Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil

Knowledge about parent material (PM) is crucial to understand the properties of overlying soils. Assessing PM of very deep soils, however, is not easy. Previous studies have predicted PM via proximal sensors and machine learning algorithms, but within small areas and with low soil variety. This stud...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 354; p. 113885
Main Authors Mancini, Marcelo, Weindorf, David C., Silva, Sérgio Henrique Godinho, Chakraborty, Somsubhra, Teixeira, Anita Fernanda dos Santos, Guilherme, Luiz Roberto Guimarães, Curi, Nilton
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Knowledge about parent material (PM) is crucial to understand the properties of overlying soils. Assessing PM of very deep soils, however, is not easy. Previous studies have predicted PM via proximal sensors and machine learning algorithms, but within small areas and with low soil variety. This study evaluates the efficiency of using portable X-ray fluorescence (pXRF) spectrometry together with machine learning algorithms in a large area populated with a wide variety of soil classes and land uses to build accurate PM distribution maps from soil data. Samples from A and B horizons were collected from 117 sites, totaling 234 samples, along with representative PM samples of the predominant PMs in the region. Elemental contents of PM and soil samples were obtained using pXRF. Random Forest (RF), Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) models built with and without Principal Component Analysis (PCA) were used to predict PMs from A and B horizon samples separately. For validation, PM was identified in 23 different spots and compared with the predicted PM via overall accuracy and Kappa coefficient. Maps built with models excluding PCA had an overall accuracy ranging from 0.87 to 0.96 and kappa coefficient ranging from 0.74 to 0.91. Maps generated with PCA based models reached 100% overall accuracy. Prediction of PM using pXRF with samples from either A or B horizon and machine learning algorithms offers solid results even when applied in large areas with high land use and soil class variability. •Soil parent material can be accurately predicted via pXRF analysis of soils.•Maps from B horizon samples were slightly superior to A horizon samples.•Overall map predictive accuracy was strong.
AbstractList Knowledge about parent material (PM) is crucial to understand the properties of overlying soils. Assessing PM of very deep soils, however, is not easy. Previous studies have predicted PM via proximal sensors and machine learning algorithms, but within small areas and with low soil variety. This study evaluates the efficiency of using portable X-ray fluorescence (pXRF) spectrometry together with machine learning algorithms in a large area populated with a wide variety of soil classes and land uses to build accurate PM distribution maps from soil data. Samples from A and B horizons were collected from 117 sites, totaling 234 samples, along with representative PM samples of the predominant PMs in the region. Elemental contents of PM and soil samples were obtained using pXRF. Random Forest (RF), Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) models built with and without Principal Component Analysis (PCA) were used to predict PMs from A and B horizon samples separately. For validation, PM was identified in 23 different spots and compared with the predicted PM via overall accuracy and Kappa coefficient. Maps built with models excluding PCA had an overall accuracy ranging from 0.87 to 0.96 and kappa coefficient ranging from 0.74 to 0.91. Maps generated with PCA based models reached 100% overall accuracy. Prediction of PM using pXRF with samples from either A or B horizon and machine learning algorithms offers solid results even when applied in large areas with high land use and soil class variability. •Soil parent material can be accurately predicted via pXRF analysis of soils.•Maps from B horizon samples were slightly superior to A horizon samples.•Overall map predictive accuracy was strong.
Knowledge about parent material (PM) is crucial to understand the properties of overlying soils. Assessing PM of very deep soils, however, is not easy. Previous studies have predicted PM via proximal sensors and machine learning algorithms, but within small areas and with low soil variety. This study evaluates the efficiency of using portable X-ray fluorescence (pXRF) spectrometry together with machine learning algorithms in a large area populated with a wide variety of soil classes and land uses to build accurate PM distribution maps from soil data. Samples from A and B horizons were collected from 117 sites, totaling 234 samples, along with representative PM samples of the predominant PMs in the region. Elemental contents of PM and soil samples were obtained using pXRF. Random Forest (RF), Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) models built with and without Principal Component Analysis (PCA) were used to predict PMs from A and B horizon samples separately. For validation, PM was identified in 23 different spots and compared with the predicted PM via overall accuracy and Kappa coefficient. Maps built with models excluding PCA had an overall accuracy ranging from 0.87 to 0.96 and kappa coefficient ranging from 0.74 to 0.91. Maps generated with PCA based models reached 100% overall accuracy. Prediction of PM using pXRF with samples from either A or B horizon and machine learning algorithms offers solid results even when applied in large areas with high land use and soil class variability.
ArticleNumber 113885
Author Weindorf, David C.
Teixeira, Anita Fernanda dos Santos
Curi, Nilton
Silva, Sérgio Henrique Godinho
Guilherme, Luiz Roberto Guimarães
Mancini, Marcelo
Chakraborty, Somsubhra
Author_xml – sequence: 1
  givenname: Marcelo
  surname: Mancini
  fullname: Mancini, Marcelo
  organization: Department of Soil Science, Federal University of Lavras, Minas Gerais State, Brazil
– sequence: 2
  givenname: David C.
  surname: Weindorf
  fullname: Weindorf, David C.
  email: david.weindorf@ttu.edu
  organization: Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
– sequence: 3
  givenname: Sérgio Henrique Godinho
  surname: Silva
  fullname: Silva, Sérgio Henrique Godinho
  organization: Department of Soil Science, Federal University of Lavras, Minas Gerais State, Brazil
– sequence: 4
  givenname: Somsubhra
  surname: Chakraborty
  fullname: Chakraborty, Somsubhra
  organization: Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India
– sequence: 5
  givenname: Anita Fernanda dos Santos
  surname: Teixeira
  fullname: Teixeira, Anita Fernanda dos Santos
  organization: Department of Soil Science, Federal University of Lavras, Minas Gerais State, Brazil
– sequence: 6
  givenname: Luiz Roberto Guimarães
  surname: Guilherme
  fullname: Guilherme, Luiz Roberto Guimarães
  organization: Department of Soil Science, Federal University of Lavras, Minas Gerais State, Brazil
– sequence: 7
  givenname: Nilton
  surname: Curi
  fullname: Curi, Nilton
  organization: Department of Soil Science, Federal University of Lavras, Minas Gerais State, Brazil
BookMark eNqFkU9r3DAQxUVJoZu0X6HomB68kbSxbEMPbUP-QaCltJCbGMvjVIssuSNtYPsp-pErs80llxwGMeL3HsN7x-woxICMvZdiLYXUZ9v1A8YBaYK1ErJbS7lp2_oVW8m2UZVWdXfEVqKQVSO0fMOOU9qWtRFKrNjfb0AYMp8gIznwfHApk-t32cVQfufZhQc-Upx4pjg7W5AUnU98gAz80UGB7C8XkHsECgsNYeBzpAy9R35fEez56HeRMFkMFvnpfP_96gNPM9riOWGmPXeBfyH44_xb9noEn_Dd__eE_by6_HFxU919vb69-HxXwUa3uWpA9KLMYOUgtRVC615IVFYJGM6bupXQNmOtpBKtBlGLcQTb1b0aUfdYn29O2OnBd6b4e4cpm8mV-7yHgHGXjNqIWhZ91xX04wG1FFMiHI11GZaAMoHzRgqzFGG25qkIsxRhDkUUuX4mn8lNQPuXhZ8OQiw5PDokk6xbEhwclejMEN1LFv8APn-r8A
CitedBy_id crossref_primary_10_1016_j_jsames_2022_103748
crossref_primary_10_1016_j_pce_2022_103271
crossref_primary_10_1002_saj2_20766
crossref_primary_10_1002_saj2_20223
crossref_primary_10_1007_s10346_023_02091_x
crossref_primary_10_3390_s24165126
crossref_primary_10_1016_j_envsoft_2021_105139
crossref_primary_10_1071_SR22168
crossref_primary_10_1007_s42729_024_01803_z
crossref_primary_10_1016_j_geoderma_2021_115604
crossref_primary_10_1016_j_jsames_2023_104241
crossref_primary_10_1590_1413_7054202145007921
crossref_primary_10_1016_j_geoderma_2020_114553
crossref_primary_10_1016_j_catena_2021_105670
crossref_primary_10_1007_s11119_021_09825_8
crossref_primary_10_1016_j_catena_2021_105492
crossref_primary_10_1016_j_sab_2024_106996
crossref_primary_10_1080_10408347_2023_2253473
crossref_primary_10_3390_plants12030561
crossref_primary_10_1016_j_geodrs_2023_e00653
crossref_primary_10_1016_j_jsames_2023_104640
crossref_primary_10_1016_j_geodrs_2020_e00310
crossref_primary_10_1016_j_jsames_2021_103634
crossref_primary_10_1016_j_geodrs_2023_e00612
crossref_primary_10_1002_saj2_20639
crossref_primary_10_1016_j_rsase_2024_101362
crossref_primary_10_1590_0001_3765202120200646
crossref_primary_10_1039_D0JA90074E
crossref_primary_10_1590_1413_7054202145018121
crossref_primary_10_1016_j_geodrs_2021_e00464
crossref_primary_10_1016_j_jsames_2023_104510
crossref_primary_10_1016_j_catena_2024_107988
crossref_primary_10_1016_j_catena_2021_105766
crossref_primary_10_1016_j_catena_2023_107007
crossref_primary_10_1016_j_geodrs_2020_e00321
crossref_primary_10_1016_j_jsames_2023_104498
crossref_primary_10_1016_j_catena_2020_105003
crossref_primary_10_3390_rs15194859
crossref_primary_10_3390_agronomy12112699
Cites_doi 10.1016/j.agee.2015.06.006
10.1016/j.geoderma.2011.11.014
10.1016/j.jas.2013.08.002
10.1590/1413-70542017413000117
10.1016/j.polymertesting.2018.06.002
10.1016/S0016-7061(03)00223-4
10.2307/2529310
10.1016/j.catena.2016.01.007
10.1590/1413-70542018425017518
10.1016/j.jaap.2012.02.017
10.1590/18069657rbcs20150056
10.1016/j.geoderma.2013.09.023
10.1016/B978-0-12-802139-2.00001-9
10.3390/ijerph13121191
10.1016/j.jhazmat.2009.03.078
10.1016/j.envpol.2018.04.118
10.1590/1413-70542018421009117
10.1016/j.ecolind.2018.03.073
10.3390/s16111950
10.1016/j.geoderma.2013.11.012
10.1016/j.gexplo.2018.02.006
10.1016/j.jas.2010.08.007
10.1016/j.chemgeo.2017.01.023
10.1016/j.geoderma.2015.04.008
10.1016/j.catena.2016.07.045
10.1007/s12665-010-0775-0
10.1590/1678-992x-2017-0300
10.1016/j.geoderma.2018.10.026
10.1016/0016-7061(71)90014-0
10.2136/sssaj2012.0275
10.2136/sssaj2015.10.0361
10.1016/j.clay.2015.08.037
10.1016/j.catena.2017.01.020
10.1007/s11631-009-0204-9
10.2136/sssaj1987.03615995005100010033x
10.3390/rs8080614
10.1016/j.jcs.2013.01.008
10.1590/S1413-70542007000600039
10.2136/sssaj1993.03615995005700020026x
10.1016/j.earscirev.2016.04.001
10.1016/j.geoderma.2018.03.029
10.2136/sh2015-56-2-gc
10.1007/s10705-017-9870-x
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.113885
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2019_113885
S0016706119307888
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-7a0b0a0bdc1d16c0066b01e2c20ad47581a87f5212086a050ffac95b2fe6be543
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 00:05:31 EDT 2025
Tue Jul 01 04:04:50 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Fri Feb 23 02:30:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pedology
RF
Digital soil mapping
Prediction models
Machine learning
LDA
Tropical soils
Parent material
SVM
PM
PCA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-7a0b0a0bdc1d16c0066b01e2c20ad47581a87f5212086a050ffac95b2fe6be543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2305152199
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2305152199
crossref_citationtrail_10_1016_j_geoderma_2019_113885
crossref_primary_10_1016_j_geoderma_2019_113885
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_113885
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liaw, Wiener (bb0130) 2002; 2
Lemière (bb0125) 2018; 188
Steiner, Conrey, Wolff (bb0250) 2017; 453
Santos, Pereira, Anjos, Bernini, Cooper (bb0220) 2016; 40
Jolliffe (bb0100) 2002
Bai, Caspari, Ruiperez, Batjes, Mäder, Bünemann, Goede, Brussaard, Xu, So, Ferreira, Reintam, Fan, Miheli (bb0015) 2018; 265
Adhikari, Kheir, Greve, Bøcher, Malone, Minasny, McBratney, Greve (bb0005) 2013; 77
Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli, Saisana, Tarantola (bb0215) 2008
Adhikari, Minasny, Greve, Greve (bb0010) 2014; 214–215
Lu, Chen, Shan, Bai (bb0145) 2009; 169
Soil Survey Staff (bb0245) 2014
McBratney, Mendonça-Santos, Minasny (bb0160) 2003; 117
Cherubin, Franco, Cerri, Oliveira, Davies, Cerri (bb0035) 2015; 211
Bueno, Bahia, Curi, Dias Junior (bb0025) 1990; 14
Carvalho Filho, Inda, Fink, Curi (bb0030) 2015; 118
Piikki, Soderstrom, Eriksson, John, Muthee, Wetterlind, Lund (bb0190) 2016; 16
Brian, Venables, Bates, Firth, Ripley (bb0020) 2018
Silva, Poggere, Menezes, Carvalho, Guilherme, Curi (bb9955) 2016; 8
Xiaoyu, Chunlai, Chang (bb0295) 2009; 28
Qu, Wang, Huang, Zhao (bb0200) 2018; 240
Zhu, Wu, Liu (bb0315) 2018; 90
Loucks, van Beek, Stedinger, Dijkman, Villars (bb0140) 2005
Stockmann, Cattle, Minasny, McBratney (bb0255) 2016; 139
Machado, Silva, Curi, de Menezes (bb0150) 2019; 76
Tazikeh, Khormali, Amini, Motlagh, Ayoubi (bb0270) 2017; 152
Moore, Gessler, Nielsen, Peterson (bb0170) 1993; 57
Prabhakaran, Cottenie (bb0195) 1971; 5
Yang, Li, Liang, Luo (bb0305) 2016; 157
Jenny (bb0095) 1941
Suh, Lee, Choi (bb0260) 2016
Ribeiro, Silva, Silva, Guilherme (bb0210) 2017; 41
Curi, Silva, Poggere, Menezes (bb0055) 2017
CPRM (bb0045) 2003
Liaw, Wiener (bb0135) 2015
Grotzinger, Jordan (bb0075) 2014
Taghizadeh-Mehrjardi, Nabiollahi, Minasny, Triantafilis (bb0265) 2015; 253–254
Dantas, Carvalho, Ferreira (bb0060) 2007; 31
Gray, Bishop, Wilford (bb0070) 2016; 147
Hartemink (bb0080) 2015; 56
Mancini, Weindorf, Chakraborty, Silva, dos Santos Teixeira, Guilherme, Curi (bb0155) 2019; 337
O'Rourke, Minasny, Holden, McBratney (bb0185) 2016; 80
Lee, Sung, Kim, Jeon (bb0120) 2012; 96
Curi, Franzmeier (bb0050) 1987; 51
Oliveira, Jacomine, Couto (bb0180) 2017
Cortez (bb0040) 2016
Sheppard, Irwin, Lin, McCaffrey (bb0230) 2011; 38
Mulrennan, Donovan, Creedon, Rogers, Lyons, McAfee (bb0175) 2018; 69
Demattê, Terra (bb0065) 2014; 217-218
Xie, Li (bb0300) 2018; 325
Hornik, K., Weingessel, A., Leisch, F., Davidmeyerr-Projectorg, M.D.M., 2015. Package ‘e1071.’
Schaetzl, Anderson (bb0225) 2005
Landis, Koch (bb0115) 1977; 33
Zhao, Guo, Wei, Zhang (bb0310) 2013; 57
Milić (bb0165) 2014; 41
Shiuan, Chou (bb0235) 2011; 63
R Core Team (bb0205) 2018
Weindorf, Bakr, Zhu (bb0285) 2014; 128
Lacarce, Saby, Martin, Marchant, Boulonne, Meersmans, Jolivet, Bispo, Arrouays (bb0110) 2012; 170
Jolliffe, Cadima (bb0105) 2016; 374
Hengl, Leenaars, Shepherd, Walsh, Heuvelink, Mamo, Tilahun, Berkhout, Cooper, Fegraus, Wheeler, Kwabena (bb0085) 2017; 109
Silva, Silva, Poggere, Guilherme, Curi (bb0240) 2018; 42
Teixeira, Weindorf, Silva, Guilherme, Curi (bb0275) 2018; 42
Weindorf, Chakraborty (bb0280) 2016
Wicander, Monroe (bb0290) 2006
Xie (10.1016/j.geoderma.2019.113885_bb0300) 2018; 325
Xiaoyu (10.1016/j.geoderma.2019.113885_bb0295) 2009; 28
Adhikari (10.1016/j.geoderma.2019.113885_bb0005) 2013; 77
Hartemink (10.1016/j.geoderma.2019.113885_bb0080) 2015; 56
Liaw (10.1016/j.geoderma.2019.113885_bb0135) 2015
Stockmann (10.1016/j.geoderma.2019.113885_bb0255) 2016; 139
Liaw (10.1016/j.geoderma.2019.113885_bb0130) 2002; 2
Curi (10.1016/j.geoderma.2019.113885_bb0055) 2017
Dantas (10.1016/j.geoderma.2019.113885_bb0060) 2007; 31
Brian (10.1016/j.geoderma.2019.113885_bb0020) 2018
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2019.113885_bb0265) 2015; 253–254
Bai (10.1016/j.geoderma.2019.113885_bb0015) 2018; 265
Adhikari (10.1016/j.geoderma.2019.113885_bb0010) 2014; 214–215
Lemière (10.1016/j.geoderma.2019.113885_bb0125) 2018; 188
Cherubin (10.1016/j.geoderma.2019.113885_bb0035) 2015; 211
Saltelli (10.1016/j.geoderma.2019.113885_bb0215) 2008
Demattê (10.1016/j.geoderma.2019.113885_bb0065) 2014; 217-218
Cortez (10.1016/j.geoderma.2019.113885_bb0040)
Teixeira (10.1016/j.geoderma.2019.113885_bb0275) 2018; 42
Lu (10.1016/j.geoderma.2019.113885_bb0145) 2009; 169
Weindorf (10.1016/j.geoderma.2019.113885_bb0285) 2014; 128
Wicander (10.1016/j.geoderma.2019.113885_bb0290) 2006
Curi (10.1016/j.geoderma.2019.113885_bb0050) 1987; 51
Mulrennan (10.1016/j.geoderma.2019.113885_bb0175) 2018; 69
Jenny (10.1016/j.geoderma.2019.113885_bb0095) 1941
R Core Team (10.1016/j.geoderma.2019.113885_bb0205)
Carvalho Filho (10.1016/j.geoderma.2019.113885_bb0030) 2015; 118
Silva (10.1016/j.geoderma.2019.113885_bb9955) 2016; 8
Shiuan (10.1016/j.geoderma.2019.113885_bb0235) 2011; 63
Landis (10.1016/j.geoderma.2019.113885_bb0115) 1977; 33
Oliveira (10.1016/j.geoderma.2019.113885_bb0180) 2017
Machado (10.1016/j.geoderma.2019.113885_bb0150) 2019; 76
Qu (10.1016/j.geoderma.2019.113885_bb0200) 2018; 240
Jolliffe (10.1016/j.geoderma.2019.113885_bb0105) 2016; 374
Tazikeh (10.1016/j.geoderma.2019.113885_bb0270) 2017; 152
Lee (10.1016/j.geoderma.2019.113885_bb0120) 2012; 96
Gray (10.1016/j.geoderma.2019.113885_bb0070) 2016; 147
CPRM (10.1016/j.geoderma.2019.113885_bb0045) 2003
Loucks (10.1016/j.geoderma.2019.113885_bb0140) 2005
Mancini (10.1016/j.geoderma.2019.113885_bb0155) 2019; 337
Jolliffe (10.1016/j.geoderma.2019.113885_bb0100) 2002
McBratney (10.1016/j.geoderma.2019.113885_bb0160) 2003; 117
Milić (10.1016/j.geoderma.2019.113885_bb0165) 2014; 41
Lacarce (10.1016/j.geoderma.2019.113885_bb0110) 2012; 170
Santos (10.1016/j.geoderma.2019.113885_bb0220) 2016; 40
Bueno (10.1016/j.geoderma.2019.113885_bb0025) 1990; 14
Silva (10.1016/j.geoderma.2019.113885_bb0240) 2018; 42
Zhao (10.1016/j.geoderma.2019.113885_bb0310) 2013; 57
Zhu (10.1016/j.geoderma.2019.113885_bb0315) 2018; 90
Steiner (10.1016/j.geoderma.2019.113885_bb0250) 2017; 453
Yang (10.1016/j.geoderma.2019.113885_bb0305) 2016; 157
Prabhakaran (10.1016/j.geoderma.2019.113885_bb0195) 1971; 5
O'Rourke (10.1016/j.geoderma.2019.113885_bb0185) 2016; 80
10.1016/j.geoderma.2019.113885_bb0090
Grotzinger (10.1016/j.geoderma.2019.113885_bb0075) 2014
Ribeiro (10.1016/j.geoderma.2019.113885_bb0210) 2017; 41
Piikki (10.1016/j.geoderma.2019.113885_bb0190) 2016; 16
Sheppard (10.1016/j.geoderma.2019.113885_bb0230) 2011; 38
Hengl (10.1016/j.geoderma.2019.113885_bb0085) 2017; 109
Schaetzl (10.1016/j.geoderma.2019.113885_bb0225) 2005
Soil Survey Staff (10.1016/j.geoderma.2019.113885_bb0245) 2014
Weindorf (10.1016/j.geoderma.2019.113885_bb0280) 2016
Suh (10.1016/j.geoderma.2019.113885_bb0260) 2016
Moore (10.1016/j.geoderma.2019.113885_bb0170) 1993; 57
References_xml – volume: 8
  start-page: 614
  year: 2016
  end-page: 635
  ident: bb9955
  article-title: Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols).
  publication-title: Remote Sens.
– volume: 5
  start-page: 81
  year: 1971
  end-page: 84, 93–97
  ident: bb0195
  article-title: Parent material-soil relationship in trace elements - a quantitative estimation
  publication-title: Geoderma
– volume: 96
  start-page: 33
  year: 2012
  end-page: 42
  ident: bb0120
  article-title: Classification of forensic soil evidences by application of THM-PyGC/MS and multivariate analysis
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 63
  start-page: 981
  year: 2011
  end-page: 997
  ident: bb0235
  article-title: The knowledge expression on debris flow potential analysis through PCA + LDA and rough sets theory : a case study of Chen-Yu-Lan watershed, Nantou, Taiwan
  publication-title: Environ. Earth Sci.
– volume: 157
  start-page: 18
  year: 2016
  end-page: 31
  ident: bb0305
  article-title: On the chemical markers of pyroxenite contributions in continental basalts in eastern China: implications for source lithology and the origin of basalts
  publication-title: Earth Sci. Rev.
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0160
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 57
  start-page: 391
  year: 2013
  end-page: 397
  ident: bb0310
  article-title: Multi-element composition of wheat grain and provenance soil and their potentialities as fingerprints of geographical origin
  publication-title: J. Cereal Sci.
– volume: 69
  start-page: 462
  year: 2018
  end-page: 469
  ident: bb0175
  article-title: A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithms
  publication-title: Polym. Test.
– volume: 128
  start-page: 1
  year: 2014
  end-page: 45
  ident: bb0285
  article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications
  publication-title: Adv. Agron.
– volume: 152
  start-page: 252
  year: 2017
  end-page: 267
  ident: bb0270
  article-title: Soil-parent material relationship in a mountainous arid area of Kopet Dagh basin, north East Iran
  publication-title: Catena
– volume: 41
  start-page: 57
  year: 2014
  end-page: 66
  ident: bb0165
  article-title: PXRF characterisation of obsidian from central Anatolia, the Aegean and central Europe
  publication-title: J. Archaeol. Sci.
– year: 2016
  ident: bb0260
  article-title: A rapid, accurate, and efficient method to map heavy metal-contaminated soils of abandoned mine sites using converted portable XRF data and GIS
  publication-title: Int. J. Environ. Res. Public Health
– volume: 42
  start-page: 80
  year: 2018
  end-page: 92
  ident: bb0240
  article-title: Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): effects of different sample preparation methods
  publication-title: Cienc. Agrotecnol.
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  ident: bb0115
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 57
  start-page: 443
  year: 1993
  end-page: 452
  ident: bb0170
  article-title: Soil attribute prediction using terrain analysis
  publication-title: Soil Sci. Soc. Am. J.
– volume: 38
  start-page: 45
  year: 2011
  end-page: 56
  ident: bb0230
  article-title: Characterization of New Zealand obsidian using PXRF
  publication-title: J. Archaeol. Sci.
– volume: 374
  year: 2016
  ident: bb0105
  article-title: Principal component analysis: a review and recent developments
  publication-title: Philos. Transact. A Math. Phys. Eng. Sci.
– volume: 169
  start-page: 246
  year: 2009
  end-page: 255
  ident: bb0145
  article-title: Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes
  publication-title: J. Hazard. Mater.
– volume: 325
  start-page: 90
  year: 2018
  end-page: 101
  ident: bb0300
  article-title: Identification of soil profile classes using depth-weighted visible–near-infrared spectral reflectance
  publication-title: Geoderma
– year: 2014
  ident: bb0245
  article-title: Keys to Soil Taxonomy
– volume: 265
  start-page: 1
  year: 2018
  end-page: 7
  ident: bb0015
  article-title: Agriculture, ecosystems and environment effects of agricultural management practices on soil quality : a review of long-term experiments for
  publication-title: Europe and China
– volume: 41
  start-page: 245
  year: 2017
  end-page: 254
  ident: bb0210
  article-title: Portable X-ray fluorescence (pXRF) applications in tropical soil science
  publication-title: Cienc. Agrotecnol.
– volume: 77
  start-page: 860
  year: 2013
  end-page: 876
  ident: bb0005
  article-title: High-resolution 3-D mapping of soil texture in Denmark
  publication-title: Soil Sci. Soc. Am. J.
– volume: 31
  start-page: 1862
  year: 2007
  end-page: 1866
  ident: bb0060
  article-title: Climatic classification and tendencies in Lavras region, MG
  publication-title: Ciência e Agrotecnologia
– year: 2018
  ident: bb0205
  article-title: R: a language and environment for statistical R Foundation for statistical computing, Vienna, Austria
– volume: 188
  start-page: 350
  year: 2018
  end-page: 363
  ident: bb0125
  article-title: A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry
  publication-title: J. Geochem. Explor.
– year: 2002
  ident: bb0100
  article-title: Principal Component Analysis. Second Edition
– volume: 76
  start-page: 243
  year: 2019
  end-page: 254
  ident: bb0150
  article-title: Soil type spatial prediction from Random Forest: different training datasets, transferability, accuracy and uncertainty assessment
  publication-title: Sci. Agric.
– volume: 28
  start-page: 204
  year: 2009
  end-page: 211
  ident: bb0295
  article-title: Quantification of the chemical composition of lunar soil in terms of its reflectance spectra by PCA and SVM
  publication-title: Chin. J. Geochem.
– reference: Hornik, K., Weingessel, A., Leisch, F., Davidmeyerr-Projectorg, M.D.M., 2015. Package ‘e1071.’
– year: 2017
  ident: bb0055
  article-title: Mapeamento de solos e magnetismo no campus da UFLA
– start-page: 1
  year: 2016
  end-page: 8
  ident: bb0280
  article-title: Portable X-ray fluorescence spectrometry analysis of soils
  publication-title: Methods of Soil Analysis
– volume: 14
  start-page: 352
  year: 1990
  end-page: 365
  ident: bb0025
  article-title: Unidades litológicas do município de Lavras (MG)
  publication-title: Ciência e Prática
– volume: 211
  start-page: 173
  year: 2015
  end-page: 184
  ident: bb0035
  article-title: Sugarcane expansion in Brazilian tropical soils-effects of land use change on soil chemical attributes
  publication-title: Agric. Ecosyst. Environ.
– year: 2014
  ident: bb0075
  article-title: Understanding Earth
– year: 2016
  ident: bb0040
  article-title: Rminer: data mining classification and regression methods. R package version 1.4.2
– year: 2003
  ident: bb0045
  article-title: Mapa geológico do estado de Minas Gerais - Escala 1:1.000.000
– year: 2018
  ident: bb0020
  article-title: Package “MASS.”
– volume: 16
  start-page: 1
  year: 2016
  end-page: 21
  ident: bb0190
  article-title: Performance evaluation of proximal sensors for soil assessment in smallholder farms in Embu County, Kenya
  publication-title: Sensors
– volume: 217-218
  start-page: 190
  year: 2014
  end-page: 200
  ident: bb0065
  article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations
  publication-title: Geoderma
– start-page: 177
  year: 2017
  end-page: 226
  ident: bb0180
  article-title: Solos do bioma Cerrado
  publication-title: Pedologia - Solos dos biomas brasileiros
– volume: 253–254
  start-page: 67
  year: 2015
  end-page: 77
  ident: bb0265
  article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran
  publication-title: Geoderma
– volume: 109
  start-page: 77
  year: 2017
  end-page: 102
  ident: bb0085
  article-title: Soil nutrient maps of sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
  publication-title: Nutr. Cycl. Agroecosyst.
– year: 1941
  ident: bb0095
  article-title: Factors of Soil Formation: A System of Quantitative Pedology
– volume: 118
  start-page: 1
  year: 2015
  end-page: 7
  ident: bb0030
  article-title: Iron oxides in soils of different lithological origins in Ferriferous Quadrilateral (Minas Gerais, Brazil)
  publication-title: Appl. Clay Sci.
– volume: 453
  start-page: 35
  year: 2017
  end-page: 54
  ident: bb0250
  article-title: PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences
  publication-title: Chem. Geol.
– year: 2005
  ident: bb0225
  article-title: Soils: Genesis and Geomorphology
– volume: 42
  start-page: 501
  year: 2018
  end-page: 512
  ident: bb0275
  article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses
  publication-title: Cienc. Agrotecnol.
– volume: 56
  start-page: 1
  year: 2015
  end-page: 2
  ident: bb0080
  article-title: New tools for pedologists: digital soil Morphometrics
  publication-title: Soil Horizons
– volume: 90
  start-page: 624
  year: 2018
  end-page: 632
  ident: bb0315
  article-title: Environmental variables controlling soil organic carbon in top- and sub-soils in karst region of southwestern China
  publication-title: Ecol. Indic.
– year: 2005
  ident: bb0140
  article-title: Model sensitivity and uncertainty analysis
  publication-title: Water Resources Systems Planning and Management
– volume: 147
  start-page: 429
  year: 2016
  end-page: 440
  ident: bb0070
  article-title: Lithology and soil relationships for soil modelling and mapping
  publication-title: Catena
– year: 2008
  ident: bb0215
  article-title: Global Sensitivity Analysis. The Primer, Global Sensitivity Analysis. The Primer
– volume: 170
  start-page: 359
  year: 2012
  end-page: 368
  ident: bb0110
  article-title: Mapping soil Pb stocks and availability in mainland France combining regression trees with robust geostatistics
  publication-title: Geoderma
– volume: 240
  start-page: 184
  year: 2018
  end-page: 190
  ident: bb0200
  article-title: Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH
  publication-title: Environ. Pollut.
– volume: 337
  start-page: 718
  year: 2019
  end-page: 728
  ident: bb0155
  article-title: Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado
  publication-title: Geoderma
– volume: 214–215
  start-page: 101
  year: 2014
  end-page: 113
  ident: bb0010
  article-title: Constructing a soil class map of Denmark based on the FAO legend using digital techniques
  publication-title: Geoderma
– volume: 80
  start-page: 888
  year: 2016
  end-page: 899
  ident: bb0185
  article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 40
  year: 2016
  ident: bb0220
  article-title: Genesis of soils formed from mafic igneous rock in the Atlantic Forest environment
  publication-title: Rev. Bras. Ci. Solo.
– volume: 51
  start-page: 153
  year: 1987
  end-page: 158
  ident: bb0050
  article-title: Effect of parent rocks on chemical and mineralogical properties of some Oxisols in Brazil
  publication-title: Soil Sci. Soc. Am. J.
– year: 2015
  ident: bb0135
  article-title: Package “randomForest”
– volume: 139
  start-page: 220
  year: 2016
  end-page: 231
  ident: bb0255
  article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis
  publication-title: Catena
– year: 2006
  ident: bb0290
  article-title: Essentials of Geology
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0130
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 211
  start-page: 173
  year: 2015
  ident: 10.1016/j.geoderma.2019.113885_bb0035
  article-title: Sugarcane expansion in Brazilian tropical soils-effects of land use change on soil chemical attributes
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.06.006
– ident: 10.1016/j.geoderma.2019.113885_bb0090
– volume: 170
  start-page: 359
  year: 2012
  ident: 10.1016/j.geoderma.2019.113885_bb0110
  article-title: Mapping soil Pb stocks and availability in mainland France combining regression trees with robust geostatistics
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.11.014
– volume: 41
  start-page: 57
  year: 2014
  ident: 10.1016/j.geoderma.2019.113885_bb0165
  article-title: PXRF characterisation of obsidian from central Anatolia, the Aegean and central Europe
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2013.08.002
– volume: 41
  start-page: 245
  year: 2017
  ident: 10.1016/j.geoderma.2019.113885_bb0210
  article-title: Portable X-ray fluorescence (pXRF) applications in tropical soil science
  publication-title: Cienc. Agrotecnol.
  doi: 10.1590/1413-70542017413000117
– year: 2015
  ident: 10.1016/j.geoderma.2019.113885_bb0135
– start-page: 177
  year: 2017
  ident: 10.1016/j.geoderma.2019.113885_bb0180
  article-title: Solos do bioma Cerrado
– start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.113885_bb0280
  article-title: Portable X-ray fluorescence spectrometry analysis of soils
– volume: 69
  start-page: 462
  year: 2018
  ident: 10.1016/j.geoderma.2019.113885_bb0175
  article-title: A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithms
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2018.06.002
– year: 2018
  ident: 10.1016/j.geoderma.2019.113885_bb0020
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.geoderma.2019.113885_bb0160
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 33
  start-page: 159
  year: 1977
  ident: 10.1016/j.geoderma.2019.113885_bb0115
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 139
  start-page: 220
  year: 2016
  ident: 10.1016/j.geoderma.2019.113885_bb0255
  article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis
  publication-title: Catena
  doi: 10.1016/j.catena.2016.01.007
– volume: 42
  start-page: 501
  year: 2018
  ident: 10.1016/j.geoderma.2019.113885_bb0275
  article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses
  publication-title: Cienc. Agrotecnol.
  doi: 10.1590/1413-70542018425017518
– ident: 10.1016/j.geoderma.2019.113885_bb0040
– volume: 96
  start-page: 33
  year: 2012
  ident: 10.1016/j.geoderma.2019.113885_bb0120
  article-title: Classification of forensic soil evidences by application of THM-PyGC/MS and multivariate analysis
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2012.02.017
– volume: 40
  year: 2016
  ident: 10.1016/j.geoderma.2019.113885_bb0220
  article-title: Genesis of soils formed from mafic igneous rock in the Atlantic Forest environment
  publication-title: Rev. Bras. Ci. Solo.
  doi: 10.1590/18069657rbcs20150056
– volume: 214–215
  start-page: 101
  year: 2014
  ident: 10.1016/j.geoderma.2019.113885_bb0010
  article-title: Constructing a soil class map of Denmark based on the FAO legend using digital techniques
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.023
– volume: 128
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.113885_bb0285
  article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-802139-2.00001-9
– year: 2006
  ident: 10.1016/j.geoderma.2019.113885_bb0290
– year: 2016
  ident: 10.1016/j.geoderma.2019.113885_bb0260
  article-title: A rapid, accurate, and efficient method to map heavy metal-contaminated soils of abandoned mine sites using converted portable XRF data and GIS
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph13121191
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.geoderma.2019.113885_bb0130
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 169
  start-page: 246
  year: 2009
  ident: 10.1016/j.geoderma.2019.113885_bb0145
  article-title: Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.03.078
– volume: 240
  start-page: 184
  year: 2018
  ident: 10.1016/j.geoderma.2019.113885_bb0200
  article-title: Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.04.118
– volume: 42
  start-page: 80
  year: 2018
  ident: 10.1016/j.geoderma.2019.113885_bb0240
  article-title: Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): effects of different sample preparation methods
  publication-title: Cienc. Agrotecnol.
  doi: 10.1590/1413-70542018421009117
– volume: 90
  start-page: 624
  year: 2018
  ident: 10.1016/j.geoderma.2019.113885_bb0315
  article-title: Environmental variables controlling soil organic carbon in top- and sub-soils in karst region of southwestern China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.03.073
– volume: 16
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.113885_bb0190
  article-title: Performance evaluation of proximal sensors for soil assessment in smallholder farms in Embu County, Kenya
  publication-title: Sensors
  doi: 10.3390/s16111950
– year: 2003
  ident: 10.1016/j.geoderma.2019.113885_bb0045
– volume: 217-218
  start-page: 190
  year: 2014
  ident: 10.1016/j.geoderma.2019.113885_bb0065
  article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.11.012
– volume: 188
  start-page: 350
  year: 2018
  ident: 10.1016/j.geoderma.2019.113885_bb0125
  article-title: A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2018.02.006
– volume: 265
  start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.113885_bb0015
  article-title: Agriculture, ecosystems and environment effects of agricultural management practices on soil quality : a review of long-term experiments for
  publication-title: Europe and China
– year: 2014
  ident: 10.1016/j.geoderma.2019.113885_bb0245
– volume: 38
  start-page: 45
  year: 2011
  ident: 10.1016/j.geoderma.2019.113885_bb0230
  article-title: Characterization of New Zealand obsidian using PXRF
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2010.08.007
– volume: 453
  start-page: 35
  year: 2017
  ident: 10.1016/j.geoderma.2019.113885_bb0250
  article-title: PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2017.01.023
– year: 1941
  ident: 10.1016/j.geoderma.2019.113885_bb0095
– volume: 253–254
  start-page: 67
  year: 2015
  ident: 10.1016/j.geoderma.2019.113885_bb0265
  article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.04.008
– year: 2017
  ident: 10.1016/j.geoderma.2019.113885_bb0055
– volume: 147
  start-page: 429
  year: 2016
  ident: 10.1016/j.geoderma.2019.113885_bb0070
  article-title: Lithology and soil relationships for soil modelling and mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2016.07.045
– volume: 63
  start-page: 981
  year: 2011
  ident: 10.1016/j.geoderma.2019.113885_bb0235
  article-title: The knowledge expression on debris flow potential analysis through PCA + LDA and rough sets theory : a case study of Chen-Yu-Lan watershed, Nantou, Taiwan
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-010-0775-0
– volume: 76
  start-page: 243
  year: 2019
  ident: 10.1016/j.geoderma.2019.113885_bb0150
  article-title: Soil type spatial prediction from Random Forest: different training datasets, transferability, accuracy and uncertainty assessment
  publication-title: Sci. Agric.
  doi: 10.1590/1678-992x-2017-0300
– volume: 337
  start-page: 718
  year: 2019
  ident: 10.1016/j.geoderma.2019.113885_bb0155
  article-title: Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.10.026
– volume: 5
  start-page: 81
  year: 1971
  ident: 10.1016/j.geoderma.2019.113885_bb0195
  article-title: Parent material-soil relationship in trace elements - a quantitative estimation
  publication-title: Geoderma
  doi: 10.1016/0016-7061(71)90014-0
– volume: 77
  start-page: 860
  year: 2013
  ident: 10.1016/j.geoderma.2019.113885_bb0005
  article-title: High-resolution 3-D mapping of soil texture in Denmark
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0275
– volume: 80
  start-page: 888
  year: 2016
  ident: 10.1016/j.geoderma.2019.113885_bb0185
  article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.10.0361
– volume: 14
  start-page: 352
  year: 1990
  ident: 10.1016/j.geoderma.2019.113885_bb0025
  article-title: Unidades litológicas do município de Lavras (MG)
  publication-title: Ciência e Prática
– volume: 118
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2019.113885_bb0030
  article-title: Iron oxides in soils of different lithological origins in Ferriferous Quadrilateral (Minas Gerais, Brazil)
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2015.08.037
– volume: 374
  year: 2016
  ident: 10.1016/j.geoderma.2019.113885_bb0105
  article-title: Principal component analysis: a review and recent developments
  publication-title: Philos. Transact. A Math. Phys. Eng. Sci.
– year: 2005
  ident: 10.1016/j.geoderma.2019.113885_bb0225
– year: 2002
  ident: 10.1016/j.geoderma.2019.113885_bb0100
– ident: 10.1016/j.geoderma.2019.113885_bb0205
– volume: 152
  start-page: 252
  year: 2017
  ident: 10.1016/j.geoderma.2019.113885_bb0270
  article-title: Soil-parent material relationship in a mountainous arid area of Kopet Dagh basin, north East Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2017.01.020
– volume: 28
  start-page: 204
  year: 2009
  ident: 10.1016/j.geoderma.2019.113885_bb0295
  article-title: Quantification of the chemical composition of lunar soil in terms of its reflectance spectra by PCA and SVM
  publication-title: Chin. J. Geochem.
  doi: 10.1007/s11631-009-0204-9
– volume: 51
  start-page: 153
  year: 1987
  ident: 10.1016/j.geoderma.2019.113885_bb0050
  article-title: Effect of parent rocks on chemical and mineralogical properties of some Oxisols in Brazil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1987.03615995005100010033x
– volume: 8
  start-page: 614
  year: 2016
  ident: 10.1016/j.geoderma.2019.113885_bb9955
  article-title: Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols).
  publication-title: Remote Sens.
  doi: 10.3390/rs8080614
– volume: 57
  start-page: 391
  year: 2013
  ident: 10.1016/j.geoderma.2019.113885_bb0310
  article-title: Multi-element composition of wheat grain and provenance soil and their potentialities as fingerprints of geographical origin
  publication-title: J. Cereal Sci.
  doi: 10.1016/j.jcs.2013.01.008
– volume: 31
  start-page: 1862
  year: 2007
  ident: 10.1016/j.geoderma.2019.113885_bb0060
  article-title: Climatic classification and tendencies in Lavras region, MG
  publication-title: Ciência e Agrotecnologia
  doi: 10.1590/S1413-70542007000600039
– volume: 57
  start-page: 443
  year: 1993
  ident: 10.1016/j.geoderma.2019.113885_bb0170
  article-title: Soil attribute prediction using terrain analysis
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1993.03615995005700020026x
– volume: 157
  start-page: 18
  year: 2016
  ident: 10.1016/j.geoderma.2019.113885_bb0305
  article-title: On the chemical markers of pyroxenite contributions in continental basalts in eastern China: implications for source lithology and the origin of basalts
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.04.001
– volume: 325
  start-page: 90
  year: 2018
  ident: 10.1016/j.geoderma.2019.113885_bb0300
  article-title: Identification of soil profile classes using depth-weighted visible–near-infrared spectral reflectance
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.03.029
– year: 2014
  ident: 10.1016/j.geoderma.2019.113885_bb0075
– volume: 56
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2019.113885_bb0080
  article-title: New tools for pedologists: digital soil Morphometrics
  publication-title: Soil Horizons
  doi: 10.2136/sh2015-56-2-gc
– year: 2008
  ident: 10.1016/j.geoderma.2019.113885_bb0215
– volume: 109
  start-page: 77
  year: 2017
  ident: 10.1016/j.geoderma.2019.113885_bb0085
  article-title: Soil nutrient maps of sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-017-9870-x
– year: 2005
  ident: 10.1016/j.geoderma.2019.113885_bb0140
  article-title: Model sensitivity and uncertainty analysis
SSID ssj0017020
Score 2.468363
Snippet Knowledge about parent material (PM) is crucial to understand the properties of overlying soils. Assessing PM of very deep soils, however, is not easy....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113885
SubjectTerms B horizons
Brazil
Digital soil mapping
discriminant analysis
fluorescence
land use
Machine learning
Parent material
Pedology
prediction
Prediction models
principal component analysis
soil sampling
support vector machines
Tropical soils
X-radiation
X-ray fluorescence spectroscopy
Title Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil
URI https://dx.doi.org/10.1016/j.geoderma.2019.113885
https://www.proquest.com/docview/2305152199
Volume 354
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ni9RAEG2W9aIH0VVx_VhqwYMe4nRnks7kOC4OswqLiAtza_orQ5aQDJmMsB78Df5kq3o6i8rCHjzkkNAdQld1VxWp9x5jb2RZZVoUFve3y5OsdFPccyZNuPEYLkhgxIUG2Qu5vMw-rfLVATsbsTDUVhnP_v2ZHk7r-GQSV3OyqWvC-ApZYDjCFIRTIUcI9qwgL3__86bNQxQ8UjMKmdDoP1DCV2gjEhwL_EOiJHmTGWkq3x6g_jmqQ_xZPGIPY-II8_23PWYHvj1iD-brPpJn-Cfs1xdCdg2ASWjwK3DEihsFrfApUTGsgQAlMPTdhswD265utkB9ovC91jiIeis9RDGJNejWQUjRTeNhlfT6Gqpm1_WBBcp6eLtZfV28gwDYJOaDob-GuoUPvf5RN0_Z5eLjt7NlEhUXEj2VsyEpNDccL2eFE9JSPmK48KlNuXYZlhZCz4qK4L5YCWme86rStsxNWnlpfJ5Nn7HDtmv9cwbCEVGQ9I6osFMjsK7jVVrMpDHWyiI7Zvm4zMpGOnJSxWjU2Hd2pUbzKDKP2pvnmE1u5m32hBx3zihHK6q_XEth1Lhz7ulodoX7jn6m6NZ3u63C0i2n3KcsX_zH-1-y-3RH4EaRv2KHQ7_zrzHLGcxJcOMTdm9-_nl58RuLBf6N
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXK9gAcEJ9qaYFB4gCHaO1s7CTHbcVqS8sKoVbam-WvrFJFySqbRSq_oj8ZT9apACH1wCGXJBNFHntmLM97j5APIi8SxVLj17flUZLbiV9zOo6odj5doMCI7RtkF2J-lXxZ8uUeOR2wMNhWGWL_Lqb30TrcGYfRHK_LEjG-TKQ-HfkShOJG7gHZR3YqPiL707Pz-eLuMCGlgZ2RiQgNfgMKX3s3oeZYT0HEclQ4yVBW-d856q9o3aeg2VPyJNSOMN393jOy5-rn5PF01Qb-DPeC3H5DcFcHvg7tpxZYJMYNmlb-LrIxrAAxJdC1zRo9BJumrDaAraLwo1T-JWyvdBD0JFagagt9la4rB8uoVTdQVNum7YmgjIOP6-X32SfoMZtIftC1N1DWcNKqn2X1klzNPl-ezqMguhCpici6KFVUU39ZwywTBksSTZmLTUyV9aObMZWlBSJ-_WZIUU6LQpmc67hwQjueTF6RUd3U7oAAs8gVJJxFNuxYM7-1o0WcZkJrY0SaHBI-DLM0gZEchTEqObSeXcvBPRLdI3fuOSTjO7v1jpPjXot88KL8Y3ZJnzjutX0_uF36pYfnKap2zXYj_e6NY_mT56__4_vvyMP55dcLeXG2OD8ij_AJYh0ZPyajrt26N77o6fTbMKl_AThIAU0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parent+material+distribution+mapping+from+tropical+soils+data+via+machine+learning+and+portable+X-ray+fluorescence+%28pXRF%29+spectrometry+in+Brazil&rft.jtitle=Geoderma&rft.au=Mancini%2C+Marcelo&rft.au=Weindorf%2C+David+C&rft.au=Silva%2C+S%C3%A9rgio+Henrique+Godinho&rft.au=Chakraborty%2C+Somsubhra&rft.date=2019-11-15&rft.issn=0016-7061&rft.volume=354+p.113885-&rft_id=info:doi/10.1016%2Fj.geoderma.2019.113885&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon