Soil property maps with satellite images at multiple scales and its impact on management and classification
•Multi-temporal SYSI S2-MSI image provided the best model performances.•PlanetScope image did not provide any improvements in model performances.•Satellite images in different resolutions affect soil property maps and strategies related to classification and management. Soil maps at appropriate scal...
Saved in:
Published in | Geoderma Vol. 397; p. 115089 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2021.115089 |
Cover
Loading…
Abstract | •Multi-temporal SYSI S2-MSI image provided the best model performances.•PlanetScope image did not provide any improvements in model performances.•Satellite images in different resolutions affect soil property maps and strategies related to classification and management.
Soil maps at appropriate scales can aid decision-making in agriculture and the environment. In this sense, remote sensing products have shown their power to investigate soil properties, but the assessment of its spatial information can be hampered by the presence of other objects than soil. To overcome this issue, soil scientists have been studying spatial patterns from multi-temporal satellite images aiming at at improving soil property maps. In this work, we applied the cubist algorithm to predict topsoil properties (clay, sand, organic matter and iron contents, and soil color components) in south-eastern Brazil using multi-temporal (Landsat8-OLI, and Sentinel2-MSI) and single-date images (PlanetScope, Landsat8-OLI, and Sentinel2-MSI). We aimed to evaluate the influence of satellite’s spatial, spectral and temporal resolutions on soil mapping. Predictive models were constructed with 120 soil samples and using four (vis-NIR) and six (vis-NIR-SWIR) spectral bands as predictors in a 10-fold cross-validation procedure. The multi-temporal image obtained from the Sentinel2-MSI satellite (with 10 m pixel size and six spectral bands), showed the best model performances in cross-validation (R2 between 0.48 and 0.78). The PlanetScope image, which has only four bands in the vis-NIR region and spatial resolution of 3 m did not improve model performances, although the R2 values were higher for soil color components (R2 > 0.5). Satellite images in different spatial, spectral and temporal resolution provides slightly different soil property maps which may promote different strategies regarding soil classification and management. However, satellite images should be used with caution, as they provide only surficial information about the soil variability and confirmation with field surveys is required. |
---|---|
AbstractList | •Multi-temporal SYSI S2-MSI image provided the best model performances.•PlanetScope image did not provide any improvements in model performances.•Satellite images in different resolutions affect soil property maps and strategies related to classification and management.
Soil maps at appropriate scales can aid decision-making in agriculture and the environment. In this sense, remote sensing products have shown their power to investigate soil properties, but the assessment of its spatial information can be hampered by the presence of other objects than soil. To overcome this issue, soil scientists have been studying spatial patterns from multi-temporal satellite images aiming at at improving soil property maps. In this work, we applied the cubist algorithm to predict topsoil properties (clay, sand, organic matter and iron contents, and soil color components) in south-eastern Brazil using multi-temporal (Landsat8-OLI, and Sentinel2-MSI) and single-date images (PlanetScope, Landsat8-OLI, and Sentinel2-MSI). We aimed to evaluate the influence of satellite’s spatial, spectral and temporal resolutions on soil mapping. Predictive models were constructed with 120 soil samples and using four (vis-NIR) and six (vis-NIR-SWIR) spectral bands as predictors in a 10-fold cross-validation procedure. The multi-temporal image obtained from the Sentinel2-MSI satellite (with 10 m pixel size and six spectral bands), showed the best model performances in cross-validation (R2 between 0.48 and 0.78). The PlanetScope image, which has only four bands in the vis-NIR region and spatial resolution of 3 m did not improve model performances, although the R2 values were higher for soil color components (R2 > 0.5). Satellite images in different spatial, spectral and temporal resolution provides slightly different soil property maps which may promote different strategies regarding soil classification and management. However, satellite images should be used with caution, as they provide only surficial information about the soil variability and confirmation with field surveys is required. Soil maps at appropriate scales can aid decision-making in agriculture and the environment. In this sense, remote sensing products have shown their power to investigate soil properties, but the assessment of its spatial information can be hampered by the presence of other objects than soil. To overcome this issue, soil scientists have been studying spatial patterns from multi-temporal satellite images aiming at at improving soil property maps. In this work, we applied the cubist algorithm to predict topsoil properties (clay, sand, organic matter and iron contents, and soil color components) in south-eastern Brazil using multi-temporal (Landsat8-OLI, and Sentinel2-MSI) and single-date images (PlanetScope, Landsat8-OLI, and Sentinel2-MSI). We aimed to evaluate the influence of satellite’s spatial, spectral and temporal resolutions on soil mapping. Predictive models were constructed with 120 soil samples and using four (vis-NIR) and six (vis-NIR-SWIR) spectral bands as predictors in a 10-fold cross-validation procedure. The multi-temporal image obtained from the Sentinel2-MSI satellite (with 10 m pixel size and six spectral bands), showed the best model performances in cross-validation (R² between 0.48 and 0.78). The PlanetScope image, which has only four bands in the vis-NIR region and spatial resolution of 3 m did not improve model performances, although the R² values were higher for soil color components (R² > 0.5). Satellite images in different spatial, spectral and temporal resolution provides slightly different soil property maps which may promote different strategies regarding soil classification and management. However, satellite images should be used with caution, as they provide only surficial information about the soil variability and confirmation with field surveys is required. |
ArticleNumber | 115089 |
Author | Vieira, Julia de Souza Amorim, Merilyn Taynara Accorsi Bonfatti, Benito Roberto Mello, Fellipe Alcântara de Oliveira Poppiel, Raul Roberto Silvero, Nélida E.Q. Mendes, Wanderson de Sousa Demattê, José A.M. |
Author_xml | – sequence: 1 givenname: Nélida E.Q. surname: Silvero fullname: Silvero, Nélida E.Q. organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil – sequence: 2 givenname: José A.M. surname: Demattê fullname: Demattê, José A.M. email: jamdemat@usp.br organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil – sequence: 3 givenname: Julia de Souza surname: Vieira fullname: Vieira, Julia de Souza organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil – sequence: 4 givenname: Fellipe Alcântara de Oliveira surname: Mello fullname: Mello, Fellipe Alcântara de Oliveira organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil – sequence: 5 givenname: Merilyn Taynara Accorsi surname: Amorim fullname: Amorim, Merilyn Taynara Accorsi organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil – sequence: 6 givenname: Raul Roberto surname: Poppiel fullname: Poppiel, Raul Roberto organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil – sequence: 7 givenname: Wanderson de Sousa surname: Mendes fullname: Mendes, Wanderson de Sousa organization: Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil – sequence: 8 givenname: Benito Roberto surname: Bonfatti fullname: Bonfatti, Benito Roberto organization: State University of Minas Gerais, Passos, Brazil |
BookMark | eNqFkE1PAyEURYnRxPrxFwxLN1OBKcOQuNAYvxITF-qaUOaNUhkYgWr676Wtbty4Io937kvuOUC7PnhA6ISSKSW0OVtMXyF0EAc9ZYTRKaWctHIHTWgrWNUwLnfRhBSyEqSh--ggpUUZBWFkgt6fgnV4jGGEmFd40GPCXza_4aQzOGczYDvoV0hYZzwsXbajA5yMdusv32GbUyFGbTIOvuR9gQfwebM0Tqdke2t0tsEfob1euwTHP-8herm5fr66qx4eb--vLh8qXTdtrsSsJXUnGZGcgSZzWUuuu1nDBZesb_r5eqs7KiShTNRiRps5mdcwo6KW0LX1ITrd3i21PpaQshpsMqWN9hCWSTHOWRFAuShos0VNDClF6NUYS9-4UpSotV21UL921dqu2totwfM_QWPzpmWO2rr_4xfbOBQPnxaiSsaCN9DZCCarLtj_TnwDsiSc_w |
CitedBy_id | crossref_primary_10_1007_s11042_023_16729_4 crossref_primary_10_3390_f16020239 crossref_primary_10_1007_s12145_025_01748_6 crossref_primary_10_1080_01431161_2022_2093144 crossref_primary_10_1016_j_compag_2022_107230 crossref_primary_10_1016_j_scitotenv_2021_152086 crossref_primary_10_1016_j_gsd_2024_101130 crossref_primary_10_3390_agronomy14040693 crossref_primary_10_3390_rs15225304 crossref_primary_10_1016_j_catena_2023_107130 crossref_primary_10_5322_JESI_2024_33_7_547 crossref_primary_10_1016_j_catena_2023_107197 crossref_primary_10_37543_oceanides_v37i1_2_274 crossref_primary_10_1016_j_geodrs_2021_e00412 crossref_primary_10_1016_j_geoderma_2024_116984 crossref_primary_10_3390_su15129440 crossref_primary_10_1002_cpe_7611 crossref_primary_10_1016_j_geodrs_2022_e00513 crossref_primary_10_1016_j_jsames_2023_104449 crossref_primary_10_3390_appliedmath3040043 crossref_primary_10_3390_rs16071223 crossref_primary_10_3390_rs14122917 crossref_primary_10_1016_j_geoderma_2022_116066 crossref_primary_10_1071_SR21067 crossref_primary_10_1016_j_catena_2023_107440 crossref_primary_10_1016_j_geoderma_2021_115638 crossref_primary_10_1016_j_geodrs_2024_e00785 crossref_primary_10_1109_JSTARS_2024_3373884 crossref_primary_10_1080_01431161_2022_2147037 crossref_primary_10_1016_j_rse_2024_114027 crossref_primary_10_3390_rs16071192 crossref_primary_10_3390_rs15133316 crossref_primary_10_1016_j_soisec_2022_100057 |
Cites_doi | 10.1016/j.catena.2012.07.016 10.1016/j.rse.2018.09.015 10.7717/peerj.71 10.3390/rs70506059 10.1016/j.rse.2019.01.006 10.3390/rs9121245 10.1016/j.geoderma.2010.11.013 10.1016/j.rse.2017.10.047 10.1016/j.geoderma.2017.04.019 10.1007/s12517-012-0559-9 10.1016/j.geoderma.2014.12.017 10.1016/j.rse.2020.112117 10.3390/rs71012635 10.1080/22797254.2018.1502624 10.1016/j.geoderma.2005.07.017 10.1016/j.geoderma.2019.04.028 10.1016/j.rse.2017.11.004 10.1016/j.geoderma.2017.09.014 10.3390/rs12091389 10.1016/0016-7061(88)90070-5 10.1016/j.catena.2012.01.001 10.3133/ofr20131057 10.1371/journal.pone.0170478 10.7717/peerj.4659 10.2136/sssaj2003.1564 10.1127/0941-2948/2013/0507 10.1097/00010694-193401000-00003 10.1029/2009JF001645 10.1007/s10712-019-09524-0 10.1038/s41598-020-61408-1 10.3390/rs11091032 10.3390/rs12091369 10.1080/01431160601121469 10.3390/rs12071197 10.1016/j.rse.2018.04.047 10.2136/vzj2018.07.0143 10.1016/S0016-7061(03)00223-4 10.1038/s41598-018-33516-6 10.1117/12.2278218 10.1016/j.cageo.2005.11.008 10.3390/rs11182121 10.1590/S0100-06832013000500003 10.1007/s11119-016-9462-9 10.1590/18069657rbcs20150335 10.1016/j.scitotenv.2016.11.078 10.3390/rs10101555 10.4141/CJSS08012 10.1016/j.rse.2017.06.031 10.1016/B978-0-444-89198-3.50017-9 10.1590/2317-4889201620160023 10.3920/978-90-8686-888-9_67 10.1590/0103-9016-2013-0365 10.3390/rs11242947 10.1016/j.catena.2020.104609 10.1016/j.rse.2015.02.019 10.2136/sssaj2017.04.0122 10.1007/978-1-4614-6849-3 10.1038/s41467-019-13276-1 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2021.115089 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2021_115089 S0016706121001695 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-a368t-74803d920952ea0b9395ad4657592f6fb03d9ad179012737416b0b3e41739ed83 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Sep 04 17:50:51 EDT 2025 Tue Jul 01 04:04:55 EDT 2025 Thu Apr 24 23:13:11 EDT 2025 Fri Feb 23 02:45:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Landsat 8-OLI Multi-temporal images PlanetScope Cubist Sentinel 2-MSI Soil classification Soil management Soil mapping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-74803d920952ea0b9395ad4657592f6fb03d9ad179012737416b0b3e41739ed83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2552001157 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2552001157 crossref_primary_10_1016_j_geoderma_2021_115089 crossref_citationtrail_10_1016_j_geoderma_2021_115089 elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Demattê, Galdos, Guimarães, Genú, Nanni, Zullo, Zullo (b0090) 2007; 28 Macias, Chesworth (b0185) 1992; 2 Žížala, Minařík, Zádorová (b0380) 2019; 11 Marais Sicre, Fieuzal, Baup (b0205) 2020; 84 Meyer, S., Kling, C., Vogel, S., Schröter, I., Nagel, A., Kramer, E., Gebbers, R., Philipp, G., Lück, K., Gerlach, F., Scheibe, D., Ruehlmann, J., 2019. Creating soil texture maps for precision liming using electrical resistivity and gamma ray mapping. In: Precision Agriculture 2019 - Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019, pp. 539–546. Wageningen Academic Publishers. Chabrillat, Ben-Dor, Cierniewski, Gomez, Schmid, Van Wesemael (b0050) 2019; 40 Gholizadeh, Žižala, Saberioon, Borůvka (b0125) 2018; 218 Ramos, Inda, Barrón, Siqueira, Marques Júnior, Teixeira (b0265) 2020; 193 Samuel-Rosa, Heuvelink, Vasques, Anjos (b0305) 2015; 243–244 Vaudour, Gomez, Fouad, Lagacherie (b0350) 2019; 223 Demattê, Sayão, Rizzo, Fongaro (b0070) 2017; 302 Behrens, Schmidt, MacMillan, Viscarra Rossel (b0020) 2018; 8 McBratney, Mendonça Santos, Minasny (b0210) 2003; 117 Shabou, Mougenot, Chabaane, Walter, Boulet, Aissa, Zribi (b0320) 2015; 7 Demattê, J.A.M., Alves, M.R., Terra, F. da S., Bosquilia, R.W.D., Fongaro, C.T. and Barros, P.P. da S. (2016). Is it possible to classify topsoil texture using a sensor located 800 km away from the surface? Rev. Bras. Ciência do Solo 40, e0150335. https://doi.org/10.1590/18069657rbcs20150335. Malone, McBratney, Minasny (b0190) 2011; 160 Casa, Castaldi, Pascucci, Pignatti (b0040) 2012; 7 Safanelli, Chabrillat, Ben-Dor, Demattê (b0290) 2020; 12 Malone, Mcbratney, Minasny (b0195) 2018; 6 Poppiel, Lacerda, Demattê, Oliveira, Gallo, Safanelli (b0245) 2019; 348 Ose, Corpetti, Demagistri (b0225) 2016 Fongaro, Demattê, Rizzo, Lucas Safanelli, Mendes, Dotto, Vicente, Franceschini, Ustin (b0115) 2018; 10 van der Werff, van der Meer (b0370) 2015; 7 Safari, Esfandiarpour Boroujeni, Kamali, Salehi, Bagheri Bodaghabadi (b0295) 2013; 6 Buttafuoco, Castrignano, Gucci, Lacolla, Luca (b0030) 2017; 18 Fang, Hong, Zhao, Kukolich, Yin, Wang (b0110) 2018; 1–14 Kravchenko (b0165) 2003; 67 Reyes, Wendroth, Matocha, Zhu (b0270) 2019; 18 Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Oliveira, J.B., Coelho, J.F. and Cunha, T.J.F. (2013). Sistema brasileiro de classificação de solos. Rogge, D., Bauer, A., Zeidler, J., Mueller, A., Esch, T. and Heiden, U. (2018). Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 205, 1–17. https://doi.org/10.1016/j.rse.2017.11.004. Schmidt, G.L., Jenkerson, C.B., Masek, J., Vermote, E., Gao, F., 2013, Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description: U.S. Geological Survey Open-File Report 2013–1057, 17 p. Poppiel, Lacerda, Rizzo, Safanelli, Bonfatti, Silvero, Demattê (b0240) 2020; 12 Evans, Franzmeier (b0105) 1988; 41 Viscarra Rossel, Minasny, Roudier, McBratney (b0360) 2006; 133 Croft, Kuhn, Anderson (b0055) 2012 Bartholomeus, Kooistra, Stevens, van Leeuwen, van Wesemael, Ben-Dor, Tychon (b0010) 2011; 13 Loiseau, Chen, Mulder, Román Dobarco, Richer-de-Forges, Lehmann, Bourennane, Saby, Martin, Vaudour, Gomez, Lagacherie, Arrouays (b0180) 2019; 82 Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (b0140) 2017; 202 Demattê, Bellinaso, Romero, Fongaro (b0085) 2014; 71 Alvares, Stape, Sentelhas, de Moraes Gonçalves, Sparovek (b0005) 2013; 22 Walkley, Black (b0365) 1934; 37 Hong, S.Y., Minasny, B., Han, K.H., Kim, Y., Lee, K., 2013. Predicting and mapping soil available water capacity in Korea. PeerJ e71. https://doi.org/10.7717/peerj.71. Viscarra Rossel, Bui, De Caritat, Mckenzie (b0355) 2010; 115 R Core Team, 2019. R: A Language and Environment for Statistical Computing. Kuhn, M., Weston, S., Keefer, C., Coulter, N., Quinlan, R. 2018. Package “Cubist.” 13. https://github.com/topepo/Cubist/issues. Diek, Fornallaz, Schaepman, Jong, Diek, Fornallaz, Schaepman, De Jong (b0095) 2017; 9 Guo, Shi, Linderman, Chen, Zhang, Fu (b0145) 2019; 11 Poggio, Gimona (b0235) 2017; 579 Ramcharan, Hengl, Nauman, Brungard, Waltman, Wills, Thompson (b0260) 2018; 82 Romero, Ben-Dor, Demattê, Souza, Vicente, Tavares, Martello, Strabeli, Barros, Fiorio, Gallo, Sato, Eitelwein (b0285) 2018; 312 Tziolas, Tsakiridis, Ben-Dor, Theocharis, Zalidis (b0345) 2020; 12 Zhao, Chow, Yang, Rees, Benoy, Xing, Meng (b0375) 2008; 88 Smith, S., Bulmer, C., Flager, E., Frank, G., Filatow, D. 2010. Digital soil mapping at multiple scales in British Columbia, Canada. Program and Abstracts, 4th Global Workshop on Digital Soil Mapping, 17. IUSS Working Group WRB. 2015. World reference base for soil resources. http://www.fao.org. Demattê, J.A.M., Safanelli, J.L., Poppiel, R.R., Rizzo, R., Silvero, N.E.Q., Mendes, W. de S., Bonfatti, B.R., Dotto, A.C., Salazar, D.F.U., Mello, F.A. de O., Paiva, A.F. da S., Souza, A.B., Santos, N.V. dos, Maria Nascimento, C., Mello, D.C. de, Bellinaso, H., Gonzaga Neto, L., Amorim, M.T.A., Resende, M.E.B. de, Vieira, J. da S., Queiroz, L.G. de, Gallo, B.C., Sayão, V.M., Lisboa, C.J. da S. 2020. Bare earth’s surface spectra as a proxy for soil resource monitoring. Sci. Rep. 10, 4461. https://doi.org/10.1038/s41598-020-61408-1. Sahwan, Lucke, Kappas, Bäumler (b0300) 2018; 51 Stucki, Goodman, Schwertmann (b0335) 1985 Breunig, Galvão, Dalagnol, Santi, Della Flora, Chen (b0025) 2020; 19 Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling, Springer. Springer, New York. https://doi.org/10.1007/978-1-4614-6849-3. Teixeira, P.C., Donagema, G.K., Fontana, A., Teixeira, W.G. 2017. Manual de Métodos de Análise de Solo. https://www.embrapa.br. Planet Labs. 2020. Planet Imagery Specifications. Silvero, Demattê, Amorim, Santos, Rizzo, Safanelli, Poppiel, Mendes, Bonfatti (b0325) 2021; 252 Ducart, Moreira Silva, Labouré, Toledo, Mozer De Assis (b0100) 2016; 46 Quinlan, J.R., 1992. Learning wth continuous classes, in: Proceedings AI’92, 5th Australian Conference on Artificial Intelligence.World Scientific, pp. 343–348. Bazaglia Filho, Rizzo, Lepsch, Prado, Gomes, Mazza, Demattê (b0015) 2013; 37 Demattê, J.A.M., Fongaro, C.T., Rizzo, R., Safanelli, J.L. 2018. Geospatial Soil Sensing System (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 212, 161–175. https://doi.org/10.1016/j.rse.2018.04.047. Forkuor, Hounkpatin, Welp, Thiel (b0120) 2017; 12 Camargo, Marques, Pereira, Alleoni (b0035) 2013; 100 Main-Knorn, M.B.P., Louis, J., Debaecker, V., Muller-Wilm, U., Gascon, F., 2017. Sen2Cor for Sentinel-2, in: Image and Signal Processing for Remote Sensing. p. 12. https://doi.org/10.1117/12.2278218. Nussbaum, Ettlin, Çöltekin, Suter, Egli (b0220) 2011 Castaldi, Chabrillat, Don, van Wesemael (b0045) 2019; 11 Gomez, Adeline, Bacha, Driessen, Gorretta, Lagacherie, Roger, Briottet (b0130) 2018; 204 Hengl (b0150) 2006; 32 Gomez, Oltra-Carrió, Bacha, Lagacherie, Briottet (b0135) 2015; 164 Roberts, Wilford, Ghattas (b0275) 2019; 10 10.1016/j.geoderma.2021.115089_b0075 10.1016/j.geoderma.2021.115089_b0230 Bartholomeus (10.1016/j.geoderma.2021.115089_b0010) 2011; 13 10.1016/j.geoderma.2021.115089_b0155 Buttafuoco (10.1016/j.geoderma.2021.115089_b0030) 2017; 18 Marais Sicre (10.1016/j.geoderma.2021.115089_b0205) 2020; 84 Safari (10.1016/j.geoderma.2021.115089_b0295) 2013; 6 10.1016/j.geoderma.2021.115089_b0315 Demattê (10.1016/j.geoderma.2021.115089_b0090) 2007; 28 Malone (10.1016/j.geoderma.2021.115089_b0195) 2018; 6 10.1016/j.geoderma.2021.115089_b0310 Diek (10.1016/j.geoderma.2021.115089_b0095) 2017; 9 Casa (10.1016/j.geoderma.2021.115089_b0040) 2012; 7 Ducart (10.1016/j.geoderma.2021.115089_b0100) 2016; 46 Gomez (10.1016/j.geoderma.2021.115089_b0130) 2018; 204 Vaudour (10.1016/j.geoderma.2021.115089_b0350) 2019; 223 Bazaglia Filho (10.1016/j.geoderma.2021.115089_b0015) 2013; 37 Gorelick (10.1016/j.geoderma.2021.115089_b0140) 2017; 202 Fang (10.1016/j.geoderma.2021.115089_b0110) 2018; 1–14 Forkuor (10.1016/j.geoderma.2021.115089_b0120) 2017; 12 Zhao (10.1016/j.geoderma.2021.115089_b0375) 2008; 88 Samuel-Rosa (10.1016/j.geoderma.2021.115089_b0305) 2015; 243–244 10.1016/j.geoderma.2021.115089_b0065 10.1016/j.geoderma.2021.115089_b0340 10.1016/j.geoderma.2021.115089_b0060 Žížala (10.1016/j.geoderma.2021.115089_b0380) 2019; 11 Reyes (10.1016/j.geoderma.2021.115089_b0270) 2019; 18 Behrens (10.1016/j.geoderma.2021.115089_b0020) 2018; 8 Demattê (10.1016/j.geoderma.2021.115089_b0070) 2017; 302 Romero (10.1016/j.geoderma.2021.115089_b0285) 2018; 312 Evans (10.1016/j.geoderma.2021.115089_b0105) 1988; 41 Kravchenko (10.1016/j.geoderma.2021.115089_b0165) 2003; 67 Castaldi (10.1016/j.geoderma.2021.115089_b0045) 2019; 11 Gomez (10.1016/j.geoderma.2021.115089_b0135) 2015; 164 Macias (10.1016/j.geoderma.2021.115089_b0185) 1992; 2 Poppiel (10.1016/j.geoderma.2021.115089_b0240) 2020; 12 Guo (10.1016/j.geoderma.2021.115089_b0145) 2019; 11 Breunig (10.1016/j.geoderma.2021.115089_b0025) 2020; 19 Poggio (10.1016/j.geoderma.2021.115089_b0235) 2017; 579 Croft (10.1016/j.geoderma.2021.115089_b0055) 2012 McBratney (10.1016/j.geoderma.2021.115089_b0210) 2003; 117 Loiseau (10.1016/j.geoderma.2021.115089_b0180) 2019; 82 10.1016/j.geoderma.2021.115089_b0175 Viscarra Rossel (10.1016/j.geoderma.2021.115089_b0355) 2010; 115 10.1016/j.geoderma.2021.115089_b0330 Stucki (10.1016/j.geoderma.2021.115089_b0335) 1985 10.1016/j.geoderma.2021.115089_b0170 10.1016/j.geoderma.2021.115089_b0250 Silvero (10.1016/j.geoderma.2021.115089_b0325) 2021; 252 10.1016/j.geoderma.2021.115089_b0215 van der Werff (10.1016/j.geoderma.2021.115089_b0370) 2015; 7 Nussbaum (10.1016/j.geoderma.2021.115089_b0220) 2011 Viscarra Rossel (10.1016/j.geoderma.2021.115089_b0360) 2006; 133 Demattê (10.1016/j.geoderma.2021.115089_b0085) 2014; 71 10.1016/j.geoderma.2021.115089_b0255 Alvares (10.1016/j.geoderma.2021.115089_b0005) 2013; 22 Roberts (10.1016/j.geoderma.2021.115089_b0275) 2019; 10 Ramcharan (10.1016/j.geoderma.2021.115089_b0260) 2018; 82 Ramos (10.1016/j.geoderma.2021.115089_b0265) 2020; 193 Walkley (10.1016/j.geoderma.2021.115089_b0365) 1934; 37 Chabrillat (10.1016/j.geoderma.2021.115089_b0050) 2019; 40 Camargo (10.1016/j.geoderma.2021.115089_b0035) 2013; 100 10.1016/j.geoderma.2021.115089_b0280 10.1016/j.geoderma.2021.115089_b0160 Shabou (10.1016/j.geoderma.2021.115089_b0320) 2015; 7 Malone (10.1016/j.geoderma.2021.115089_b0190) 2011; 160 Gholizadeh (10.1016/j.geoderma.2021.115089_b0125) 2018; 218 Sahwan (10.1016/j.geoderma.2021.115089_b0300) 2018; 51 10.1016/j.geoderma.2021.115089_b0200 Fongaro (10.1016/j.geoderma.2021.115089_b0115) 2018; 10 Safanelli (10.1016/j.geoderma.2021.115089_b0290) 2020; 12 Hengl (10.1016/j.geoderma.2021.115089_b0150) 2006; 32 Poppiel (10.1016/j.geoderma.2021.115089_b0245) 2019; 348 Tziolas (10.1016/j.geoderma.2021.115089_b0345) 2020; 12 Ose (10.1016/j.geoderma.2021.115089_b0225) 2016 |
References_xml | – volume: 28 start-page: 3813 year: 2007 end-page: 3829 ident: b0090 article-title: Quantification of tropical soil attributes from ETM +/LANDSAT-7 data publication-title: Int. J. Remote Sens. – reference: Schmidt, G.L., Jenkerson, C.B., Masek, J., Vermote, E., Gao, F., 2013, Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description: U.S. Geological Survey Open-File Report 2013–1057, 17 p. – volume: 18 start-page: 37 year: 2017 end-page: 58 ident: b0030 article-title: Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field publication-title: Precis. Agric. – volume: 88 start-page: 787 year: 2008 end-page: 799 ident: b0375 article-title: Model prediction of soil drainage classes based on digital elevation model parameters and soil attributes from coarse resolution soil maps publication-title: Can. J. Soil. Sci. – volume: 11 start-page: 2947 year: 2019 ident: b0380 article-title: Soil organic carbon mapping using multispectral remote sensing data: prediction ability of data with different spatial and spectral sesolutions publication-title: Remote Sens. – volume: 193 start-page: 104609 year: 2020 ident: b0265 article-title: Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy publication-title: Catena – volume: 10 start-page: 5297 year: 2019 ident: b0275 article-title: Exposed soil and mineral map of the Australian continent revealing the land at its barest publication-title: Nat. Commun. – volume: 67 start-page: 1564 year: 2003 end-page: 1571 ident: b0165 article-title: Influence of spatial structure on accuracy of interpolation methods publication-title: Soil Sci. Soc. Am. J. – reference: IUSS Working Group WRB. 2015. World reference base for soil resources. http://www.fao.org. – reference: Demattê, J.A.M., Fongaro, C.T., Rizzo, R., Safanelli, J.L. 2018. Geospatial Soil Sensing System (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 212, 161–175. https://doi.org/10.1016/j.rse.2018.04.047. – reference: Kuhn, M., Weston, S., Keefer, C., Coulter, N., Quinlan, R. 2018. Package “Cubist.” 13. https://github.com/topepo/Cubist/issues. – start-page: 58 year: 2016 end-page: 124 ident: b0225 article-title: Multispectral satellite image processing publication-title: Optical Remote Sensing of Land Surface: Techniques and Methods – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: b0140 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 243–244 start-page: 214 year: 2015 end-page: 227 ident: b0305 article-title: Do more detailed environmental covariates deliver more accurate soil maps? publication-title: Geoderma – volume: 1–14 year: 2018 ident: b0110 article-title: Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: a review publication-title: J. Spectrosc. – volume: 223 start-page: 21 year: 2019 end-page: 33 ident: b0350 article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and mediterranean agroecosystems publication-title: Remote Sens. Environ. – volume: 40 start-page: 361 year: 2019 end-page: 399 ident: b0050 article-title: Imaging spectroscopy for soil mapping and monitoring publication-title: Surv. Geophys. – reference: Smith, S., Bulmer, C., Flager, E., Frank, G., Filatow, D. 2010. Digital soil mapping at multiple scales in British Columbia, Canada. Program and Abstracts, 4th Global Workshop on Digital Soil Mapping, 17. – volume: 302 start-page: 39 year: 2017 end-page: 51 ident: b0070 article-title: Soil class and attribute dynamics and their relationship with natural vegetation based on satellite remote sensing publication-title: Geoderma – volume: 18 start-page: 1 year: 2019 end-page: 19 ident: b0270 article-title: Delineating site-specific management zones and evaluating soil water temporal dynamics in a farmer’s field in Kentucky publication-title: Vadose Zo. J. – year: 2012 ident: b0055 article-title: On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems publication-title: Catena – year: 1985 ident: b0335 article-title: Iron in soils and clay minerals publication-title: Soil Sci. – volume: 9 start-page: 1245 year: 2017 ident: b0095 article-title: Barest pixel composite for agricultural areas using Landsat time series publication-title: Remote Sens. – reference: R Core Team, 2019. R: A Language and Environment for Statistical Computing. – volume: 7 start-page: 6059 year: 2015 end-page: 6078 ident: b0320 article-title: Soil clay content mapping using a time series of Landsat TM data in semi-arid lands publication-title: Remote Sens. – reference: Rogge, D., Bauer, A., Zeidler, J., Mueller, A., Esch, T. and Heiden, U. (2018). Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 205, 1–17. https://doi.org/10.1016/j.rse.2017.11.004. – volume: 8 start-page: 15244 year: 2018 ident: b0020 article-title: Multi-scale digital soil mapping with deep learning publication-title: Sci. Rep. – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: b0210 article-title: On digital soil mapping publication-title: Geoderma – reference: Main-Knorn, M.B.P., Louis, J., Debaecker, V., Muller-Wilm, U., Gascon, F., 2017. Sen2Cor for Sentinel-2, in: Image and Signal Processing for Remote Sensing. p. 12. https://doi.org/10.1117/12.2278218. – volume: 115 start-page: 4031 year: 2010 ident: b0355 article-title: Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra publication-title: J. Geophys. Res. – reference: Hong, S.Y., Minasny, B., Han, K.H., Kim, Y., Lee, K., 2013. Predicting and mapping soil available water capacity in Korea. PeerJ e71. https://doi.org/10.7717/peerj.71. – reference: Teixeira, P.C., Donagema, G.K., Fontana, A., Teixeira, W.G. 2017. Manual de Métodos de Análise de Solo. https://www.embrapa.br. – volume: 133 start-page: 320 year: 2006 end-page: 337 ident: b0360 article-title: Colour space models for soil science publication-title: Geoderma – reference: Meyer, S., Kling, C., Vogel, S., Schröter, I., Nagel, A., Kramer, E., Gebbers, R., Philipp, G., Lück, K., Gerlach, F., Scheibe, D., Ruehlmann, J., 2019. Creating soil texture maps for precision liming using electrical resistivity and gamma ray mapping. In: Precision Agriculture 2019 - Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019, pp. 539–546. Wageningen Academic Publishers. – volume: 11 start-page: 2121 year: 2019 ident: b0045 article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects publication-title: Remote Sens. – volume: 12 start-page: 1 year: 2017 end-page: 21 ident: b0120 article-title: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models publication-title: PLoS ONE – volume: 12 start-page: 1369 year: 2020 ident: b0290 article-title: Multispectral models from bare soil composites for mapping topsoil properties over Europe publication-title: Remote Sens. – reference: Planet Labs. 2020. Planet Imagery Specifications. – volume: 252 start-page: 112117 year: 2021 ident: b0325 article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison publication-title: Remote Sens. Environ. – volume: 7 start-page: 12635 year: 2015 end-page: 12653 ident: b0370 article-title: Sentinel-2 for mapping iron absorption feature parameters publication-title: Remote Sens. – volume: 19 year: 2020 ident: b0025 article-title: Assessing the effect of spatial resolution on the delineation of management zones for smallholder farming in southern Brazil publication-title: Remote Sens. Appl. Soc. Environ. – volume: 100 start-page: 100 year: 2013 end-page: 106 ident: b0035 article-title: Spatial correlation between the composition of the clay fraction and contents of available phosphorus of an Oxisol at hillslope scale publication-title: Catena – volume: 46 start-page: 331 year: 2016 end-page: 349 ident: b0100 article-title: Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil publication-title: Brazilian J. Geol. – volume: 7 start-page: 331 year: 2012 end-page: 336 ident: b0040 article-title: Potential of hyperspectral remote sensing for field scale soil mapping and precision agriculture applications publication-title: Ital. J. Agron. – start-page: 63 year: 2011 end-page: 70 ident: b0220 article-title: The relevance of scale in soil maps publication-title: Bull. BGS – reference: Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Oliveira, J.B., Coelho, J.F. and Cunha, T.J.F. (2013). Sistema brasileiro de classificação de solos. – volume: 22 start-page: 711 year: 2013 end-page: 728 ident: b0005 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Zeitschrift – volume: 32 start-page: 1283 year: 2006 end-page: 1298 ident: b0150 article-title: Finding the right pixel size publication-title: Comput. Geosci. – volume: 82 start-page: 101905 year: 2019 ident: b0180 article-title: Satellite data integration for soil clay content modelling at a national scale publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 348 start-page: 189 year: 2019 end-page: 206 ident: b0245 article-title: Pedology and soil class mapping from proximal and remote sensed data publication-title: Geoderma – reference: Demattê, J.A.M., Alves, M.R., Terra, F. da S., Bosquilia, R.W.D., Fongaro, C.T. and Barros, P.P. da S. (2016). Is it possible to classify topsoil texture using a sensor located 800 km away from the surface? Rev. Bras. Ciência do Solo 40, e0150335. https://doi.org/10.1590/18069657rbcs20150335. – volume: 51 start-page: 850 year: 2018 end-page: 862 ident: b0300 article-title: Assessing the spatial variability of soil surface colors in northern Jordan using satellite data from Landsat-8 and Sentinel-2 publication-title: Eur. J. Remote Sens. – volume: 12 start-page: 1389 year: 2020 ident: b0345 article-title: Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data publication-title: Remote Sens. – volume: 12 start-page: 1197 year: 2020 ident: b0240 article-title: Soil color and mineralogy mapping using proximal and remote sensing in Midwest Brazil publication-title: Remote Sens. – volume: 218 start-page: 89 year: 2018 end-page: 103 ident: b0125 article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging publication-title: Remote Sens. Environ. – volume: 579 start-page: 1094 year: 2017 end-page: 1110 ident: b0235 article-title: Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas publication-title: Sci. Total Environ. – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: b0365 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. – volume: 71 start-page: 509 year: 2014 end-page: 520 ident: b0085 article-title: Morphological interpretation of reflectance spectrum (MIRS) using libraries looking towards soil classification publication-title: Sci. Agric. – volume: 6 start-page: e4659 year: 2018 ident: b0195 article-title: Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia publication-title: PeerJ – reference: Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling, Springer. Springer, New York. https://doi.org/10.1007/978-1-4614-6849-3. – volume: 6 start-page: 3331 year: 2013 end-page: 3339 ident: b0295 article-title: Mapping of the soil texture using geostatistical method (a case study of the Shahrekord plain, central Iran) publication-title: Arab. J. Geosci. – reference: Quinlan, J.R., 1992. Learning wth continuous classes, in: Proceedings AI’92, 5th Australian Conference on Artificial Intelligence.World Scientific, pp. 343–348. – volume: 13 start-page: 81 year: 2011 end-page: 88 ident: b0010 article-title: Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 10 start-page: 1555 year: 2018 ident: b0115 article-title: Improvement of clay and sand quantification based on a novel approach with a focus on multispectral satellite images publication-title: Remote Sens. – volume: 204 start-page: 18 year: 2018 end-page: 30 ident: b0130 article-title: Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios publication-title: Remote Sens. Environ. – volume: 312 start-page: 95 year: 2018 end-page: 103 ident: b0285 article-title: Internal soil standard method for the Brazilian soil spectral library: performance and proximate analysis publication-title: Geoderma – volume: 41 start-page: 353 year: 1988 end-page: 368 ident: b0105 article-title: Color index values to represent wetness and aeration in some Indiana soils publication-title: Geoderma – volume: 164 start-page: 1 year: 2015 end-page: 15 ident: b0135 article-title: Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery publication-title: Remote Sens. Environ. – volume: 2 start-page: 283 year: 1992 end-page: 306 ident: b0185 article-title: Weathering in humid regions, with emphasis on igneous rocks and their metamorphic equivalents publication-title: Dev. Earth Surf. Process. – volume: 84 start-page: 101972 year: 2020 ident: b0205 article-title: Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 37 start-page: 1136 year: 2013 end-page: 1148 ident: b0015 article-title: Comparison between detailed digital and conventional soil maps of an area with a complex geology publication-title: Rev. Bras. Ciência do Solo – volume: 82 start-page: 186 year: 2018 end-page: 201 ident: b0260 article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution publication-title: Soil Sci. Soc. Am. J. – volume: 160 start-page: 614 year: 2011 end-page: 626 ident: b0190 article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes publication-title: Geoderma – volume: 11 start-page: 1032 year: 2019 ident: b0145 article-title: Exploring the influence of spatial resolution on the digital mapping of soil organic carbon by airborne hyperspectral VNIR imaging publication-title: Remote Sens. – reference: Demattê, J.A.M., Safanelli, J.L., Poppiel, R.R., Rizzo, R., Silvero, N.E.Q., Mendes, W. de S., Bonfatti, B.R., Dotto, A.C., Salazar, D.F.U., Mello, F.A. de O., Paiva, A.F. da S., Souza, A.B., Santos, N.V. dos, Maria Nascimento, C., Mello, D.C. de, Bellinaso, H., Gonzaga Neto, L., Amorim, M.T.A., Resende, M.E.B. de, Vieira, J. da S., Queiroz, L.G. de, Gallo, B.C., Sayão, V.M., Lisboa, C.J. da S. 2020. Bare earth’s surface spectra as a proxy for soil resource monitoring. Sci. Rep. 10, 4461. https://doi.org/10.1038/s41598-020-61408-1. – volume: 100 start-page: 100 year: 2013 ident: 10.1016/j.geoderma.2021.115089_b0035 article-title: Spatial correlation between the composition of the clay fraction and contents of available phosphorus of an Oxisol at hillslope scale publication-title: Catena doi: 10.1016/j.catena.2012.07.016 – volume: 218 start-page: 89 year: 2018 ident: 10.1016/j.geoderma.2021.115089_b0125 article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.015 – ident: 10.1016/j.geoderma.2021.115089_b0155 doi: 10.7717/peerj.71 – volume: 7 start-page: 6059 year: 2015 ident: 10.1016/j.geoderma.2021.115089_b0320 article-title: Soil clay content mapping using a time series of Landsat TM data in semi-arid lands publication-title: Remote Sens. doi: 10.3390/rs70506059 – volume: 223 start-page: 21 year: 2019 ident: 10.1016/j.geoderma.2021.115089_b0350 article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and mediterranean agroecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.006 – volume: 9 start-page: 1245 year: 2017 ident: 10.1016/j.geoderma.2021.115089_b0095 article-title: Barest pixel composite for agricultural areas using Landsat time series publication-title: Remote Sens. doi: 10.3390/rs9121245 – volume: 160 start-page: 614 year: 2011 ident: 10.1016/j.geoderma.2021.115089_b0190 article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes publication-title: Geoderma doi: 10.1016/j.geoderma.2010.11.013 – volume: 204 start-page: 18 year: 2018 ident: 10.1016/j.geoderma.2021.115089_b0130 article-title: Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.047 – year: 1985 ident: 10.1016/j.geoderma.2021.115089_b0335 article-title: Iron in soils and clay minerals publication-title: Soil Sci. – volume: 302 start-page: 39 year: 2017 ident: 10.1016/j.geoderma.2021.115089_b0070 article-title: Soil class and attribute dynamics and their relationship with natural vegetation based on satellite remote sensing publication-title: Geoderma doi: 10.1016/j.geoderma.2017.04.019 – volume: 6 start-page: 3331 year: 2013 ident: 10.1016/j.geoderma.2021.115089_b0295 article-title: Mapping of the soil texture using geostatistical method (a case study of the Shahrekord plain, central Iran) publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0559-9 – volume: 243–244 start-page: 214 year: 2015 ident: 10.1016/j.geoderma.2021.115089_b0305 article-title: Do more detailed environmental covariates deliver more accurate soil maps? publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.017 – volume: 252 start-page: 112117 year: 2021 ident: 10.1016/j.geoderma.2021.115089_b0325 article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112117 – volume: 7 start-page: 12635 year: 2015 ident: 10.1016/j.geoderma.2021.115089_b0370 article-title: Sentinel-2 for mapping iron absorption feature parameters publication-title: Remote Sens. doi: 10.3390/rs71012635 – volume: 13 start-page: 81 year: 2011 ident: 10.1016/j.geoderma.2021.115089_b0010 article-title: Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 51 start-page: 850 year: 2018 ident: 10.1016/j.geoderma.2021.115089_b0300 article-title: Assessing the spatial variability of soil surface colors in northern Jordan using satellite data from Landsat-8 and Sentinel-2 publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1502624 – ident: 10.1016/j.geoderma.2021.115089_b0255 – volume: 133 start-page: 320 year: 2006 ident: 10.1016/j.geoderma.2021.115089_b0360 article-title: Colour space models for soil science publication-title: Geoderma doi: 10.1016/j.geoderma.2005.07.017 – volume: 348 start-page: 189 year: 2019 ident: 10.1016/j.geoderma.2021.115089_b0245 article-title: Pedology and soil class mapping from proximal and remote sensed data publication-title: Geoderma doi: 10.1016/j.geoderma.2019.04.028 – ident: 10.1016/j.geoderma.2021.115089_b0280 doi: 10.1016/j.rse.2017.11.004 – volume: 312 start-page: 95 year: 2018 ident: 10.1016/j.geoderma.2021.115089_b0285 article-title: Internal soil standard method for the Brazilian soil spectral library: performance and proximate analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2017.09.014 – volume: 12 start-page: 1389 year: 2020 ident: 10.1016/j.geoderma.2021.115089_b0345 article-title: Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data publication-title: Remote Sens. doi: 10.3390/rs12091389 – volume: 41 start-page: 353 year: 1988 ident: 10.1016/j.geoderma.2021.115089_b0105 article-title: Color index values to represent wetness and aeration in some Indiana soils publication-title: Geoderma doi: 10.1016/0016-7061(88)90070-5 – start-page: 63 year: 2011 ident: 10.1016/j.geoderma.2021.115089_b0220 article-title: The relevance of scale in soil maps publication-title: Bull. BGS – year: 2012 ident: 10.1016/j.geoderma.2021.115089_b0055 article-title: On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems publication-title: Catena doi: 10.1016/j.catena.2012.01.001 – ident: 10.1016/j.geoderma.2021.115089_b0315 doi: 10.3133/ofr20131057 – volume: 12 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2021.115089_b0120 article-title: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models publication-title: PLoS ONE doi: 10.1371/journal.pone.0170478 – volume: 6 start-page: e4659 year: 2018 ident: 10.1016/j.geoderma.2021.115089_b0195 article-title: Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia publication-title: PeerJ doi: 10.7717/peerj.4659 – volume: 67 start-page: 1564 year: 2003 ident: 10.1016/j.geoderma.2021.115089_b0165 article-title: Influence of spatial structure on accuracy of interpolation methods publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2003.1564 – volume: 22 start-page: 711 year: 2013 ident: 10.1016/j.geoderma.2021.115089_b0005 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Zeitschrift doi: 10.1127/0941-2948/2013/0507 – volume: 37 start-page: 29 year: 1934 ident: 10.1016/j.geoderma.2021.115089_b0365 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – ident: 10.1016/j.geoderma.2021.115089_b0340 – volume: 115 start-page: 4031 year: 2010 ident: 10.1016/j.geoderma.2021.115089_b0355 article-title: Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra publication-title: J. Geophys. Res. doi: 10.1029/2009JF001645 – volume: 40 start-page: 361 year: 2019 ident: 10.1016/j.geoderma.2021.115089_b0050 article-title: Imaging spectroscopy for soil mapping and monitoring publication-title: Surv. Geophys. doi: 10.1007/s10712-019-09524-0 – ident: 10.1016/j.geoderma.2021.115089_b0170 – ident: 10.1016/j.geoderma.2021.115089_b0060 doi: 10.1038/s41598-020-61408-1 – volume: 11 start-page: 1032 year: 2019 ident: 10.1016/j.geoderma.2021.115089_b0145 article-title: Exploring the influence of spatial resolution on the digital mapping of soil organic carbon by airborne hyperspectral VNIR imaging publication-title: Remote Sens. doi: 10.3390/rs11091032 – volume: 12 start-page: 1369 year: 2020 ident: 10.1016/j.geoderma.2021.115089_b0290 article-title: Multispectral models from bare soil composites for mapping topsoil properties over Europe publication-title: Remote Sens. doi: 10.3390/rs12091369 – volume: 28 start-page: 3813 year: 2007 ident: 10.1016/j.geoderma.2021.115089_b0090 article-title: Quantification of tropical soil attributes from ETM +/LANDSAT-7 data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160601121469 – volume: 12 start-page: 1197 year: 2020 ident: 10.1016/j.geoderma.2021.115089_b0240 article-title: Soil color and mineralogy mapping using proximal and remote sensing in Midwest Brazil publication-title: Remote Sens. doi: 10.3390/rs12071197 – ident: 10.1016/j.geoderma.2021.115089_b0065 doi: 10.1016/j.rse.2018.04.047 – volume: 18 start-page: 1 year: 2019 ident: 10.1016/j.geoderma.2021.115089_b0270 article-title: Delineating site-specific management zones and evaluating soil water temporal dynamics in a farmer’s field in Kentucky publication-title: Vadose Zo. J. doi: 10.2136/vzj2018.07.0143 – ident: 10.1016/j.geoderma.2021.115089_b0160 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.geoderma.2021.115089_b0210 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 84 start-page: 101972 year: 2020 ident: 10.1016/j.geoderma.2021.115089_b0205 article-title: Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 8 start-page: 15244 year: 2018 ident: 10.1016/j.geoderma.2021.115089_b0020 article-title: Multi-scale digital soil mapping with deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-018-33516-6 – ident: 10.1016/j.geoderma.2021.115089_b0200 doi: 10.1117/12.2278218 – volume: 32 start-page: 1283 year: 2006 ident: 10.1016/j.geoderma.2021.115089_b0150 article-title: Finding the right pixel size publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.11.008 – volume: 11 start-page: 2121 year: 2019 ident: 10.1016/j.geoderma.2021.115089_b0045 article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects publication-title: Remote Sens. doi: 10.3390/rs11182121 – volume: 37 start-page: 1136 year: 2013 ident: 10.1016/j.geoderma.2021.115089_b0015 article-title: Comparison between detailed digital and conventional soil maps of an area with a complex geology publication-title: Rev. Bras. Ciência do Solo doi: 10.1590/S0100-06832013000500003 – ident: 10.1016/j.geoderma.2021.115089_b0330 – volume: 18 start-page: 37 year: 2017 ident: 10.1016/j.geoderma.2021.115089_b0030 article-title: Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field publication-title: Precis. Agric. doi: 10.1007/s11119-016-9462-9 – start-page: 58 year: 2016 ident: 10.1016/j.geoderma.2021.115089_b0225 article-title: Multispectral satellite image processing – ident: 10.1016/j.geoderma.2021.115089_b0075 doi: 10.1590/18069657rbcs20150335 – volume: 579 start-page: 1094 year: 2017 ident: 10.1016/j.geoderma.2021.115089_b0235 article-title: Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.078 – ident: 10.1016/j.geoderma.2021.115089_b0310 – volume: 10 start-page: 1555 year: 2018 ident: 10.1016/j.geoderma.2021.115089_b0115 article-title: Improvement of clay and sand quantification based on a novel approach with a focus on multispectral satellite images publication-title: Remote Sens. doi: 10.3390/rs10101555 – volume: 88 start-page: 787 year: 2008 ident: 10.1016/j.geoderma.2021.115089_b0375 article-title: Model prediction of soil drainage classes based on digital elevation model parameters and soil attributes from coarse resolution soil maps publication-title: Can. J. Soil. Sci. doi: 10.4141/CJSS08012 – ident: 10.1016/j.geoderma.2021.115089_b0230 – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.geoderma.2021.115089_b0140 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 2 start-page: 283 year: 1992 ident: 10.1016/j.geoderma.2021.115089_b0185 article-title: Weathering in humid regions, with emphasis on igneous rocks and their metamorphic equivalents publication-title: Dev. Earth Surf. Process. doi: 10.1016/B978-0-444-89198-3.50017-9 – volume: 46 start-page: 331 year: 2016 ident: 10.1016/j.geoderma.2021.115089_b0100 article-title: Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil publication-title: Brazilian J. Geol. doi: 10.1590/2317-4889201620160023 – ident: 10.1016/j.geoderma.2021.115089_b0215 doi: 10.3920/978-90-8686-888-9_67 – volume: 71 start-page: 509 year: 2014 ident: 10.1016/j.geoderma.2021.115089_b0085 article-title: Morphological interpretation of reflectance spectrum (MIRS) using libraries looking towards soil classification publication-title: Sci. Agric. doi: 10.1590/0103-9016-2013-0365 – volume: 82 start-page: 101905 year: 2019 ident: 10.1016/j.geoderma.2021.115089_b0180 article-title: Satellite data integration for soil clay content modelling at a national scale publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 2947 year: 2019 ident: 10.1016/j.geoderma.2021.115089_b0380 article-title: Soil organic carbon mapping using multispectral remote sensing data: prediction ability of data with different spatial and spectral sesolutions publication-title: Remote Sens. doi: 10.3390/rs11242947 – volume: 193 start-page: 104609 year: 2020 ident: 10.1016/j.geoderma.2021.115089_b0265 article-title: Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy publication-title: Catena doi: 10.1016/j.catena.2020.104609 – volume: 19 year: 2020 ident: 10.1016/j.geoderma.2021.115089_b0025 article-title: Assessing the effect of spatial resolution on the delineation of management zones for smallholder farming in southern Brazil publication-title: Remote Sens. Appl. Soc. Environ. – volume: 1–14 year: 2018 ident: 10.1016/j.geoderma.2021.115089_b0110 article-title: Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: a review publication-title: J. Spectrosc. – volume: 164 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2021.115089_b0135 article-title: Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.019 – ident: 10.1016/j.geoderma.2021.115089_b0250 – volume: 82 start-page: 186 year: 2018 ident: 10.1016/j.geoderma.2021.115089_b0260 article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2017.04.0122 – volume: 7 start-page: 331 year: 2012 ident: 10.1016/j.geoderma.2021.115089_b0040 article-title: Potential of hyperspectral remote sensing for field scale soil mapping and precision agriculture applications publication-title: Ital. J. Agron. – ident: 10.1016/j.geoderma.2021.115089_b0175 doi: 10.1007/978-1-4614-6849-3 – volume: 10 start-page: 5297 year: 2019 ident: 10.1016/j.geoderma.2021.115089_b0275 article-title: Exposed soil and mineral map of the Australian continent revealing the land at its barest publication-title: Nat. Commun. doi: 10.1038/s41467-019-13276-1 |
SSID | ssj0017020 |
Score | 2.4943917 |
Snippet | •Multi-temporal SYSI S2-MSI image provided the best model performances.•PlanetScope image did not provide any improvements in model performances.•Satellite... Soil maps at appropriate scales can aid decision-making in agriculture and the environment. In this sense, remote sensing products have shown their power to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115089 |
SubjectTerms | algorithms Brazil clay Cubist decision making Landsat 8-OLI Multi-temporal images organic matter PlanetScope sand satellites Sentinel 2-MSI Soil classification soil color soil heterogeneity Soil management Soil mapping spatial data topsoil |
Title | Soil property maps with satellite images at multiple scales and its impact on management and classification |
URI | https://dx.doi.org/10.1016/j.geoderma.2021.115089 https://www.proquest.com/docview/2552001157 |
Volume | 397 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqIzEmtZOnNdYVVQFRBeo1M2yEweltEnVpAMLvx2fk1SAkDowxomj6M45f7a_-w6hO1u6TMnIthIVMYt5LLAkJcSKBPEkTRJbKsh3fp544yl7nLmzFho2uTBAq6xjfxXTTbSuW_q1NfurNIUcX-r5xChggaQIJJoz5oN-fu9zS_OgPqmlGalnwdPfsoTn2kdQcMzoD9m0B-AIyr3_PUH9CtVm_hkdocMaOOJB9W3HqKWyE3QweFvX4hnqFL2_5OkCr2B7fV1-4KVYFRj2WXEhjO5mqXC61PGjwKLEDZMQF9pL0JTFOC0LXKVN4jzDyy0zxtyMAGcDscj48gxNR_evw7FVF1OwhOMFJWiGEicObQ2pbCWIDJ3QFTGDc5fQTrxEwl0Rg2AX1ZAGgJok0lGM-k6o4sA5R-0sz9QFwsT3oySOpA5NenEn3YDqdXSi_FiIkCQi6iC3sSCPaqVxKHix4A2lbM4by3OwPK8s30H9bb9VpbWxs0fYOIj_GDVcTwg7-942HuX6l4JzEpGpfFNwvcqyDVT2L__x_iu0D1cVH-0atcv1Rt1oAFPKrhmhXbQ3eHgaT74A7cDxnQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKOwAD4inK00isoc47GauKqqWPhVbqZtmJg1LaJGrSgX-PL3EqQEgMrLYuiu7O58_23XcIPRrctgQPDC0SgaVZjuVpXCdECxhxuB5FBhdQ7zyZOoO59bKwFw3Uq2thIK1Sxf4qppfRWo10lDY7WRxDja_uuKRkwAJKEXsPtYCdSjp7qzscDaa7xwSXKHZG3dFA4Euh8FKaCXqOlRREhv4E-Ag6vv--R_2I1uUW1D9GRwo74m71eyeoIZJTdNh92yj-DHGG3l_TeIUzuGHfFB94zbIcw1UrzllJvVkIHK9lCMkxK3CdTIhzaSgYSkIcFzmuKidxmuD1LjmmnAwAakNuUWnOczTvP896A031U9CY6XgF0IYSM_QNiaoMwQj3Td9moQVPL74RORGHWRYCZ5cuUQ1gNU64KSzdNX0ReuYFaiZpIi4RJq4bRGHAZXSS5ztue7o8SkfCDRnzScSCNrJrDdJAkY1Dz4sVrbPKlrTWPAXN00rzbdTZyWUV3cafEn5tIPrNcajcE_6UfagtSuWqgqcSloh0m1N50DJKtOxe_eP792h_MJuM6Xg4HV2jA5ip0tNuULPYbMWtxDMFv1P--gk0f_RO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+property+maps+with+satellite+images+at+multiple+scales+and+its+impact+on+management+and+classification&rft.jtitle=Geoderma&rft.au=Silvero%2C+N%C3%A9lida+E.Q.&rft.au=Dematt%C3%AA%2C+Jos%C3%A9+A.M.&rft.au=de+Souza+Vieira%2C+Julia&rft.au=Mello%2C+Fellipe+Alcntara+de+Oliveira&rft.date=2021-09-01&rft.issn=0016-7061&rft.volume=397+p.115089-&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115089&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |