Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques
“Spatial contraindication” is what exactly landslide susceptibility models have been seeking. They are designed for depicting perilous land activities, be it natural or anthropological. To find this pattern, three well-known machine learning models namely maximum entropy (MaxEnt), support vector mac...
Saved in:
Published in | Geoderma Vol. 305; pp. 314 - 327 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | “Spatial contraindication” is what exactly landslide susceptibility models have been seeking. They are designed for depicting perilous land activities, be it natural or anthropological. To find this pattern, three well-known machine learning models namely maximum entropy (MaxEnt), support vector machine (SVM), and Artificial Neural Network (ANN) were used accompanied by their ensembles (i.e. ANN-SVM, ANN-MaxEnt, ANN-MaxEnt-SVM, and SVM-MaxEnt) in Wanyuan area, China. The models were designed by eleven conditioning factors such as elevation, slope degree, slope aspect, profile and plan curvatures, topographic wetness index, distance to roads, distance to rivers, normalized difference vegetation index (NDVI), land use/land cover (LU/LC), and lithology along with two sets of training (213#) and testing (91#) landslide data. A statistical index (SI) model was implemented to examine the mutual relationship between classes of each factor and the landslide occurrences. Concerning the areal differentiation, the chi-square test was used where SVM and MaxEnt gained the highest and the lowest values, respectively. Afterward, the practicality — as an indicator of producing a focused susceptibility map and addressing highly susceptible classes (IV and V) in a compendious manner with a reduced spatial area — was calculated for models. Accordingly, SVM and MaxEnt were found to be the most and the least practical models having the highest and the lowest spatial area in highly susceptible classes, respectively. The receiver operating characteristic (ROC) curve was used to examine generalization and prediction accuracy of the models. As a result, in the case of validating models separately, ANN gained the highest area under the curve (AUC) with a value of 0.824, followed by SVM (0.819), and MaxEnt (0.75). In the case of validating ensemble models, the ANN-SVM had the highest AUC of all (0.826), followed by ANN-MaxEnt (0.803), SVM-MaxEnt (0.792), and ANN-MaxEnt-SVM (0.811). With regard to the premier model results, three factors namely distance from roads, elevation, and distance from rivers had the highest effect on landslide occurrence. The results of the SI values showed that the spatial combination of the main drivers namely farmlands, −0.06–0.2 range in NDVI, rocks with inter-bedded limestone and other susceptible classes therein can make at least a prone area of about 30% to landsliding. Such spatial combination of environmental condition and human-made activities can be considered as a contraindication for the residents of the study area, especially at highly susceptible locations. This also addresses areas that further mitigation plans should be taken into account with urgency.
•Landslide spatial modeling using machine learning techniques•Introducing some new ensemble models of ANN, MaxEnt, and SVM machine learning techniques•Selection of the best single or ensemble models for regional modeling of landslide |
---|---|
AbstractList | “Spatial contraindication” is what exactly landslide susceptibility models have been seeking. They are designed for depicting perilous land activities, be it natural or anthropological. To find this pattern, three well-known machine learning models namely maximum entropy (MaxEnt), support vector machine (SVM), and Artificial Neural Network (ANN) were used accompanied by their ensembles (i.e. ANN-SVM, ANN-MaxEnt, ANN-MaxEnt-SVM, and SVM-MaxEnt) in Wanyuan area, China. The models were designed by eleven conditioning factors such as elevation, slope degree, slope aspect, profile and plan curvatures, topographic wetness index, distance to roads, distance to rivers, normalized difference vegetation index (NDVI), land use/land cover (LU/LC), and lithology along with two sets of training (213#) and testing (91#) landslide data. A statistical index (SI) model was implemented to examine the mutual relationship between classes of each factor and the landslide occurrences. Concerning the areal differentiation, the chi-square test was used where SVM and MaxEnt gained the highest and the lowest values, respectively. Afterward, the practicality — as an indicator of producing a focused susceptibility map and addressing highly susceptible classes (IV and V) in a compendious manner with a reduced spatial area — was calculated for models. Accordingly, SVM and MaxEnt were found to be the most and the least practical models having the highest and the lowest spatial area in highly susceptible classes, respectively. The receiver operating characteristic (ROC) curve was used to examine generalization and prediction accuracy of the models. As a result, in the case of validating models separately, ANN gained the highest area under the curve (AUC) with a value of 0.824, followed by SVM (0.819), and MaxEnt (0.75). In the case of validating ensemble models, the ANN-SVM had the highest AUC of all (0.826), followed by ANN-MaxEnt (0.803), SVM-MaxEnt (0.792), and ANN-MaxEnt-SVM (0.811). With regard to the premier model results, three factors namely distance from roads, elevation, and distance from rivers had the highest effect on landslide occurrence. The results of the SI values showed that the spatial combination of the main drivers namely farmlands, −0.06–0.2 range in NDVI, rocks with inter-bedded limestone and other susceptible classes therein can make at least a prone area of about 30% to landsliding. Such spatial combination of environmental condition and human-made activities can be considered as a contraindication for the residents of the study area, especially at highly susceptible locations. This also addresses areas that further mitigation plans should be taken into account with urgency. “Spatial contraindication” is what exactly landslide susceptibility models have been seeking. They are designed for depicting perilous land activities, be it natural or anthropological. To find this pattern, three well-known machine learning models namely maximum entropy (MaxEnt), support vector machine (SVM), and Artificial Neural Network (ANN) were used accompanied by their ensembles (i.e. ANN-SVM, ANN-MaxEnt, ANN-MaxEnt-SVM, and SVM-MaxEnt) in Wanyuan area, China. The models were designed by eleven conditioning factors such as elevation, slope degree, slope aspect, profile and plan curvatures, topographic wetness index, distance to roads, distance to rivers, normalized difference vegetation index (NDVI), land use/land cover (LU/LC), and lithology along with two sets of training (213#) and testing (91#) landslide data. A statistical index (SI) model was implemented to examine the mutual relationship between classes of each factor and the landslide occurrences. Concerning the areal differentiation, the chi-square test was used where SVM and MaxEnt gained the highest and the lowest values, respectively. Afterward, the practicality — as an indicator of producing a focused susceptibility map and addressing highly susceptible classes (IV and V) in a compendious manner with a reduced spatial area — was calculated for models. Accordingly, SVM and MaxEnt were found to be the most and the least practical models having the highest and the lowest spatial area in highly susceptible classes, respectively. The receiver operating characteristic (ROC) curve was used to examine generalization and prediction accuracy of the models. As a result, in the case of validating models separately, ANN gained the highest area under the curve (AUC) with a value of 0.824, followed by SVM (0.819), and MaxEnt (0.75). In the case of validating ensemble models, the ANN-SVM had the highest AUC of all (0.826), followed by ANN-MaxEnt (0.803), SVM-MaxEnt (0.792), and ANN-MaxEnt-SVM (0.811). With regard to the premier model results, three factors namely distance from roads, elevation, and distance from rivers had the highest effect on landslide occurrence. The results of the SI values showed that the spatial combination of the main drivers namely farmlands, −0.06–0.2 range in NDVI, rocks with inter-bedded limestone and other susceptible classes therein can make at least a prone area of about 30% to landsliding. Such spatial combination of environmental condition and human-made activities can be considered as a contraindication for the residents of the study area, especially at highly susceptible locations. This also addresses areas that further mitigation plans should be taken into account with urgency. •Landslide spatial modeling using machine learning techniques•Introducing some new ensemble models of ANN, MaxEnt, and SVM machine learning techniques•Selection of the best single or ensemble models for regional modeling of landslide |
Author | Chen, Wei Pourghasemi, Hamid Reza Kornejady, Aiding Zhang, Ning |
Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei organization: College of Geology & Environment, Xi'an University of Science and Technology, Xi'an 710054, China – sequence: 2 givenname: Hamid Reza orcidid: 0000-0003-2328-2998 surname: Pourghasemi fullname: Pourghasemi, Hamid Reza email: hr.pourghasemi@shirazu.ac.ir organization: Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran – sequence: 3 givenname: Aiding surname: Kornejady fullname: Kornejady, Aiding organization: Department of Watershed Sciences and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran – sequence: 4 givenname: Ning surname: Zhang fullname: Zhang, Ning organization: College of Geology & Environment, Xi'an University of Science and Technology, Xi'an 710054, China |
BookMark | eNqFkMFO3DAURS1EpQ6UX6i8ZEHCczKxk6qLIkQL0kAXpd1ajv0MHjn21M4U-vf1aGDTDaunK91zn3SOyGGIAQn5yKBmwPj5un7AaDBNqm6AiRp4DQ0ckAXrRVPxphsOyQJKsxLA2XtylPO6RFFKC-JWKpjsnUGaN2p2ytOpjHkXHj7RmzCnaLa6BBrwiWLIOI0eM42WXtzdndFb9XwV5jNaRuiPX7d0UvrRBaQeVQo7bEb9GNzvLeYP5J1VPuPJyz0mP79e3V9eV6vv324uL1aVank_V8KwBkdrUevR9rzttNK9XTYlLgfsB7DD2OEousFAa8SojYKGs9aCZiDasT0mp_vdTYq7v7OcXNbovQoYt1k2ALDsYBBtqfJ9VaeYc0IrN8lNKv2VDOTOrVzLV7dy51YCl0VbAT__B2o3F3uxCFPOv41_2eNYPPxxmGTWDoNG4xLqWZro3pr4B8i1naU |
CitedBy_id | crossref_primary_10_1007_s10064_023_03176_6 crossref_primary_10_3390_agronomy12122930 crossref_primary_10_1007_s12145_021_00738_8 crossref_primary_10_1080_10106049_2019_1585482 crossref_primary_10_1007_s11629_022_7698_6 crossref_primary_10_1007_s12145_024_01539_5 crossref_primary_10_1016_j_catena_2019_104240 crossref_primary_10_1109_ACCESS_2019_2936669 crossref_primary_10_1002_ldr_4268 crossref_primary_10_1007_s10346_019_01320_6 crossref_primary_10_3389_feart_2021_722491 crossref_primary_10_1016_j_catena_2019_104364 crossref_primary_10_1016_j_scitotenv_2018_11_235 crossref_primary_10_19111_bulletinofmre_649758 crossref_primary_10_1007_s10064_018_1401_8 crossref_primary_10_1016_j_ifacol_2018_09_581 crossref_primary_10_1080_19475705_2017_1401560 crossref_primary_10_1016_j_scitotenv_2017_09_262 crossref_primary_10_1007_s10668_022_02314_6 crossref_primary_10_1007_s10064_022_02761_5 crossref_primary_10_1016_j_catena_2018_08_025 crossref_primary_10_1016_j_cosrev_2020_100237 crossref_primary_10_1007_s10064_024_03980_8 crossref_primary_10_3390_rs14010211 crossref_primary_10_1007_s00477_023_02521_1 crossref_primary_10_1007_s11069_024_06696_w crossref_primary_10_1007_s11356_020_11406_7 crossref_primary_10_1007_s12665_017_7177_5 crossref_primary_10_3390_sym12111848 crossref_primary_10_1007_s12665_018_7268_y crossref_primary_10_1139_cgj_2023_0105 crossref_primary_10_3799_dqkx_2022_419 crossref_primary_10_1016_j_chemphys_2025_112603 crossref_primary_10_1007_s12665_021_09510_z crossref_primary_10_17491_jgsi_2024_173894 crossref_primary_10_1016_j_ecolind_2020_106300 crossref_primary_10_1016_j_catena_2019_104221 crossref_primary_10_1016_j_ijdrr_2021_102614 crossref_primary_10_1111_tgis_13202 crossref_primary_10_1590_01047760202228012976 crossref_primary_10_1016_j_catena_2018_12_035 crossref_primary_10_1080_10106049_2022_2136255 crossref_primary_10_1016_j_ecolind_2022_109390 crossref_primary_10_1515_geo_2020_0206 crossref_primary_10_1371_journal_pone_0235780 crossref_primary_10_3390_s21134254 crossref_primary_10_3799_dqkx_2022_407 crossref_primary_10_1007_s13201_022_01599_2 crossref_primary_10_3389_feart_2022_861057 crossref_primary_10_1016_j_aiig_2022_07_001 crossref_primary_10_3390_e21070695 crossref_primary_10_1007_s12665_019_8415_9 crossref_primary_10_1080_19475705_2021_1955018 crossref_primary_10_3390_molecules25235529 crossref_primary_10_1016_j_geomorph_2021_107660 crossref_primary_10_3390_ijerph16152801 crossref_primary_10_1016_j_ecolind_2020_106096 crossref_primary_10_1007_s11069_021_05013_z crossref_primary_10_1016_j_geomorph_2023_108795 crossref_primary_10_1016_j_ecolind_2019_04_034 crossref_primary_10_14710_jwl_11_1_92_107 crossref_primary_10_1016_j_pce_2021_103052 crossref_primary_10_1080_19475705_2023_2227324 crossref_primary_10_1002_ppp_2135 crossref_primary_10_3390_app10114016 crossref_primary_10_1093_jrsssc_qlad077 crossref_primary_10_3390_sym12061047 crossref_primary_10_1007_s11629_020_6497_1 crossref_primary_10_1007_s13595_020_00992_8 crossref_primary_10_1007_s42452_020_3060_1 crossref_primary_10_1080_17499518_2022_2088803 crossref_primary_10_1080_15481603_2024_2349343 crossref_primary_10_1007_s10064_018_1403_6 crossref_primary_10_1016_j_geomorph_2017_09_007 crossref_primary_10_1016_j_catena_2018_01_005 crossref_primary_10_1016_j_ecolind_2024_111920 crossref_primary_10_1007_s00168_021_01101_x crossref_primary_10_1109_JSTARS_2020_3045278 crossref_primary_10_3390_rs13244966 crossref_primary_10_1007_s12517_024_12022_2 crossref_primary_10_3390_su14148426 crossref_primary_10_3390_cli13010011 crossref_primary_10_3390_e21040372 crossref_primary_10_3390_s19030542 crossref_primary_10_3390_en14164850 crossref_primary_10_1016_j_catena_2018_01_012 crossref_primary_10_1007_s11069_020_04429_3 crossref_primary_10_1007_s11709_021_0727_7 crossref_primary_10_15531_KSCCR_2024_15_4_477 crossref_primary_10_1016_j_rsase_2025_101520 crossref_primary_10_3390_su15129467 crossref_primary_10_1177_0144598718822400 crossref_primary_10_3390_land13071039 crossref_primary_10_3390_rs12111890 crossref_primary_10_1007_s11069_023_05857_7 crossref_primary_10_1016_j_jmst_2020_12_010 crossref_primary_10_1007_s00477_018_1518_0 crossref_primary_10_1002_ppp_2232 crossref_primary_10_1007_s11069_024_06673_3 crossref_primary_10_3390_rs13244991 crossref_primary_10_1007_s11356_023_27799_0 crossref_primary_10_3390_rs14194899 crossref_primary_10_1007_s10661_024_13284_9 crossref_primary_10_3390_min10121126 crossref_primary_10_1016_j_frl_2023_104251 crossref_primary_10_1007_s11004_023_10044_2 crossref_primary_10_1007_s12665_021_09788_z crossref_primary_10_1108_SR_02_2019_0051 crossref_primary_10_3390_rs14225658 crossref_primary_10_1016_j_ecoleng_2025_107581 crossref_primary_10_1016_j_scitotenv_2019_04_306 crossref_primary_10_1007_s11356_024_34501_5 crossref_primary_10_1007_s12040_020_1342_z crossref_primary_10_1002_gj_4683 crossref_primary_10_1038_s41598_021_03743_5 crossref_primary_10_1007_s11069_020_04371_4 crossref_primary_10_3390_rs13112166 crossref_primary_10_1007_s11069_022_05325_8 crossref_primary_10_1016_j_catena_2019_104150 crossref_primary_10_1088_1755_1315_767_1_012042 crossref_primary_10_15531_KSCCR_2023_14_2_145 crossref_primary_10_3390_app132312817 crossref_primary_10_1002_esp_4999 crossref_primary_10_3390_land11030317 crossref_primary_10_1016_j_geoderma_2020_114367 crossref_primary_10_1016_j_envsoft_2018_01_004 crossref_primary_10_1063_1_5090915 crossref_primary_10_1080_10106049_2018_1425738 crossref_primary_10_1007_s11069_018_3356_2 crossref_primary_10_1016_j_catena_2019_104396 crossref_primary_10_1016_j_catena_2021_105189 crossref_primary_10_1007_s12145_024_01496_z crossref_primary_10_3390_app9010171 crossref_primary_10_3390_rs15071886 crossref_primary_10_1080_19475705_2017_1362038 crossref_primary_10_1155_2020_4310791 crossref_primary_10_9798_KOSHAM_2021_21_3_141 crossref_primary_10_1007_s12665_017_7207_3 crossref_primary_10_3389_fenvs_2022_1028373 crossref_primary_10_3390_app10010016 crossref_primary_10_1007_s00500_021_06105_5 crossref_primary_10_1007_s12665_021_09650_2 crossref_primary_10_1016_j_catena_2022_106161 crossref_primary_10_1144_qjegh2023_144 crossref_primary_10_3390_rs14225795 crossref_primary_10_1007_s10462_022_10283_5 crossref_primary_10_1016_j_jenvman_2023_119727 crossref_primary_10_1016_j_geomorph_2021_108027 crossref_primary_10_1080_19475683_2022_2040587 crossref_primary_10_1016_j_cscm_2023_e01952 crossref_primary_10_1016_j_jhydrol_2019_124536 crossref_primary_10_1016_j_rsase_2020_100323 crossref_primary_10_3390_w13010107 crossref_primary_10_21923_jesd_1391818 crossref_primary_10_1007_s11356_021_17956_8 crossref_primary_10_3390_w11102049 crossref_primary_10_1007_s11629_020_6277_y crossref_primary_10_1016_j_hydres_2024_04_001 crossref_primary_10_1088_1755_1315_884_1_012006 crossref_primary_10_1007_s12517_021_06843_8 crossref_primary_10_3390_s19102274 crossref_primary_10_1080_19475705_2023_2213807 crossref_primary_10_3390_s22155587 crossref_primary_10_1007_s00477_021_02035_8 crossref_primary_10_3390_ijgi9120696 crossref_primary_10_1007_s12665_021_10033_w crossref_primary_10_1016_j_catena_2023_107781 crossref_primary_10_3389_feart_2023_1135018 crossref_primary_10_52547_jwmr_11_21_249 crossref_primary_10_3390_rs15204952 crossref_primary_10_1016_j_ecolind_2020_106591 crossref_primary_10_3390_su11123452 crossref_primary_10_3390_su15010006 crossref_primary_10_1016_j_geomorph_2024_109522 crossref_primary_10_55779_ng2352 crossref_primary_10_3390_app122010544 crossref_primary_10_3390_rs12030486 crossref_primary_10_3390_w13192632 crossref_primary_10_1007_s10712_020_09609_1 crossref_primary_10_1016_j_ecolind_2020_106825 crossref_primary_10_3390_w11102013 crossref_primary_10_1038_s41598_023_30009_z crossref_primary_10_1007_s11629_018_5168_y crossref_primary_10_1002_ldr_3794 crossref_primary_10_1016_j_ijdrr_2020_101642 crossref_primary_10_3390_app15063386 crossref_primary_10_1007_s11629_019_5839_3 crossref_primary_10_1007_s11356_023_28575_w crossref_primary_10_1016_j_fuel_2020_118684 crossref_primary_10_1007_s12665_023_10952_w crossref_primary_10_1080_12265934_2021_1997633 crossref_primary_10_1155_2021_4832864 crossref_primary_10_3390_land13101583 crossref_primary_10_1007_s12524_018_0800_4 crossref_primary_10_3390_w10040385 crossref_primary_10_1016_j_scitotenv_2019_03_496 crossref_primary_10_1007_s12524_022_01649_x crossref_primary_10_1080_10106049_2018_1489422 crossref_primary_10_1016_j_scitotenv_2018_02_170 crossref_primary_10_1016_j_rsase_2022_100905 crossref_primary_10_1016_j_scitotenv_2018_01_124 crossref_primary_10_1007_s11600_024_01470_9 crossref_primary_10_1007_s12583_021_1511_2 crossref_primary_10_3390_w11030579 crossref_primary_10_1016_j_scitotenv_2020_138595 crossref_primary_10_1007_s11600_022_00767_x crossref_primary_10_1016_j_cageo_2020_104470 crossref_primary_10_1017_S0376892921000291 crossref_primary_10_1016_j_apgeog_2021_102598 crossref_primary_10_1007_s12517_021_08871_w crossref_primary_10_1016_j_enbuild_2022_112502 crossref_primary_10_1007_s10064_019_01572_5 crossref_primary_10_1016_j_scitotenv_2017_10_114 crossref_primary_10_3390_w13040488 crossref_primary_10_3390_ijerph16030368 crossref_primary_10_3390_s18082464 crossref_primary_10_1016_j_frl_2024_106136 crossref_primary_10_1080_10106049_2020_1730451 crossref_primary_10_1016_j_frl_2022_103143 crossref_primary_10_1155_2021_7998417 crossref_primary_10_3390_w15071292 crossref_primary_10_2166_nh_2019_090 crossref_primary_10_1007_s11069_020_04264_6 crossref_primary_10_3390_rs16040642 crossref_primary_10_1007_s11069_021_04601_3 crossref_primary_10_1007_s11042_023_15121_6 crossref_primary_10_1016_j_catena_2021_105317 crossref_primary_10_1007_s11069_021_04812_8 crossref_primary_10_1007_s11356_024_33287_w crossref_primary_10_1016_j_catena_2019_104450 crossref_primary_10_3390_w15173134 crossref_primary_10_3390_d13100490 crossref_primary_10_1007_s11069_019_03617_0 crossref_primary_10_1007_s10064_020_01915_7 crossref_primary_10_1016_j_jenvman_2019_02_020 crossref_primary_10_1016_j_geoderma_2018_12_042 crossref_primary_10_1007_s12665_017_6981_2 crossref_primary_10_3390_geosciences8020039 crossref_primary_10_1007_s11069_021_04862_y crossref_primary_10_1016_j_gsf_2021_101175 crossref_primary_10_3390_batteries9040228 crossref_primary_10_1007_s10064_020_01849_0 crossref_primary_10_1007_s12665_021_09889_9 crossref_primary_10_1007_s12665_020_09238_2 crossref_primary_10_1016_j_catena_2019_104425 crossref_primary_10_1016_j_scitotenv_2017_07_198 crossref_primary_10_3390_molecules27238126 crossref_primary_10_1016_j_catena_2019_104421 crossref_primary_10_1016_j_geosus_2024_05_004 crossref_primary_10_1080_10286608_2019_1568418 crossref_primary_10_3390_rs11242995 crossref_primary_10_3389_feart_2023_1184038 crossref_primary_10_3390_agronomy14061134 crossref_primary_10_3390_s22093107 crossref_primary_10_1007_s12665_021_09599_2 crossref_primary_10_1155_2021_8854606 crossref_primary_10_3390_e21020106 crossref_primary_10_1080_10106049_2021_1986579 crossref_primary_10_34088_kojose_1117817 crossref_primary_10_1080_19475705_2017_1403974 crossref_primary_10_3390_rs14153620 crossref_primary_10_1038_s41598_021_95978_5 crossref_primary_10_1080_00330124_2023_2287167 crossref_primary_10_3390_rs13224515 crossref_primary_10_1016_j_envsoft_2019_104565 crossref_primary_10_1080_10106049_2022_2144475 crossref_primary_10_3390_land11081265 crossref_primary_10_1007_s00477_021_02036_7 crossref_primary_10_1016_j_rsase_2019_02_006 crossref_primary_10_1007_s10668_020_00783_1 crossref_primary_10_3390_rs14194803 crossref_primary_10_3390_w10081019 crossref_primary_10_1016_j_geogeo_2024_100253 crossref_primary_10_21523_gcj1_2024080101 crossref_primary_10_1016_j_scs_2024_105237 crossref_primary_10_1016_j_catena_2020_104751 crossref_primary_10_1049_iet_rpg_2020_0224 crossref_primary_10_1007_s10064_018_1281_y |
Cites_doi | 10.1007/s12517-008-0022-0 10.1016/S0167-8809(01)00187-6 10.1016/j.enggeo.2005.07.011 10.1007/s12517-015-2150-7 10.1016/j.ecoleng.2010.06.020 10.1016/j.geomorph.2008.02.011 10.1007/s12665-015-4028-0 10.1007/s12665-010-0724-y 10.1007/s11069-015-1915-3 10.1007/s100640050066 10.1016/S0013-7952(03)00142-X 10.1080/01431160010014260 10.1007/s10346-012-0320-1 10.1007/s11069-014-1245-x 10.1016/j.enggeo.2006.03.004 10.1007/s11069-014-1285-2 10.1016/j.neunet.2006.01.001 10.1029/2006RG000200 10.1007/s12665-015-4866-9 10.1007/s10346-015-0565-6 10.1155/2012/974638 10.1016/j.enggeo.2011.09.006 10.1103/PhysRev.106.620 10.1073/pnas.97.1.262 10.1007/s10346-013-0436-y 10.1007/s12303-014-0032-8 10.1007/s10346-015-0557-6 10.1016/j.cageo.2012.08.023 10.1002/esp.3998 10.1016/j.ecolmodel.2005.03.026 10.1007/s11069-016-2591-7 10.1007/s12665-015-4950-1 10.1007/s11069-010-9569-7 10.1080/10106040108542202 10.1007/s12665-015-5047-6 10.1007/s10064-009-0188-z 10.1016/j.catena.2015.10.010 10.1155/2010/901095 10.1016/j.catena.2015.05.019 10.1016/j.geomorph.2006.04.007 10.1016/j.geomorph.2006.10.033 10.1007/s12665-014-3442-z 10.1007/s12517-015-1891-7 10.1007/s12303-015-0026-1 10.1007/s11069-012-0217-2 10.1016/j.asr.2012.04.010 10.1016/j.jafrearsci.2016.02.019 10.1007/s12665-016-5919-4 10.1007/s10346-014-0547-0 10.1080/10106049.2016.1140824 10.1103/PhysRev.108.171 10.1016/j.geomorph.2016.03.006 10.1016/j.catena.2016.11.032 10.1007/s10346-014-0466-0 10.1016/j.rse.2014.05.013 10.1016/j.ecolmodel.2004.07.012 10.1016/j.catena.2015.07.020 10.3319/TAO.2014.12.02.07(EOSI) 10.1007/s13762-013-0464-0 10.1007/s10064-015-0734-9 10.1016/j.catena.2017.01.010 10.1007/s12665-015-4048-9 10.1007/s12665-014-3289-3 10.1007/s12517-012-0807-z 10.1007/s12517-009-0089-2 10.1111/2041-210X.12252 10.1016/j.geomorph.2004.06.010 10.1016/j.geomorph.2016.02.012 10.1016/j.catena.2016.06.004 10.1016/j.catena.2014.02.005 10.1007/s10462-009-9124-7 10.1080/01431160110040323 10.1007/s10346-015-0614-1 10.1108/09653561011052547 10.1016/j.jseaes.2012.12.014 10.1007/s12517-015-2142-7 10.1007/s11069-012-0347-6 10.1007/s10346-006-0047-y 10.1080/01431161.2016.1148282 10.1007/s12665-011-1477-y 10.1007/s11069-011-9844-2 10.1016/j.enggeo.2007.01.005 10.1111/j.0906-7590.2008.5203.x 10.1016/j.geomorph.2010.02.017 10.1016/j.enggeo.2005.02.002 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2017.06.020 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 327 |
ExternalDocumentID | 10_1016_j_geoderma_2017_06_020 S0016706117303890 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-7d12ebffeccbf8635cac8f42ccb49e890f9b5eb759d03d7bcda02613f0c1073b3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 12:15:20 EDT 2025 Tue Jul 01 04:04:44 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Fri Feb 23 02:27:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ANN Ensemble models SVM Maximum entropy Spatial modeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-7d12ebffeccbf8635cac8f42ccb49e890f9b5eb759d03d7bcda02613f0c1073b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2328-2998 |
PQID | 2000450973 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2000450973 crossref_primary_10_1016_j_geoderma_2017_06_020 crossref_citationtrail_10_1016_j_geoderma_2017_06_020 elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_06_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Devkota, Regmi, Pourghasemi, Yoshida, Pradhan, Ryu, Dhital, Althuwaynee (bb0120) 2013; 65 Statnikov, Aliferis, Hardin, Guyon (bb0440) 2011 Ayalew, Yamagishi (bb0035) 2005; 65 Tien Bui, Tuan, Klempe, Pradhan, Revhaug (bb0475) 2016; 13 Pourghasemi, Pradhan, Gokceoglu (bb0370) 2012; 63 Akgun, Erkan (bb0010) 2016; 9 Wang, Guo, Sawada, Lin, Zhang (bb0505) 2016; 20 Tehrany, Lee, Pradhan, Jebur, Lee (bb0450) 2014; 72 Hong, Pourghasemi, Pourtaghi (bb0180) 2016; 259 Phillips, Dudík (bb0345) 2008; 31 Colkesen, Sahin, Kavzoglu (bb0095) 2016; 118 Moosavi, Niazi (bb0305) 2016; 13 Guo, Kelly, Graham (bb0165) 2005; 182 Rokach (bb0420) 2010; 33 Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (bb0535) 2016; 13 Tsangaratos, Benardos (bb0480) 2014; 74 Yao, Tham, Dai (bb0510) 2008; 101 Lee, Pradhan (bb0260) 2007; 4 Felicísimo, Cuartero, Remondo, Quirós (bb0145) 2013; 10 Jaynes (bb0215) 1957; 106 Phillips, Miroslav, Schapire (bb0350) 2004 Kornejady, Ownegh, Bahremand (bb0250) 2017; 152 Lombardo, Cama, Maerker, Rotigliano (bb0280) 2014; 74 Statnikov, Aliferis, Hardin, Guyon (bb0445) 2013 Hong, Pradhan, Jebur, Bui, Xu, Akgun (bb0185) 2016; 75 Nasiri Aghdam, Varzandeh, Pradhan (bb0310) 2016; 75 Park (bb0335) 2015; 73 Cristianini, Lkopf (bb0110) 2002; 23 Guillera Arroita, Lahoz Monfort, Elith (bb0160) 2015; 5 Lee, Ryu, Won, Park (bb0265) 2004; 71 Youssef, Al-Kathery, Pradhan (bb0525) 2015; 19 Regmi, Devkota, Yoshida, Pradhan, Pourghasemi, Kumamoto, Akgun (bb0410) 2014; 7 Blahut, Westen, Sterlacchini (bb0045) 2010; 119 Aleotti, Chowdhury (bb0015) 1999; 58 Tien Bui, Lofman, Revhaug, Dick (bb0455) 2011; 59 Zhao, Chen, Wang, Wu, Yang (bb0540) 2015; 8 Chen, Li, Chai, Hou, Li, Ding (bb0070) 2016; 75 Chen, Pourghasemi, Zhao (bb0080) 2017; 32 Carrara, Crosta, Frattini (bb0060) 2008; 94 Guzzetti, Reichenbach, Ardizzone, Cardinali, Galli (bb0170) 2006; 81 Raja, Çiçek, Türkoğlu, Aydin, Kawasaki (bb0405) 2017; 85 Arora, Mathur (bb0030) 2001; 16 Bell (bb0040) 1998; 114 Lombardo, Bachofer, Cama, Märker, Rotigliano (bb0290) 2016; 41 Cherkassky, Krasnopolsky, Solomatine, Valdes (bb0090) 2006; 19 Tien Bui, Ho, Pradhan, Pham, Nhu, Revhaug (bb0470) 2016; 75 Yesilnacar, Topal (bb0515) 2005; 79 Singh (bb0435) 2010; 19 Abdi, Majnounian, Genet, Rahimi (bb0005) 2010; 36 Kecman (bb0240) 2005 Pham, Tien Bui, Pourghasemi, Indra, Dholakia (bb0340) 2015 Mandal, Maiti (bb0295) 2015 Marjanović, Kovačević, Bajat, Voženílek (bb0300) 2011; 123 Raja, Çiçek, Türkoğlu, Aydin, Kawasaki (bb0400) 2016 Pourghasemi, Kerle (bb0360) 2016; 75 Lee, Choi, Oh, Won, Park, Lee (bb0270) 2012; 67 Varnes (bb0500) 1978 Jaynes (bb0220) 1957; 108 Tsangaratos, Ilia (bb0485) 2016; 145 Pradhan, Youssef (bb0385) 2010; 3 Jakkula (bb0210) 2006; 37 Pradhan (bb0380) 2013; 51 Rgjr, Schneider (bb0415) 2001; 85 Chen, Xie, Wang, Pradhan, Hong, Bui, Duan, Ma (bb0085) 2017; 151 Rahmati, Pourghasemi, Melesse (bb0395) 2016; 137 Saha, Gupta, Arora (bb0425) 2002; 23 Althuwaynee, Pradhan, Park, Lee (bb0020) 2014; 11 Shahabi, Hashim, Ahmad (bb0430) 2015; 73 Althuwaynee, Pradhan, Lee (bb0025) 2016; 37 Jebur, Pradhan, Tehrany (bb0225) 2014; 152 Ozdemir, Altural (bb0330) 2013; 64 Hong, Chen, Xu, Youssef, Pradhan, Tien Bui (bb0190) 2017; 32 Conoscenti, Rotigliano, Cama, Caraballo-Arias, Lombardo, Agnesi (bb0100) 2016; 261 Prasad, Pandey, Singh, Singh, Mishra, Singh (bb0390) 2012; 50 Dudík, Phillips, Schapire (bb0135) 2004 Youssef, Pourghasemi, El-Haddad, Dhahry (bb0530) 2016; 75 Jaafari, Najafi, Pourghasemi, Rezaeian, Sattarian (bb0205) 2014; 11 Phillips, Anderson, Schapire (bb0355) 2006; 190 Tien Bui, Pradhan, Revhaug, Tran (bb0465) 2014 Kelarestaghi, Ahmadi (bb0245) 2009; 2 Tien Bui, Pradhan, Lofman, Revhaug (bb0460) 2012; 2012 Chen, Wang, Xie, Hong, Trung, Bui, Wang, Li (bb0075) 2016 Lombardo, Cama, Conoscenti, Märker, Rotigliano (bb0285) 2015; 79 Dou, Paudel, Oguchi, Uchiyama, Hayakavva (bb0130) 2015; 26 Lee, Park, Lee (bb0275) 2015; 74 Dehnavi, Aghdam, Pradhan, Varzandeh (bb0115) 2015; 135 Chen, Chai, Sun, Wang, Ding, Hong (bb0065) 2016; 9 Hong, Pradhan, Xu, Tien Bui (bb0175) 2015; 133 Huang, Davis, Townshend (bb0195) 2002; 23 Ohlmacher (bb0325) 2007; 91 Constantin, Bednarik, Jurchescu, Vlaicu (bb0105) 2011; 63 Hungr, Leroueil, Picarelli (bb0200) 2014; 11 Nefeslioglu, Sezer, Gokceoglu, Bozkir, Duman (bb0315) 2010; 2010 Umar, Pradhan, Ahmad, Jebur, Tehrany (bb0495) 2014; 118 Ngadisih, Bhandary, Yatabe, Dahal (bb0320) 2016 Tsangaratos, Ilia (bb0490) 2016; 13 Brown, Grundy, Lin, Cristianini, Sugnet, Furey, A., Haussler (bb0050) 2000; 97 Cama, Conoscenti, Lombardo, Rotigliano (bb0055) 2016; 75 Dou, Oguchi, Hayakawa, Uchiyama, Saito, Paudel (bb0125) 2014 Ghimire (bb0150) 2011; 56 Kanungo, Arora, Sarkar, Gupta (bb0235) 2006; 85 Pourghasemi, Rossi (bb0365) 2016 Gokceoglu, Sonmez, Nefeslioglu, Duman, Can (bb0155) 2005; 81 Yilmaz, Keskin (bb0520) 2009; 68 Joachims (bb0230) 1998; 1398 Krasnopolsky (bb0255) 2007; 45 Tehrany (10.1016/j.geoderma.2017.06.020_bb0450) 2014; 72 Chen (10.1016/j.geoderma.2017.06.020_bb0070) 2016; 75 Tien Bui (10.1016/j.geoderma.2017.06.020_bb0460) 2012; 2012 Cherkassky (10.1016/j.geoderma.2017.06.020_bb0090) 2006; 19 Singh (10.1016/j.geoderma.2017.06.020_bb0435) 2010; 19 Althuwaynee (10.1016/j.geoderma.2017.06.020_bb0025) 2016; 37 Huang (10.1016/j.geoderma.2017.06.020_bb0195) 2002; 23 Hong (10.1016/j.geoderma.2017.06.020_bb0190) 2017; 32 Pham (10.1016/j.geoderma.2017.06.020_bb0340) 2015 Nasiri Aghdam (10.1016/j.geoderma.2017.06.020_bb0310) 2016; 75 Blahut (10.1016/j.geoderma.2017.06.020_bb0045) 2010; 119 Cama (10.1016/j.geoderma.2017.06.020_bb0055) 2016; 75 Carrara (10.1016/j.geoderma.2017.06.020_bb0060) 2008; 94 Shahabi (10.1016/j.geoderma.2017.06.020_bb0430) 2015; 73 Youssef (10.1016/j.geoderma.2017.06.020_bb0530) 2016; 75 Akgun (10.1016/j.geoderma.2017.06.020_bb0010) 2016; 9 Statnikov (10.1016/j.geoderma.2017.06.020_bb0440) 2011 Joachims (10.1016/j.geoderma.2017.06.020_bb0230) 1998; 1398 Marjanović (10.1016/j.geoderma.2017.06.020_bb0300) 2011; 123 Abdi (10.1016/j.geoderma.2017.06.020_bb0005) 2010; 36 Phillips (10.1016/j.geoderma.2017.06.020_bb0355) 2006; 190 Ayalew (10.1016/j.geoderma.2017.06.020_bb0035) 2005; 65 Moosavi (10.1016/j.geoderma.2017.06.020_bb0305) 2016; 13 Jaynes (10.1016/j.geoderma.2017.06.020_bb0215) 1957; 106 Lee (10.1016/j.geoderma.2017.06.020_bb0270) 2012; 67 Arora (10.1016/j.geoderma.2017.06.020_bb0030) 2001; 16 Tsangaratos (10.1016/j.geoderma.2017.06.020_bb0485) 2016; 145 Lombardo (10.1016/j.geoderma.2017.06.020_bb0285) 2015; 79 Kelarestaghi (10.1016/j.geoderma.2017.06.020_bb0245) 2009; 2 Phillips (10.1016/j.geoderma.2017.06.020_bb0350) 2004 Tien Bui (10.1016/j.geoderma.2017.06.020_bb0455) 2011; 59 Jakkula (10.1016/j.geoderma.2017.06.020_bb0210) 2006; 37 Hungr (10.1016/j.geoderma.2017.06.020_bb0200) 2014; 11 Felicísimo (10.1016/j.geoderma.2017.06.020_bb0145) 2013; 10 Ghimire (10.1016/j.geoderma.2017.06.020_bb0150) 2011; 56 Mandal (10.1016/j.geoderma.2017.06.020_bb0295) 2015 Tsangaratos (10.1016/j.geoderma.2017.06.020_bb0490) 2016; 13 Hong (10.1016/j.geoderma.2017.06.020_bb0175) 2015; 133 Devkota (10.1016/j.geoderma.2017.06.020_bb0120) 2013; 65 Hong (10.1016/j.geoderma.2017.06.020_bb0180) 2016; 259 Colkesen (10.1016/j.geoderma.2017.06.020_bb0095) 2016; 118 Ohlmacher (10.1016/j.geoderma.2017.06.020_bb0325) 2007; 91 Kecman (10.1016/j.geoderma.2017.06.020_bb0240) 2005 Yilmaz (10.1016/j.geoderma.2017.06.020_bb0520) 2009; 68 Bell (10.1016/j.geoderma.2017.06.020_bb0040) 1998; 114 Wang (10.1016/j.geoderma.2017.06.020_bb0505) 2016; 20 Prasad (10.1016/j.geoderma.2017.06.020_bb0390) 2012; 50 Jebur (10.1016/j.geoderma.2017.06.020_bb0225) 2014; 152 Statnikov (10.1016/j.geoderma.2017.06.020_bb0445) 2013 Yao (10.1016/j.geoderma.2017.06.020_bb0510) 2008; 101 Guillera Arroita (10.1016/j.geoderma.2017.06.020_bb0160) 2015; 5 Nefeslioglu (10.1016/j.geoderma.2017.06.020_bb0315) 2010; 2010 Hong (10.1016/j.geoderma.2017.06.020_bb0185) 2016; 75 Saha (10.1016/j.geoderma.2017.06.020_bb0425) 2002; 23 Tien Bui (10.1016/j.geoderma.2017.06.020_bb0470) 2016; 75 Althuwaynee (10.1016/j.geoderma.2017.06.020_bb0020) 2014; 11 Yesilnacar (10.1016/j.geoderma.2017.06.020_bb0515) 2005; 79 Jaafari (10.1016/j.geoderma.2017.06.020_bb0205) 2014; 11 Lee (10.1016/j.geoderma.2017.06.020_bb0265) 2004; 71 Brown (10.1016/j.geoderma.2017.06.020_bb0050) 2000; 97 Chen (10.1016/j.geoderma.2017.06.020_bb0065) 2016; 9 Regmi (10.1016/j.geoderma.2017.06.020_bb0410) 2014; 7 Guzzetti (10.1016/j.geoderma.2017.06.020_bb0170) 2006; 81 Jaynes (10.1016/j.geoderma.2017.06.020_bb0220) 1957; 108 Guo (10.1016/j.geoderma.2017.06.020_bb0165) 2005; 182 Conoscenti (10.1016/j.geoderma.2017.06.020_bb0100) 2016; 261 Youssef (10.1016/j.geoderma.2017.06.020_bb0535) 2016; 13 Krasnopolsky (10.1016/j.geoderma.2017.06.020_bb0255) 2007; 45 Ozdemir (10.1016/j.geoderma.2017.06.020_bb0330) 2013; 64 Chen (10.1016/j.geoderma.2017.06.020_bb0085) 2017; 151 Raja (10.1016/j.geoderma.2017.06.020_bb0405) 2017; 85 Rgjr (10.1016/j.geoderma.2017.06.020_bb0415) 2001; 85 Constantin (10.1016/j.geoderma.2017.06.020_bb0105) 2011; 63 Lee (10.1016/j.geoderma.2017.06.020_bb0275) 2015; 74 Park (10.1016/j.geoderma.2017.06.020_bb0335) 2015; 73 Zhao (10.1016/j.geoderma.2017.06.020_bb0540) 2015; 8 Varnes (10.1016/j.geoderma.2017.06.020_bb0500) 1978 Pourghasemi (10.1016/j.geoderma.2017.06.020_bb0370) 2012; 63 Aleotti (10.1016/j.geoderma.2017.06.020_bb0015) 1999; 58 Lombardo (10.1016/j.geoderma.2017.06.020_bb0290) 2016; 41 Youssef (10.1016/j.geoderma.2017.06.020_bb0525) 2015; 19 Phillips (10.1016/j.geoderma.2017.06.020_bb0345) 2008; 31 Kornejady (10.1016/j.geoderma.2017.06.020_bb0250) 2017; 152 Dou (10.1016/j.geoderma.2017.06.020_bb0125) 2014 Dou (10.1016/j.geoderma.2017.06.020_bb0130) 2015; 26 Raja (10.1016/j.geoderma.2017.06.020_bb0400) 2016 Ngadisih (10.1016/j.geoderma.2017.06.020_bb0320) 2016 Pradhan (10.1016/j.geoderma.2017.06.020_bb0380) 2013; 51 Dehnavi (10.1016/j.geoderma.2017.06.020_bb0115) 2015; 135 Pradhan (10.1016/j.geoderma.2017.06.020_bb0385) 2010; 3 Chen (10.1016/j.geoderma.2017.06.020_bb0075) 2016 Dudík (10.1016/j.geoderma.2017.06.020_bb0135) 2004 Pourghasemi (10.1016/j.geoderma.2017.06.020_bb0365) 2016 Kanungo (10.1016/j.geoderma.2017.06.020_bb0235) 2006; 85 Tien Bui (10.1016/j.geoderma.2017.06.020_bb0465) 2014 Cristianini (10.1016/j.geoderma.2017.06.020_bb0110) 2002; 23 Tien Bui (10.1016/j.geoderma.2017.06.020_bb0475) 2016; 13 Chen (10.1016/j.geoderma.2017.06.020_bb0080) 2017; 32 Lee (10.1016/j.geoderma.2017.06.020_bb0260) 2007; 4 Lombardo (10.1016/j.geoderma.2017.06.020_bb0280) 2014; 74 Rokach (10.1016/j.geoderma.2017.06.020_bb0420) 2010; 33 Pourghasemi (10.1016/j.geoderma.2017.06.020_bb0360) 2016; 75 Rahmati (10.1016/j.geoderma.2017.06.020_bb0395) 2016; 137 Tsangaratos (10.1016/j.geoderma.2017.06.020_bb0480) 2014; 74 Gokceoglu (10.1016/j.geoderma.2017.06.020_bb0155) 2005; 81 Umar (10.1016/j.geoderma.2017.06.020_bb0495) 2014; 118 |
References_xml | – volume: 261 start-page: 222 year: 2016 end-page: 235 ident: bb0100 article-title: Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy publication-title: Geomorphology – volume: 97 start-page: 262 year: 2000 end-page: 267 ident: bb0050 article-title: Knowledge-based analysis of microarray gene expression data by using support vector machines publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 64 start-page: 180 year: 2013 end-page: 197 ident: bb0330 article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey publication-title: J. Asian Earth Sci. – volume: 74 start-page: 1951 year: 2014 end-page: 1989 ident: bb0280 article-title: A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster publication-title: Nat. Hazards – volume: 75 start-page: 1 year: 2016 end-page: 14 ident: bb0070 article-title: GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China publication-title: Environ. Earth Sci. – volume: 68 start-page: 459 year: 2009 end-page: 471 ident: bb0520 article-title: GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey) publication-title: Bull. Eng. Geol. Environ. – volume: 152 start-page: 150 year: 2014 end-page: 165 ident: bb0225 article-title: Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale publication-title: Remote Sens. Environ. – volume: 3 start-page: 319 year: 2010 end-page: 326 ident: bb0385 article-title: Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models publication-title: Arab. J. Geosci. – volume: 10 start-page: 175 year: 2013 end-page: 189 ident: bb0145 article-title: Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study publication-title: Landslides – volume: 79 start-page: 251 year: 2005 end-page: 266 ident: bb0515 article-title: Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey) publication-title: Eng. Geol. – volume: 114 year: 1998 ident: bb0040 article-title: Environmental geology: principles and practice publication-title: Geophys. Monogr. – volume: 26 year: 2015 ident: bb0130 article-title: Shallow and deep-seated landslide differentiation using support vector machines: a case study of the Chuetsu Area, Japan publication-title: Terr. Atmos. Ocean. Sci. – volume: 75 start-page: 1 year: 2016 end-page: 17 ident: bb0360 article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran publication-title: Environ. Earth Sci. – volume: 32 start-page: 139 year: 2017 end-page: 154 ident: bb0190 article-title: Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy publication-title: Geocarto Int. – start-page: 1 year: 2015 end-page: 19 ident: bb0340 article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods publication-title: Theor. Appl. Climatol. – volume: 135 start-page: 122 year: 2015 end-page: 148 ident: bb0115 article-title: A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran publication-title: Catena – volume: 37 year: 2006 ident: bb0210 article-title: Tutorial on Support Vector Machine (svm) – volume: 33 start-page: 1 year: 2010 end-page: 39 ident: bb0420 article-title: Ensemble-based classifiers publication-title: Artif. Intell. Rev. – volume: 65 start-page: 135 year: 2013 end-page: 165 ident: bb0120 article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya publication-title: Nat. Hazards – volume: 4 start-page: 33 year: 2007 end-page: 41 ident: bb0260 article-title: Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models publication-title: Landslides – volume: 74 start-page: 413 year: 2015 end-page: 429 ident: bb0275 article-title: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea publication-title: Environ. Earth Sci. – volume: 9 start-page: 1 year: 2016 end-page: 15 ident: bb0010 article-title: Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: in an artificial reservoir area at Northern Turkey publication-title: Arab. J. Geosci. – volume: 11 start-page: 1063 year: 2014 end-page: 1078 ident: bb0020 article-title: A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping publication-title: Landslides – volume: 119 start-page: 36 year: 2010 end-page: 51 ident: bb0045 article-title: Analysis of landslide inventories for accurate prediction of debris-flow source areas publication-title: Geomorphology – volume: 2 start-page: 95 year: 2009 end-page: 101 ident: bb0245 article-title: Landslide susceptibility analysis with a bivariate approach and GIS in Northern Iran publication-title: Arab. J. Geosci. – start-page: 75 year: 2016 ident: bb0075 article-title: Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions publication-title: Environ. Earth Sci. – volume: 19 start-page: 113 year: 2015 end-page: 134 ident: bb0525 article-title: Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models publication-title: Geosci. J. – volume: 9 start-page: 1 year: 2016 end-page: 16 ident: bb0065 article-title: A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping publication-title: Arab. J. Geosci. – volume: 259 start-page: 105 year: 2016 end-page: 118 ident: bb0180 article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models publication-title: Geomorphology – volume: 94 start-page: 353 year: 2008 end-page: 378 ident: bb0060 article-title: Comparing models of debris-flow susceptibility in the alpine environment publication-title: Geomorphology – volume: 81 start-page: 65 year: 2005 end-page: 83 ident: bb0155 article-title: The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity publication-title: Eng. Geol. – volume: 152 start-page: 144 year: 2017 end-page: 162 ident: bb0250 article-title: Landslide susceptibility assessment using maximum entropy model with two different data sampling methods publication-title: Catena – volume: 73 start-page: 1 year: 2015 end-page: 22 ident: bb0430 article-title: Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran publication-title: Environ. Earth Sci. – volume: 13 start-page: 839 year: 2016 end-page: 856 ident: bb0535 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides – start-page: 11 year: 1978 end-page: 33 ident: bb0500 article-title: Slope movement types and processes publication-title: Landslides, Analysis and Control, Special Report 176: Transportation Research Board – volume: 67 start-page: 23 year: 2012 end-page: 37 ident: bb0270 article-title: Ensemble-based landslide susceptibility maps in Jinbu area, Korea publication-title: Environ. Earth Sci. – volume: 101 start-page: 572 year: 2008 end-page: 582 ident: bb0510 article-title: Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China publication-title: Geomorphology – volume: 72 start-page: 4001 year: 2014 end-page: 4015 ident: bb0450 article-title: Flood susceptibility mapping using integrated bivariate and multivariate statistical models publication-title: Environ. Earth Sci. – volume: 85 start-page: 347 year: 2006 end-page: 366 ident: bb0235 article-title: A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas publication-title: Eng. Geol. – volume: 145 start-page: 164 year: 2016 end-page: 179 ident: bb0485 article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size publication-title: Catena – volume: 8 start-page: 9079 year: 2015 end-page: 9088 ident: bb0540 article-title: A comparative study of statistical index and certainty factor models in landslide susceptibility mapping: a case study for the Shangzhou District, Shaanxi Province, China publication-title: Arab. J. Geosci. – volume: 118 start-page: 124 year: 2014 end-page: 135 ident: bb0495 article-title: Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia publication-title: Catena – volume: 13 start-page: 305 year: 2016 end-page: 320 ident: bb0490 article-title: Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece publication-title: Landslides – volume: 1398 start-page: 137 year: 1998 end-page: 142 ident: bb0230 article-title: Text categorization with support vector machines: learning with many relevant features publication-title: Proceedings of European Conference on Machine Learning – volume: 23 start-page: 31 year: 2002 end-page: 41 ident: bb0110 article-title: Support vector machines and Kernel methods: the new generation of learning machines publication-title: AI Mag. – volume: 13 start-page: 97 year: 2016 end-page: 114 ident: bb0305 article-title: Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping publication-title: Landslides – volume: 190 start-page: 231 year: 2006 end-page: 259 ident: bb0355 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecol. Model. – volume: 63 start-page: 965 year: 2012 end-page: 996 ident: bb0370 article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran publication-title: Nat. Hazards – volume: 56 start-page: 299 year: 2011 end-page: 320 ident: bb0150 article-title: Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins publication-title: Nat. Hazards – volume: 59 start-page: 1413 year: 2011 end-page: 1444 ident: bb0455 article-title: Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression publication-title: Nat. Hazards – year: 2014 ident: bb0465 article-title: A Comparative Assessment Between the Application of Fuzzy Unordered Rules Induction Algorithm and J48 Decision Tree Models in Spatial Prediction of Shallow Landslides at Lang Son City – volume: 23 start-page: 725 year: 2002 end-page: 749 ident: bb0195 article-title: An assessment of support vector machines for land cover classification publication-title: Int. J. Remote Sens. – volume: 41 start-page: 1776 year: 2016 end-page: 1789 ident: bb0290 article-title: Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy) publication-title: Earth Surf. Process. Landf. – start-page: 1 year: 2016 end-page: 25 ident: bb0365 article-title: Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods publication-title: Theor. Appl. Climatol. – year: 2013 ident: bb0445 article-title: A Gentle Introduction to Support Vector Machines in Biomedicine: Volume 2: Case Studies and Benchmarks – volume: 32 start-page: 367 year: 2017 end-page: 385 ident: bb0080 article-title: A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping publication-title: Geocarto Int. – start-page: 472 year: 2004 end-page: 486 ident: bb0135 article-title: Performance guarantees for regularized maximum entropy density estimation publication-title: Learning Theory, Conference on Learning Theory, COLT 2004, Banff, Canada, July 1–4, 2004, Proceedings – volume: 2012 year: 2012 ident: bb0460 article-title: Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes models publication-title: Math. Probl. Eng. – volume: 151 start-page: 147 year: 2017 end-page: 160 ident: bb0085 article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility publication-title: Catena – volume: 63 start-page: 397 year: 2011 end-page: 406 ident: bb0105 article-title: Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania) publication-title: Environ. Earth Sci. – volume: 11 start-page: 167 year: 2014 end-page: 194 ident: bb0200 article-title: The Varnes classification of landslide types, an update publication-title: Landslides – volume: 74 start-page: 1489 year: 2014 end-page: 1516 ident: bb0480 article-title: Estimating landslide susceptibility through an artificial neural network classifier publication-title: Nat. Hazards – volume: 81 start-page: 166 year: 2006 end-page: 184 ident: bb0170 article-title: Estimating the quality of landslide susceptibility models publication-title: Geomorphology – volume: 11 start-page: 909 year: 2014 end-page: 926 ident: bb0205 article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran publication-title: Int. J. Environ. Sci. Technol. – volume: 5 start-page: 1192 year: 2015 end-page: 1197 ident: bb0160 article-title: Maxent is not a presence–absence method: a comment on Thibaud et al. publication-title: Methods Ecol. Evol. – volume: 133 start-page: 266 year: 2015 end-page: 281 ident: bb0175 article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines publication-title: Catena – volume: 13 start-page: 361 year: 2016 end-page: 378 ident: bb0475 article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides – volume: 85 start-page: 239 year: 2001 end-page: 248 ident: bb0415 article-title: Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA publication-title: Agric. Ecosyst. Environ. – volume: 75 start-page: 1 year: 2016 end-page: 20 ident: bb0310 article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran) publication-title: Environ. Earth Sci. – volume: 75 start-page: 1 year: 2016 end-page: 22 ident: bb0470 article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks publication-title: Environ. Earth Sci. – start-page: 419 year: 2014 end-page: 424 ident: bb0125 article-title: GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan publication-title: Landslide Science for a Safer Geoenvironment – volume: 73 start-page: 937 year: 2015 end-page: 949 ident: bb0335 article-title: Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets publication-title: Environ. Earth Sci. – volume: 45 start-page: 685 year: 2007 end-page: 693 ident: bb0255 article-title: Neural network emulations for complex multidimensional geophysical mappings: applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling publication-title: Rev. Geophys. – volume: 2010 start-page: 242 year: 2010 end-page: 256 ident: bb0315 article-title: Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey publication-title: Math. Probl. Eng. – volume: 19 start-page: 113 year: 2006 ident: bb0090 article-title: 2006 special issue: computational intelligence in earth sciences and environmental applications: issues and challenges publication-title: Neural Netw. – volume: 19 start-page: 384 year: 2010 end-page: 397 ident: bb0435 article-title: Bioengineering techniques of slope stabilization and landslide mitigation publication-title: Disaster Prev Manag – volume: 79 start-page: 1621 year: 2015 end-page: 1648 ident: bb0285 article-title: Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy) publication-title: Nat. Hazards – volume: 31 start-page: 161 year: 2008 end-page: 175 ident: bb0345 article-title: Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation publication-title: Ecography – volume: 75 start-page: 1 year: 2016 end-page: 21 ident: bb0055 article-title: Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy) publication-title: Environ. Earth Sci. – volume: 91 start-page: 117 year: 2007 end-page: 134 ident: bb0325 article-title: Plan curvature and landslide probability in regions dominated by earth flows and earth slides publication-title: Eng. Geol. – start-page: 1730 year: 2016 ident: bb0320 article-title: Logistic Regression and Artificial Neural Network Models for Mapping of Regional-scale Landslide Susceptibility in Volcanic Mountains of West Java (Indonesia) – volume: 71 start-page: 289 year: 2004 end-page: 302 ident: bb0265 article-title: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network publication-title: Eng. Geol. – volume: 75 start-page: 1 year: 2016 end-page: 14 ident: bb0185 article-title: Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines publication-title: Environ. Earth Sci. – volume: 37 start-page: 1190 year: 2016 end-page: 1209 ident: bb0025 article-title: A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison publication-title: Int. J. Remote Sens. – year: 2015 ident: bb0295 article-title: Application of Analytical Hierarchy Process (AHP) and Frequency Ratio (FR) Model in Assessing Landslide Susceptibility and Risk – volume: 65 start-page: 15 year: 2005 end-page: 31 ident: bb0035 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology – volume: 118 start-page: 53 year: 2016 end-page: 64 ident: bb0095 article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression publication-title: J. Afr. Earth Sci. – volume: 20 start-page: 117 year: 2016 end-page: 136 ident: bb0505 article-title: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network publication-title: Geosci. J. – year: 2005 ident: bb0240 article-title: Support Vector Machines – An Introduction – volume: 106 start-page: 620 year: 1957 ident: bb0215 article-title: Information theory and statistical mechanics publication-title: Phys. Rev. – start-page: 1 year: 2016 end-page: 24 ident: bb0400 article-title: Landslide susceptibility mapping of the Sera River Basin using logistic regression model publication-title: Nat. Hazards – volume: 23 start-page: 357 year: 2002 end-page: 369 ident: bb0425 article-title: GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas publication-title: Int. J. Remote Sens. – volume: 7 start-page: 725 year: 2014 end-page: 742 ident: bb0410 article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya publication-title: Arab. J. Geosci. – volume: 108 start-page: 171 year: 1957 ident: bb0220 article-title: Information theory and statistical mechanics. II publication-title: Phys. Rev. – volume: 85 start-page: 1323 year: 2017 end-page: 1346 ident: bb0405 article-title: Landslide susceptibility mapping of the Sera River Basin using logistic regression model publication-title: Nat. Hazards – volume: 16 start-page: 37 year: 2001 end-page: 44 ident: bb0030 article-title: Multi-source classification using artificial neural network in a rugged terrain publication-title: Geocarto Int. – year: 2011 ident: bb0440 article-title: A Gentle Introduction to Support Vector Machines in Biomedicine: Volume 1: Theory and Methods – volume: 137 start-page: 360 year: 2016 end-page: 372 ident: bb0395 article-title: Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran publication-title: Catena – volume: 58 start-page: 21 year: 1999 end-page: 44 ident: bb0015 article-title: Landslide hazard assessment: summary review and new perspectives publication-title: Bull. Eng. Geol. Environ. – start-page: 83 year: 2004 ident: bb0350 article-title: A maximum entropy approach to species distribution modeling publication-title: International Conference on Machine Learning – volume: 51 start-page: 350 year: 2013 end-page: 365 ident: bb0380 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. – volume: 36 start-page: 1409 year: 2010 end-page: 1416 ident: bb0005 article-title: Quantifying the effects of root reinforcement of Persian ironwood ( publication-title: Ecol. Eng. – volume: 75 start-page: 63 year: 2016 end-page: 87 ident: bb0530 article-title: Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia publication-title: Bull. Eng. Geol. Environ. – volume: 123 start-page: 225 year: 2011 end-page: 234 ident: bb0300 article-title: Landslide susceptibility assessment using SVM machine learning algorithm publication-title: Eng. Geol. – volume: 182 start-page: 75 year: 2005 end-page: 90 ident: bb0165 article-title: Support vector machines for predicting distribution of Sudden Oak Death in California publication-title: Ecol. Model. – volume: 50 start-page: 363 year: 2012 end-page: 370 ident: bb0390 article-title: Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: a comparison of different transfer functions publication-title: Adv. Space Res. – start-page: 1730 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0320 – volume: 2 start-page: 95 year: 2009 ident: 10.1016/j.geoderma.2017.06.020_bb0245 article-title: Landslide susceptibility analysis with a bivariate approach and GIS in Northern Iran publication-title: Arab. J. Geosci. doi: 10.1007/s12517-008-0022-0 – volume: 85 start-page: 239 year: 2001 ident: 10.1016/j.geoderma.2017.06.020_bb0415 article-title: Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00187-6 – volume: 81 start-page: 65 year: 2005 ident: 10.1016/j.geoderma.2017.06.020_bb0155 article-title: The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2005.07.011 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0065 article-title: A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping publication-title: Arab. J. Geosci. doi: 10.1007/s12517-015-2150-7 – volume: 36 start-page: 1409 year: 2010 ident: 10.1016/j.geoderma.2017.06.020_bb0005 article-title: Quantifying the effects of root reinforcement of Persian ironwood (Parrotia persica) on slope stability; a case study: hillslope of Hyrcanian forests, northern Iran publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2010.06.020 – volume: 101 start-page: 572 year: 2008 ident: 10.1016/j.geoderma.2017.06.020_bb0510 article-title: Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.02.011 – volume: 75 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0310 article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran) publication-title: Environ. Earth Sci. – volume: 73 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0430 article-title: Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4028-0 – volume: 63 start-page: 397 year: 2011 ident: 10.1016/j.geoderma.2017.06.020_bb0105 article-title: Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-010-0724-y – volume: 79 start-page: 1621 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0285 article-title: Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy) publication-title: Nat. Hazards doi: 10.1007/s11069-015-1915-3 – volume: 58 start-page: 21 year: 1999 ident: 10.1016/j.geoderma.2017.06.020_bb0015 article-title: Landslide hazard assessment: summary review and new perspectives publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s100640050066 – start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0400 article-title: Landslide susceptibility mapping of the Sera River Basin using logistic regression model publication-title: Nat. Hazards – volume: 71 start-page: 289 year: 2004 ident: 10.1016/j.geoderma.2017.06.020_bb0265 article-title: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network publication-title: Eng. Geol. doi: 10.1016/S0013-7952(03)00142-X – year: 2013 ident: 10.1016/j.geoderma.2017.06.020_bb0445 – year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0295 – volume: 23 start-page: 357 year: 2002 ident: 10.1016/j.geoderma.2017.06.020_bb0425 article-title: GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas publication-title: Int. J. Remote Sens. doi: 10.1080/01431160010014260 – volume: 10 start-page: 175 year: 2013 ident: 10.1016/j.geoderma.2017.06.020_bb0145 article-title: Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study publication-title: Landslides doi: 10.1007/s10346-012-0320-1 – volume: 74 start-page: 1489 issue: 3 year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0480 article-title: Estimating landslide susceptibility through an artificial neural network classifier publication-title: Nat. Hazards doi: 10.1007/s11069-014-1245-x – volume: 85 start-page: 347 year: 2006 ident: 10.1016/j.geoderma.2017.06.020_bb0235 article-title: A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2006.03.004 – volume: 74 start-page: 1951 issue: 3 year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0280 article-title: A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster publication-title: Nat. Hazards doi: 10.1007/s11069-014-1285-2 – start-page: 83 year: 2004 ident: 10.1016/j.geoderma.2017.06.020_bb0350 article-title: A maximum entropy approach to species distribution modeling – volume: 32 start-page: 139 year: 2017 ident: 10.1016/j.geoderma.2017.06.020_bb0190 article-title: Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy publication-title: Geocarto Int. – volume: 19 start-page: 113 year: 2006 ident: 10.1016/j.geoderma.2017.06.020_bb0090 article-title: 2006 special issue: computational intelligence in earth sciences and environmental applications: issues and challenges publication-title: Neural Netw. doi: 10.1016/j.neunet.2006.01.001 – start-page: 472 year: 2004 ident: 10.1016/j.geoderma.2017.06.020_bb0135 article-title: Performance guarantees for regularized maximum entropy density estimation – volume: 45 start-page: 685 year: 2007 ident: 10.1016/j.geoderma.2017.06.020_bb0255 article-title: Neural network emulations for complex multidimensional geophysical mappings: applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling publication-title: Rev. Geophys. doi: 10.1029/2006RG000200 – volume: 75 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0185 article-title: Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4866-9 – volume: 37 year: 2006 ident: 10.1016/j.geoderma.2017.06.020_bb0210 – volume: 13 start-page: 305 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0490 article-title: Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece publication-title: Landslides doi: 10.1007/s10346-015-0565-6 – volume: 2012 year: 2012 ident: 10.1016/j.geoderma.2017.06.020_bb0460 article-title: Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes models publication-title: Math. Probl. Eng. doi: 10.1155/2012/974638 – volume: 123 start-page: 225 year: 2011 ident: 10.1016/j.geoderma.2017.06.020_bb0300 article-title: Landslide susceptibility assessment using SVM machine learning algorithm publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2011.09.006 – volume: 106 start-page: 620 year: 1957 ident: 10.1016/j.geoderma.2017.06.020_bb0215 article-title: Information theory and statistical mechanics publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.620 – volume: 97 start-page: 262 year: 2000 ident: 10.1016/j.geoderma.2017.06.020_bb0050 article-title: Knowledge-based analysis of microarray gene expression data by using support vector machines publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.97.1.262 – volume: 23 start-page: 31 year: 2002 ident: 10.1016/j.geoderma.2017.06.020_bb0110 article-title: Support vector machines and Kernel methods: the new generation of learning machines publication-title: AI Mag. – volume: 11 start-page: 167 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0200 article-title: The Varnes classification of landslide types, an update publication-title: Landslides doi: 10.1007/s10346-013-0436-y – volume: 19 start-page: 113 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0525 article-title: Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models publication-title: Geosci. J. doi: 10.1007/s12303-014-0032-8 – volume: 13 start-page: 361 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0475 article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides doi: 10.1007/s10346-015-0557-6 – volume: 51 start-page: 350 year: 2013 ident: 10.1016/j.geoderma.2017.06.020_bb0380 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.023 – volume: 41 start-page: 1776 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0290 article-title: Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy) publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3998 – volume: 190 start-page: 231 year: 2006 ident: 10.1016/j.geoderma.2017.06.020_bb0355 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2005.03.026 – volume: 85 start-page: 1323 year: 2017 ident: 10.1016/j.geoderma.2017.06.020_bb0405 article-title: Landslide susceptibility mapping of the Sera River Basin using logistic regression model publication-title: Nat. Hazards doi: 10.1007/s11069-016-2591-7 – year: 2011 ident: 10.1016/j.geoderma.2017.06.020_bb0440 – volume: 75 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0360 article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4950-1 – volume: 56 start-page: 299 year: 2011 ident: 10.1016/j.geoderma.2017.06.020_bb0150 article-title: Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins publication-title: Nat. Hazards doi: 10.1007/s11069-010-9569-7 – volume: 16 start-page: 37 year: 2001 ident: 10.1016/j.geoderma.2017.06.020_bb0030 article-title: Multi-source classification using artificial neural network in a rugged terrain publication-title: Geocarto Int. doi: 10.1080/10106040108542202 – volume: 75 start-page: 1 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0055 article-title: Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-5047-6 – volume: 68 start-page: 459 year: 2009 ident: 10.1016/j.geoderma.2017.06.020_bb0520 article-title: GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey) publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-009-0188-z – volume: 137 start-page: 360 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0395 article-title: Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran publication-title: Catena doi: 10.1016/j.catena.2015.10.010 – volume: 2010 start-page: 242 year: 2010 ident: 10.1016/j.geoderma.2017.06.020_bb0315 article-title: Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey publication-title: Math. Probl. Eng. doi: 10.1155/2010/901095 – volume: 133 start-page: 266 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0175 article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines publication-title: Catena doi: 10.1016/j.catena.2015.05.019 – volume: 81 start-page: 166 year: 2006 ident: 10.1016/j.geoderma.2017.06.020_bb0170 article-title: Estimating the quality of landslide susceptibility models publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.04.007 – volume: 94 start-page: 353 year: 2008 ident: 10.1016/j.geoderma.2017.06.020_bb0060 article-title: Comparing models of debris-flow susceptibility in the alpine environment publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.10.033 – year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0465 – volume: 73 start-page: 937 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0335 article-title: Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets publication-title: Environ. Earth Sci. doi: 10.1007/s12665-014-3442-z – volume: 114 year: 1998 ident: 10.1016/j.geoderma.2017.06.020_bb0040 article-title: Environmental geology: principles and practice publication-title: Geophys. Monogr. – volume: 8 start-page: 9079 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0540 article-title: A comparative study of statistical index and certainty factor models in landslide susceptibility mapping: a case study for the Shangzhou District, Shaanxi Province, China publication-title: Arab. J. Geosci. doi: 10.1007/s12517-015-1891-7 – volume: 20 start-page: 117 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0505 article-title: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network publication-title: Geosci. J. doi: 10.1007/s12303-015-0026-1 – volume: 63 start-page: 965 year: 2012 ident: 10.1016/j.geoderma.2017.06.020_bb0370 article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran publication-title: Nat. Hazards doi: 10.1007/s11069-012-0217-2 – start-page: 11 year: 1978 ident: 10.1016/j.geoderma.2017.06.020_bb0500 article-title: Slope movement types and processes – volume: 50 start-page: 363 year: 2012 ident: 10.1016/j.geoderma.2017.06.020_bb0390 article-title: Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: a comparison of different transfer functions publication-title: Adv. Space Res. doi: 10.1016/j.asr.2012.04.010 – volume: 118 start-page: 53 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0095 article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression publication-title: J. Afr. Earth Sci. doi: 10.1016/j.jafrearsci.2016.02.019 – volume: 75 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0470 article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5919-4 – start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0365 article-title: Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods publication-title: Theor. Appl. Climatol. – volume: 13 start-page: 97 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0305 article-title: Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping publication-title: Landslides doi: 10.1007/s10346-014-0547-0 – volume: 32 start-page: 367 year: 2017 ident: 10.1016/j.geoderma.2017.06.020_bb0080 article-title: A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping publication-title: Geocarto Int. doi: 10.1080/10106049.2016.1140824 – volume: 108 start-page: 171 year: 1957 ident: 10.1016/j.geoderma.2017.06.020_bb0220 article-title: Information theory and statistical mechanics. II publication-title: Phys. Rev. doi: 10.1103/PhysRev.108.171 – volume: 261 start-page: 222 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0100 article-title: Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.03.006 – volume: 151 start-page: 147 year: 2017 ident: 10.1016/j.geoderma.2017.06.020_bb0085 article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2016.11.032 – volume: 11 start-page: 1063 year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0020 article-title: A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping publication-title: Landslides doi: 10.1007/s10346-014-0466-0 – volume: 152 start-page: 150 year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0225 article-title: Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.05.013 – volume: 182 start-page: 75 year: 2005 ident: 10.1016/j.geoderma.2017.06.020_bb0165 article-title: Support vector machines for predicting distribution of Sudden Oak Death in California publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.07.012 – volume: 135 start-page: 122 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0115 article-title: A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran publication-title: Catena doi: 10.1016/j.catena.2015.07.020 – volume: 26 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0130 article-title: Shallow and deep-seated landslide differentiation using support vector machines: a case study of the Chuetsu Area, Japan publication-title: Terr. Atmos. Ocean. Sci. doi: 10.3319/TAO.2014.12.02.07(EOSI) – volume: 11 start-page: 909 year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0205 article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-013-0464-0 – volume: 75 start-page: 63 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0530 article-title: Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-015-0734-9 – year: 2005 ident: 10.1016/j.geoderma.2017.06.020_bb0240 – volume: 152 start-page: 144 year: 2017 ident: 10.1016/j.geoderma.2017.06.020_bb0250 article-title: Landslide susceptibility assessment using maximum entropy model with two different data sampling methods publication-title: Catena doi: 10.1016/j.catena.2017.01.010 – volume: 74 start-page: 413 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0275 article-title: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4048-9 – volume: 72 start-page: 4001 year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0450 article-title: Flood susceptibility mapping using integrated bivariate and multivariate statistical models publication-title: Environ. Earth Sci. doi: 10.1007/s12665-014-3289-3 – volume: 7 start-page: 725 year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0410 article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0807-z – volume: 3 start-page: 319 year: 2010 ident: 10.1016/j.geoderma.2017.06.020_bb0385 article-title: Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models publication-title: Arab. J. Geosci. doi: 10.1007/s12517-009-0089-2 – volume: 5 start-page: 1192 issue: 11 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0160 article-title: Maxent is not a presence–absence method: a comment on Thibaud et al. publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12252 – start-page: 75 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0075 article-title: Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions publication-title: Environ. Earth Sci. – start-page: 419 year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0125 article-title: GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan – volume: 65 start-page: 15 year: 2005 ident: 10.1016/j.geoderma.2017.06.020_bb0035 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – volume: 259 start-page: 105 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0180 article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.02.012 – volume: 145 start-page: 164 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0485 article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size publication-title: Catena doi: 10.1016/j.catena.2016.06.004 – volume: 118 start-page: 124 year: 2014 ident: 10.1016/j.geoderma.2017.06.020_bb0495 article-title: Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia publication-title: Catena doi: 10.1016/j.catena.2014.02.005 – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.geoderma.2017.06.020_bb0420 article-title: Ensemble-based classifiers publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-009-9124-7 – volume: 23 start-page: 725 year: 2002 ident: 10.1016/j.geoderma.2017.06.020_bb0195 article-title: An assessment of support vector machines for land cover classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110040323 – start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2017.06.020_bb0340 article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods publication-title: Theor. Appl. Climatol. – volume: 75 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0070 article-title: GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China publication-title: Environ. Earth Sci. – volume: 13 start-page: 839 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0535 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0614-1 – volume: 1398 start-page: 137 year: 1998 ident: 10.1016/j.geoderma.2017.06.020_bb0230 article-title: Text categorization with support vector machines: learning with many relevant features – volume: 19 start-page: 384 year: 2010 ident: 10.1016/j.geoderma.2017.06.020_bb0435 article-title: Bioengineering techniques of slope stabilization and landslide mitigation publication-title: Disaster Prev Manag doi: 10.1108/09653561011052547 – volume: 64 start-page: 180 year: 2013 ident: 10.1016/j.geoderma.2017.06.020_bb0330 article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2012.12.014 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0010 article-title: Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: in an artificial reservoir area at Northern Turkey publication-title: Arab. J. Geosci. doi: 10.1007/s12517-015-2142-7 – volume: 65 start-page: 135 year: 2013 ident: 10.1016/j.geoderma.2017.06.020_bb0120 article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya publication-title: Nat. Hazards doi: 10.1007/s11069-012-0347-6 – volume: 4 start-page: 33 year: 2007 ident: 10.1016/j.geoderma.2017.06.020_bb0260 article-title: Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models publication-title: Landslides doi: 10.1007/s10346-006-0047-y – volume: 37 start-page: 1190 year: 2016 ident: 10.1016/j.geoderma.2017.06.020_bb0025 article-title: A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1148282 – volume: 67 start-page: 23 year: 2012 ident: 10.1016/j.geoderma.2017.06.020_bb0270 article-title: Ensemble-based landslide susceptibility maps in Jinbu area, Korea publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1477-y – volume: 59 start-page: 1413 year: 2011 ident: 10.1016/j.geoderma.2017.06.020_bb0455 article-title: Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression publication-title: Nat. Hazards doi: 10.1007/s11069-011-9844-2 – volume: 91 start-page: 117 year: 2007 ident: 10.1016/j.geoderma.2017.06.020_bb0325 article-title: Plan curvature and landslide probability in regions dominated by earth flows and earth slides publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2007.01.005 – volume: 31 start-page: 161 year: 2008 ident: 10.1016/j.geoderma.2017.06.020_bb0345 article-title: Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation publication-title: Ecography doi: 10.1111/j.0906-7590.2008.5203.x – volume: 119 start-page: 36 year: 2010 ident: 10.1016/j.geoderma.2017.06.020_bb0045 article-title: Analysis of landslide inventories for accurate prediction of debris-flow source areas publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.02.017 – volume: 79 start-page: 251 year: 2005 ident: 10.1016/j.geoderma.2017.06.020_bb0515 article-title: Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey) publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2005.02.002 |
SSID | ssj0017020 |
Score | 2.6281052 |
Snippet | “Spatial contraindication” is what exactly landslide susceptibility models have been seeking. They are designed for depicting perilous land activities, be it... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 314 |
SubjectTerms | agricultural land ANN chi-square distribution China Ensemble models environmental factors land cover land use landslides limestone Maximum entropy neural networks normalized difference vegetation index prediction rivers roads Spatial modeling support vector machines SVM topography |
Title | Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques |
URI | https://dx.doi.org/10.1016/j.geoderma.2017.06.020 https://www.proquest.com/docview/2000450973 |
Volume | 305 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvQgPvFZVvBobLPZvLyV0lIfzcUHvYXsq7S0qdgUPPnbnUk3RUXoweOG3SXMTOZBvvmGkCtXaC65zx0Bsd3h0jVOpCQkcl7GMsYgiS55CvpJ0Hvh9wN_sEHaVS8Mwiqt71_69NJb2ycNK83G22iEPb5uEEI4csFIIexi3c55iFZ-87mCebhh01IzuoGDu791CY9BRzhwrOQfcsOSxxPnfv8doH656jL-dHfJjk0caWv5bntkQ-f7ZLs1fLfkGfqAjB6xb3cyUprOESgN28tBNxCdbukdQtLVQsKCQipNoXzVUzHRczoztJUk17SffXTy4prCJfTptU-nJc5SUztYYkhXfK_zQ_LS7Ty3e44dpeBkXhAVTqhcpgUiRKQwESQZMpOR4QyWPNYgPBMLX4vQj1XTU6GQKsPizDNNCfWhJ7wjUstnuT4mNGBSeQJ59iH6m8CIwGcmgrQE1KtiZk6IX8kvlZZnHMddTNIKUDZOK7mnKPcUkXWseUIaq3NvS6aNtSfiSj3pD5tJIRysPXtZ6TOFDwr_kmS5ni3mOJcT0lxkMTr9x_1nZAtXy67Fc1Ir3hf6AtKXQtRL-6yTzdbdQy_5AtyX8I8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONAeKh5FBUq7leCGG3v9RuohKqCkJLkUKm6L94WCgoNworaX_in-YGecdUQREgfE0Y9dWbOz883K33wDsBtIE6kojjyJ2O5FKrBephUmcmHBC84xia51CvqDpHMWfT-PzxfgrqmFIVqli_2zmF5Ha3en5azZuhkOqcY3SFKEowCdFGHXd8zKE_PnF57bqq_dQ1zkPc6Pj06_dTzXWsArwiSbeKkOuJHEmFDSZgi6qlCZjTheRrnByWwuYyPTONd-qFOpdEGHldD6Cs9LoQxx3lewFGG4oLYJX_7OeSVB6jstyCDx6PPulSVfoVNQh7Na8ChIa-FQajT-OCI-wIYa8I5X4K3LVFl7ZoxVWDDlGrxpX946tQ6zDsMeFQqPhtqwipjZ-HrdWQfh8IB1iQOvpwovGObuDM_L5lqOTMXGlrUHg33WL34flZN9hpOwHz_77LomdhrmOllcsrnAbPUOzl7EwBuwWI5L8x5YwpUOJQn7Y7phEyuTmNsM8yD0J51zuwlxYz-hnLA59dcYiYbBdiUauwuyuyAqH_c3oTUfdzOT9nhyRN4sj_jPSQXiz5NjPzfrKXAH02-ZojTjaUWNQDGvJtmkrWfM_wmWO6f9nuh1Byfb8JqezEomP8Di5HZqdjB3msiPta8yuHjpzfEPMsMuoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+spatial+modeling%3A+Introducing+new+ensembles+of+ANN%2C+MaxEnt%2C+and+SVM+machine+learning+techniques&rft.jtitle=Geoderma&rft.au=Chen%2C+Wei&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Kornejady%2C+Aiding&rft.au=Zhang%2C+Ning&rft.date=2017-11-01&rft.issn=0016-7061&rft_id=info:doi/10.1016%2Fj.geoderma.2017.06.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |