj1XTU6GQKsPizDNNCfWhJ7wjUstnuT4mNGBSeQJ59iH6m8CIwGcmgrQE1KtiZk6IX8kvlZZnHMddTNIKUDZOK7mnKPcUkXWseUIaq3NvS6aNtSfiSj3pD5tJIRysPXtZ6TOFDwr_kmS5ni3mOJcT0lxkMTr9x_1nZAtXy67Fc1Ir3hf6AtKXQtRL-6yTzdbdQy_5AtyX8I8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONAeKh5FBUq7leCGG3v9RuohKqCkJLkUKm6L94WCgoNworaX_in-YGecdUQREgfE0Y9dWbOz883K33wDsBtIE6kojjyJ2O5FKrBephUmcmHBC84xia51CvqDpHMWfT-PzxfgrqmFIVqli_2zmF5Ha3en5azZuhkOqcY3SFKEowCdFGHXd8zKE_PnF57bqq_dQ1zkPc6Pj06_dTzXWsArwiSbeKkOuJHEmFDSZgi6qlCZjTheRrnByWwuYyPTONd-qFOpdEGHldD6Cs9LoQxx3lewFGG4oLYJX_7OeSVB6jstyCDx6PPulSVfoVNQh7Na8ChIa-FQajT-OCI-wIYa8I5X4K3LVFl7ZoxVWDDlGrxpX946tQ6zDsMeFQqPhtqwipjZ-HrdWQfh8IB1iQOvpwovGObuDM_L5lqOTMXGlrUHg33WL34flZN9hpOwHz_77LomdhrmOllcsrnAbPUOzl7EwBuwWI5L8x5YwpUOJQn7Y7phEyuTmNsM8yD0J51zuwlxYz-hnLA59dcYiYbBdiUauwuyuyAqH_c3oTUfdzOT9nhyRN4sj_jPSQXiz5NjPzfrKXAH02-ZojTjaUWNQDGvJtmkrWfM_wmWO6f9nuh1Byfb8JqezEomP8Di5HZqdjB3msiPta8yuHjpzfEPMsMuoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+spatial+modeling%3A+Introducing+new+ensembles+of+ANN%2C+MaxEnt%2C+and+SVM+machine+learning+techniques&rft.jtitle=Geoderma&rft.au=Chen%2C+Wei&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Kornejady%2C+Aiding&rft.au=Zhang%2C+Ning&rft.date=2017-11-01&rft.issn=0016-7061&rft_id=info:doi/10.1016%2Fj.geoderma.2017.06.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon