Soil property maps with satellite images at multiple scales and its impact on management and classification

•Multi-temporal SYSI S2-MSI image provided the best model performances.•PlanetScope image did not provide any improvements in model performances.•Satellite images in different resolutions affect soil property maps and strategies related to classification and management. Soil maps at appropriate scal...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 397; p. 115089
Main Authors Silvero, Nélida E.Q., Demattê, José A.M., Vieira, Julia de Souza, Mello, Fellipe Alcântara de Oliveira, Amorim, Merilyn Taynara Accorsi, Poppiel, Raul Roberto, Mendes, Wanderson de Sousa, Bonfatti, Benito Roberto
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2021.115089

Cover

Loading…
Abstract •Multi-temporal SYSI S2-MSI image provided the best model performances.•PlanetScope image did not provide any improvements in model performances.•Satellite images in different resolutions affect soil property maps and strategies related to classification and management. Soil maps at appropriate scales can aid decision-making in agriculture and the environment. In this sense, remote sensing products have shown their power to investigate soil properties, but the assessment of its spatial information can be hampered by the presence of other objects than soil. To overcome this issue, soil scientists have been studying spatial patterns from multi-temporal satellite images aiming at at improving soil property maps. In this work, we applied the cubist algorithm to predict topsoil properties (clay, sand, organic matter and iron contents, and soil color components) in south-eastern Brazil using multi-temporal (Landsat8-OLI, and Sentinel2-MSI) and single-date images (PlanetScope, Landsat8-OLI, and Sentinel2-MSI). We aimed to evaluate the influence of satellite’s spatial, spectral and temporal resolutions on soil mapping. Predictive models were constructed with 120 soil samples and using four (vis-NIR) and six (vis-NIR-SWIR) spectral bands as predictors in a 10-fold cross-validation procedure. The multi-temporal image obtained from the Sentinel2-MSI satellite (with 10 m pixel size and six spectral bands), showed the best model performances in cross-validation (R2 between 0.48 and 0.78). The PlanetScope image, which has only four bands in the vis-NIR region and spatial resolution of 3 m did not improve model performances, although the R2 values were higher for soil color components (R2 > 0.5). Satellite images in different spatial, spectral and temporal resolution provides slightly different soil property maps which may promote different strategies regarding soil classification and management. However, satellite images should be used with caution, as they provide only surficial information about the soil variability and confirmation with field surveys is required.
AbstractList •Multi-temporal SYSI S2-MSI image provided the best model performances.•PlanetScope image did not provide any improvements in model performances.•Satellite images in different resolutions affect soil property maps and strategies related to classification and management. Soil maps at appropriate scales can aid decision-making in agriculture and the environment. In this sense, remote sensing products have shown their power to investigate soil properties, but the assessment of its spatial information can be hampered by the presence of other objects than soil. To overcome this issue, soil scientists have been studying spatial patterns from multi-temporal satellite images aiming at at improving soil property maps. In this work, we applied the cubist algorithm to predict topsoil properties (clay, sand, organic matter and iron contents, and soil color components) in south-eastern Brazil using multi-temporal (Landsat8-OLI, and Sentinel2-MSI) and single-date images (PlanetScope, Landsat8-OLI, and Sentinel2-MSI). We aimed to evaluate the influence of satellite’s spatial, spectral and temporal resolutions on soil mapping. Predictive models were constructed with 120 soil samples and using four (vis-NIR) and six (vis-NIR-SWIR) spectral bands as predictors in a 10-fold cross-validation procedure. The multi-temporal image obtained from the Sentinel2-MSI satellite (with 10 m pixel size and six spectral bands), showed the best model performances in cross-validation (R2 between 0.48 and 0.78). The PlanetScope image, which has only four bands in the vis-NIR region and spatial resolution of 3 m did not improve model performances, although the R2 values were higher for soil color components (R2 > 0.5). Satellite images in different spatial, spectral and temporal resolution provides slightly different soil property maps which may promote different strategies regarding soil classification and management. However, satellite images should be used with caution, as they provide only surficial information about the soil variability and confirmation with field surveys is required.
Soil maps at appropriate scales can aid decision-making in agriculture and the environment. In this sense, remote sensing products have shown their power to investigate soil properties, but the assessment of its spatial information can be hampered by the presence of other objects than soil. To overcome this issue, soil scientists have been studying spatial patterns from multi-temporal satellite images aiming at at improving soil property maps. In this work, we applied the cubist algorithm to predict topsoil properties (clay, sand, organic matter and iron contents, and soil color components) in south-eastern Brazil using multi-temporal (Landsat8-OLI, and Sentinel2-MSI) and single-date images (PlanetScope, Landsat8-OLI, and Sentinel2-MSI). We aimed to evaluate the influence of satellite’s spatial, spectral and temporal resolutions on soil mapping. Predictive models were constructed with 120 soil samples and using four (vis-NIR) and six (vis-NIR-SWIR) spectral bands as predictors in a 10-fold cross-validation procedure. The multi-temporal image obtained from the Sentinel2-MSI satellite (with 10 m pixel size and six spectral bands), showed the best model performances in cross-validation (R² between 0.48 and 0.78). The PlanetScope image, which has only four bands in the vis-NIR region and spatial resolution of 3 m did not improve model performances, although the R² values were higher for soil color components (R² > 0.5). Satellite images in different spatial, spectral and temporal resolution provides slightly different soil property maps which may promote different strategies regarding soil classification and management. However, satellite images should be used with caution, as they provide only surficial information about the soil variability and confirmation with field surveys is required.
ArticleNumber 115089
Author Vieira, Julia de Souza
Amorim, Merilyn Taynara Accorsi
Bonfatti, Benito Roberto
Mello, Fellipe Alcântara de Oliveira
Poppiel, Raul Roberto
Silvero, Nélida E.Q.
Mendes, Wanderson de Sousa
Demattê, José A.M.
Author_xml – sequence: 1
  givenname: Nélida E.Q.
  surname: Silvero
  fullname: Silvero, Nélida E.Q.
  organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
– sequence: 2
  givenname: José A.M.
  surname: Demattê
  fullname: Demattê, José A.M.
  email: jamdemat@usp.br
  organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
– sequence: 3
  givenname: Julia de Souza
  surname: Vieira
  fullname: Vieira, Julia de Souza
  organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
– sequence: 4
  givenname: Fellipe Alcântara de Oliveira
  surname: Mello
  fullname: Mello, Fellipe Alcântara de Oliveira
  organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
– sequence: 5
  givenname: Merilyn Taynara Accorsi
  surname: Amorim
  fullname: Amorim, Merilyn Taynara Accorsi
  organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
– sequence: 6
  givenname: Raul Roberto
  surname: Poppiel
  fullname: Poppiel, Raul Roberto
  organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
– sequence: 7
  givenname: Wanderson de Sousa
  surname: Mendes
  fullname: Mendes, Wanderson de Sousa
  organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
– sequence: 8
  givenname: Benito Roberto
  surname: Bonfatti
  fullname: Bonfatti, Benito Roberto
  organization: State University of Minas Gerais, Passos, Brazil
BookMark eNqFkE1PAyEURYnRxPrxFwxLN1OBKcOQuNAYvxITF-qaUOaNUhkYgWr676Wtbty4Io937kvuOUC7PnhA6ISSKSW0OVtMXyF0EAc9ZYTRKaWctHIHTWgrWNUwLnfRhBSyEqSh--ggpUUZBWFkgt6fgnV4jGGEmFd40GPCXza_4aQzOGczYDvoV0hYZzwsXbajA5yMdusv32GbUyFGbTIOvuR9gQfwebM0Tqdke2t0tsEfob1euwTHP-8herm5fr66qx4eb--vLh8qXTdtrsSsJXUnGZGcgSZzWUuuu1nDBZesb_r5eqs7KiShTNRiRps5mdcwo6KW0LX1ITrd3i21PpaQshpsMqWN9hCWSTHOWRFAuShos0VNDClF6NUYS9-4UpSotV21UL921dqu2totwfM_QWPzpmWO2rr_4xfbOBQPnxaiSsaCN9DZCCarLtj_TnwDsiSc_w
CitedBy_id crossref_primary_10_1007_s11042_023_16729_4
crossref_primary_10_3390_f16020239
crossref_primary_10_1007_s12145_025_01748_6
crossref_primary_10_1080_01431161_2022_2093144
crossref_primary_10_1016_j_compag_2022_107230
crossref_primary_10_1016_j_scitotenv_2021_152086
crossref_primary_10_1016_j_gsd_2024_101130
crossref_primary_10_3390_agronomy14040693
crossref_primary_10_3390_rs15225304
crossref_primary_10_1016_j_catena_2023_107130
crossref_primary_10_5322_JESI_2024_33_7_547
crossref_primary_10_1016_j_catena_2023_107197
crossref_primary_10_37543_oceanides_v37i1_2_274
crossref_primary_10_1016_j_geodrs_2021_e00412
crossref_primary_10_1016_j_geoderma_2024_116984
crossref_primary_10_3390_su15129440
crossref_primary_10_1002_cpe_7611
crossref_primary_10_1016_j_geodrs_2022_e00513
crossref_primary_10_1016_j_jsames_2023_104449
crossref_primary_10_3390_appliedmath3040043
crossref_primary_10_3390_rs16071223
crossref_primary_10_3390_rs14122917
crossref_primary_10_1016_j_geoderma_2022_116066
crossref_primary_10_1071_SR21067
crossref_primary_10_1016_j_catena_2023_107440
crossref_primary_10_1016_j_geoderma_2021_115638
crossref_primary_10_1016_j_geodrs_2024_e00785
crossref_primary_10_1109_JSTARS_2024_3373884
crossref_primary_10_1080_01431161_2022_2147037
crossref_primary_10_1016_j_rse_2024_114027
crossref_primary_10_3390_rs16071192
crossref_primary_10_3390_rs15133316
crossref_primary_10_1016_j_soisec_2022_100057
Cites_doi 10.1016/j.catena.2012.07.016
10.1016/j.rse.2018.09.015
10.7717/peerj.71
10.3390/rs70506059
10.1016/j.rse.2019.01.006
10.3390/rs9121245
10.1016/j.geoderma.2010.11.013
10.1016/j.rse.2017.10.047
10.1016/j.geoderma.2017.04.019
10.1007/s12517-012-0559-9
10.1016/j.geoderma.2014.12.017
10.1016/j.rse.2020.112117
10.3390/rs71012635
10.1080/22797254.2018.1502624
10.1016/j.geoderma.2005.07.017
10.1016/j.geoderma.2019.04.028
10.1016/j.rse.2017.11.004
10.1016/j.geoderma.2017.09.014
10.3390/rs12091389
10.1016/0016-7061(88)90070-5
10.1016/j.catena.2012.01.001
10.3133/ofr20131057
10.1371/journal.pone.0170478
10.7717/peerj.4659
10.2136/sssaj2003.1564
10.1127/0941-2948/2013/0507
10.1097/00010694-193401000-00003
10.1029/2009JF001645
10.1007/s10712-019-09524-0
10.1038/s41598-020-61408-1
10.3390/rs11091032
10.3390/rs12091369
10.1080/01431160601121469
10.3390/rs12071197
10.1016/j.rse.2018.04.047
10.2136/vzj2018.07.0143
10.1016/S0016-7061(03)00223-4
10.1038/s41598-018-33516-6
10.1117/12.2278218
10.1016/j.cageo.2005.11.008
10.3390/rs11182121
10.1590/S0100-06832013000500003
10.1007/s11119-016-9462-9
10.1590/18069657rbcs20150335
10.1016/j.scitotenv.2016.11.078
10.3390/rs10101555
10.4141/CJSS08012
10.1016/j.rse.2017.06.031
10.1016/B978-0-444-89198-3.50017-9
10.1590/2317-4889201620160023
10.3920/978-90-8686-888-9_67
10.1590/0103-9016-2013-0365
10.3390/rs11242947
10.1016/j.catena.2020.104609
10.1016/j.rse.2015.02.019
10.2136/sssaj2017.04.0122
10.1007/978-1-4614-6849-3
10.1038/s41467-019-13276-1
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2021.115089
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2021_115089
S0016706121001695
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-a368t-74803d920952ea0b9395ad4657592f6fb03d9ad179012737416b0b3e41739ed83
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Sep 04 17:50:51 EDT 2025
Tue Jul 01 04:04:55 EDT 2025
Thu Apr 24 23:13:11 EDT 2025
Fri Feb 23 02:45:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Landsat 8-OLI
Multi-temporal images
PlanetScope
Cubist
Sentinel 2-MSI
Soil classification
Soil management
Soil mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-74803d920952ea0b9395ad4657592f6fb03d9ad179012737416b0b3e41739ed83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2552001157
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2552001157
crossref_primary_10_1016_j_geoderma_2021_115089
crossref_citationtrail_10_1016_j_geoderma_2021_115089
elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Demattê, Galdos, Guimarães, Genú, Nanni, Zullo, Zullo (b0090) 2007; 28
Macias, Chesworth (b0185) 1992; 2
Žížala, Minařík, Zádorová (b0380) 2019; 11
Marais Sicre, Fieuzal, Baup (b0205) 2020; 84
Meyer, S., Kling, C., Vogel, S., Schröter, I., Nagel, A., Kramer, E., Gebbers, R., Philipp, G., Lück, K., Gerlach, F., Scheibe, D., Ruehlmann, J., 2019. Creating soil texture maps for precision liming using electrical resistivity and gamma ray mapping. In: Precision Agriculture 2019 - Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019, pp. 539–546. Wageningen Academic Publishers.
Chabrillat, Ben-Dor, Cierniewski, Gomez, Schmid, Van Wesemael (b0050) 2019; 40
Gholizadeh, Žižala, Saberioon, Borůvka (b0125) 2018; 218
Ramos, Inda, Barrón, Siqueira, Marques Júnior, Teixeira (b0265) 2020; 193
Samuel-Rosa, Heuvelink, Vasques, Anjos (b0305) 2015; 243–244
Vaudour, Gomez, Fouad, Lagacherie (b0350) 2019; 223
Demattê, Sayão, Rizzo, Fongaro (b0070) 2017; 302
Behrens, Schmidt, MacMillan, Viscarra Rossel (b0020) 2018; 8
McBratney, Mendonça Santos, Minasny (b0210) 2003; 117
Shabou, Mougenot, Chabaane, Walter, Boulet, Aissa, Zribi (b0320) 2015; 7
Demattê, J.A.M., Alves, M.R., Terra, F. da S., Bosquilia, R.W.D., Fongaro, C.T. and Barros, P.P. da S. (2016). Is it possible to classify topsoil texture using a sensor located 800 km away from the surface? Rev. Bras. Ciência do Solo 40, e0150335. https://doi.org/10.1590/18069657rbcs20150335.
Malone, McBratney, Minasny (b0190) 2011; 160
Casa, Castaldi, Pascucci, Pignatti (b0040) 2012; 7
Safanelli, Chabrillat, Ben-Dor, Demattê (b0290) 2020; 12
Malone, Mcbratney, Minasny (b0195) 2018; 6
Poppiel, Lacerda, Demattê, Oliveira, Gallo, Safanelli (b0245) 2019; 348
Ose, Corpetti, Demagistri (b0225) 2016
Fongaro, Demattê, Rizzo, Lucas Safanelli, Mendes, Dotto, Vicente, Franceschini, Ustin (b0115) 2018; 10
van der Werff, van der Meer (b0370) 2015; 7
Safari, Esfandiarpour Boroujeni, Kamali, Salehi, Bagheri Bodaghabadi (b0295) 2013; 6
Buttafuoco, Castrignano, Gucci, Lacolla, Luca (b0030) 2017; 18
Fang, Hong, Zhao, Kukolich, Yin, Wang (b0110) 2018; 1–14
Kravchenko (b0165) 2003; 67
Reyes, Wendroth, Matocha, Zhu (b0270) 2019; 18
Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Oliveira, J.B., Coelho, J.F. and Cunha, T.J.F. (2013). Sistema brasileiro de classificação de solos.
Rogge, D., Bauer, A., Zeidler, J., Mueller, A., Esch, T. and Heiden, U. (2018). Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 205, 1–17. https://doi.org/10.1016/j.rse.2017.11.004.
Schmidt, G.L., Jenkerson, C.B., Masek, J., Vermote, E., Gao, F., 2013, Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description: U.S. Geological Survey Open-File Report 2013–1057, 17 p.
Poppiel, Lacerda, Rizzo, Safanelli, Bonfatti, Silvero, Demattê (b0240) 2020; 12
Evans, Franzmeier (b0105) 1988; 41
Viscarra Rossel, Minasny, Roudier, McBratney (b0360) 2006; 133
Croft, Kuhn, Anderson (b0055) 2012
Bartholomeus, Kooistra, Stevens, van Leeuwen, van Wesemael, Ben-Dor, Tychon (b0010) 2011; 13
Loiseau, Chen, Mulder, Román Dobarco, Richer-de-Forges, Lehmann, Bourennane, Saby, Martin, Vaudour, Gomez, Lagacherie, Arrouays (b0180) 2019; 82
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (b0140) 2017; 202
Demattê, Bellinaso, Romero, Fongaro (b0085) 2014; 71
Alvares, Stape, Sentelhas, de Moraes Gonçalves, Sparovek (b0005) 2013; 22
Walkley, Black (b0365) 1934; 37
Hong, S.Y., Minasny, B., Han, K.H., Kim, Y., Lee, K., 2013. Predicting and mapping soil available water capacity in Korea. PeerJ e71. https://doi.org/10.7717/peerj.71.
Viscarra Rossel, Bui, De Caritat, Mckenzie (b0355) 2010; 115
R Core Team, 2019. R: A Language and Environment for Statistical Computing.
Kuhn, M., Weston, S., Keefer, C., Coulter, N., Quinlan, R. 2018. Package “Cubist.” 13. https://github.com/topepo/Cubist/issues.
Diek, Fornallaz, Schaepman, Jong, Diek, Fornallaz, Schaepman, De Jong (b0095) 2017; 9
Guo, Shi, Linderman, Chen, Zhang, Fu (b0145) 2019; 11
Poggio, Gimona (b0235) 2017; 579
Ramcharan, Hengl, Nauman, Brungard, Waltman, Wills, Thompson (b0260) 2018; 82
Romero, Ben-Dor, Demattê, Souza, Vicente, Tavares, Martello, Strabeli, Barros, Fiorio, Gallo, Sato, Eitelwein (b0285) 2018; 312
Tziolas, Tsakiridis, Ben-Dor, Theocharis, Zalidis (b0345) 2020; 12
Zhao, Chow, Yang, Rees, Benoy, Xing, Meng (b0375) 2008; 88
Smith, S., Bulmer, C., Flager, E., Frank, G., Filatow, D. 2010. Digital soil mapping at multiple scales in British Columbia, Canada. Program and Abstracts, 4th Global Workshop on Digital Soil Mapping, 17.
IUSS Working Group WRB. 2015. World reference base for soil resources. http://www.fao.org.
Demattê, J.A.M., Safanelli, J.L., Poppiel, R.R., Rizzo, R., Silvero, N.E.Q., Mendes, W. de S., Bonfatti, B.R., Dotto, A.C., Salazar, D.F.U., Mello, F.A. de O., Paiva, A.F. da S., Souza, A.B., Santos, N.V. dos, Maria Nascimento, C., Mello, D.C. de, Bellinaso, H., Gonzaga Neto, L., Amorim, M.T.A., Resende, M.E.B. de, Vieira, J. da S., Queiroz, L.G. de, Gallo, B.C., Sayão, V.M., Lisboa, C.J. da S. 2020. Bare earth’s surface spectra as a proxy for soil resource monitoring. Sci. Rep. 10, 4461. https://doi.org/10.1038/s41598-020-61408-1.
Sahwan, Lucke, Kappas, Bäumler (b0300) 2018; 51
Stucki, Goodman, Schwertmann (b0335) 1985
Breunig, Galvão, Dalagnol, Santi, Della Flora, Chen (b0025) 2020; 19
Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling, Springer. Springer, New York. https://doi.org/10.1007/978-1-4614-6849-3.
Teixeira, P.C., Donagema, G.K., Fontana, A., Teixeira, W.G. 2017. Manual de Métodos de Análise de Solo. https://www.embrapa.br.
Planet Labs. 2020. Planet Imagery Specifications.
Silvero, Demattê, Amorim, Santos, Rizzo, Safanelli, Poppiel, Mendes, Bonfatti (b0325) 2021; 252
Ducart, Moreira Silva, Labouré, Toledo, Mozer De Assis (b0100) 2016; 46
Quinlan, J.R., 1992. Learning wth continuous classes, in: Proceedings AI’92, 5th Australian Conference on Artificial Intelligence.World Scientific, pp. 343–348.
Bazaglia Filho, Rizzo, Lepsch, Prado, Gomes, Mazza, Demattê (b0015) 2013; 37
Demattê, J.A.M., Fongaro, C.T., Rizzo, R., Safanelli, J.L. 2018. Geospatial Soil Sensing System (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 212, 161–175. https://doi.org/10.1016/j.rse.2018.04.047.
Forkuor, Hounkpatin, Welp, Thiel (b0120) 2017; 12
Camargo, Marques, Pereira, Alleoni (b0035) 2013; 100
Main-Knorn, M.B.P., Louis, J., Debaecker, V., Muller-Wilm, U., Gascon, F., 2017. Sen2Cor for Sentinel-2, in: Image and Signal Processing for Remote Sensing. p. 12. https://doi.org/10.1117/12.2278218.
Nussbaum, Ettlin, Çöltekin, Suter, Egli (b0220) 2011
Castaldi, Chabrillat, Don, van Wesemael (b0045) 2019; 11
Gomez, Adeline, Bacha, Driessen, Gorretta, Lagacherie, Roger, Briottet (b0130) 2018; 204
Hengl (b0150) 2006; 32
Gomez, Oltra-Carrió, Bacha, Lagacherie, Briottet (b0135) 2015; 164
Roberts, Wilford, Ghattas (b0275) 2019; 10
10.1016/j.geoderma.2021.115089_b0075
10.1016/j.geoderma.2021.115089_b0230
Bartholomeus (10.1016/j.geoderma.2021.115089_b0010) 2011; 13
10.1016/j.geoderma.2021.115089_b0155
Buttafuoco (10.1016/j.geoderma.2021.115089_b0030) 2017; 18
Marais Sicre (10.1016/j.geoderma.2021.115089_b0205) 2020; 84
Safari (10.1016/j.geoderma.2021.115089_b0295) 2013; 6
10.1016/j.geoderma.2021.115089_b0315
Demattê (10.1016/j.geoderma.2021.115089_b0090) 2007; 28
Malone (10.1016/j.geoderma.2021.115089_b0195) 2018; 6
10.1016/j.geoderma.2021.115089_b0310
Diek (10.1016/j.geoderma.2021.115089_b0095) 2017; 9
Casa (10.1016/j.geoderma.2021.115089_b0040) 2012; 7
Ducart (10.1016/j.geoderma.2021.115089_b0100) 2016; 46
Gomez (10.1016/j.geoderma.2021.115089_b0130) 2018; 204
Vaudour (10.1016/j.geoderma.2021.115089_b0350) 2019; 223
Bazaglia Filho (10.1016/j.geoderma.2021.115089_b0015) 2013; 37
Gorelick (10.1016/j.geoderma.2021.115089_b0140) 2017; 202
Fang (10.1016/j.geoderma.2021.115089_b0110) 2018; 1–14
Forkuor (10.1016/j.geoderma.2021.115089_b0120) 2017; 12
Zhao (10.1016/j.geoderma.2021.115089_b0375) 2008; 88
Samuel-Rosa (10.1016/j.geoderma.2021.115089_b0305) 2015; 243–244
10.1016/j.geoderma.2021.115089_b0065
10.1016/j.geoderma.2021.115089_b0340
10.1016/j.geoderma.2021.115089_b0060
Žížala (10.1016/j.geoderma.2021.115089_b0380) 2019; 11
Reyes (10.1016/j.geoderma.2021.115089_b0270) 2019; 18
Behrens (10.1016/j.geoderma.2021.115089_b0020) 2018; 8
Demattê (10.1016/j.geoderma.2021.115089_b0070) 2017; 302
Romero (10.1016/j.geoderma.2021.115089_b0285) 2018; 312
Evans (10.1016/j.geoderma.2021.115089_b0105) 1988; 41
Kravchenko (10.1016/j.geoderma.2021.115089_b0165) 2003; 67
Castaldi (10.1016/j.geoderma.2021.115089_b0045) 2019; 11
Gomez (10.1016/j.geoderma.2021.115089_b0135) 2015; 164
Macias (10.1016/j.geoderma.2021.115089_b0185) 1992; 2
Poppiel (10.1016/j.geoderma.2021.115089_b0240) 2020; 12
Guo (10.1016/j.geoderma.2021.115089_b0145) 2019; 11
Breunig (10.1016/j.geoderma.2021.115089_b0025) 2020; 19
Poggio (10.1016/j.geoderma.2021.115089_b0235) 2017; 579
Croft (10.1016/j.geoderma.2021.115089_b0055) 2012
McBratney (10.1016/j.geoderma.2021.115089_b0210) 2003; 117
Loiseau (10.1016/j.geoderma.2021.115089_b0180) 2019; 82
10.1016/j.geoderma.2021.115089_b0175
Viscarra Rossel (10.1016/j.geoderma.2021.115089_b0355) 2010; 115
10.1016/j.geoderma.2021.115089_b0330
Stucki (10.1016/j.geoderma.2021.115089_b0335) 1985
10.1016/j.geoderma.2021.115089_b0170
10.1016/j.geoderma.2021.115089_b0250
Silvero (10.1016/j.geoderma.2021.115089_b0325) 2021; 252
10.1016/j.geoderma.2021.115089_b0215
van der Werff (10.1016/j.geoderma.2021.115089_b0370) 2015; 7
Nussbaum (10.1016/j.geoderma.2021.115089_b0220) 2011
Viscarra Rossel (10.1016/j.geoderma.2021.115089_b0360) 2006; 133
Demattê (10.1016/j.geoderma.2021.115089_b0085) 2014; 71
10.1016/j.geoderma.2021.115089_b0255
Alvares (10.1016/j.geoderma.2021.115089_b0005) 2013; 22
Roberts (10.1016/j.geoderma.2021.115089_b0275) 2019; 10
Ramcharan (10.1016/j.geoderma.2021.115089_b0260) 2018; 82
Ramos (10.1016/j.geoderma.2021.115089_b0265) 2020; 193
Walkley (10.1016/j.geoderma.2021.115089_b0365) 1934; 37
Chabrillat (10.1016/j.geoderma.2021.115089_b0050) 2019; 40
Camargo (10.1016/j.geoderma.2021.115089_b0035) 2013; 100
10.1016/j.geoderma.2021.115089_b0280
10.1016/j.geoderma.2021.115089_b0160
Shabou (10.1016/j.geoderma.2021.115089_b0320) 2015; 7
Malone (10.1016/j.geoderma.2021.115089_b0190) 2011; 160
Gholizadeh (10.1016/j.geoderma.2021.115089_b0125) 2018; 218
Sahwan (10.1016/j.geoderma.2021.115089_b0300) 2018; 51
10.1016/j.geoderma.2021.115089_b0200
Fongaro (10.1016/j.geoderma.2021.115089_b0115) 2018; 10
Safanelli (10.1016/j.geoderma.2021.115089_b0290) 2020; 12
Hengl (10.1016/j.geoderma.2021.115089_b0150) 2006; 32
Poppiel (10.1016/j.geoderma.2021.115089_b0245) 2019; 348
Tziolas (10.1016/j.geoderma.2021.115089_b0345) 2020; 12
Ose (10.1016/j.geoderma.2021.115089_b0225) 2016
References_xml – volume: 28
  start-page: 3813
  year: 2007
  end-page: 3829
  ident: b0090
  article-title: Quantification of tropical soil attributes from ETM +/LANDSAT-7 data
  publication-title: Int. J. Remote Sens.
– reference: Schmidt, G.L., Jenkerson, C.B., Masek, J., Vermote, E., Gao, F., 2013, Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description: U.S. Geological Survey Open-File Report 2013–1057, 17 p.
– volume: 18
  start-page: 37
  year: 2017
  end-page: 58
  ident: b0030
  article-title: Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field
  publication-title: Precis. Agric.
– volume: 88
  start-page: 787
  year: 2008
  end-page: 799
  ident: b0375
  article-title: Model prediction of soil drainage classes based on digital elevation model parameters and soil attributes from coarse resolution soil maps
  publication-title: Can. J. Soil. Sci.
– volume: 11
  start-page: 2947
  year: 2019
  ident: b0380
  article-title: Soil organic carbon mapping using multispectral remote sensing data: prediction ability of data with different spatial and spectral sesolutions
  publication-title: Remote Sens.
– volume: 193
  start-page: 104609
  year: 2020
  ident: b0265
  article-title: Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy
  publication-title: Catena
– volume: 10
  start-page: 5297
  year: 2019
  ident: b0275
  article-title: Exposed soil and mineral map of the Australian continent revealing the land at its barest
  publication-title: Nat. Commun.
– volume: 67
  start-page: 1564
  year: 2003
  end-page: 1571
  ident: b0165
  article-title: Influence of spatial structure on accuracy of interpolation methods
  publication-title: Soil Sci. Soc. Am. J.
– reference: IUSS Working Group WRB. 2015. World reference base for soil resources. http://www.fao.org.
– reference: Demattê, J.A.M., Fongaro, C.T., Rizzo, R., Safanelli, J.L. 2018. Geospatial Soil Sensing System (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 212, 161–175. https://doi.org/10.1016/j.rse.2018.04.047.
– reference: Kuhn, M., Weston, S., Keefer, C., Coulter, N., Quinlan, R. 2018. Package “Cubist.” 13. https://github.com/topepo/Cubist/issues.
– start-page: 58
  year: 2016
  end-page: 124
  ident: b0225
  article-title: Multispectral satellite image processing
  publication-title: Optical Remote Sensing of Land Surface: Techniques and Methods
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: b0140
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 243–244
  start-page: 214
  year: 2015
  end-page: 227
  ident: b0305
  article-title: Do more detailed environmental covariates deliver more accurate soil maps?
  publication-title: Geoderma
– volume: 1–14
  year: 2018
  ident: b0110
  article-title: Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: a review
  publication-title: J. Spectrosc.
– volume: 223
  start-page: 21
  year: 2019
  end-page: 33
  ident: b0350
  article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and mediterranean agroecosystems
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 361
  year: 2019
  end-page: 399
  ident: b0050
  article-title: Imaging spectroscopy for soil mapping and monitoring
  publication-title: Surv. Geophys.
– reference: Smith, S., Bulmer, C., Flager, E., Frank, G., Filatow, D. 2010. Digital soil mapping at multiple scales in British Columbia, Canada. Program and Abstracts, 4th Global Workshop on Digital Soil Mapping, 17.
– volume: 302
  start-page: 39
  year: 2017
  end-page: 51
  ident: b0070
  article-title: Soil class and attribute dynamics and their relationship with natural vegetation based on satellite remote sensing
  publication-title: Geoderma
– volume: 18
  start-page: 1
  year: 2019
  end-page: 19
  ident: b0270
  article-title: Delineating site-specific management zones and evaluating soil water temporal dynamics in a farmer’s field in Kentucky
  publication-title: Vadose Zo. J.
– year: 2012
  ident: b0055
  article-title: On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems
  publication-title: Catena
– year: 1985
  ident: b0335
  article-title: Iron in soils and clay minerals
  publication-title: Soil Sci.
– volume: 9
  start-page: 1245
  year: 2017
  ident: b0095
  article-title: Barest pixel composite for agricultural areas using Landsat time series
  publication-title: Remote Sens.
– reference: R Core Team, 2019. R: A Language and Environment for Statistical Computing.
– volume: 7
  start-page: 6059
  year: 2015
  end-page: 6078
  ident: b0320
  article-title: Soil clay content mapping using a time series of Landsat TM data in semi-arid lands
  publication-title: Remote Sens.
– reference: Rogge, D., Bauer, A., Zeidler, J., Mueller, A., Esch, T. and Heiden, U. (2018). Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 205, 1–17. https://doi.org/10.1016/j.rse.2017.11.004.
– volume: 8
  start-page: 15244
  year: 2018
  ident: b0020
  article-title: Multi-scale digital soil mapping with deep learning
  publication-title: Sci. Rep.
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: b0210
  article-title: On digital soil mapping
  publication-title: Geoderma
– reference: Main-Knorn, M.B.P., Louis, J., Debaecker, V., Muller-Wilm, U., Gascon, F., 2017. Sen2Cor for Sentinel-2, in: Image and Signal Processing for Remote Sensing. p. 12. https://doi.org/10.1117/12.2278218.
– volume: 115
  start-page: 4031
  year: 2010
  ident: b0355
  article-title: Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra
  publication-title: J. Geophys. Res.
– reference: Hong, S.Y., Minasny, B., Han, K.H., Kim, Y., Lee, K., 2013. Predicting and mapping soil available water capacity in Korea. PeerJ e71. https://doi.org/10.7717/peerj.71.
– reference: Teixeira, P.C., Donagema, G.K., Fontana, A., Teixeira, W.G. 2017. Manual de Métodos de Análise de Solo. https://www.embrapa.br.
– volume: 133
  start-page: 320
  year: 2006
  end-page: 337
  ident: b0360
  article-title: Colour space models for soil science
  publication-title: Geoderma
– reference: Meyer, S., Kling, C., Vogel, S., Schröter, I., Nagel, A., Kramer, E., Gebbers, R., Philipp, G., Lück, K., Gerlach, F., Scheibe, D., Ruehlmann, J., 2019. Creating soil texture maps for precision liming using electrical resistivity and gamma ray mapping. In: Precision Agriculture 2019 - Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019, pp. 539–546. Wageningen Academic Publishers.
– volume: 11
  start-page: 2121
  year: 2019
  ident: b0045
  article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects
  publication-title: Remote Sens.
– volume: 12
  start-page: 1
  year: 2017
  end-page: 21
  ident: b0120
  article-title: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models
  publication-title: PLoS ONE
– volume: 12
  start-page: 1369
  year: 2020
  ident: b0290
  article-title: Multispectral models from bare soil composites for mapping topsoil properties over Europe
  publication-title: Remote Sens.
– reference: Planet Labs. 2020. Planet Imagery Specifications.
– volume: 252
  start-page: 112117
  year: 2021
  ident: b0325
  article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 12635
  year: 2015
  end-page: 12653
  ident: b0370
  article-title: Sentinel-2 for mapping iron absorption feature parameters
  publication-title: Remote Sens.
– volume: 19
  year: 2020
  ident: b0025
  article-title: Assessing the effect of spatial resolution on the delineation of management zones for smallholder farming in southern Brazil
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 100
  start-page: 100
  year: 2013
  end-page: 106
  ident: b0035
  article-title: Spatial correlation between the composition of the clay fraction and contents of available phosphorus of an Oxisol at hillslope scale
  publication-title: Catena
– volume: 46
  start-page: 331
  year: 2016
  end-page: 349
  ident: b0100
  article-title: Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil
  publication-title: Brazilian J. Geol.
– volume: 7
  start-page: 331
  year: 2012
  end-page: 336
  ident: b0040
  article-title: Potential of hyperspectral remote sensing for field scale soil mapping and precision agriculture applications
  publication-title: Ital. J. Agron.
– start-page: 63
  year: 2011
  end-page: 70
  ident: b0220
  article-title: The relevance of scale in soil maps
  publication-title: Bull. BGS
– reference: Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Oliveira, J.B., Coelho, J.F. and Cunha, T.J.F. (2013). Sistema brasileiro de classificação de solos.
– volume: 22
  start-page: 711
  year: 2013
  end-page: 728
  ident: b0005
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Zeitschrift
– volume: 32
  start-page: 1283
  year: 2006
  end-page: 1298
  ident: b0150
  article-title: Finding the right pixel size
  publication-title: Comput. Geosci.
– volume: 82
  start-page: 101905
  year: 2019
  ident: b0180
  article-title: Satellite data integration for soil clay content modelling at a national scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 348
  start-page: 189
  year: 2019
  end-page: 206
  ident: b0245
  article-title: Pedology and soil class mapping from proximal and remote sensed data
  publication-title: Geoderma
– reference: Demattê, J.A.M., Alves, M.R., Terra, F. da S., Bosquilia, R.W.D., Fongaro, C.T. and Barros, P.P. da S. (2016). Is it possible to classify topsoil texture using a sensor located 800 km away from the surface? Rev. Bras. Ciência do Solo 40, e0150335. https://doi.org/10.1590/18069657rbcs20150335.
– volume: 51
  start-page: 850
  year: 2018
  end-page: 862
  ident: b0300
  article-title: Assessing the spatial variability of soil surface colors in northern Jordan using satellite data from Landsat-8 and Sentinel-2
  publication-title: Eur. J. Remote Sens.
– volume: 12
  start-page: 1389
  year: 2020
  ident: b0345
  article-title: Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data
  publication-title: Remote Sens.
– volume: 12
  start-page: 1197
  year: 2020
  ident: b0240
  article-title: Soil color and mineralogy mapping using proximal and remote sensing in Midwest Brazil
  publication-title: Remote Sens.
– volume: 218
  start-page: 89
  year: 2018
  end-page: 103
  ident: b0125
  article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
  publication-title: Remote Sens. Environ.
– volume: 579
  start-page: 1094
  year: 2017
  end-page: 1110
  ident: b0235
  article-title: Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas
  publication-title: Sci. Total Environ.
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: b0365
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
– volume: 71
  start-page: 509
  year: 2014
  end-page: 520
  ident: b0085
  article-title: Morphological interpretation of reflectance spectrum (MIRS) using libraries looking towards soil classification
  publication-title: Sci. Agric.
– volume: 6
  start-page: e4659
  year: 2018
  ident: b0195
  article-title: Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia
  publication-title: PeerJ
– reference: Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling, Springer. Springer, New York. https://doi.org/10.1007/978-1-4614-6849-3.
– volume: 6
  start-page: 3331
  year: 2013
  end-page: 3339
  ident: b0295
  article-title: Mapping of the soil texture using geostatistical method (a case study of the Shahrekord plain, central Iran)
  publication-title: Arab. J. Geosci.
– reference: Quinlan, J.R., 1992. Learning wth continuous classes, in: Proceedings AI’92, 5th Australian Conference on Artificial Intelligence.World Scientific, pp. 343–348.
– volume: 13
  start-page: 81
  year: 2011
  end-page: 88
  ident: b0010
  article-title: Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 10
  start-page: 1555
  year: 2018
  ident: b0115
  article-title: Improvement of clay and sand quantification based on a novel approach with a focus on multispectral satellite images
  publication-title: Remote Sens.
– volume: 204
  start-page: 18
  year: 2018
  end-page: 30
  ident: b0130
  article-title: Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios
  publication-title: Remote Sens. Environ.
– volume: 312
  start-page: 95
  year: 2018
  end-page: 103
  ident: b0285
  article-title: Internal soil standard method for the Brazilian soil spectral library: performance and proximate analysis
  publication-title: Geoderma
– volume: 41
  start-page: 353
  year: 1988
  end-page: 368
  ident: b0105
  article-title: Color index values to represent wetness and aeration in some Indiana soils
  publication-title: Geoderma
– volume: 164
  start-page: 1
  year: 2015
  end-page: 15
  ident: b0135
  article-title: Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 283
  year: 1992
  end-page: 306
  ident: b0185
  article-title: Weathering in humid regions, with emphasis on igneous rocks and their metamorphic equivalents
  publication-title: Dev. Earth Surf. Process.
– volume: 84
  start-page: 101972
  year: 2020
  ident: b0205
  article-title: Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 37
  start-page: 1136
  year: 2013
  end-page: 1148
  ident: b0015
  article-title: Comparison between detailed digital and conventional soil maps of an area with a complex geology
  publication-title: Rev. Bras. Ciência do Solo
– volume: 82
  start-page: 186
  year: 2018
  end-page: 201
  ident: b0260
  article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution
  publication-title: Soil Sci. Soc. Am. J.
– volume: 160
  start-page: 614
  year: 2011
  end-page: 626
  ident: b0190
  article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes
  publication-title: Geoderma
– volume: 11
  start-page: 1032
  year: 2019
  ident: b0145
  article-title: Exploring the influence of spatial resolution on the digital mapping of soil organic carbon by airborne hyperspectral VNIR imaging
  publication-title: Remote Sens.
– reference: Demattê, J.A.M., Safanelli, J.L., Poppiel, R.R., Rizzo, R., Silvero, N.E.Q., Mendes, W. de S., Bonfatti, B.R., Dotto, A.C., Salazar, D.F.U., Mello, F.A. de O., Paiva, A.F. da S., Souza, A.B., Santos, N.V. dos, Maria Nascimento, C., Mello, D.C. de, Bellinaso, H., Gonzaga Neto, L., Amorim, M.T.A., Resende, M.E.B. de, Vieira, J. da S., Queiroz, L.G. de, Gallo, B.C., Sayão, V.M., Lisboa, C.J. da S. 2020. Bare earth’s surface spectra as a proxy for soil resource monitoring. Sci. Rep. 10, 4461. https://doi.org/10.1038/s41598-020-61408-1.
– volume: 100
  start-page: 100
  year: 2013
  ident: 10.1016/j.geoderma.2021.115089_b0035
  article-title: Spatial correlation between the composition of the clay fraction and contents of available phosphorus of an Oxisol at hillslope scale
  publication-title: Catena
  doi: 10.1016/j.catena.2012.07.016
– volume: 218
  start-page: 89
  year: 2018
  ident: 10.1016/j.geoderma.2021.115089_b0125
  article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.015
– ident: 10.1016/j.geoderma.2021.115089_b0155
  doi: 10.7717/peerj.71
– volume: 7
  start-page: 6059
  year: 2015
  ident: 10.1016/j.geoderma.2021.115089_b0320
  article-title: Soil clay content mapping using a time series of Landsat TM data in semi-arid lands
  publication-title: Remote Sens.
  doi: 10.3390/rs70506059
– volume: 223
  start-page: 21
  year: 2019
  ident: 10.1016/j.geoderma.2021.115089_b0350
  article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and mediterranean agroecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.006
– volume: 9
  start-page: 1245
  year: 2017
  ident: 10.1016/j.geoderma.2021.115089_b0095
  article-title: Barest pixel composite for agricultural areas using Landsat time series
  publication-title: Remote Sens.
  doi: 10.3390/rs9121245
– volume: 160
  start-page: 614
  year: 2011
  ident: 10.1016/j.geoderma.2021.115089_b0190
  article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.11.013
– volume: 204
  start-page: 18
  year: 2018
  ident: 10.1016/j.geoderma.2021.115089_b0130
  article-title: Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.047
– year: 1985
  ident: 10.1016/j.geoderma.2021.115089_b0335
  article-title: Iron in soils and clay minerals
  publication-title: Soil Sci.
– volume: 302
  start-page: 39
  year: 2017
  ident: 10.1016/j.geoderma.2021.115089_b0070
  article-title: Soil class and attribute dynamics and their relationship with natural vegetation based on satellite remote sensing
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.04.019
– volume: 6
  start-page: 3331
  year: 2013
  ident: 10.1016/j.geoderma.2021.115089_b0295
  article-title: Mapping of the soil texture using geostatistical method (a case study of the Shahrekord plain, central Iran)
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0559-9
– volume: 243–244
  start-page: 214
  year: 2015
  ident: 10.1016/j.geoderma.2021.115089_b0305
  article-title: Do more detailed environmental covariates deliver more accurate soil maps?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.12.017
– volume: 252
  start-page: 112117
  year: 2021
  ident: 10.1016/j.geoderma.2021.115089_b0325
  article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112117
– volume: 7
  start-page: 12635
  year: 2015
  ident: 10.1016/j.geoderma.2021.115089_b0370
  article-title: Sentinel-2 for mapping iron absorption feature parameters
  publication-title: Remote Sens.
  doi: 10.3390/rs71012635
– volume: 13
  start-page: 81
  year: 2011
  ident: 10.1016/j.geoderma.2021.115089_b0010
  article-title: Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 51
  start-page: 850
  year: 2018
  ident: 10.1016/j.geoderma.2021.115089_b0300
  article-title: Assessing the spatial variability of soil surface colors in northern Jordan using satellite data from Landsat-8 and Sentinel-2
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1502624
– ident: 10.1016/j.geoderma.2021.115089_b0255
– volume: 133
  start-page: 320
  year: 2006
  ident: 10.1016/j.geoderma.2021.115089_b0360
  article-title: Colour space models for soil science
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.07.017
– volume: 348
  start-page: 189
  year: 2019
  ident: 10.1016/j.geoderma.2021.115089_b0245
  article-title: Pedology and soil class mapping from proximal and remote sensed data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.04.028
– ident: 10.1016/j.geoderma.2021.115089_b0280
  doi: 10.1016/j.rse.2017.11.004
– volume: 312
  start-page: 95
  year: 2018
  ident: 10.1016/j.geoderma.2021.115089_b0285
  article-title: Internal soil standard method for the Brazilian soil spectral library: performance and proximate analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.09.014
– volume: 12
  start-page: 1389
  year: 2020
  ident: 10.1016/j.geoderma.2021.115089_b0345
  article-title: Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data
  publication-title: Remote Sens.
  doi: 10.3390/rs12091389
– volume: 41
  start-page: 353
  year: 1988
  ident: 10.1016/j.geoderma.2021.115089_b0105
  article-title: Color index values to represent wetness and aeration in some Indiana soils
  publication-title: Geoderma
  doi: 10.1016/0016-7061(88)90070-5
– start-page: 63
  year: 2011
  ident: 10.1016/j.geoderma.2021.115089_b0220
  article-title: The relevance of scale in soil maps
  publication-title: Bull. BGS
– year: 2012
  ident: 10.1016/j.geoderma.2021.115089_b0055
  article-title: On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems
  publication-title: Catena
  doi: 10.1016/j.catena.2012.01.001
– ident: 10.1016/j.geoderma.2021.115089_b0315
  doi: 10.3133/ofr20131057
– volume: 12
  start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2021.115089_b0120
  article-title: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0170478
– volume: 6
  start-page: e4659
  year: 2018
  ident: 10.1016/j.geoderma.2021.115089_b0195
  article-title: Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia
  publication-title: PeerJ
  doi: 10.7717/peerj.4659
– volume: 67
  start-page: 1564
  year: 2003
  ident: 10.1016/j.geoderma.2021.115089_b0165
  article-title: Influence of spatial structure on accuracy of interpolation methods
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2003.1564
– volume: 22
  start-page: 711
  year: 2013
  ident: 10.1016/j.geoderma.2021.115089_b0005
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Zeitschrift
  doi: 10.1127/0941-2948/2013/0507
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.geoderma.2021.115089_b0365
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– ident: 10.1016/j.geoderma.2021.115089_b0340
– volume: 115
  start-page: 4031
  year: 2010
  ident: 10.1016/j.geoderma.2021.115089_b0355
  article-title: Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JF001645
– volume: 40
  start-page: 361
  year: 2019
  ident: 10.1016/j.geoderma.2021.115089_b0050
  article-title: Imaging spectroscopy for soil mapping and monitoring
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-019-09524-0
– ident: 10.1016/j.geoderma.2021.115089_b0170
– ident: 10.1016/j.geoderma.2021.115089_b0060
  doi: 10.1038/s41598-020-61408-1
– volume: 11
  start-page: 1032
  year: 2019
  ident: 10.1016/j.geoderma.2021.115089_b0145
  article-title: Exploring the influence of spatial resolution on the digital mapping of soil organic carbon by airborne hyperspectral VNIR imaging
  publication-title: Remote Sens.
  doi: 10.3390/rs11091032
– volume: 12
  start-page: 1369
  year: 2020
  ident: 10.1016/j.geoderma.2021.115089_b0290
  article-title: Multispectral models from bare soil composites for mapping topsoil properties over Europe
  publication-title: Remote Sens.
  doi: 10.3390/rs12091369
– volume: 28
  start-page: 3813
  year: 2007
  ident: 10.1016/j.geoderma.2021.115089_b0090
  article-title: Quantification of tropical soil attributes from ETM +/LANDSAT-7 data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160601121469
– volume: 12
  start-page: 1197
  year: 2020
  ident: 10.1016/j.geoderma.2021.115089_b0240
  article-title: Soil color and mineralogy mapping using proximal and remote sensing in Midwest Brazil
  publication-title: Remote Sens.
  doi: 10.3390/rs12071197
– ident: 10.1016/j.geoderma.2021.115089_b0065
  doi: 10.1016/j.rse.2018.04.047
– volume: 18
  start-page: 1
  year: 2019
  ident: 10.1016/j.geoderma.2021.115089_b0270
  article-title: Delineating site-specific management zones and evaluating soil water temporal dynamics in a farmer’s field in Kentucky
  publication-title: Vadose Zo. J.
  doi: 10.2136/vzj2018.07.0143
– ident: 10.1016/j.geoderma.2021.115089_b0160
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.geoderma.2021.115089_b0210
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 84
  start-page: 101972
  year: 2020
  ident: 10.1016/j.geoderma.2021.115089_b0205
  article-title: Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 8
  start-page: 15244
  year: 2018
  ident: 10.1016/j.geoderma.2021.115089_b0020
  article-title: Multi-scale digital soil mapping with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33516-6
– ident: 10.1016/j.geoderma.2021.115089_b0200
  doi: 10.1117/12.2278218
– volume: 32
  start-page: 1283
  year: 2006
  ident: 10.1016/j.geoderma.2021.115089_b0150
  article-title: Finding the right pixel size
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.11.008
– volume: 11
  start-page: 2121
  year: 2019
  ident: 10.1016/j.geoderma.2021.115089_b0045
  article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects
  publication-title: Remote Sens.
  doi: 10.3390/rs11182121
– volume: 37
  start-page: 1136
  year: 2013
  ident: 10.1016/j.geoderma.2021.115089_b0015
  article-title: Comparison between detailed digital and conventional soil maps of an area with a complex geology
  publication-title: Rev. Bras. Ciência do Solo
  doi: 10.1590/S0100-06832013000500003
– ident: 10.1016/j.geoderma.2021.115089_b0330
– volume: 18
  start-page: 37
  year: 2017
  ident: 10.1016/j.geoderma.2021.115089_b0030
  article-title: Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-016-9462-9
– start-page: 58
  year: 2016
  ident: 10.1016/j.geoderma.2021.115089_b0225
  article-title: Multispectral satellite image processing
– ident: 10.1016/j.geoderma.2021.115089_b0075
  doi: 10.1590/18069657rbcs20150335
– volume: 579
  start-page: 1094
  year: 2017
  ident: 10.1016/j.geoderma.2021.115089_b0235
  article-title: Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.078
– ident: 10.1016/j.geoderma.2021.115089_b0310
– volume: 10
  start-page: 1555
  year: 2018
  ident: 10.1016/j.geoderma.2021.115089_b0115
  article-title: Improvement of clay and sand quantification based on a novel approach with a focus on multispectral satellite images
  publication-title: Remote Sens.
  doi: 10.3390/rs10101555
– volume: 88
  start-page: 787
  year: 2008
  ident: 10.1016/j.geoderma.2021.115089_b0375
  article-title: Model prediction of soil drainage classes based on digital elevation model parameters and soil attributes from coarse resolution soil maps
  publication-title: Can. J. Soil. Sci.
  doi: 10.4141/CJSS08012
– ident: 10.1016/j.geoderma.2021.115089_b0230
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.geoderma.2021.115089_b0140
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 2
  start-page: 283
  year: 1992
  ident: 10.1016/j.geoderma.2021.115089_b0185
  article-title: Weathering in humid regions, with emphasis on igneous rocks and their metamorphic equivalents
  publication-title: Dev. Earth Surf. Process.
  doi: 10.1016/B978-0-444-89198-3.50017-9
– volume: 46
  start-page: 331
  year: 2016
  ident: 10.1016/j.geoderma.2021.115089_b0100
  article-title: Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil
  publication-title: Brazilian J. Geol.
  doi: 10.1590/2317-4889201620160023
– ident: 10.1016/j.geoderma.2021.115089_b0215
  doi: 10.3920/978-90-8686-888-9_67
– volume: 71
  start-page: 509
  year: 2014
  ident: 10.1016/j.geoderma.2021.115089_b0085
  article-title: Morphological interpretation of reflectance spectrum (MIRS) using libraries looking towards soil classification
  publication-title: Sci. Agric.
  doi: 10.1590/0103-9016-2013-0365
– volume: 82
  start-page: 101905
  year: 2019
  ident: 10.1016/j.geoderma.2021.115089_b0180
  article-title: Satellite data integration for soil clay content modelling at a national scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 2947
  year: 2019
  ident: 10.1016/j.geoderma.2021.115089_b0380
  article-title: Soil organic carbon mapping using multispectral remote sensing data: prediction ability of data with different spatial and spectral sesolutions
  publication-title: Remote Sens.
  doi: 10.3390/rs11242947
– volume: 193
  start-page: 104609
  year: 2020
  ident: 10.1016/j.geoderma.2021.115089_b0265
  article-title: Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104609
– volume: 19
  year: 2020
  ident: 10.1016/j.geoderma.2021.115089_b0025
  article-title: Assessing the effect of spatial resolution on the delineation of management zones for smallholder farming in southern Brazil
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 1–14
  year: 2018
  ident: 10.1016/j.geoderma.2021.115089_b0110
  article-title: Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: a review
  publication-title: J. Spectrosc.
– volume: 164
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2021.115089_b0135
  article-title: Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.019
– ident: 10.1016/j.geoderma.2021.115089_b0250
– volume: 82
  start-page: 186
  year: 2018
  ident: 10.1016/j.geoderma.2021.115089_b0260
  article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.04.0122
– volume: 7
  start-page: 331
  year: 2012
  ident: 10.1016/j.geoderma.2021.115089_b0040
  article-title: Potential of hyperspectral remote sensing for field scale soil mapping and precision agriculture applications
  publication-title: Ital. J. Agron.
– ident: 10.1016/j.geoderma.2021.115089_b0175
  doi: 10.1007/978-1-4614-6849-3
– volume: 10
  start-page: 5297
  year: 2019
  ident: 10.1016/j.geoderma.2021.115089_b0275
  article-title: Exposed soil and mineral map of the Australian continent revealing the land at its barest
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13276-1
SSID ssj0017020
Score 2.4943917
Snippet •Multi-temporal SYSI S2-MSI image provided the best model performances.•PlanetScope image did not provide any improvements in model performances.•Satellite...
Soil maps at appropriate scales can aid decision-making in agriculture and the environment. In this sense, remote sensing products have shown their power to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115089
SubjectTerms algorithms
Brazil
clay
Cubist
decision making
Landsat 8-OLI
Multi-temporal images
organic matter
PlanetScope
sand
satellites
Sentinel 2-MSI
Soil classification
soil color
soil heterogeneity
Soil management
Soil mapping
spatial data
topsoil
Title Soil property maps with satellite images at multiple scales and its impact on management and classification
URI https://dx.doi.org/10.1016/j.geoderma.2021.115089
https://www.proquest.com/docview/2552001157
Volume 397
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqIzEmtZOnNdYVVQFRBeo1M2yEweltEnVpAMLvx2fk1SAkDowxomj6M45f7a_-w6hO1u6TMnIthIVMYt5LLAkJcSKBPEkTRJbKsh3fp544yl7nLmzFho2uTBAq6xjfxXTTbSuW_q1NfurNIUcX-r5xChggaQIJJoz5oN-fu9zS_OgPqmlGalnwdPfsoTn2kdQcMzoD9m0B-AIyr3_PUH9CtVm_hkdocMaOOJB9W3HqKWyE3QweFvX4hnqFL2_5OkCr2B7fV1-4KVYFRj2WXEhjO5mqXC61PGjwKLEDZMQF9pL0JTFOC0LXKVN4jzDyy0zxtyMAGcDscj48gxNR_evw7FVF1OwhOMFJWiGEicObQ2pbCWIDJ3QFTGDc5fQTrxEwl0Rg2AX1ZAGgJok0lGM-k6o4sA5R-0sz9QFwsT3oySOpA5NenEn3YDqdXSi_FiIkCQi6iC3sSCPaqVxKHix4A2lbM4by3OwPK8s30H9bb9VpbWxs0fYOIj_GDVcTwg7-942HuX6l4JzEpGpfFNwvcqyDVT2L__x_iu0D1cVH-0atcv1Rt1oAFPKrhmhXbQ3eHgaT74A7cDxnQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKOwAD4inK00isoc47GauKqqWPhVbqZtmJg1LaJGrSgX-PL3EqQEgMrLYuiu7O58_23XcIPRrctgQPDC0SgaVZjuVpXCdECxhxuB5FBhdQ7zyZOoO59bKwFw3Uq2thIK1Sxf4qppfRWo10lDY7WRxDja_uuKRkwAJKEXsPtYCdSjp7qzscDaa7xwSXKHZG3dFA4Euh8FKaCXqOlRREhv4E-Ag6vv--R_2I1uUW1D9GRwo74m71eyeoIZJTdNh92yj-DHGG3l_TeIUzuGHfFB94zbIcw1UrzllJvVkIHK9lCMkxK3CdTIhzaSgYSkIcFzmuKidxmuD1LjmmnAwAakNuUWnOczTvP896A031U9CY6XgF0IYSM_QNiaoMwQj3Td9moQVPL74RORGHWRYCZ5cuUQ1gNU64KSzdNX0ReuYFaiZpIi4RJq4bRGHAZXSS5ztue7o8SkfCDRnzScSCNrJrDdJAkY1Dz4sVrbPKlrTWPAXN00rzbdTZyWUV3cafEn5tIPrNcajcE_6UfagtSuWqgqcSloh0m1N50DJKtOxe_eP792h_MJuM6Xg4HV2jA5ip0tNuULPYbMWtxDMFv1P--gk0f_RO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+property+maps+with+satellite+images+at+multiple+scales+and+its+impact+on+management+and+classification&rft.jtitle=Geoderma&rft.au=Silvero%2C+N%C3%A9lida+E.Q.&rft.au=Dematt%C3%AA%2C+Jos%C3%A9+A.M.&rft.au=de+Souza+Vieira%2C+Julia&rft.au=Mello%2C+Fellipe+Alcntara+de+Oliveira&rft.date=2021-09-01&rft.issn=0016-7061&rft.volume=397+p.115089-&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115089&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon