Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil
Knowledge about parent material (PM) is crucial to understand the properties of overlying soils. Assessing PM of very deep soils, however, is not easy. Previous studies have predicted PM via proximal sensors and machine learning algorithms, but within small areas and with low soil variety. This stud...
Saved in:
Published in | Geoderma Vol. 354; p. 113885 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Knowledge about parent material (PM) is crucial to understand the properties of overlying soils. Assessing PM of very deep soils, however, is not easy. Previous studies have predicted PM via proximal sensors and machine learning algorithms, but within small areas and with low soil variety. This study evaluates the efficiency of using portable X-ray fluorescence (pXRF) spectrometry together with machine learning algorithms in a large area populated with a wide variety of soil classes and land uses to build accurate PM distribution maps from soil data. Samples from A and B horizons were collected from 117 sites, totaling 234 samples, along with representative PM samples of the predominant PMs in the region. Elemental contents of PM and soil samples were obtained using pXRF. Random Forest (RF), Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) models built with and without Principal Component Analysis (PCA) were used to predict PMs from A and B horizon samples separately. For validation, PM was identified in 23 different spots and compared with the predicted PM via overall accuracy and Kappa coefficient. Maps built with models excluding PCA had an overall accuracy ranging from 0.87 to 0.96 and kappa coefficient ranging from 0.74 to 0.91. Maps generated with PCA based models reached 100% overall accuracy. Prediction of PM using pXRF with samples from either A or B horizon and machine learning algorithms offers solid results even when applied in large areas with high land use and soil class variability.
•Soil parent material can be accurately predicted via pXRF analysis of soils.•Maps from B horizon samples were slightly superior to A horizon samples.•Overall map predictive accuracy was strong. |
---|---|
AbstractList | Knowledge about parent material (PM) is crucial to understand the properties of overlying soils. Assessing PM of very deep soils, however, is not easy. Previous studies have predicted PM via proximal sensors and machine learning algorithms, but within small areas and with low soil variety. This study evaluates the efficiency of using portable X-ray fluorescence (pXRF) spectrometry together with machine learning algorithms in a large area populated with a wide variety of soil classes and land uses to build accurate PM distribution maps from soil data. Samples from A and B horizons were collected from 117 sites, totaling 234 samples, along with representative PM samples of the predominant PMs in the region. Elemental contents of PM and soil samples were obtained using pXRF. Random Forest (RF), Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) models built with and without Principal Component Analysis (PCA) were used to predict PMs from A and B horizon samples separately. For validation, PM was identified in 23 different spots and compared with the predicted PM via overall accuracy and Kappa coefficient. Maps built with models excluding PCA had an overall accuracy ranging from 0.87 to 0.96 and kappa coefficient ranging from 0.74 to 0.91. Maps generated with PCA based models reached 100% overall accuracy. Prediction of PM using pXRF with samples from either A or B horizon and machine learning algorithms offers solid results even when applied in large areas with high land use and soil class variability.
•Soil parent material can be accurately predicted via pXRF analysis of soils.•Maps from B horizon samples were slightly superior to A horizon samples.•Overall map predictive accuracy was strong. Knowledge about parent material (PM) is crucial to understand the properties of overlying soils. Assessing PM of very deep soils, however, is not easy. Previous studies have predicted PM via proximal sensors and machine learning algorithms, but within small areas and with low soil variety. This study evaluates the efficiency of using portable X-ray fluorescence (pXRF) spectrometry together with machine learning algorithms in a large area populated with a wide variety of soil classes and land uses to build accurate PM distribution maps from soil data. Samples from A and B horizons were collected from 117 sites, totaling 234 samples, along with representative PM samples of the predominant PMs in the region. Elemental contents of PM and soil samples were obtained using pXRF. Random Forest (RF), Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) models built with and without Principal Component Analysis (PCA) were used to predict PMs from A and B horizon samples separately. For validation, PM was identified in 23 different spots and compared with the predicted PM via overall accuracy and Kappa coefficient. Maps built with models excluding PCA had an overall accuracy ranging from 0.87 to 0.96 and kappa coefficient ranging from 0.74 to 0.91. Maps generated with PCA based models reached 100% overall accuracy. Prediction of PM using pXRF with samples from either A or B horizon and machine learning algorithms offers solid results even when applied in large areas with high land use and soil class variability. |
ArticleNumber | 113885 |
Author | Weindorf, David C. Teixeira, Anita Fernanda dos Santos Curi, Nilton Silva, Sérgio Henrique Godinho Guilherme, Luiz Roberto Guimarães Mancini, Marcelo Chakraborty, Somsubhra |
Author_xml | – sequence: 1 givenname: Marcelo surname: Mancini fullname: Mancini, Marcelo organization: Department of Soil Science, Federal University of Lavras, Minas Gerais State, Brazil – sequence: 2 givenname: David C. surname: Weindorf fullname: Weindorf, David C. email: david.weindorf@ttu.edu organization: Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA – sequence: 3 givenname: Sérgio Henrique Godinho surname: Silva fullname: Silva, Sérgio Henrique Godinho organization: Department of Soil Science, Federal University of Lavras, Minas Gerais State, Brazil – sequence: 4 givenname: Somsubhra surname: Chakraborty fullname: Chakraborty, Somsubhra organization: Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India – sequence: 5 givenname: Anita Fernanda dos Santos surname: Teixeira fullname: Teixeira, Anita Fernanda dos Santos organization: Department of Soil Science, Federal University of Lavras, Minas Gerais State, Brazil – sequence: 6 givenname: Luiz Roberto Guimarães surname: Guilherme fullname: Guilherme, Luiz Roberto Guimarães organization: Department of Soil Science, Federal University of Lavras, Minas Gerais State, Brazil – sequence: 7 givenname: Nilton surname: Curi fullname: Curi, Nilton organization: Department of Soil Science, Federal University of Lavras, Minas Gerais State, Brazil |
BookMark | eNqFkU9r3DAQxUVJoZu0X6HomB68kbSxbEMPbUP-QaCltJCbGMvjVIssuSNtYPsp-pErs80llxwGMeL3HsN7x-woxICMvZdiLYXUZ9v1A8YBaYK1ErJbS7lp2_oVW8m2UZVWdXfEVqKQVSO0fMOOU9qWtRFKrNjfb0AYMp8gIznwfHApk-t32cVQfufZhQc-Upx4pjg7W5AUnU98gAz80UGB7C8XkHsECgsNYeBzpAy9R35fEez56HeRMFkMFvnpfP_96gNPM9riOWGmPXeBfyH44_xb9noEn_Dd__eE_by6_HFxU919vb69-HxXwUa3uWpA9KLMYOUgtRVC615IVFYJGM6bupXQNmOtpBKtBlGLcQTb1b0aUfdYn29O2OnBd6b4e4cpm8mV-7yHgHGXjNqIWhZ91xX04wG1FFMiHI11GZaAMoHzRgqzFGG25qkIsxRhDkUUuX4mn8lNQPuXhZ8OQiw5PDokk6xbEhwclejMEN1LFv8APn-r8A |
CitedBy_id | crossref_primary_10_1016_j_jsames_2022_103748 crossref_primary_10_1016_j_pce_2022_103271 crossref_primary_10_1002_saj2_20766 crossref_primary_10_1002_saj2_20223 crossref_primary_10_1007_s10346_023_02091_x crossref_primary_10_3390_s24165126 crossref_primary_10_1016_j_envsoft_2021_105139 crossref_primary_10_1071_SR22168 crossref_primary_10_1007_s42729_024_01803_z crossref_primary_10_1016_j_geoderma_2021_115604 crossref_primary_10_1016_j_jsames_2023_104241 crossref_primary_10_1590_1413_7054202145007921 crossref_primary_10_1016_j_geoderma_2020_114553 crossref_primary_10_1016_j_catena_2021_105670 crossref_primary_10_1007_s11119_021_09825_8 crossref_primary_10_1016_j_catena_2021_105492 crossref_primary_10_1016_j_sab_2024_106996 crossref_primary_10_1080_10408347_2023_2253473 crossref_primary_10_3390_plants12030561 crossref_primary_10_1016_j_geodrs_2023_e00653 crossref_primary_10_1016_j_jsames_2023_104640 crossref_primary_10_1016_j_geodrs_2020_e00310 crossref_primary_10_1016_j_jsames_2021_103634 crossref_primary_10_1016_j_geodrs_2023_e00612 crossref_primary_10_1002_saj2_20639 crossref_primary_10_1016_j_rsase_2024_101362 crossref_primary_10_1590_0001_3765202120200646 crossref_primary_10_1039_D0JA90074E crossref_primary_10_1590_1413_7054202145018121 crossref_primary_10_1016_j_geodrs_2021_e00464 crossref_primary_10_1016_j_jsames_2023_104510 crossref_primary_10_1016_j_catena_2024_107988 crossref_primary_10_1016_j_catena_2021_105766 crossref_primary_10_1016_j_catena_2023_107007 crossref_primary_10_1016_j_geodrs_2020_e00321 crossref_primary_10_1016_j_jsames_2023_104498 crossref_primary_10_1016_j_catena_2020_105003 crossref_primary_10_3390_rs15194859 crossref_primary_10_3390_agronomy12112699 |
Cites_doi | 10.1016/j.agee.2015.06.006 10.1016/j.geoderma.2011.11.014 10.1016/j.jas.2013.08.002 10.1590/1413-70542017413000117 10.1016/j.polymertesting.2018.06.002 10.1016/S0016-7061(03)00223-4 10.2307/2529310 10.1016/j.catena.2016.01.007 10.1590/1413-70542018425017518 10.1016/j.jaap.2012.02.017 10.1590/18069657rbcs20150056 10.1016/j.geoderma.2013.09.023 10.1016/B978-0-12-802139-2.00001-9 10.3390/ijerph13121191 10.1016/j.jhazmat.2009.03.078 10.1016/j.envpol.2018.04.118 10.1590/1413-70542018421009117 10.1016/j.ecolind.2018.03.073 10.3390/s16111950 10.1016/j.geoderma.2013.11.012 10.1016/j.gexplo.2018.02.006 10.1016/j.jas.2010.08.007 10.1016/j.chemgeo.2017.01.023 10.1016/j.geoderma.2015.04.008 10.1016/j.catena.2016.07.045 10.1007/s12665-010-0775-0 10.1590/1678-992x-2017-0300 10.1016/j.geoderma.2018.10.026 10.1016/0016-7061(71)90014-0 10.2136/sssaj2012.0275 10.2136/sssaj2015.10.0361 10.1016/j.clay.2015.08.037 10.1016/j.catena.2017.01.020 10.1007/s11631-009-0204-9 10.2136/sssaj1987.03615995005100010033x 10.3390/rs8080614 10.1016/j.jcs.2013.01.008 10.1590/S1413-70542007000600039 10.2136/sssaj1993.03615995005700020026x 10.1016/j.earscirev.2016.04.001 10.1016/j.geoderma.2018.03.029 10.2136/sh2015-56-2-gc 10.1007/s10705-017-9870-x |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.113885 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2019_113885 S0016706119307888 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-7a0b0a0bdc1d16c0066b01e2c20ad47581a87f5212086a050ffac95b2fe6be543 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 00:05:31 EDT 2025 Tue Jul 01 04:04:50 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Fri Feb 23 02:30:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pedology RF Digital soil mapping Prediction models Machine learning LDA Tropical soils Parent material SVM PM PCA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-7a0b0a0bdc1d16c0066b01e2c20ad47581a87f5212086a050ffac95b2fe6be543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2305152199 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2305152199 crossref_citationtrail_10_1016_j_geoderma_2019_113885 crossref_primary_10_1016_j_geoderma_2019_113885 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_113885 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-15 |
PublicationDateYYYYMMDD | 2019-11-15 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liaw, Wiener (bb0130) 2002; 2 Lemière (bb0125) 2018; 188 Steiner, Conrey, Wolff (bb0250) 2017; 453 Santos, Pereira, Anjos, Bernini, Cooper (bb0220) 2016; 40 Jolliffe (bb0100) 2002 Bai, Caspari, Ruiperez, Batjes, Mäder, Bünemann, Goede, Brussaard, Xu, So, Ferreira, Reintam, Fan, Miheli (bb0015) 2018; 265 Adhikari, Kheir, Greve, Bøcher, Malone, Minasny, McBratney, Greve (bb0005) 2013; 77 Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli, Saisana, Tarantola (bb0215) 2008 Adhikari, Minasny, Greve, Greve (bb0010) 2014; 214–215 Lu, Chen, Shan, Bai (bb0145) 2009; 169 Soil Survey Staff (bb0245) 2014 McBratney, Mendonça-Santos, Minasny (bb0160) 2003; 117 Cherubin, Franco, Cerri, Oliveira, Davies, Cerri (bb0035) 2015; 211 Bueno, Bahia, Curi, Dias Junior (bb0025) 1990; 14 Carvalho Filho, Inda, Fink, Curi (bb0030) 2015; 118 Piikki, Soderstrom, Eriksson, John, Muthee, Wetterlind, Lund (bb0190) 2016; 16 Brian, Venables, Bates, Firth, Ripley (bb0020) 2018 Silva, Poggere, Menezes, Carvalho, Guilherme, Curi (bb9955) 2016; 8 Xiaoyu, Chunlai, Chang (bb0295) 2009; 28 Qu, Wang, Huang, Zhao (bb0200) 2018; 240 Zhu, Wu, Liu (bb0315) 2018; 90 Loucks, van Beek, Stedinger, Dijkman, Villars (bb0140) 2005 Stockmann, Cattle, Minasny, McBratney (bb0255) 2016; 139 Machado, Silva, Curi, de Menezes (bb0150) 2019; 76 Tazikeh, Khormali, Amini, Motlagh, Ayoubi (bb0270) 2017; 152 Moore, Gessler, Nielsen, Peterson (bb0170) 1993; 57 Prabhakaran, Cottenie (bb0195) 1971; 5 Yang, Li, Liang, Luo (bb0305) 2016; 157 Jenny (bb0095) 1941 Suh, Lee, Choi (bb0260) 2016 Ribeiro, Silva, Silva, Guilherme (bb0210) 2017; 41 Curi, Silva, Poggere, Menezes (bb0055) 2017 CPRM (bb0045) 2003 Liaw, Wiener (bb0135) 2015 Grotzinger, Jordan (bb0075) 2014 Taghizadeh-Mehrjardi, Nabiollahi, Minasny, Triantafilis (bb0265) 2015; 253–254 Dantas, Carvalho, Ferreira (bb0060) 2007; 31 Gray, Bishop, Wilford (bb0070) 2016; 147 Hartemink (bb0080) 2015; 56 Mancini, Weindorf, Chakraborty, Silva, dos Santos Teixeira, Guilherme, Curi (bb0155) 2019; 337 O'Rourke, Minasny, Holden, McBratney (bb0185) 2016; 80 Lee, Sung, Kim, Jeon (bb0120) 2012; 96 Curi, Franzmeier (bb0050) 1987; 51 Oliveira, Jacomine, Couto (bb0180) 2017 Cortez (bb0040) 2016 Sheppard, Irwin, Lin, McCaffrey (bb0230) 2011; 38 Mulrennan, Donovan, Creedon, Rogers, Lyons, McAfee (bb0175) 2018; 69 Demattê, Terra (bb0065) 2014; 217-218 Xie, Li (bb0300) 2018; 325 Hornik, K., Weingessel, A., Leisch, F., Davidmeyerr-Projectorg, M.D.M., 2015. Package ‘e1071.’ Schaetzl, Anderson (bb0225) 2005 Landis, Koch (bb0115) 1977; 33 Zhao, Guo, Wei, Zhang (bb0310) 2013; 57 Milić (bb0165) 2014; 41 Shiuan, Chou (bb0235) 2011; 63 R Core Team (bb0205) 2018 Weindorf, Bakr, Zhu (bb0285) 2014; 128 Lacarce, Saby, Martin, Marchant, Boulonne, Meersmans, Jolivet, Bispo, Arrouays (bb0110) 2012; 170 Jolliffe, Cadima (bb0105) 2016; 374 Hengl, Leenaars, Shepherd, Walsh, Heuvelink, Mamo, Tilahun, Berkhout, Cooper, Fegraus, Wheeler, Kwabena (bb0085) 2017; 109 Silva, Silva, Poggere, Guilherme, Curi (bb0240) 2018; 42 Teixeira, Weindorf, Silva, Guilherme, Curi (bb0275) 2018; 42 Weindorf, Chakraborty (bb0280) 2016 Wicander, Monroe (bb0290) 2006 Xie (10.1016/j.geoderma.2019.113885_bb0300) 2018; 325 Xiaoyu (10.1016/j.geoderma.2019.113885_bb0295) 2009; 28 Adhikari (10.1016/j.geoderma.2019.113885_bb0005) 2013; 77 Hartemink (10.1016/j.geoderma.2019.113885_bb0080) 2015; 56 Liaw (10.1016/j.geoderma.2019.113885_bb0135) 2015 Stockmann (10.1016/j.geoderma.2019.113885_bb0255) 2016; 139 Liaw (10.1016/j.geoderma.2019.113885_bb0130) 2002; 2 Curi (10.1016/j.geoderma.2019.113885_bb0055) 2017 Dantas (10.1016/j.geoderma.2019.113885_bb0060) 2007; 31 Brian (10.1016/j.geoderma.2019.113885_bb0020) 2018 Taghizadeh-Mehrjardi (10.1016/j.geoderma.2019.113885_bb0265) 2015; 253–254 Bai (10.1016/j.geoderma.2019.113885_bb0015) 2018; 265 Adhikari (10.1016/j.geoderma.2019.113885_bb0010) 2014; 214–215 Lemière (10.1016/j.geoderma.2019.113885_bb0125) 2018; 188 Cherubin (10.1016/j.geoderma.2019.113885_bb0035) 2015; 211 Saltelli (10.1016/j.geoderma.2019.113885_bb0215) 2008 Demattê (10.1016/j.geoderma.2019.113885_bb0065) 2014; 217-218 Cortez (10.1016/j.geoderma.2019.113885_bb0040) Teixeira (10.1016/j.geoderma.2019.113885_bb0275) 2018; 42 Lu (10.1016/j.geoderma.2019.113885_bb0145) 2009; 169 Weindorf (10.1016/j.geoderma.2019.113885_bb0285) 2014; 128 Wicander (10.1016/j.geoderma.2019.113885_bb0290) 2006 Curi (10.1016/j.geoderma.2019.113885_bb0050) 1987; 51 Mulrennan (10.1016/j.geoderma.2019.113885_bb0175) 2018; 69 Jenny (10.1016/j.geoderma.2019.113885_bb0095) 1941 R Core Team (10.1016/j.geoderma.2019.113885_bb0205) Carvalho Filho (10.1016/j.geoderma.2019.113885_bb0030) 2015; 118 Silva (10.1016/j.geoderma.2019.113885_bb9955) 2016; 8 Shiuan (10.1016/j.geoderma.2019.113885_bb0235) 2011; 63 Landis (10.1016/j.geoderma.2019.113885_bb0115) 1977; 33 Oliveira (10.1016/j.geoderma.2019.113885_bb0180) 2017 Machado (10.1016/j.geoderma.2019.113885_bb0150) 2019; 76 Qu (10.1016/j.geoderma.2019.113885_bb0200) 2018; 240 Jolliffe (10.1016/j.geoderma.2019.113885_bb0105) 2016; 374 Tazikeh (10.1016/j.geoderma.2019.113885_bb0270) 2017; 152 Lee (10.1016/j.geoderma.2019.113885_bb0120) 2012; 96 Gray (10.1016/j.geoderma.2019.113885_bb0070) 2016; 147 CPRM (10.1016/j.geoderma.2019.113885_bb0045) 2003 Loucks (10.1016/j.geoderma.2019.113885_bb0140) 2005 Mancini (10.1016/j.geoderma.2019.113885_bb0155) 2019; 337 Jolliffe (10.1016/j.geoderma.2019.113885_bb0100) 2002 McBratney (10.1016/j.geoderma.2019.113885_bb0160) 2003; 117 Milić (10.1016/j.geoderma.2019.113885_bb0165) 2014; 41 Lacarce (10.1016/j.geoderma.2019.113885_bb0110) 2012; 170 Santos (10.1016/j.geoderma.2019.113885_bb0220) 2016; 40 Bueno (10.1016/j.geoderma.2019.113885_bb0025) 1990; 14 Silva (10.1016/j.geoderma.2019.113885_bb0240) 2018; 42 Zhao (10.1016/j.geoderma.2019.113885_bb0310) 2013; 57 Zhu (10.1016/j.geoderma.2019.113885_bb0315) 2018; 90 Steiner (10.1016/j.geoderma.2019.113885_bb0250) 2017; 453 Yang (10.1016/j.geoderma.2019.113885_bb0305) 2016; 157 Prabhakaran (10.1016/j.geoderma.2019.113885_bb0195) 1971; 5 O'Rourke (10.1016/j.geoderma.2019.113885_bb0185) 2016; 80 10.1016/j.geoderma.2019.113885_bb0090 Grotzinger (10.1016/j.geoderma.2019.113885_bb0075) 2014 Ribeiro (10.1016/j.geoderma.2019.113885_bb0210) 2017; 41 Piikki (10.1016/j.geoderma.2019.113885_bb0190) 2016; 16 Sheppard (10.1016/j.geoderma.2019.113885_bb0230) 2011; 38 Hengl (10.1016/j.geoderma.2019.113885_bb0085) 2017; 109 Schaetzl (10.1016/j.geoderma.2019.113885_bb0225) 2005 Soil Survey Staff (10.1016/j.geoderma.2019.113885_bb0245) 2014 Weindorf (10.1016/j.geoderma.2019.113885_bb0280) 2016 Suh (10.1016/j.geoderma.2019.113885_bb0260) 2016 Moore (10.1016/j.geoderma.2019.113885_bb0170) 1993; 57 |
References_xml | – volume: 8 start-page: 614 year: 2016 end-page: 635 ident: bb9955 article-title: Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols). publication-title: Remote Sens. – volume: 5 start-page: 81 year: 1971 end-page: 84, 93–97 ident: bb0195 article-title: Parent material-soil relationship in trace elements - a quantitative estimation publication-title: Geoderma – volume: 96 start-page: 33 year: 2012 end-page: 42 ident: bb0120 article-title: Classification of forensic soil evidences by application of THM-PyGC/MS and multivariate analysis publication-title: J. Anal. Appl. Pyrolysis – volume: 63 start-page: 981 year: 2011 end-page: 997 ident: bb0235 article-title: The knowledge expression on debris flow potential analysis through PCA + LDA and rough sets theory : a case study of Chen-Yu-Lan watershed, Nantou, Taiwan publication-title: Environ. Earth Sci. – volume: 157 start-page: 18 year: 2016 end-page: 31 ident: bb0305 article-title: On the chemical markers of pyroxenite contributions in continental basalts in eastern China: implications for source lithology and the origin of basalts publication-title: Earth Sci. Rev. – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bb0160 article-title: On digital soil mapping publication-title: Geoderma – volume: 57 start-page: 391 year: 2013 end-page: 397 ident: bb0310 article-title: Multi-element composition of wheat grain and provenance soil and their potentialities as fingerprints of geographical origin publication-title: J. Cereal Sci. – volume: 69 start-page: 462 year: 2018 end-page: 469 ident: bb0175 article-title: A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithms publication-title: Polym. Test. – volume: 128 start-page: 1 year: 2014 end-page: 45 ident: bb0285 article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications publication-title: Adv. Agron. – volume: 152 start-page: 252 year: 2017 end-page: 267 ident: bb0270 article-title: Soil-parent material relationship in a mountainous arid area of Kopet Dagh basin, north East Iran publication-title: Catena – volume: 41 start-page: 57 year: 2014 end-page: 66 ident: bb0165 article-title: PXRF characterisation of obsidian from central Anatolia, the Aegean and central Europe publication-title: J. Archaeol. Sci. – year: 2016 ident: bb0260 article-title: A rapid, accurate, and efficient method to map heavy metal-contaminated soils of abandoned mine sites using converted portable XRF data and GIS publication-title: Int. J. Environ. Res. Public Health – volume: 42 start-page: 80 year: 2018 end-page: 92 ident: bb0240 article-title: Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): effects of different sample preparation methods publication-title: Cienc. Agrotecnol. – volume: 33 start-page: 159 year: 1977 end-page: 174 ident: bb0115 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 57 start-page: 443 year: 1993 end-page: 452 ident: bb0170 article-title: Soil attribute prediction using terrain analysis publication-title: Soil Sci. Soc. Am. J. – volume: 38 start-page: 45 year: 2011 end-page: 56 ident: bb0230 article-title: Characterization of New Zealand obsidian using PXRF publication-title: J. Archaeol. Sci. – volume: 374 year: 2016 ident: bb0105 article-title: Principal component analysis: a review and recent developments publication-title: Philos. Transact. A Math. Phys. Eng. Sci. – volume: 169 start-page: 246 year: 2009 end-page: 255 ident: bb0145 article-title: Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes publication-title: J. Hazard. Mater. – volume: 325 start-page: 90 year: 2018 end-page: 101 ident: bb0300 article-title: Identification of soil profile classes using depth-weighted visible–near-infrared spectral reflectance publication-title: Geoderma – year: 2014 ident: bb0245 article-title: Keys to Soil Taxonomy – volume: 265 start-page: 1 year: 2018 end-page: 7 ident: bb0015 article-title: Agriculture, ecosystems and environment effects of agricultural management practices on soil quality : a review of long-term experiments for publication-title: Europe and China – volume: 41 start-page: 245 year: 2017 end-page: 254 ident: bb0210 article-title: Portable X-ray fluorescence (pXRF) applications in tropical soil science publication-title: Cienc. Agrotecnol. – volume: 77 start-page: 860 year: 2013 end-page: 876 ident: bb0005 article-title: High-resolution 3-D mapping of soil texture in Denmark publication-title: Soil Sci. Soc. Am. J. – volume: 31 start-page: 1862 year: 2007 end-page: 1866 ident: bb0060 article-title: Climatic classification and tendencies in Lavras region, MG publication-title: Ciência e Agrotecnologia – year: 2018 ident: bb0205 article-title: R: a language and environment for statistical R Foundation for statistical computing, Vienna, Austria – volume: 188 start-page: 350 year: 2018 end-page: 363 ident: bb0125 article-title: A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry publication-title: J. Geochem. Explor. – year: 2002 ident: bb0100 article-title: Principal Component Analysis. Second Edition – volume: 76 start-page: 243 year: 2019 end-page: 254 ident: bb0150 article-title: Soil type spatial prediction from Random Forest: different training datasets, transferability, accuracy and uncertainty assessment publication-title: Sci. Agric. – volume: 28 start-page: 204 year: 2009 end-page: 211 ident: bb0295 article-title: Quantification of the chemical composition of lunar soil in terms of its reflectance spectra by PCA and SVM publication-title: Chin. J. Geochem. – reference: Hornik, K., Weingessel, A., Leisch, F., Davidmeyerr-Projectorg, M.D.M., 2015. Package ‘e1071.’ – year: 2017 ident: bb0055 article-title: Mapeamento de solos e magnetismo no campus da UFLA – start-page: 1 year: 2016 end-page: 8 ident: bb0280 article-title: Portable X-ray fluorescence spectrometry analysis of soils publication-title: Methods of Soil Analysis – volume: 14 start-page: 352 year: 1990 end-page: 365 ident: bb0025 article-title: Unidades litológicas do município de Lavras (MG) publication-title: Ciência e Prática – volume: 211 start-page: 173 year: 2015 end-page: 184 ident: bb0035 article-title: Sugarcane expansion in Brazilian tropical soils-effects of land use change on soil chemical attributes publication-title: Agric. Ecosyst. Environ. – year: 2014 ident: bb0075 article-title: Understanding Earth – year: 2016 ident: bb0040 article-title: Rminer: data mining classification and regression methods. R package version 1.4.2 – year: 2003 ident: bb0045 article-title: Mapa geológico do estado de Minas Gerais - Escala 1:1.000.000 – year: 2018 ident: bb0020 article-title: Package “MASS.” – volume: 16 start-page: 1 year: 2016 end-page: 21 ident: bb0190 article-title: Performance evaluation of proximal sensors for soil assessment in smallholder farms in Embu County, Kenya publication-title: Sensors – volume: 217-218 start-page: 190 year: 2014 end-page: 200 ident: bb0065 article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations publication-title: Geoderma – start-page: 177 year: 2017 end-page: 226 ident: bb0180 article-title: Solos do bioma Cerrado publication-title: Pedologia - Solos dos biomas brasileiros – volume: 253–254 start-page: 67 year: 2015 end-page: 77 ident: bb0265 article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran publication-title: Geoderma – volume: 109 start-page: 77 year: 2017 end-page: 102 ident: bb0085 article-title: Soil nutrient maps of sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning publication-title: Nutr. Cycl. Agroecosyst. – year: 1941 ident: bb0095 article-title: Factors of Soil Formation: A System of Quantitative Pedology – volume: 118 start-page: 1 year: 2015 end-page: 7 ident: bb0030 article-title: Iron oxides in soils of different lithological origins in Ferriferous Quadrilateral (Minas Gerais, Brazil) publication-title: Appl. Clay Sci. – volume: 453 start-page: 35 year: 2017 end-page: 54 ident: bb0250 article-title: PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences publication-title: Chem. Geol. – year: 2005 ident: bb0225 article-title: Soils: Genesis and Geomorphology – volume: 42 start-page: 501 year: 2018 end-page: 512 ident: bb0275 article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses publication-title: Cienc. Agrotecnol. – volume: 56 start-page: 1 year: 2015 end-page: 2 ident: bb0080 article-title: New tools for pedologists: digital soil Morphometrics publication-title: Soil Horizons – volume: 90 start-page: 624 year: 2018 end-page: 632 ident: bb0315 article-title: Environmental variables controlling soil organic carbon in top- and sub-soils in karst region of southwestern China publication-title: Ecol. Indic. – year: 2005 ident: bb0140 article-title: Model sensitivity and uncertainty analysis publication-title: Water Resources Systems Planning and Management – volume: 147 start-page: 429 year: 2016 end-page: 440 ident: bb0070 article-title: Lithology and soil relationships for soil modelling and mapping publication-title: Catena – year: 2008 ident: bb0215 article-title: Global Sensitivity Analysis. The Primer, Global Sensitivity Analysis. The Primer – volume: 170 start-page: 359 year: 2012 end-page: 368 ident: bb0110 article-title: Mapping soil Pb stocks and availability in mainland France combining regression trees with robust geostatistics publication-title: Geoderma – volume: 240 start-page: 184 year: 2018 end-page: 190 ident: bb0200 article-title: Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH publication-title: Environ. Pollut. – volume: 337 start-page: 718 year: 2019 end-page: 728 ident: bb0155 article-title: Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado publication-title: Geoderma – volume: 214–215 start-page: 101 year: 2014 end-page: 113 ident: bb0010 article-title: Constructing a soil class map of Denmark based on the FAO legend using digital techniques publication-title: Geoderma – volume: 80 start-page: 888 year: 2016 end-page: 899 ident: bb0185 article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry publication-title: Soil Sci. Soc. Am. J. – volume: 40 year: 2016 ident: bb0220 article-title: Genesis of soils formed from mafic igneous rock in the Atlantic Forest environment publication-title: Rev. Bras. Ci. Solo. – volume: 51 start-page: 153 year: 1987 end-page: 158 ident: bb0050 article-title: Effect of parent rocks on chemical and mineralogical properties of some Oxisols in Brazil publication-title: Soil Sci. Soc. Am. J. – year: 2015 ident: bb0135 article-title: Package “randomForest” – volume: 139 start-page: 220 year: 2016 end-page: 231 ident: bb0255 article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis publication-title: Catena – year: 2006 ident: bb0290 article-title: Essentials of Geology – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0130 article-title: Classification and regression by random forest publication-title: R News – volume: 211 start-page: 173 year: 2015 ident: 10.1016/j.geoderma.2019.113885_bb0035 article-title: Sugarcane expansion in Brazilian tropical soils-effects of land use change on soil chemical attributes publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.06.006 – ident: 10.1016/j.geoderma.2019.113885_bb0090 – volume: 170 start-page: 359 year: 2012 ident: 10.1016/j.geoderma.2019.113885_bb0110 article-title: Mapping soil Pb stocks and availability in mainland France combining regression trees with robust geostatistics publication-title: Geoderma doi: 10.1016/j.geoderma.2011.11.014 – volume: 41 start-page: 57 year: 2014 ident: 10.1016/j.geoderma.2019.113885_bb0165 article-title: PXRF characterisation of obsidian from central Anatolia, the Aegean and central Europe publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2013.08.002 – volume: 41 start-page: 245 year: 2017 ident: 10.1016/j.geoderma.2019.113885_bb0210 article-title: Portable X-ray fluorescence (pXRF) applications in tropical soil science publication-title: Cienc. Agrotecnol. doi: 10.1590/1413-70542017413000117 – year: 2015 ident: 10.1016/j.geoderma.2019.113885_bb0135 – start-page: 177 year: 2017 ident: 10.1016/j.geoderma.2019.113885_bb0180 article-title: Solos do bioma Cerrado – start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2019.113885_bb0280 article-title: Portable X-ray fluorescence spectrometry analysis of soils – volume: 69 start-page: 462 year: 2018 ident: 10.1016/j.geoderma.2019.113885_bb0175 article-title: A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithms publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.06.002 – year: 2018 ident: 10.1016/j.geoderma.2019.113885_bb0020 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.geoderma.2019.113885_bb0160 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 33 start-page: 159 year: 1977 ident: 10.1016/j.geoderma.2019.113885_bb0115 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 – volume: 139 start-page: 220 year: 2016 ident: 10.1016/j.geoderma.2019.113885_bb0255 article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis publication-title: Catena doi: 10.1016/j.catena.2016.01.007 – volume: 42 start-page: 501 year: 2018 ident: 10.1016/j.geoderma.2019.113885_bb0275 article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses publication-title: Cienc. Agrotecnol. doi: 10.1590/1413-70542018425017518 – ident: 10.1016/j.geoderma.2019.113885_bb0040 – volume: 96 start-page: 33 year: 2012 ident: 10.1016/j.geoderma.2019.113885_bb0120 article-title: Classification of forensic soil evidences by application of THM-PyGC/MS and multivariate analysis publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2012.02.017 – volume: 40 year: 2016 ident: 10.1016/j.geoderma.2019.113885_bb0220 article-title: Genesis of soils formed from mafic igneous rock in the Atlantic Forest environment publication-title: Rev. Bras. Ci. Solo. doi: 10.1590/18069657rbcs20150056 – volume: 214–215 start-page: 101 year: 2014 ident: 10.1016/j.geoderma.2019.113885_bb0010 article-title: Constructing a soil class map of Denmark based on the FAO legend using digital techniques publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.023 – volume: 128 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2019.113885_bb0285 article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications publication-title: Adv. Agron. doi: 10.1016/B978-0-12-802139-2.00001-9 – year: 2006 ident: 10.1016/j.geoderma.2019.113885_bb0290 – year: 2016 ident: 10.1016/j.geoderma.2019.113885_bb0260 article-title: A rapid, accurate, and efficient method to map heavy metal-contaminated soils of abandoned mine sites using converted portable XRF data and GIS publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph13121191 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.geoderma.2019.113885_bb0130 article-title: Classification and regression by random forest publication-title: R News – volume: 169 start-page: 246 year: 2009 ident: 10.1016/j.geoderma.2019.113885_bb0145 article-title: Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.03.078 – volume: 240 start-page: 184 year: 2018 ident: 10.1016/j.geoderma.2019.113885_bb0200 article-title: Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.04.118 – volume: 42 start-page: 80 year: 2018 ident: 10.1016/j.geoderma.2019.113885_bb0240 article-title: Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): effects of different sample preparation methods publication-title: Cienc. Agrotecnol. doi: 10.1590/1413-70542018421009117 – volume: 90 start-page: 624 year: 2018 ident: 10.1016/j.geoderma.2019.113885_bb0315 article-title: Environmental variables controlling soil organic carbon in top- and sub-soils in karst region of southwestern China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.03.073 – volume: 16 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2019.113885_bb0190 article-title: Performance evaluation of proximal sensors for soil assessment in smallholder farms in Embu County, Kenya publication-title: Sensors doi: 10.3390/s16111950 – year: 2003 ident: 10.1016/j.geoderma.2019.113885_bb0045 – volume: 217-218 start-page: 190 year: 2014 ident: 10.1016/j.geoderma.2019.113885_bb0065 article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations publication-title: Geoderma doi: 10.1016/j.geoderma.2013.11.012 – volume: 188 start-page: 350 year: 2018 ident: 10.1016/j.geoderma.2019.113885_bb0125 article-title: A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2018.02.006 – volume: 265 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2019.113885_bb0015 article-title: Agriculture, ecosystems and environment effects of agricultural management practices on soil quality : a review of long-term experiments for publication-title: Europe and China – year: 2014 ident: 10.1016/j.geoderma.2019.113885_bb0245 – volume: 38 start-page: 45 year: 2011 ident: 10.1016/j.geoderma.2019.113885_bb0230 article-title: Characterization of New Zealand obsidian using PXRF publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2010.08.007 – volume: 453 start-page: 35 year: 2017 ident: 10.1016/j.geoderma.2019.113885_bb0250 article-title: PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2017.01.023 – year: 1941 ident: 10.1016/j.geoderma.2019.113885_bb0095 – volume: 253–254 start-page: 67 year: 2015 ident: 10.1016/j.geoderma.2019.113885_bb0265 article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2015.04.008 – year: 2017 ident: 10.1016/j.geoderma.2019.113885_bb0055 – volume: 147 start-page: 429 year: 2016 ident: 10.1016/j.geoderma.2019.113885_bb0070 article-title: Lithology and soil relationships for soil modelling and mapping publication-title: Catena doi: 10.1016/j.catena.2016.07.045 – volume: 63 start-page: 981 year: 2011 ident: 10.1016/j.geoderma.2019.113885_bb0235 article-title: The knowledge expression on debris flow potential analysis through PCA + LDA and rough sets theory : a case study of Chen-Yu-Lan watershed, Nantou, Taiwan publication-title: Environ. Earth Sci. doi: 10.1007/s12665-010-0775-0 – volume: 76 start-page: 243 year: 2019 ident: 10.1016/j.geoderma.2019.113885_bb0150 article-title: Soil type spatial prediction from Random Forest: different training datasets, transferability, accuracy and uncertainty assessment publication-title: Sci. Agric. doi: 10.1590/1678-992x-2017-0300 – volume: 337 start-page: 718 year: 2019 ident: 10.1016/j.geoderma.2019.113885_bb0155 article-title: Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado publication-title: Geoderma doi: 10.1016/j.geoderma.2018.10.026 – volume: 5 start-page: 81 year: 1971 ident: 10.1016/j.geoderma.2019.113885_bb0195 article-title: Parent material-soil relationship in trace elements - a quantitative estimation publication-title: Geoderma doi: 10.1016/0016-7061(71)90014-0 – volume: 77 start-page: 860 year: 2013 ident: 10.1016/j.geoderma.2019.113885_bb0005 article-title: High-resolution 3-D mapping of soil texture in Denmark publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0275 – volume: 80 start-page: 888 year: 2016 ident: 10.1016/j.geoderma.2019.113885_bb0185 article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.10.0361 – volume: 14 start-page: 352 year: 1990 ident: 10.1016/j.geoderma.2019.113885_bb0025 article-title: Unidades litológicas do município de Lavras (MG) publication-title: Ciência e Prática – volume: 118 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2019.113885_bb0030 article-title: Iron oxides in soils of different lithological origins in Ferriferous Quadrilateral (Minas Gerais, Brazil) publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2015.08.037 – volume: 374 year: 2016 ident: 10.1016/j.geoderma.2019.113885_bb0105 article-title: Principal component analysis: a review and recent developments publication-title: Philos. Transact. A Math. Phys. Eng. Sci. – year: 2005 ident: 10.1016/j.geoderma.2019.113885_bb0225 – year: 2002 ident: 10.1016/j.geoderma.2019.113885_bb0100 – ident: 10.1016/j.geoderma.2019.113885_bb0205 – volume: 152 start-page: 252 year: 2017 ident: 10.1016/j.geoderma.2019.113885_bb0270 article-title: Soil-parent material relationship in a mountainous arid area of Kopet Dagh basin, north East Iran publication-title: Catena doi: 10.1016/j.catena.2017.01.020 – volume: 28 start-page: 204 year: 2009 ident: 10.1016/j.geoderma.2019.113885_bb0295 article-title: Quantification of the chemical composition of lunar soil in terms of its reflectance spectra by PCA and SVM publication-title: Chin. J. Geochem. doi: 10.1007/s11631-009-0204-9 – volume: 51 start-page: 153 year: 1987 ident: 10.1016/j.geoderma.2019.113885_bb0050 article-title: Effect of parent rocks on chemical and mineralogical properties of some Oxisols in Brazil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1987.03615995005100010033x – volume: 8 start-page: 614 year: 2016 ident: 10.1016/j.geoderma.2019.113885_bb9955 article-title: Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols). publication-title: Remote Sens. doi: 10.3390/rs8080614 – volume: 57 start-page: 391 year: 2013 ident: 10.1016/j.geoderma.2019.113885_bb0310 article-title: Multi-element composition of wheat grain and provenance soil and their potentialities as fingerprints of geographical origin publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2013.01.008 – volume: 31 start-page: 1862 year: 2007 ident: 10.1016/j.geoderma.2019.113885_bb0060 article-title: Climatic classification and tendencies in Lavras region, MG publication-title: Ciência e Agrotecnologia doi: 10.1590/S1413-70542007000600039 – volume: 57 start-page: 443 year: 1993 ident: 10.1016/j.geoderma.2019.113885_bb0170 article-title: Soil attribute prediction using terrain analysis publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1993.03615995005700020026x – volume: 157 start-page: 18 year: 2016 ident: 10.1016/j.geoderma.2019.113885_bb0305 article-title: On the chemical markers of pyroxenite contributions in continental basalts in eastern China: implications for source lithology and the origin of basalts publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.04.001 – volume: 325 start-page: 90 year: 2018 ident: 10.1016/j.geoderma.2019.113885_bb0300 article-title: Identification of soil profile classes using depth-weighted visible–near-infrared spectral reflectance publication-title: Geoderma doi: 10.1016/j.geoderma.2018.03.029 – year: 2014 ident: 10.1016/j.geoderma.2019.113885_bb0075 – volume: 56 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2019.113885_bb0080 article-title: New tools for pedologists: digital soil Morphometrics publication-title: Soil Horizons doi: 10.2136/sh2015-56-2-gc – year: 2008 ident: 10.1016/j.geoderma.2019.113885_bb0215 – volume: 109 start-page: 77 year: 2017 ident: 10.1016/j.geoderma.2019.113885_bb0085 article-title: Soil nutrient maps of sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-017-9870-x – year: 2005 ident: 10.1016/j.geoderma.2019.113885_bb0140 article-title: Model sensitivity and uncertainty analysis |
SSID | ssj0017020 |
Score | 2.468363 |
Snippet | Knowledge about parent material (PM) is crucial to understand the properties of overlying soils. Assessing PM of very deep soils, however, is not easy.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113885 |
SubjectTerms | B horizons Brazil Digital soil mapping discriminant analysis fluorescence land use Machine learning Parent material Pedology prediction Prediction models principal component analysis soil sampling support vector machines Tropical soils X-radiation X-ray fluorescence spectroscopy |
Title | Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.113885 https://www.proquest.com/docview/2305152199 |
Volume | 354 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ni9RAEG2W9aIH0VVx_VhqwYMe4nRnks7kOC4OswqLiAtza_orQ5aQDJmMsB78Df5kq3o6i8rCHjzkkNAdQld1VxWp9x5jb2RZZVoUFve3y5OsdFPccyZNuPEYLkhgxIUG2Qu5vMw-rfLVATsbsTDUVhnP_v2ZHk7r-GQSV3OyqWvC-ApZYDjCFIRTIUcI9qwgL3__86bNQxQ8UjMKmdDoP1DCV2gjEhwL_EOiJHmTGWkq3x6g_jmqQ_xZPGIPY-II8_23PWYHvj1iD-brPpJn-Cfs1xdCdg2ASWjwK3DEihsFrfApUTGsgQAlMPTdhswD265utkB9ovC91jiIeis9RDGJNejWQUjRTeNhlfT6Gqpm1_WBBcp6eLtZfV28gwDYJOaDob-GuoUPvf5RN0_Z5eLjt7NlEhUXEj2VsyEpNDccL2eFE9JSPmK48KlNuXYZlhZCz4qK4L5YCWme86rStsxNWnlpfJ5Nn7HDtmv9cwbCEVGQ9I6osFMjsK7jVVrMpDHWyiI7Zvm4zMpGOnJSxWjU2Hd2pUbzKDKP2pvnmE1u5m32hBx3zihHK6q_XEth1Lhz7ulodoX7jn6m6NZ3u63C0i2n3KcsX_zH-1-y-3RH4EaRv2KHQ7_zrzHLGcxJcOMTdm9-_nl58RuLBf6N |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXK9gAcEJ9qaYFB4gCHaO1s7CTHbcVqS8sKoVbam-WvrFJFySqbRSq_oj8ZT9apACH1wCGXJBNFHntmLM97j5APIi8SxVLj17flUZLbiV9zOo6odj5doMCI7RtkF2J-lXxZ8uUeOR2wMNhWGWL_Lqb30TrcGYfRHK_LEjG-TKQ-HfkShOJG7gHZR3YqPiL707Pz-eLuMCGlgZ2RiQgNfgMKX3s3oeZYT0HEclQ4yVBW-d856q9o3aeg2VPyJNSOMN393jOy5-rn5PF01Qb-DPeC3H5DcFcHvg7tpxZYJMYNmlb-LrIxrAAxJdC1zRo9BJumrDaAraLwo1T-JWyvdBD0JFagagt9la4rB8uoVTdQVNum7YmgjIOP6-X32SfoMZtIftC1N1DWcNKqn2X1klzNPl-ezqMguhCpici6KFVUU39ZwywTBksSTZmLTUyV9aObMZWlBSJ-_WZIUU6LQpmc67hwQjueTF6RUd3U7oAAs8gVJJxFNuxYM7-1o0WcZkJrY0SaHBI-DLM0gZEchTEqObSeXcvBPRLdI3fuOSTjO7v1jpPjXot88KL8Y3ZJnzjutX0_uF36pYfnKap2zXYj_e6NY_mT56__4_vvyMP55dcLeXG2OD8ij_AJYh0ZPyajrt26N77o6fTbMKl_AThIAU0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parent+material+distribution+mapping+from+tropical+soils+data+via+machine+learning+and+portable+X-ray+fluorescence+%28pXRF%29+spectrometry+in+Brazil&rft.jtitle=Geoderma&rft.au=Mancini%2C+Marcelo&rft.au=Weindorf%2C+David+C&rft.au=Silva%2C+S%C3%A9rgio+Henrique+Godinho&rft.au=Chakraborty%2C+Somsubhra&rft.date=2019-11-15&rft.issn=0016-7061&rft.volume=354+p.113885-&rft_id=info:doi/10.1016%2Fj.geoderma.2019.113885&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |