Linking soil water retention capacity to pore structure characteristics based on X-ray computed tomography: Chinese Mollisol under freeze-thaw effect

[Display omitted] •Freeze–thaw effects significantly changed the pore structure of Chinese Mollisol.•Changes in pore structure caused by freeze–thaw affect water retention capacity.•Field capacity and available water content decreased under freeze–thaw cycles.•Relationships between pore structure an...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 401; p. 115170
Main Authors Liu, Bo, Fan, Haoming, Han, Wei, Zhu, Longxiang, Zhao, Xue, Zhang, Yuxin, Ma, Renming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Freeze–thaw effects significantly changed the pore structure of Chinese Mollisol.•Changes in pore structure caused by freeze–thaw affect water retention capacity.•Field capacity and available water content decreased under freeze–thaw cycles.•Relationships between pore structure and water retention parameters were analysed. Studies have shown that the effects of freeze–thaw action on soil structure have become more frequent and intense with the global warming, in turn, affects the dynamic processes of snowmelt water and the development of soil erosion. To examine the effects of pore structure characteristics on soil water retention capacity under freeze–thaw cycles, soil samples of Chinese Mollisol were subject to the six freeze–thaw treatments, including a no freeze–thaw cycle (CK), one (FT.1), five (FT.5), ten (FT.10), fifteen (FT.15), and twenty (FT.20) freeze–thaw cycles. Then, the samples were scanned using industrial CT to quantitatively obtain soil structure characteristics, and a pressure plate apparatus was applied to obtain soil water retention capacity. The results show that the freeze–thaw cycles significantly changed the soil pore structure and soil water retention capacity. Freeze–thaw cycles increased the total imaged porosity and pore connectivity, leading to a complex pore structure and an irregular of pore shape. Relative to the CK treatment, soils under the FT.20 treatment exhibited a higher saturated water content (SWC) by 100.0%, but a lower field capacity (FC) by 14.0% and available water content (AWC) by 31.3%. No differences in the permanent wilting point (PWP) were found between the different treatments. The soil pore structure became more porous and complex with an increasing number of freeze–thaw cycles, resulting in the changes in soil water retention capacity. The porosities of 100–500 μm (Pd100–500) were a better predictor of SWC, with an increasing exponential function. The porosities of elongated pores (PE) predicted FC and AWC with a decreasing exponential function. These findings aim to improve the understanding of soil pore structure as a result of the effects of freeze–thaw on the generation mechanism of snowmelt runoff and soil erosion.
AbstractList [Display omitted] •Freeze–thaw effects significantly changed the pore structure of Chinese Mollisol.•Changes in pore structure caused by freeze–thaw affect water retention capacity.•Field capacity and available water content decreased under freeze–thaw cycles.•Relationships between pore structure and water retention parameters were analysed. Studies have shown that the effects of freeze–thaw action on soil structure have become more frequent and intense with the global warming, in turn, affects the dynamic processes of snowmelt water and the development of soil erosion. To examine the effects of pore structure characteristics on soil water retention capacity under freeze–thaw cycles, soil samples of Chinese Mollisol were subject to the six freeze–thaw treatments, including a no freeze–thaw cycle (CK), one (FT.1), five (FT.5), ten (FT.10), fifteen (FT.15), and twenty (FT.20) freeze–thaw cycles. Then, the samples were scanned using industrial CT to quantitatively obtain soil structure characteristics, and a pressure plate apparatus was applied to obtain soil water retention capacity. The results show that the freeze–thaw cycles significantly changed the soil pore structure and soil water retention capacity. Freeze–thaw cycles increased the total imaged porosity and pore connectivity, leading to a complex pore structure and an irregular of pore shape. Relative to the CK treatment, soils under the FT.20 treatment exhibited a higher saturated water content (SWC) by 100.0%, but a lower field capacity (FC) by 14.0% and available water content (AWC) by 31.3%. No differences in the permanent wilting point (PWP) were found between the different treatments. The soil pore structure became more porous and complex with an increasing number of freeze–thaw cycles, resulting in the changes in soil water retention capacity. The porosities of 100–500 μm (Pd100–500) were a better predictor of SWC, with an increasing exponential function. The porosities of elongated pores (PE) predicted FC and AWC with a decreasing exponential function. These findings aim to improve the understanding of soil pore structure as a result of the effects of freeze–thaw on the generation mechanism of snowmelt runoff and soil erosion.
Studies have shown that the effects of freeze–thaw action on soil structure have become more frequent and intense with the global warming, in turn, affects the dynamic processes of snowmelt water and the development of soil erosion. To examine the effects of pore structure characteristics on soil water retention capacity under freeze–thaw cycles, soil samples of Chinese Mollisol were subject to the six freeze–thaw treatments, including a no freeze–thaw cycle (CK), one (FT.1), five (FT.5), ten (FT.10), fifteen (FT.15), and twenty (FT.20) freeze–thaw cycles. Then, the samples were scanned using industrial CT to quantitatively obtain soil structure characteristics, and a pressure plate apparatus was applied to obtain soil water retention capacity. The results show that the freeze–thaw cycles significantly changed the soil pore structure and soil water retention capacity. Freeze–thaw cycles increased the total imaged porosity and pore connectivity, leading to a complex pore structure and an irregular of pore shape. Relative to the CK treatment, soils under the FT.20 treatment exhibited a higher saturated water content (SWC) by 100.0%, but a lower field capacity (FC) by 14.0% and available water content (AWC) by 31.3%. No differences in the permanent wilting point (PWP) were found between the different treatments. The soil pore structure became more porous and complex with an increasing number of freeze–thaw cycles, resulting in the changes in soil water retention capacity. The porosities of 100–500 μm (Pd₁₀₀–₅₀₀) were a better predictor of SWC, with an increasing exponential function. The porosities of elongated pores (PE) predicted FC and AWC with a decreasing exponential function. These findings aim to improve the understanding of soil pore structure as a result of the effects of freeze–thaw on the generation mechanism of snowmelt runoff and soil erosion.
ArticleNumber 115170
Author Han, Wei
Liu, Bo
Zhu, Longxiang
Zhao, Xue
Ma, Renming
Zhang, Yuxin
Fan, Haoming
Author_xml – sequence: 1
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  email: 2019200169@stu.syau.edu.cn
  organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
– sequence: 2
  givenname: Haoming
  surname: Fan
  fullname: Fan, Haoming
  email: fanhaoming@syau.edu.cn
  organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
– sequence: 3
  givenname: Wei
  surname: Han
  fullname: Han, Wei
  email: hanwei@syau.edu.cn
  organization: College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
– sequence: 4
  givenname: Longxiang
  surname: Zhu
  fullname: Zhu, Longxiang
  email: zhulongxiang@stu.syau.edu.cn
  organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
– sequence: 5
  givenname: Xue
  surname: Zhao
  fullname: Zhao, Xue
  email: 2020220055@stu.syau.edu.cn
  organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
– sequence: 6
  givenname: Yuxin
  surname: Zhang
  fullname: Zhang, Yuxin
  email: 2020220069@stu.syau.edu.cn
  organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
– sequence: 7
  givenname: Renming
  orcidid: 0000-0003-4366-6307
  surname: Ma
  fullname: Ma, Renming
  email: marenming@syau.edu.cn
  organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
BookMark eNqFkc1u1DAUhS3USkxbXgF5ySaD7SR2gliARoUiDWJTJHbWjXMz4yGxg-20Gt6j74tHAxs2Xd0fne_q6pwrcuG8Q0Jec7bmjMu3h_UOfY9hgrVggq85r7liL8iKN0oUUtTtBVmxrCwUk_wluYrxkEfFBFuRp611P63b0ejtSB8hYaABE7pkvaMGZjA2HWnydPYBaUxhMWnJndlDAJPlNiZrIu0gYk8z86MIcKTGT_OS8ib5ye8CzPvjO7rZW4cR6Vc_jjb6kS4u_02HgPgbi7SHR4rDgCbdkMsBxoiv_tZr8v3T7f3mrth--_xl83FbQCmbVEhVGVOB6TsjuxJRDVyBalCWQwNdXfbYNq0YJK-EaSXDTjal6FjFG-SCsaq8Jm_Od-fgfy0Yk55sNDiO4NAvUYu65q3gitdZ-v4sNcHHGHDQ2Rg4uZQC2FFzpk9p6IP-l4Y-paHPaWRc_ofPwU4Qjs-DH84gZh8eLAYdjUVnsLchO6V7b5878QcyXK5W
CitedBy_id crossref_primary_10_1016_j_still_2024_106041
crossref_primary_10_1016_j_catena_2021_105867
crossref_primary_10_1016_j_envpol_2024_125143
crossref_primary_10_1016_j_cscm_2025_e04279
crossref_primary_10_1016_j_jhydrol_2022_129052
crossref_primary_10_1016_j_still_2024_106103
crossref_primary_10_7717_peerj_18442
crossref_primary_10_3390_agronomy14081608
crossref_primary_10_1038_s41598_025_93668_0
crossref_primary_10_1016_j_still_2023_105950
crossref_primary_10_1016_j_still_2024_106264
crossref_primary_10_1016_j_geoderma_2024_117020
crossref_primary_10_1016_j_still_2023_105797
crossref_primary_10_1016_j_enggeo_2024_107785
crossref_primary_10_1016_j_jhazmat_2022_130084
crossref_primary_10_3390_f14010132
crossref_primary_10_1016_j_still_2022_105559
crossref_primary_10_28948_ngumuh_1131247
crossref_primary_10_1016_j_catena_2023_107250
crossref_primary_10_1016_j_soilbio_2024_109642
crossref_primary_10_1016_j_catena_2025_108881
crossref_primary_10_1016_j_scitotenv_2024_174125
crossref_primary_10_1007_s11629_021_7143_2
crossref_primary_10_1016_j_geoderma_2021_115674
crossref_primary_10_1016_j_scitotenv_2022_155361
crossref_primary_10_1142_S0218348X2150208X
crossref_primary_10_1144_geochem2021_029
crossref_primary_10_1016_j_still_2022_105540
crossref_primary_10_1111_ejss_70030
crossref_primary_10_1134_S1064229324602853
crossref_primary_10_1016_j_coldregions_2024_104276
crossref_primary_10_1029_2024JG008009
crossref_primary_10_1002_ldr_4853
crossref_primary_10_1016_j_catena_2022_106614
crossref_primary_10_1061_JCRGEI_CRENG_878
Cites_doi 10.2136/sssaj1996.03615995006000020011x
10.2136/vzj2014.06.0065
10.1016/j.geoderma.2012.01.009
10.1016/j.still.2014.12.016
10.1016/j.scitotenv.2019.136191
10.1175/JHM538.1
10.1016/S0022-1694(02)00287-1
10.1002/hyp.232
10.4141/cjss2012-060
10.2136/sssaj2011.0096
10.1016/j.still.2008.04.007
10.2136/sssaj1983.03615995004700040032x
10.1016/0167-1987(96)81397-3
10.1002/(SICI)1099-1085(199610)10:10<1305::AID-HYP462>3.0.CO;2-F
10.1016/0016-7061(93)90123-3
10.1002/2016GL069690
10.1111/j.1365-2818.2006.01706.x
10.1016/j.catena.2017.04.026
10.2136/sssaj1968.03615995003200020009x
10.1016/j.jhydrol.2006.05.003
10.1016/j.still.2014.10.017
10.1029/2009WR008087
10.1086/623964
10.1016/j.catena.2016.06.019
10.1016/j.agee.2018.10.007
10.1109/34.777370
10.1002/ppp.1737
10.1016/j.agrformet.2018.01.010
10.1016/j.bone.2010.08.023
10.1016/j.still.2012.04.006
10.2136/sssaj2007.0130
10.4141/cjss2012-044
10.2136/sssaj2013.07.0280
10.2134/agronj2016.10.0590
10.1139/e84-073
10.1016/j.geoderma.2017.10.020
10.1016/j.jhydrol.2018.10.016
10.1016/j.still.2004.07.002
10.1016/j.geoderma.2018.05.007
10.1007/s11629-009-1034-2
10.1029/2011JD016429
10.1046/j.1365-2389.2003.00546.x
10.2136/sssaj2016.08.0271
10.1016/j.soilbio.2005.05.014
10.1016/j.geoderma.2019.07.027
10.1016/j.scitotenv.2019.02.284
10.1017/S1431927607074430
10.1111/ejss.12330
10.1134/S1064229318100150
10.1016/j.agwat.2014.12.008
10.1016/j.agrformet.2018.11.011
10.1016/0013-7952(79)90022-X
10.1016/j.jhydrol.2015.02.027
10.1016/S1002-0160(15)60033-9
10.1016/j.geoderma.2011.01.011
10.1016/j.geoderma.2013.04.012
10.1016/j.geoderma.2013.04.004
10.1016/j.still.2016.08.007
10.1007/s00484-004-0248-9
10.1016/S1002-0160(14)60015-1
10.1002/(SICI)1096-9896(199601)178:1<100::AID-PATH429>3.0.CO;2-K
10.1016/j.geoderma.2017.11.009
10.1016/j.coldregions.2019.05.005
10.1126/science.1097394
10.4028/www.scientific.net/AMM.835.525
10.1111/j.1365-2389.2007.00915.x
10.1002/hyp.10939
10.1029/2009WR008070
10.1016/j.jaridenv.2005.04.005
10.2136/sssaj1980.03615995004400050002x
10.1520/GTJ20180204
10.1016/j.geoderma.2015.10.008
10.1016/j.soilbio.2006.11.017
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2021.115170
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2021_115170
S0016706121002500
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-674cc4acdbc6b3ee7f17a78e63f8ab53de9892f6142c960eb6832b0418e120043
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 22:35:12 EDT 2025
Tue Jul 01 04:04:55 EDT 2025
Thu Apr 24 22:50:32 EDT 2025
Fri Feb 23 02:44:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Freeze–thaw effect
X–ray computed tomography
Pore characteristic
Soil water retention capacity
Chinese Mollisol
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-674cc4acdbc6b3ee7f17a78e63f8ab53de9892f6142c960eb6832b0418e120043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4366-6307
PQID 2551921715
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551921715
crossref_citationtrail_10_1016_j_geoderma_2021_115170
crossref_primary_10_1016_j_geoderma_2021_115170
elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115170
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lu (b0225) 2016; 142(10), 04016051
Toriwaki, Yonekura (b0355) 2002; 17
Fouli, Cade-Menun, Cutforth (b0100) 2013; 93
Watanabe, Kugisaki (b0385) 2017; 31
Bolte, Cordelières (b0030) 2006; 224
Feng, Shang, Liu (b0090) 2009; 40
Fu, Zhao, Li, Li, Hou, Liu, Ji, Gao, Yu (b0110) 2019; 694(1). 133732
Stähli, Nyberg, Mellander, Jansson, Bishop (b0330) 2001; 15
Chen, Li, Hao, Wei (b0065) 2016; 835
Li, Fan (b0200) 2014; 24
Perret, Prasher, Kacimov (b0290) 2003; 54
Peth, Horn, Beckmann, Donath, Fischer, Smucker (b0295) 2008; 72
Wadell (b0370) 1932; 40
Zhao, Shao, Jia (b0440) 2015; 46
Zhou, Peng, Peth, Xiao (b0465) 2012; 124
Ban, Lei, Liu, Chen (b0010) 2017; 148
Zhou, Fang, Hu, Mooney, Dong, Peng (b0455) 2017; 109
Fazzalari, Parkinson (b0085) 1996; 178
Henry (b0145) 2007; 39
Huang, Gascuel-Odoux, Cros-Cayot (b0150) 2001; 46
Zhao, Xu, Liu, Yao, Tuo, Zhang, Xiao, Peng (b0445) 2017; 165
Zhang, Bing, Yang (b0430) 2015; 34
Ratliff, Ritchie, Cassel (b0315) 1983; 47
Ferreira, T., Rasband, W.S., 2012. ImageJ User Guide–IJ 1.46. imagej.nih.gov/ij/docs/guide/ (accessed 2 October 2012).
Jarvis (b0180) 2007; 58
Mady, Shein (b0250) 2020; 21
Iassonov, Gebrenegus, Tuller (b0160) 2009; 45
Wu, Ouyang, Hao, Lin, Liu, Wang (b0400) 2018; 328
Xu, Li, Lan, Wang (b0405) 2019; 164
Oh, Lindquies (b0270) 1999; 21
Barnhart, Molotch, Livneh, Harpold, Knowles, Schneider (b0015) 2016; 43
Dal Ferro, Charrier, Morari (b0070) 2013; 204–205
Yang, Wang (b0410) 2019; 265
Peng, Horn, Hallett (b0280) 2015; 146
Perfect, Kay (b0285) 1995; 36
Sun, Fang, Fei, She (b0340) 2019; 50
Gan, Jia, Shao, Guo, Li (b0115) 2019; 272
Li, Shao, Jia (b0205) 2016; 67
Jiang, Fan, Hou, Liu, Guo, Ma (b0185) 2019; 39
Müller, Katuwal, Young, McLeod, Moldrup, deJonge, Clothier (b0255) 2018; 313
Niu, Yang (b0260) 2006; 7
Granger, Gray, Dyck (b0125) 1984; 21
Hayashi, Ken'Ichirou, Mizuyama (b0140) 2006; 331
Ma, Jiang, Liu, Fan (b0245) 2021; 207
Zhou, Li, Lu (b0460) 2009; 6
Whisler, Klute, Millington (b0390) 1968; 32
Capowiez, Bastardie, Costagliola (b0045) 2006; 38
Li, Shao (b0210) 2006; 64
Van Genuchten (b0365) 1980; 44
Dougherty, Kunzelmann (b0080) 2007; 13
Jabro, Iversen, Evans, Allen, Stevens (b0175) 2014; 78
Ma, Cai, Li, Wang, Xiao, Peng, Yang (b0235) 2015; 149
Zhang, Zhao, Zhang, Zheng (b0420) 2018; 51
Liu, Ma, Fan (b0215) 2021; 206
Wolfe, Schwartz, Lakso, Otsuki, Pool, Shaulis (b0395) 2005; 49
Iwata, Hayashi, Suzuki, Hirota, Hasegawa (b0165) 2010; 46
Bagheri, Nezhad, Rezania (b0025) 2020; 43
Doube, KłOsowski, Arganda-Carreras, Cordelières, Dougherty, Jackson, Schmid, Hutchinson, Shefelbine (b0075) 2010; 47
Zhao, Hu, Li (b0450) 2020; 193
Hayashi, Kamp, Schmidt (b0135) 2003; 270
Sakaki, Smits (b0320) 2015; 14
Capowiez, Sammartino, Michel (b0050) 2011; 162
Stähli, Jansson, Lundin (b0325) 1996; 10
Zhang, Wang, Xiao, Qu, Wang, Li, Aurangzeib, Zhang, Liu (b0425) 2020; 707
Pires, Cássaro, Reichardt, Bacchi (b0300) 2008; 100
Huang, Laften (b0155) 1996; 60
Qi, Ma (b0305) 2010; 31
Bhreasail, Lee, Osullivan, Fenton, Hamilton, Rockett, Connolley (b0020) 2012; 23
Chamberlain, Gow (b0055) 1979; 13
Zhang, Ma, Feng, Xiao, Hou (b0435) 2016; 26
Turunen, Warsta, Paasonen-Kivekäs, Nurminen, Alakukku, Myllys, Koivusalo (b0360) 2015; 150
Rabot, Wiesmeier, Schlüter, Vogel (b0310) 2018; 314
Pagliai, Vignozzi, Pellegrini (b0275) 2004; 79
Garbout, Munkholm, Hansen (b0120) 2013; 204–205
Guo, Liu, Anenkhonov, Shangguan, Sandanov, Korolyuk, Hu, Wu (b0130) 2018; 252
Ma, Cai, Wang, Wang, Li, Xiao, Peng (b0240) 2015; 524
Oades (b0265) 1993; 56
Starkloff, Larsbo, Stolte, Hessel, Ritsema (b0335) 2017; 156
Wang, Li, Li, Hou, Xiao, Ren, Xu, Yu, Su (b0375) 2019; 666
Chen, Chen, Jia, Zhao, Zhang (b0060) 2020; 726
Fu, Yan, Li, Li, Hou, Liu, Ji (b0105) 2019; 353
Jiang, Liu, Fan, Ma (b0190) 2019; 56
Wang, Li, Shi, Li, Qin (b0380) 2020; 370
Ala, Liu, Wang, Niu (b0005) 2016; 264
Iwata, Yanai, Yazaki, Hirota (b0170) 2018; 567
Liu, Yang, Zhang, Sun (b0220) 2017; 81
Burt (b0040) 2004
Sun, She, Fei, Wang, Lei (b0345) 2021; 205
Bosson, Sabel, Gustafsson, Sassner, Destouni (b0035) 2012; 117
Kravchenko, Wang, Smucker, Rivers (b0195) 2011; 75
Li, Shi, Flerchinger, Akae, Wang (b0230) 2012; 173–174
Taina, Heck, Deen, Ma (b0350) 2013; 93
Young, Crawford (b0415) 2004; 304
Li (10.1016/j.geoderma.2021.115170_b0210) 2006; 64
Ban (10.1016/j.geoderma.2021.115170_b0010) 2017; 148
Huang (10.1016/j.geoderma.2021.115170_b0150) 2001; 46
Wolfe (10.1016/j.geoderma.2021.115170_b0395) 2005; 49
Jiang (10.1016/j.geoderma.2021.115170_b0185) 2019; 39
Iassonov (10.1016/j.geoderma.2021.115170_b0160) 2009; 45
Stähli (10.1016/j.geoderma.2021.115170_b0325) 1996; 10
Fu (10.1016/j.geoderma.2021.115170_b0110) 2019; 694(1). 133732
Li (10.1016/j.geoderma.2021.115170_b0230) 2012; 173–174
Fu (10.1016/j.geoderma.2021.115170_b0105) 2019; 353
Peng (10.1016/j.geoderma.2021.115170_b0280) 2015; 146
Garbout (10.1016/j.geoderma.2021.115170_b0120) 2013; 204–205
Lu (10.1016/j.geoderma.2021.115170_b0225) 2016; 142(10), 04016051
Toriwaki (10.1016/j.geoderma.2021.115170_b0355) 2002; 17
Whisler (10.1016/j.geoderma.2021.115170_b0390) 1968; 32
Li (10.1016/j.geoderma.2021.115170_b0205) 2016; 67
Yang (10.1016/j.geoderma.2021.115170_b0410) 2019; 265
Zhang (10.1016/j.geoderma.2021.115170_b0435) 2016; 26
Bolte (10.1016/j.geoderma.2021.115170_b0030) 2006; 224
Granger (10.1016/j.geoderma.2021.115170_b0125) 1984; 21
Sakaki (10.1016/j.geoderma.2021.115170_b0320) 2015; 14
Barnhart (10.1016/j.geoderma.2021.115170_b0015) 2016; 43
Taina (10.1016/j.geoderma.2021.115170_b0350) 2013; 93
Fazzalari (10.1016/j.geoderma.2021.115170_b0085) 1996; 178
Fouli (10.1016/j.geoderma.2021.115170_b0100) 2013; 93
Wadell (10.1016/j.geoderma.2021.115170_b0370) 1932; 40
Dougherty (10.1016/j.geoderma.2021.115170_b0080) 2007; 13
Watanabe (10.1016/j.geoderma.2021.115170_b0385) 2017; 31
Pagliai (10.1016/j.geoderma.2021.115170_b0275) 2004; 79
Peth (10.1016/j.geoderma.2021.115170_b0295) 2008; 72
Liu (10.1016/j.geoderma.2021.115170_b0220) 2017; 81
Ma (10.1016/j.geoderma.2021.115170_b0240) 2015; 524
Wu (10.1016/j.geoderma.2021.115170_b0400) 2018; 328
Zhang (10.1016/j.geoderma.2021.115170_b0430) 2015; 34
Doube (10.1016/j.geoderma.2021.115170_b0075) 2010; 47
Hayashi (10.1016/j.geoderma.2021.115170_b0140) 2006; 331
Li (10.1016/j.geoderma.2021.115170_b0200) 2014; 24
Gan (10.1016/j.geoderma.2021.115170_b0115) 2019; 272
Capowiez (10.1016/j.geoderma.2021.115170_b0045) 2006; 38
Wang (10.1016/j.geoderma.2021.115170_b0380) 2020; 370
10.1016/j.geoderma.2021.115170_b0095
Niu (10.1016/j.geoderma.2021.115170_b0260) 2006; 7
Oades (10.1016/j.geoderma.2021.115170_b0265) 1993; 56
Ratliff (10.1016/j.geoderma.2021.115170_b0315) 1983; 47
Chamberlain (10.1016/j.geoderma.2021.115170_b0055) 1979; 13
Rabot (10.1016/j.geoderma.2021.115170_b0310) 2018; 314
Mady (10.1016/j.geoderma.2021.115170_b0250) 2020; 21
Bhreasail (10.1016/j.geoderma.2021.115170_b0020) 2012; 23
Xu (10.1016/j.geoderma.2021.115170_b0405) 2019; 164
Zhang (10.1016/j.geoderma.2021.115170_b0425) 2020; 707
Hayashi (10.1016/j.geoderma.2021.115170_b0135) 2003; 270
Sun (10.1016/j.geoderma.2021.115170_b0340) 2019; 50
Stähli (10.1016/j.geoderma.2021.115170_b0330) 2001; 15
Van Genuchten (10.1016/j.geoderma.2021.115170_b0365) 1980; 44
Oh (10.1016/j.geoderma.2021.115170_b0270) 1999; 21
Qi (10.1016/j.geoderma.2021.115170_b0305) 2010; 31
Chen (10.1016/j.geoderma.2021.115170_b0065) 2016; 835
Ma (10.1016/j.geoderma.2021.115170_b0235) 2015; 149
Zhao (10.1016/j.geoderma.2021.115170_b0445) 2017; 165
Starkloff (10.1016/j.geoderma.2021.115170_b0335) 2017; 156
Bosson (10.1016/j.geoderma.2021.115170_b0035) 2012; 117
Perret (10.1016/j.geoderma.2021.115170_b0290) 2003; 54
Henry (10.1016/j.geoderma.2021.115170_b0145) 2007; 39
Ala (10.1016/j.geoderma.2021.115170_b0005) 2016; 264
Iwata (10.1016/j.geoderma.2021.115170_b0165) 2010; 46
Zhang (10.1016/j.geoderma.2021.115170_b0420) 2018; 51
Huang (10.1016/j.geoderma.2021.115170_b0155) 1996; 60
Kravchenko (10.1016/j.geoderma.2021.115170_b0195) 2011; 75
Bagheri (10.1016/j.geoderma.2021.115170_b0025) 2020; 43
Zhao (10.1016/j.geoderma.2021.115170_b0440) 2015; 46
Feng (10.1016/j.geoderma.2021.115170_b0090) 2009; 40
Guo (10.1016/j.geoderma.2021.115170_b0130) 2018; 252
Dal Ferro (10.1016/j.geoderma.2021.115170_b0070) 2013; 204–205
Zhao (10.1016/j.geoderma.2021.115170_b0450) 2020; 193
Zhou (10.1016/j.geoderma.2021.115170_b0455) 2017; 109
Chen (10.1016/j.geoderma.2021.115170_b0060) 2020; 726
Turunen (10.1016/j.geoderma.2021.115170_b0360) 2015; 150
Wang (10.1016/j.geoderma.2021.115170_b0375) 2019; 666
Iwata (10.1016/j.geoderma.2021.115170_b0170) 2018; 567
Jabro (10.1016/j.geoderma.2021.115170_b0175) 2014; 78
Sun (10.1016/j.geoderma.2021.115170_b0345) 2021; 205
Zhou (10.1016/j.geoderma.2021.115170_b0465) 2012; 124
Liu (10.1016/j.geoderma.2021.115170_b0215) 2021; 206
Zhou (10.1016/j.geoderma.2021.115170_b0460) 2009; 6
Müller (10.1016/j.geoderma.2021.115170_b0255) 2018; 313
Jarvis (10.1016/j.geoderma.2021.115170_b0180) 2007; 58
Capowiez (10.1016/j.geoderma.2021.115170_b0050) 2011; 162
Burt (10.1016/j.geoderma.2021.115170_b0040) 2004
Ma (10.1016/j.geoderma.2021.115170_b0245) 2021; 207
Young (10.1016/j.geoderma.2021.115170_b0415) 2004; 304
Pires (10.1016/j.geoderma.2021.115170_b0300) 2008; 100
Jiang (10.1016/j.geoderma.2021.115170_b0190) 2019; 56
Perfect (10.1016/j.geoderma.2021.115170_b0285) 1995; 36
References_xml – volume: 38
  start-page: 285
  year: 2006
  end-page: 293
  ident: b0045
  article-title: Sublethal effects of imidacloprid on the burrowing behaviour of two earthworm species: Modifications of the 3D burrow systems in artificial cores and consequences on gas diffusion in soil
  publication-title: Soil Biol. Biochem.
– volume: 304
  start-page: 1634
  year: 2004
  end-page: 1637
  ident: b0415
  article-title: Interactions and self–organization in the soil–microbe complex
  publication-title: Science
– volume: 93
  start-page: 485
  year: 2013
  end-page: 496
  ident: b0100
  article-title: Freeze–thaw cycles and soil water content effects on infiltration rate of three Saskatchewan soils
  publication-title: Can. J. Soil Sci.
– volume: 524
  start-page: 44
  year: 2015
  end-page: 52
  ident: b0240
  article-title: Partial least squares regression for linking aggregate pore characteristics to the detachment of undisturbed soil by simulating concentrated flow in Ultisols (subtropical china)
  publication-title: J. Hydrol.
– volume: 207
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0245
  article-title: Effects of pore structure characterized by synchrotron–based micro–computed tomography on aggregate stability of black soil under freeze–thaw cycles
  publication-title: Soil Till. Res.
– volume: 313
  start-page: 82
  year: 2018
  end-page: 91
  ident: b0255
  article-title: Characterising and linking X–ray CT derived macroporosity parameters to infiltration in soils with contrasting structures
  publication-title: Geoderma
– volume: 45
  start-page: 706
  year: 2009
  end-page: 715
  ident: b0160
  article-title: Segmentation of X–ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures
  publication-title: Water Resour. Res.
– volume: 47
  start-page: 770
  year: 1983
  ident: b0315
  article-title: Field–measured limits of soil water availability as related to laboratory–measured properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 109
  start-page: 2871
  year: 2017
  end-page: 2880
  ident: b0455
  article-title: Inorganic fertilization effects on the structure of a calcareous silt loam soil
  publication-title: Agron. J.
– volume: 331
  start-page: 85
  year: 2006
  end-page: 102
  ident: b0140
  article-title: Changes in pore size distribution and hydraulic properties of forest soil resulting from structural development
  publication-title: J. Hydrol.
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: b0365
  article-title: A closed–form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 56
  start-page: 340
  year: 2019
  end-page: 349
  ident: b0190
  article-title: Macropore structure characteristics of black soil under freeze–thaw condition
  publication-title: Acta Pedologica Sinica
– volume: 93
  start-page: 533
  year: 2013
  end-page: 553
  ident: b0350
  article-title: Quantification of freeze–thaw related structure in cultivated topsoils using X–ray computer tomography
  publication-title: Can. J. Soil Sci.
– volume: 148
  start-page: 153
  year: 2017
  end-page: 159
  ident: b0010
  article-title: Comparative study of erosion processes of thawed and non–frozen soil by concentrated meltwater flow
  publication-title: Catena
– volume: 149
  start-page: 1
  year: 2015
  end-page: 11
  ident: b0235
  article-title: Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X–ray micro-computed tomography
  publication-title: Soil Till. Res.
– volume: 17
  start-page: 183
  year: 2002
  end-page: 209
  ident: b0355
  article-title: Euler number and connectivity indexes of a three dimensional digital picture
  publication-title: Forma
– volume: 314
  start-page: 122
  year: 2018
  end-page: 137
  ident: b0310
  article-title: Soil structure as an indicator of soil functions: A review
  publication-title: Geoderma
– volume: 178
  start-page: 100
  year: 1996
  end-page: 105
  ident: b0085
  article-title: Fractal dimension and architecture of trabecular bone
  publication-title: J. Pathol.
– volume: 264
  start-page: 132
  year: 2016
  end-page: 139
  ident: b0005
  article-title: Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere
  publication-title: Geoderma
– volume: 204–205
  start-page: 84
  year: 2013
  end-page: 93
  ident: b0070
  article-title: Dual–scale micro–CT assessment of soil structure in a long–term fertilization experiment
  publication-title: Geoderma
– volume: 81
  start-page: 459
  year: 2017
  end-page: 467
  ident: b0220
  article-title: Soil erosion as affected by freeze–thaw regime and initial soil moisture content
  publication-title: Soil Sci. Soc. Am. J.
– volume: 21
  start-page: 590
  year: 1999
  end-page: 602
  ident: b0270
  article-title: Image thresholding by indicator kriging
  publication-title: IEEE T. Pattern Anal.
– volume: 694(1). 133732
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0110
  article-title: Effects of biochar application during different periods on soil structures and water retention in seasonally frozen soil areas
  publication-title: Sci. Total Environ.
– volume: 72
  start-page: 897
  year: 2008
  end-page: 907
  ident: b0295
  article-title: Three–dimensional quantification of intra–aggregate pore–space features using synchrotron–radiation–based microtomography
  publication-title: Soil Sci. Soc. Am. J.
– volume: 353
  start-page: 459
  year: 2019
  end-page: 467
  ident: b0105
  article-title: Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles
  publication-title: Geoderma
– volume: 272
  start-page: 206
  year: 2019
  end-page: 217
  ident: b0115
  article-title: Permanent gully increases the heterogeneity of soil water retention capacity across a slope–gully system
  publication-title: Agr. Ecosyst. Environ.
– volume: 24
  start-page: 285
  year: 2014
  end-page: 290
  ident: b0200
  article-title: Effect of freeze–thaw on water stability of aggregates in a black soil of Northeast China
  publication-title: Pedosphere
– volume: 7
  start-page: 937
  year: 2006
  end-page: 952
  ident: b0260
  article-title: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale
  publication-title: J. Hydrometeorol.
– volume: 206
  start-page: 1
  year: 2021
  end-page: 11
  ident: b0215
  article-title: Evaluation of the impact of freeze–thaw cycles on pore structure characteristics of black soil using X–ray computed tomography
  publication-title: Soil Till. Res.
– volume: 835
  start-page: 525
  year: 2016
  end-page: 530
  ident: b0065
  article-title: Influence of freezing–thawing on shear strength of frozen soil in Northeast China
  publication-title: Appl. Mech. Mater.
– volume: 567
  start-page: 280
  year: 2018
  end-page: 289
  ident: b0170
  article-title: Effects of a snow–compaction treatment on soil freezing, snowmelt runoff, and soil nitrate movement: a field–scale paired–plot experiment
  publication-title: J. Hydrol.
– volume: 39
  start-page: 4080
  year: 2019
  end-page: 4087
  ident: b0185
  article-title: Characterization of aggregate microstructure of black soil with different number of freeze–thaw cycles by synchrotron–based micro–computed tomography
  publication-title: Acta Ecol. Sinica
– volume: 193
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0450
  article-title: Analysis of the intra–aggregate pore structures in three soil types using X–ray computed tomography
  publication-title: Catena
– volume: 162
  start-page: 124
  year: 2011
  end-page: 131
  ident: b0050
  article-title: Using X–ray tomography to quantify earthworm bioturbation non–destructively in repacked soil cores
  publication-title: Geoderma
– volume: 10
  start-page: 1305
  year: 1996
  end-page: 1316
  ident: b0325
  article-title: Preferential water flow in a frozen soil – A two-domain model approach
  publication-title: Hydrol. Process.
– volume: 31
  start-page: 133
  year: 2010
  end-page: 143
  ident: b0305
  article-title: State–of–art of research on mechanical properties of frozen soils
  publication-title: Rock Soil Mech.
– volume: 21
  year: 2020
  ident: b0250
  article-title: Assessment of pore space changes during drying and wetting cycles in hysteresis of soil water retention curve in Russia using X–ray computed tomography
  publication-title: Geoderma Reg.
– volume: 79
  start-page: 131
  year: 2004
  end-page: 143
  ident: b0275
  article-title: Soil structure and the effect of management practices
  publication-title: Soil Till. Res.
– volume: 47
  start-page: 1076
  year: 2010
  end-page: 1079
  ident: b0075
  article-title: BoneJ: Free and extensible bone image analysis in imageJ
  publication-title: Bone
– year: 2004
  ident: b0040
  article-title: Soil survey laboratory methods manual
– volume: 142(10), 04016051
  start-page: 1
  year: 2016
  end-page: 15
  ident: b0225
  article-title: Generalized soil water retention equation for adsorption and capillarity
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 146
  start-page: 1
  year: 2015
  end-page: 3
  ident: b0280
  article-title: Soil structure and its functions in ecosystems: Phase matter & scale matter
  publication-title: Soil Till. Res.
– volume: 54
  start-page: 569
  year: 2003
  end-page: 579
  ident: b0290
  article-title: Mass fractal dimension of soil macropores using computed tomography: From the box–counting to the cube–counting algorithm
  publication-title: Eur. J. Soil Sci.
– volume: 205
  start-page: 1
  year: 2021
  end-page: 12
  ident: b0345
  article-title: Three–dimensional fractal characteristics of soil pore structure and their relationships with hydraulic parameters in biochar–amended saline soil
  publication-title: Soil Till. Res.
– volume: 43
  start-page: 20180204
  year: 2020
  ident: b0025
  article-title: A CRS oedometer cell for unsaturated and non-isothermal tests
  publication-title: Geotech. Test. J.
– volume: 40
  start-page: 1006
  year: 2009
  end-page: 1009
  ident: b0090
  article-title: Comparative study on the soil water retention curve between macroporous soil and homogeneous soil
  publication-title: Chin. J. Soil Sci.
– volume: 173–174
  start-page: 28
  year: 2012
  end-page: 33
  ident: b0230
  article-title: Simulation of freezing and thawing soils in Inner Mongolia Hetao Irrigation District, China
  publication-title: Geoderma
– volume: 726
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0060
  article-title: Influences of forest cover on soil freeze–thaw dynamics and greenhouse gas emissions through the regulation of snow regimes: A comparison study of the farmland and forest plantation
  publication-title: Sci. Total Environ.
– volume: 165
  start-page: 239
  year: 2017
  end-page: 246
  ident: b0445
  article-title: Quantification of soil aggregate microstructure on abandoned cropland during vegetative succession using synchrotron radiation–based micro–computed tomography
  publication-title: Soil Till. Res.
– volume: 204–205
  start-page: 15
  year: 2013
  end-page: 22
  ident: b0120
  article-title: Temporal dynamics for soil aggregates determined using X–ray CT scanning
  publication-title: Geoderma
– volume: 224
  start-page: 213
  year: 2006
  end-page: 232
  ident: b0030
  article-title: A guided tour into subcellular colocalization analysis in light microscopy
  publication-title: J. Microsc.
– volume: 46
  start-page: 177
  year: 2001
  end-page: 188
  ident: b0150
  article-title: Hillslope topographic and hydrologic effects on overland flow and erosion
  publication-title: Catena
– volume: 51
  start-page: 1240
  year: 2018
  end-page: 1251
  ident: b0420
  article-title: Research on the influence of water vapor diffusion and evaporation on water and heat transfer in frozen soil
  publication-title: Eurasian Soil Sci+.
– volume: 64
  start-page: 77
  year: 2006
  end-page: 96
  ident: b0210
  article-title: Change of soil physical properties under long–term natural vegetation restoration in the Loess Plateau of China
  publication-title: J. Arid Environ.
– volume: 370
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0380
  article-title: Estimating the water characteristic curve for soil containing residual plastic film based on an improved pore–size distribution
  publication-title: Geoderma
– volume: 13
  start-page: 1678
  year: 2007
  end-page: 1679
  ident: b0080
  article-title: Computing local thickness of 3D structures with imagej
  publication-title: Microsc. Microanal.
– volume: 75
  start-page: 1658
  year: 2011
  end-page: 1666
  ident: b0195
  article-title: Long–term differences in tillage and land use affect intra–aggregate pore heterogeneity
  publication-title: Soil Sci. Soc. Am. J.
– volume: 43
  start-page: 8006
  year: 2016
  end-page: 8016
  ident: b0015
  article-title: Snowmelt rate dictates streamflow
  publication-title: Geophys. Res. Lett.
– volume: 58
  start-page: 523
  year: 2007
  end-page: 546
  ident: b0180
  article-title: A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality
  publication-title: Eur. J. Soil Sci.
– volume: 32
  start-page: 167
  year: 1968
  end-page: 174
  ident: b0390
  article-title: Analysis of steady–state evapotranspiration from a soil column
  publication-title: Soil Sci. Soc. Am. J.
– volume: 26
  start-page: 167
  year: 2016
  end-page: 179
  ident: b0435
  article-title: Reconstruction of soil particle composition during freeze–thaw cycling: A review
  publication-title: Pedosphere
– volume: 6
  start-page: 173
  year: 2009
  end-page: 180
  ident: b0460
  article-title: Micromorphological analysis of soil structure under no tillage management in the black soil zone of Northeast China
  publication-title: J. Mt. Sci-Engl.
– volume: 60
  start-page: 408
  year: 1996
  end-page: 416
  ident: b0155
  article-title: Seepage and soil erosion for a clay loam soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 36
  start-page: 1
  year: 1995
  end-page: 20
  ident: b0285
  article-title: Applications of fractals in soil and tillage research: a review
  publication-title: Soil Till. Res.
– reference: Ferreira, T., Rasband, W.S., 2012. ImageJ User Guide–IJ 1.46. imagej.nih.gov/ij/docs/guide/ (accessed 2 October 2012).
– volume: 15
  start-page: 927
  year: 2001
  end-page: 941
  ident: b0330
  article-title: Soil frost effects on soil water and runoff dynamics along a boreal transect: 2 Simulations
  publication-title: Hydrol. Process.
– volume: 707
  year: 2020
  ident: b0425
  article-title: Quantitative studies of gully slope erosion and soil physiochemical properties during freeze–thaw cycling in a Mollisol region
  publication-title: Sci. Total Environ.
– volume: 34
  start-page: 3597
  year: 2015
  end-page: 3603
  ident: b0430
  article-title: Influences of freeze–thaw cycles on mechanical porperties of silty clay based on SEM and MIP test
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 67
  start-page: 266
  year: 2016
  end-page: 275
  ident: b0205
  article-title: Application of X–ray tomography to quantify macropore characteristics of loess soil under two perennial plants
  publication-title: Eur. J. Soil Sci.
– volume: 56
  start-page: 377
  year: 1993
  end-page: 400
  ident: b0265
  article-title: The role of biology in the formation, stabilization and degradation of soil structure
  publication-title: Geoderma
– volume: 156
  start-page: 365
  year: 2017
  end-page: 374
  ident: b0335
  article-title: Quantifying the impact of a succession of freezing–thawing cycles on the pore network of a silty clay loam and a loamy sand topsoil using X–ray tomography
  publication-title: Catena
– volume: 328
  start-page: 56
  year: 2018
  end-page: 65
  ident: b0400
  article-title: Assessment of soil erosion characteristics in response to temperature and precipitation in a freeze-thaw watershed
  publication-title: Geoderma
– volume: 117
  start-page: D05120
  year: 2012
  ident: b0035
  article-title: Influences of shifts in climate, landscape, and permafrost on terrestrial hydrology
  publication-title: J. Geophys. Res. Atmos.
– volume: 252
  start-page: 10
  year: 2018
  end-page: 17
  ident: b0130
  article-title: Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze–thaw processes
  publication-title: Agr. Forest. Meteorol.
– volume: 78
  start-page: 737
  year: 2014
  end-page: 744
  ident: b0175
  article-title: Repeated freeze–thaw cycle effects on soil compaction in a clayloam in Northeastern Montana
  publication-title: Soil Sci. Soc. Am. J.
– volume: 100
  start-page: 72
  year: 2008
  end-page: 77
  ident: b0300
  article-title: Soil porous system changes quantified by analyzing soil water retention curve modifications
  publication-title: Soil Till. Res.
– volume: 40
  start-page: 443
  year: 1932
  end-page: 451
  ident: b0370
  article-title: Volume, shape, and roundness of rock particles
  publication-title: J. Geol.
– volume: 150
  start-page: 139
  year: 2015
  end-page: 151
  ident: b0360
  article-title: Effects of terrain slope on long–term and seasonal water balances in clayey, subsurface drained agricultural fields in high latitude conditions
  publication-title: Agr. Water Manage.
– volume: 46
  start-page: W09504
  year: 2010
  ident: b0165
  article-title: Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: a paired plot experiment
  publication-title: Water Resour. Res.
– volume: 46
  start-page: 68
  year: 2015
  end-page: 73
  ident: b0440
  article-title: Study on the effect of freeze–thaw cycles on saturated soil hydraulic conductivity in Loess Area
  publication-title: Chin. J. Soil Sci.
– volume: 14
  start-page: 1
  year: 2015
  end-page: 7
  ident: b0320
  article-title: Water retention characteristics and pore structure of binary mixtures
  publication-title: Vadose Zone J.
– volume: 49
  start-page: 303
  year: 2005
  end-page: 309
  ident: b0395
  article-title: Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA
  publication-title: Int. J. Biometeorol.
– volume: 124
  start-page: 17
  year: 2012
  end-page: 23
  ident: b0465
  article-title: Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron–based micro–computed tomography
  publication-title: Soil Till. Res.
– volume: 21
  start-page: 669
  year: 1984
  end-page: 677
  ident: b0125
  article-title: Snowmelt infiltration to frozen prairie soil
  publication-title: Can. J. Earth Sci.
– volume: 50
  start-page: 242
  year: 2019
  end-page: 249
  ident: b0340
  article-title: Structure and hydraulic characteristics of saline soil improved by applying biochar based on micro–CT scanning
  publication-title: Trans. Chin. Soc. Agr. Mach.
– volume: 666
  start-page: 721
  year: 2019
  end-page: 730
  ident: b0375
  article-title: The effects of freeze–thaw process on soil water migration in dam and slope farmland on the loess plateau, china
  publication-title: Sci. Total Environ.
– volume: 270
  start-page: 214
  year: 2003
  end-page: 229
  ident: b0135
  article-title: Focused infiltration of snowmelt water in partially frozen soil under small depressions
  publication-title: J. Hydrol.
– volume: 31
  start-page: 270
  year: 2017
  end-page: 278
  ident: b0385
  article-title: Effect of macropores on soil freezing and thawing with infiltration
  publication-title: Hydrol. Process.
– volume: 164
  year: 2019
  ident: b0405
  article-title: Shear strength and damage mechanism of saline intact loess after freeze–thaw cycling
  publication-title: Cold Reg. Sci. Technol.
– volume: 265
  start-page: 280
  year: 2019
  end-page: 294
  ident: b0410
  article-title: Water storage effect of soil freeze–thaw process and its impacts on soil hydro–thermal regime variations
  publication-title: Agr. Forest Meteorol.
– volume: 23
  start-page: 170
  year: 2012
  end-page: 176
  ident: b0020
  article-title: In–situ bservation of cracks in frozen soil using synchrotron tomography
  publication-title: Permafrost Periglac.
– volume: 39
  start-page: 977
  year: 2007
  end-page: 986
  ident: b0145
  article-title: Soil freeze–thaw cycle experiments: Trends, methodological weaknesses and suggested improvements
  publication-title: Soil Biol. Biochem.
– volume: 13
  start-page: 73
  year: 1979
  end-page: 92
  ident: b0055
  article-title: Effect of freezing and thawing on the permeability and structure of soils
  publication-title: Eng. Geol.
– volume: 60
  start-page: 408
  issue: 2
  year: 1996
  ident: 10.1016/j.geoderma.2021.115170_b0155
  article-title: Seepage and soil erosion for a clay loam soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1996.03615995006000020011x
– volume: 193
  start-page: 1
  issue: 104622
  year: 2020
  ident: 10.1016/j.geoderma.2021.115170_b0450
  article-title: Analysis of the intra–aggregate pore structures in three soil types using X–ray computed tomography
  publication-title: Catena
– volume: 14
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.geoderma.2021.115170_b0320
  article-title: Water retention characteristics and pore structure of binary mixtures
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2014.06.0065
– volume: 370
  start-page: 1
  issue: 114341
  year: 2020
  ident: 10.1016/j.geoderma.2021.115170_b0380
  article-title: Estimating the water characteristic curve for soil containing residual plastic film based on an improved pore–size distribution
  publication-title: Geoderma
– volume: 173–174
  start-page: 28
  year: 2012
  ident: 10.1016/j.geoderma.2021.115170_b0230
  article-title: Simulation of freezing and thawing soils in Inner Mongolia Hetao Irrigation District, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.01.009
– year: 2004
  ident: 10.1016/j.geoderma.2021.115170_b0040
– volume: 149
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2021.115170_b0235
  article-title: Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X–ray micro-computed tomography
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2014.12.016
– volume: 707
  year: 2020
  ident: 10.1016/j.geoderma.2021.115170_b0425
  article-title: Quantitative studies of gully slope erosion and soil physiochemical properties during freeze–thaw cycling in a Mollisol region
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.136191
– volume: 7
  start-page: 937
  issue: 5
  year: 2006
  ident: 10.1016/j.geoderma.2021.115170_b0260
  article-title: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM538.1
– volume: 34
  start-page: 3597
  issue: S1
  year: 2015
  ident: 10.1016/j.geoderma.2021.115170_b0430
  article-title: Influences of freeze–thaw cycles on mechanical porperties of silty clay based on SEM and MIP test
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 270
  start-page: 214
  issue: 3–4
  year: 2003
  ident: 10.1016/j.geoderma.2021.115170_b0135
  article-title: Focused infiltration of snowmelt water in partially frozen soil under small depressions
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00287-1
– volume: 15
  start-page: 927
  issue: 6
  year: 2001
  ident: 10.1016/j.geoderma.2021.115170_b0330
  article-title: Soil frost effects on soil water and runoff dynamics along a boreal transect: 2 Simulations
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.232
– volume: 93
  start-page: 485
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2021.115170_b0100
  article-title: Freeze–thaw cycles and soil water content effects on infiltration rate of three Saskatchewan soils
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss2012-060
– volume: 39
  start-page: 4080
  issue: 11
  year: 2019
  ident: 10.1016/j.geoderma.2021.115170_b0185
  article-title: Characterization of aggregate microstructure of black soil with different number of freeze–thaw cycles by synchrotron–based micro–computed tomography
  publication-title: Acta Ecol. Sinica
– volume: 75
  start-page: 1658
  year: 2011
  ident: 10.1016/j.geoderma.2021.115170_b0195
  article-title: Long–term differences in tillage and land use affect intra–aggregate pore heterogeneity
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0096
– volume: 100
  start-page: 72
  issue: 1–2
  year: 2008
  ident: 10.1016/j.geoderma.2021.115170_b0300
  article-title: Soil porous system changes quantified by analyzing soil water retention curve modifications
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2008.04.007
– volume: 47
  start-page: 770
  issue: 4
  year: 1983
  ident: 10.1016/j.geoderma.2021.115170_b0315
  article-title: Field–measured limits of soil water availability as related to laboratory–measured properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1983.03615995004700040032x
– volume: 50
  start-page: 242
  issue: 2
  year: 2019
  ident: 10.1016/j.geoderma.2021.115170_b0340
  article-title: Structure and hydraulic characteristics of saline soil improved by applying biochar based on micro–CT scanning
  publication-title: Trans. Chin. Soc. Agr. Mach.
– volume: 694(1). 133732
  start-page: 1
  year: 2019
  ident: 10.1016/j.geoderma.2021.115170_b0110
  article-title: Effects of biochar application during different periods on soil structures and water retention in seasonally frozen soil areas
  publication-title: Sci. Total Environ.
– volume: 36
  start-page: 1
  issue: 1–2
  year: 1995
  ident: 10.1016/j.geoderma.2021.115170_b0285
  article-title: Applications of fractals in soil and tillage research: a review
  publication-title: Soil Till. Res.
  doi: 10.1016/0167-1987(96)81397-3
– volume: 46
  start-page: 68
  issue: 1
  year: 2015
  ident: 10.1016/j.geoderma.2021.115170_b0440
  article-title: Study on the effect of freeze–thaw cycles on saturated soil hydraulic conductivity in Loess Area
  publication-title: Chin. J. Soil Sci.
– volume: 10
  start-page: 1305
  year: 1996
  ident: 10.1016/j.geoderma.2021.115170_b0325
  article-title: Preferential water flow in a frozen soil – A two-domain model approach
  publication-title: Hydrol. Process.
  doi: 10.1002/(SICI)1099-1085(199610)10:10<1305::AID-HYP462>3.0.CO;2-F
– volume: 56
  start-page: 377
  year: 1993
  ident: 10.1016/j.geoderma.2021.115170_b0265
  article-title: The role of biology in the formation, stabilization and degradation of soil structure
  publication-title: Geoderma
  doi: 10.1016/0016-7061(93)90123-3
– volume: 43
  start-page: 8006
  issue: 15
  year: 2016
  ident: 10.1016/j.geoderma.2021.115170_b0015
  article-title: Snowmelt rate dictates streamflow
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL069690
– volume: 224
  start-page: 213
  issue: 3
  year: 2006
  ident: 10.1016/j.geoderma.2021.115170_b0030
  article-title: A guided tour into subcellular colocalization analysis in light microscopy
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2006.01706.x
– volume: 156
  start-page: 365
  year: 2017
  ident: 10.1016/j.geoderma.2021.115170_b0335
  article-title: Quantifying the impact of a succession of freezing–thawing cycles on the pore network of a silty clay loam and a loamy sand topsoil using X–ray tomography
  publication-title: Catena
  doi: 10.1016/j.catena.2017.04.026
– volume: 207
  start-page: 1
  issue: 104855
  year: 2021
  ident: 10.1016/j.geoderma.2021.115170_b0245
  article-title: Effects of pore structure characterized by synchrotron–based micro–computed tomography on aggregate stability of black soil under freeze–thaw cycles
  publication-title: Soil Till. Res.
– volume: 32
  start-page: 167
  issue: 2
  year: 1968
  ident: 10.1016/j.geoderma.2021.115170_b0390
  article-title: Analysis of steady–state evapotranspiration from a soil column
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1968.03615995003200020009x
– volume: 206
  start-page: 1
  issue: 104810
  year: 2021
  ident: 10.1016/j.geoderma.2021.115170_b0215
  article-title: Evaluation of the impact of freeze–thaw cycles on pore structure characteristics of black soil using X–ray computed tomography
  publication-title: Soil Till. Res.
– volume: 31
  start-page: 133
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2021.115170_b0305
  article-title: State–of–art of research on mechanical properties of frozen soils
  publication-title: Rock Soil Mech.
– volume: 331
  start-page: 85
  issue: 1–2
  year: 2006
  ident: 10.1016/j.geoderma.2021.115170_b0140
  article-title: Changes in pore size distribution and hydraulic properties of forest soil resulting from structural development
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.05.003
– volume: 146
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2021.115170_b0280
  article-title: Soil structure and its functions in ecosystems: Phase matter & scale matter
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2014.10.017
– volume: 46
  start-page: 177
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2021.115170_b0150
  article-title: Hillslope topographic and hydrologic effects on overland flow and erosion
  publication-title: Catena
– volume: 45
  start-page: 706
  issue: 9
  year: 2009
  ident: 10.1016/j.geoderma.2021.115170_b0160
  article-title: Segmentation of X–ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008087
– volume: 40
  start-page: 443
  year: 1932
  ident: 10.1016/j.geoderma.2021.115170_b0370
  article-title: Volume, shape, and roundness of rock particles
  publication-title: J. Geol.
  doi: 10.1086/623964
– volume: 148
  start-page: 153
  year: 2017
  ident: 10.1016/j.geoderma.2021.115170_b0010
  article-title: Comparative study of erosion processes of thawed and non–frozen soil by concentrated meltwater flow
  publication-title: Catena
  doi: 10.1016/j.catena.2016.06.019
– ident: 10.1016/j.geoderma.2021.115170_b0095
– volume: 142(10), 04016051
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2021.115170_b0225
  article-title: Generalized soil water retention equation for adsorption and capillarity
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 272
  start-page: 206
  year: 2019
  ident: 10.1016/j.geoderma.2021.115170_b0115
  article-title: Permanent gully increases the heterogeneity of soil water retention capacity across a slope–gully system
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2018.10.007
– volume: 21
  start-page: 590
  issue: 7
  year: 1999
  ident: 10.1016/j.geoderma.2021.115170_b0270
  article-title: Image thresholding by indicator kriging
  publication-title: IEEE T. Pattern Anal.
  doi: 10.1109/34.777370
– volume: 23
  start-page: 170
  issue: 2
  year: 2012
  ident: 10.1016/j.geoderma.2021.115170_b0020
  article-title: In–situ bservation of cracks in frozen soil using synchrotron tomography
  publication-title: Permafrost Periglac.
  doi: 10.1002/ppp.1737
– volume: 252
  start-page: 10
  year: 2018
  ident: 10.1016/j.geoderma.2021.115170_b0130
  article-title: Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze–thaw processes
  publication-title: Agr. Forest. Meteorol.
  doi: 10.1016/j.agrformet.2018.01.010
– volume: 47
  start-page: 1076
  issue: 6
  year: 2010
  ident: 10.1016/j.geoderma.2021.115170_b0075
  article-title: BoneJ: Free and extensible bone image analysis in imageJ
  publication-title: Bone
  doi: 10.1016/j.bone.2010.08.023
– volume: 124
  start-page: 17
  year: 2012
  ident: 10.1016/j.geoderma.2021.115170_b0465
  article-title: Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron–based micro–computed tomography
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2012.04.006
– volume: 72
  start-page: 897
  issue: 4
  year: 2008
  ident: 10.1016/j.geoderma.2021.115170_b0295
  article-title: Three–dimensional quantification of intra–aggregate pore–space features using synchrotron–radiation–based microtomography
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0130
– volume: 93
  start-page: 533
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2021.115170_b0350
  article-title: Quantification of freeze–thaw related structure in cultivated topsoils using X–ray computer tomography
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss2012-044
– volume: 78
  start-page: 737
  issue: 3
  year: 2014
  ident: 10.1016/j.geoderma.2021.115170_b0175
  article-title: Repeated freeze–thaw cycle effects on soil compaction in a clayloam in Northeastern Montana
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.07.0280
– volume: 109
  start-page: 2871
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2021.115170_b0455
  article-title: Inorganic fertilization effects on the structure of a calcareous silt loam soil
  publication-title: Agron. J.
  doi: 10.2134/agronj2016.10.0590
– volume: 21
  start-page: 669
  year: 1984
  ident: 10.1016/j.geoderma.2021.115170_b0125
  article-title: Snowmelt infiltration to frozen prairie soil
  publication-title: Can. J. Earth Sci.
  doi: 10.1139/e84-073
– volume: 313
  start-page: 82
  year: 2018
  ident: 10.1016/j.geoderma.2021.115170_b0255
  article-title: Characterising and linking X–ray CT derived macroporosity parameters to infiltration in soils with contrasting structures
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.020
– volume: 567
  start-page: 280
  year: 2018
  ident: 10.1016/j.geoderma.2021.115170_b0170
  article-title: Effects of a snow–compaction treatment on soil freezing, snowmelt runoff, and soil nitrate movement: a field–scale paired–plot experiment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.10.016
– volume: 79
  start-page: 131
  issue: 2
  year: 2004
  ident: 10.1016/j.geoderma.2021.115170_b0275
  article-title: Soil structure and the effect of management practices
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2004.07.002
– volume: 205
  start-page: 1
  issue: 104809
  year: 2021
  ident: 10.1016/j.geoderma.2021.115170_b0345
  article-title: Three–dimensional fractal characteristics of soil pore structure and their relationships with hydraulic parameters in biochar–amended saline soil
  publication-title: Soil Till. Res.
– volume: 328
  start-page: 56
  year: 2018
  ident: 10.1016/j.geoderma.2021.115170_b0400
  article-title: Assessment of soil erosion characteristics in response to temperature and precipitation in a freeze-thaw watershed
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.007
– volume: 6
  start-page: 173
  issue: 2
  year: 2009
  ident: 10.1016/j.geoderma.2021.115170_b0460
  article-title: Micromorphological analysis of soil structure under no tillage management in the black soil zone of Northeast China
  publication-title: J. Mt. Sci-Engl.
  doi: 10.1007/s11629-009-1034-2
– volume: 117
  start-page: D05120
  issue: D5
  year: 2012
  ident: 10.1016/j.geoderma.2021.115170_b0035
  article-title: Influences of shifts in climate, landscape, and permafrost on terrestrial hydrology
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2011JD016429
– volume: 54
  start-page: 569
  year: 2003
  ident: 10.1016/j.geoderma.2021.115170_b0290
  article-title: Mass fractal dimension of soil macropores using computed tomography: From the box–counting to the cube–counting algorithm
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2003.00546.x
– volume: 40
  start-page: 1006
  issue: 5
  year: 2009
  ident: 10.1016/j.geoderma.2021.115170_b0090
  article-title: Comparative study on the soil water retention curve between macroporous soil and homogeneous soil
  publication-title: Chin. J. Soil Sci.
– volume: 81
  start-page: 459
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2021.115170_b0220
  article-title: Soil erosion as affected by freeze–thaw regime and initial soil moisture content
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2016.08.0271
– volume: 38
  start-page: 285
  issue: 2
  year: 2006
  ident: 10.1016/j.geoderma.2021.115170_b0045
  article-title: Sublethal effects of imidacloprid on the burrowing behaviour of two earthworm species: Modifications of the 3D burrow systems in artificial cores and consequences on gas diffusion in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.05.014
– volume: 353
  start-page: 459
  year: 2019
  ident: 10.1016/j.geoderma.2021.115170_b0105
  article-title: Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.07.027
– volume: 56
  start-page: 340
  issue: 2
  year: 2019
  ident: 10.1016/j.geoderma.2021.115170_b0190
  article-title: Macropore structure characteristics of black soil under freeze–thaw condition
  publication-title: Acta Pedologica Sinica
– volume: 666
  start-page: 721
  year: 2019
  ident: 10.1016/j.geoderma.2021.115170_b0375
  article-title: The effects of freeze–thaw process on soil water migration in dam and slope farmland on the loess plateau, china
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.284
– volume: 13
  start-page: 1678
  issue: S02
  year: 2007
  ident: 10.1016/j.geoderma.2021.115170_b0080
  article-title: Computing local thickness of 3D structures with imagej
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927607074430
– volume: 67
  start-page: 266
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2021.115170_b0205
  article-title: Application of X–ray tomography to quantify macropore characteristics of loess soil under two perennial plants
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12330
– volume: 51
  start-page: 1240
  issue: 10
  year: 2018
  ident: 10.1016/j.geoderma.2021.115170_b0420
  article-title: Research on the influence of water vapor diffusion and evaporation on water and heat transfer in frozen soil
  publication-title: Eurasian Soil Sci+.
  doi: 10.1134/S1064229318100150
– volume: 21
  year: 2020
  ident: 10.1016/j.geoderma.2021.115170_b0250
  article-title: Assessment of pore space changes during drying and wetting cycles in hysteresis of soil water retention curve in Russia using X–ray computed tomography
  publication-title: Geoderma Reg.
– volume: 150
  start-page: 139
  year: 2015
  ident: 10.1016/j.geoderma.2021.115170_b0360
  article-title: Effects of terrain slope on long–term and seasonal water balances in clayey, subsurface drained agricultural fields in high latitude conditions
  publication-title: Agr. Water Manage.
  doi: 10.1016/j.agwat.2014.12.008
– volume: 265
  start-page: 280
  year: 2019
  ident: 10.1016/j.geoderma.2021.115170_b0410
  article-title: Water storage effect of soil freeze–thaw process and its impacts on soil hydro–thermal regime variations
  publication-title: Agr. Forest Meteorol.
  doi: 10.1016/j.agrformet.2018.11.011
– volume: 13
  start-page: 73
  issue: 1
  year: 1979
  ident: 10.1016/j.geoderma.2021.115170_b0055
  article-title: Effect of freezing and thawing on the permeability and structure of soils
  publication-title: Eng. Geol.
  doi: 10.1016/0013-7952(79)90022-X
– volume: 524
  start-page: 44
  year: 2015
  ident: 10.1016/j.geoderma.2021.115170_b0240
  article-title: Partial least squares regression for linking aggregate pore characteristics to the detachment of undisturbed soil by simulating concentrated flow in Ultisols (subtropical china)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.02.027
– volume: 26
  start-page: 167
  issue: 2
  year: 2016
  ident: 10.1016/j.geoderma.2021.115170_b0435
  article-title: Reconstruction of soil particle composition during freeze–thaw cycling: A review
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60033-9
– volume: 162
  start-page: 124
  year: 2011
  ident: 10.1016/j.geoderma.2021.115170_b0050
  article-title: Using X–ray tomography to quantify earthworm bioturbation non–destructively in repacked soil cores
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.01.011
– volume: 204–205
  start-page: 84
  year: 2013
  ident: 10.1016/j.geoderma.2021.115170_b0070
  article-title: Dual–scale micro–CT assessment of soil structure in a long–term fertilization experiment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.04.012
– volume: 204–205
  start-page: 15
  year: 2013
  ident: 10.1016/j.geoderma.2021.115170_b0120
  article-title: Temporal dynamics for soil aggregates determined using X–ray CT scanning
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.04.004
– volume: 165
  start-page: 239
  year: 2017
  ident: 10.1016/j.geoderma.2021.115170_b0445
  article-title: Quantification of soil aggregate microstructure on abandoned cropland during vegetative succession using synchrotron radiation–based micro–computed tomography
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2016.08.007
– volume: 49
  start-page: 303
  year: 2005
  ident: 10.1016/j.geoderma.2021.115170_b0395
  article-title: Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-004-0248-9
– volume: 726
  start-page: 1
  issue: 138403
  year: 2020
  ident: 10.1016/j.geoderma.2021.115170_b0060
  article-title: Influences of forest cover on soil freeze–thaw dynamics and greenhouse gas emissions through the regulation of snow regimes: A comparison study of the farmland and forest plantation
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 285
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2021.115170_b0200
  article-title: Effect of freeze–thaw on water stability of aggregates in a black soil of Northeast China
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(14)60015-1
– volume: 178
  start-page: 100
  issue: 1
  year: 1996
  ident: 10.1016/j.geoderma.2021.115170_b0085
  article-title: Fractal dimension and architecture of trabecular bone
  publication-title: J. Pathol.
  doi: 10.1002/(SICI)1096-9896(199601)178:1<100::AID-PATH429>3.0.CO;2-K
– volume: 17
  start-page: 183
  issue: 3
  year: 2002
  ident: 10.1016/j.geoderma.2021.115170_b0355
  article-title: Euler number and connectivity indexes of a three dimensional digital picture
  publication-title: Forma
– volume: 314
  start-page: 122
  year: 2018
  ident: 10.1016/j.geoderma.2021.115170_b0310
  article-title: Soil structure as an indicator of soil functions: A review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.11.009
– volume: 164
  year: 2019
  ident: 10.1016/j.geoderma.2021.115170_b0405
  article-title: Shear strength and damage mechanism of saline intact loess after freeze–thaw cycling
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2019.05.005
– volume: 304
  start-page: 1634
  issue: 5677
  year: 2004
  ident: 10.1016/j.geoderma.2021.115170_b0415
  article-title: Interactions and self–organization in the soil–microbe complex
  publication-title: Science
  doi: 10.1126/science.1097394
– volume: 835
  start-page: 525
  year: 2016
  ident: 10.1016/j.geoderma.2021.115170_b0065
  article-title: Influence of freezing–thawing on shear strength of frozen soil in Northeast China
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.835.525
– volume: 58
  start-page: 523
  year: 2007
  ident: 10.1016/j.geoderma.2021.115170_b0180
  article-title: A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2007.00915.x
– volume: 31
  start-page: 270
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2021.115170_b0385
  article-title: Effect of macropores on soil freezing and thawing with infiltration
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10939
– volume: 46
  start-page: W09504
  issue: 9
  year: 2010
  ident: 10.1016/j.geoderma.2021.115170_b0165
  article-title: Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: a paired plot experiment
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008070
– volume: 64
  start-page: 77
  issue: 1
  year: 2006
  ident: 10.1016/j.geoderma.2021.115170_b0210
  article-title: Change of soil physical properties under long–term natural vegetation restoration in the Loess Plateau of China
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2005.04.005
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 10.1016/j.geoderma.2021.115170_b0365
  article-title: A closed–form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 43
  start-page: 20180204
  issue: 1
  year: 2020
  ident: 10.1016/j.geoderma.2021.115170_b0025
  article-title: A CRS oedometer cell for unsaturated and non-isothermal tests
  publication-title: Geotech. Test. J.
  doi: 10.1520/GTJ20180204
– volume: 264
  start-page: 132
  year: 2016
  ident: 10.1016/j.geoderma.2021.115170_b0005
  article-title: Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.10.008
– volume: 39
  start-page: 977
  issue: 5
  year: 2007
  ident: 10.1016/j.geoderma.2021.115170_b0145
  article-title: Soil freeze–thaw cycle experiments: Trends, methodological weaknesses and suggested improvements
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.11.017
SSID ssj0017020
Score 2.5502388
Snippet [Display omitted] •Freeze–thaw effects significantly changed the pore structure of Chinese Mollisol.•Changes in pore structure caused by freeze–thaw affect...
Studies have shown that the effects of freeze–thaw action on soil structure have become more frequent and intense with the global warming, in turn, affects the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115170
SubjectTerms Chinese Mollisol
field capacity
freeze-thaw cycles
Freeze–thaw effect
Mollisols
Pore characteristic
porosity
runoff
snowmelt
soil erosion
soil pore system
soil water retention
Soil water retention capacity
water content
water holding capacity
X-radiation
X–ray computed tomography
Title Linking soil water retention capacity to pore structure characteristics based on X-ray computed tomography: Chinese Mollisol under freeze-thaw effect
URI https://dx.doi.org/10.1016/j.geoderma.2021.115170
https://www.proquest.com/docview/2551921715
Volume 401
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoEDKi9RHtUgcTW7jmMn4baqqJZHe6LS3izbmcBWZbfKLqrKgX_B_2UmdiqKkHrgmCgTRTPjeSgz3yfEaxNKE0wIEsvoZam7VtZRN7LT0VK7UpsCuVE8PrHz0_LDwix2xOG4C8NjlTn2p5g-ROt8Z5K1OblYLnnHV9lqOiBgcSLnvr0sK_byNz-vxzxUNc3QjMpKfvqPLeEzshETjg34Q4Wi6GEUkxb_O0H9FaqH_HO0J-7nwhFm6dseiB1cPRT3Zl_6DJ6Bj8SvT4kIATbr5TlcUhXZQ89FMSsfIqXFSDU3bNdARTdCgo4lSYg3UZuBU1sLJLOQvb-CmJgfWpL8lhGu3wITb-MG4ZhRvcmBgbfReuh6xB8ot1_9JaRZkcfi9Ojd58O5zLQL0mtbb6WtyhhLH9sQbdCIVacqX9VodVf7YHSLTd0UHeX1IlL_g8FSVAjTUtWo-MzpJ2J3tV7hUwGdjcZGqjFiEXmnlXpDr7FmXDClVdfsCzPq2sWMSc7UGOduHD47c6ONHNvIJRvti8m13EVC5bhVohlN6W74l6PUcavsq9H2jg4f_1HxK1x_3zjqxxhPrlLm2X-8_7m4y1dpw_GF2CXr40sqdbbhYPDlA3Fn9v7j_OQ3H9MBNw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9swDBWK9LDtMOwT6z45YFchkWXJ9m5BsSJdk5xaIDfBkuktRZcUToai_R_7vyMjuViHAT3saoOGIVLkIyS-J8Qn43PjjfcS81DLXLeNLIOuZKuDpXalNBlyozib28lZ_nVhFnvisJ-F4WuVKffHnL7L1unJMK3m8HK55BlfZYvRjgGLCzn17fvMTmUGYn98fDKZ3x4mFKPEzqisZIM_BoXPyU2sObajIMoUJRCjWLf43zXqr2y9K0FHT8TjhB1hHH_vqdjD1TPxaPytS_wZ-Fz8mkYtBNislxdwRUCyg45xMa8_BKqMgWA3bNdAuBshsseSJYS7xM3A1a0BslnIrr6GEMUfGrL8kUiuPwNrb-MGYcbE3hTDwANpHbQd4g3K7ff6CuJ1kRfi7OjL6eFEJuUFWWtbbqUt8hDyOjQ-WK8Ri1YVdVGi1W1Ze6MbrMoqa6m0Z4FaIPSWEoMf5apExdtOvxSD1XqFrwS0NhgbCGaELPBYK7WHtcaSqcGUVm11IEy_1i4kWnJWx7hw_f2zc9f7yLGPXPTRgRje2l1GYo57Larele5OiDmqHvfafux972j_8aFKvcL1z42jlowp5QplXv_H9z-IB5PT2dRNj-cnb8RDfhMHHt-KAUUCviPks_XvU2T_BuLOA-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+soil+water+retention+capacity+to+pore+structure+characteristics+based+on+X-ray+computed+tomography%3A+Chinese+Mollisol+under+freeze-thaw+effect&rft.jtitle=Geoderma&rft.au=Liu%2C+Bo&rft.au=Fan%2C+Haoming&rft.au=Han%2C+Wei&rft.au=Zhu%2C+Longxiang&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=401&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115170&rft.externalDocID=S0016706121002500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon