Linking soil water retention capacity to pore structure characteristics based on X-ray computed tomography: Chinese Mollisol under freeze-thaw effect
[Display omitted] •Freeze–thaw effects significantly changed the pore structure of Chinese Mollisol.•Changes in pore structure caused by freeze–thaw affect water retention capacity.•Field capacity and available water content decreased under freeze–thaw cycles.•Relationships between pore structure an...
Saved in:
Published in | Geoderma Vol. 401; p. 115170 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Freeze–thaw effects significantly changed the pore structure of Chinese Mollisol.•Changes in pore structure caused by freeze–thaw affect water retention capacity.•Field capacity and available water content decreased under freeze–thaw cycles.•Relationships between pore structure and water retention parameters were analysed.
Studies have shown that the effects of freeze–thaw action on soil structure have become more frequent and intense with the global warming, in turn, affects the dynamic processes of snowmelt water and the development of soil erosion. To examine the effects of pore structure characteristics on soil water retention capacity under freeze–thaw cycles, soil samples of Chinese Mollisol were subject to the six freeze–thaw treatments, including a no freeze–thaw cycle (CK), one (FT.1), five (FT.5), ten (FT.10), fifteen (FT.15), and twenty (FT.20) freeze–thaw cycles. Then, the samples were scanned using industrial CT to quantitatively obtain soil structure characteristics, and a pressure plate apparatus was applied to obtain soil water retention capacity. The results show that the freeze–thaw cycles significantly changed the soil pore structure and soil water retention capacity. Freeze–thaw cycles increased the total imaged porosity and pore connectivity, leading to a complex pore structure and an irregular of pore shape. Relative to the CK treatment, soils under the FT.20 treatment exhibited a higher saturated water content (SWC) by 100.0%, but a lower field capacity (FC) by 14.0% and available water content (AWC) by 31.3%. No differences in the permanent wilting point (PWP) were found between the different treatments. The soil pore structure became more porous and complex with an increasing number of freeze–thaw cycles, resulting in the changes in soil water retention capacity. The porosities of 100–500 μm (Pd100–500) were a better predictor of SWC, with an increasing exponential function. The porosities of elongated pores (PE) predicted FC and AWC with a decreasing exponential function. These findings aim to improve the understanding of soil pore structure as a result of the effects of freeze–thaw on the generation mechanism of snowmelt runoff and soil erosion. |
---|---|
AbstractList | [Display omitted]
•Freeze–thaw effects significantly changed the pore structure of Chinese Mollisol.•Changes in pore structure caused by freeze–thaw affect water retention capacity.•Field capacity and available water content decreased under freeze–thaw cycles.•Relationships between pore structure and water retention parameters were analysed.
Studies have shown that the effects of freeze–thaw action on soil structure have become more frequent and intense with the global warming, in turn, affects the dynamic processes of snowmelt water and the development of soil erosion. To examine the effects of pore structure characteristics on soil water retention capacity under freeze–thaw cycles, soil samples of Chinese Mollisol were subject to the six freeze–thaw treatments, including a no freeze–thaw cycle (CK), one (FT.1), five (FT.5), ten (FT.10), fifteen (FT.15), and twenty (FT.20) freeze–thaw cycles. Then, the samples were scanned using industrial CT to quantitatively obtain soil structure characteristics, and a pressure plate apparatus was applied to obtain soil water retention capacity. The results show that the freeze–thaw cycles significantly changed the soil pore structure and soil water retention capacity. Freeze–thaw cycles increased the total imaged porosity and pore connectivity, leading to a complex pore structure and an irregular of pore shape. Relative to the CK treatment, soils under the FT.20 treatment exhibited a higher saturated water content (SWC) by 100.0%, but a lower field capacity (FC) by 14.0% and available water content (AWC) by 31.3%. No differences in the permanent wilting point (PWP) were found between the different treatments. The soil pore structure became more porous and complex with an increasing number of freeze–thaw cycles, resulting in the changes in soil water retention capacity. The porosities of 100–500 μm (Pd100–500) were a better predictor of SWC, with an increasing exponential function. The porosities of elongated pores (PE) predicted FC and AWC with a decreasing exponential function. These findings aim to improve the understanding of soil pore structure as a result of the effects of freeze–thaw on the generation mechanism of snowmelt runoff and soil erosion. Studies have shown that the effects of freeze–thaw action on soil structure have become more frequent and intense with the global warming, in turn, affects the dynamic processes of snowmelt water and the development of soil erosion. To examine the effects of pore structure characteristics on soil water retention capacity under freeze–thaw cycles, soil samples of Chinese Mollisol were subject to the six freeze–thaw treatments, including a no freeze–thaw cycle (CK), one (FT.1), five (FT.5), ten (FT.10), fifteen (FT.15), and twenty (FT.20) freeze–thaw cycles. Then, the samples were scanned using industrial CT to quantitatively obtain soil structure characteristics, and a pressure plate apparatus was applied to obtain soil water retention capacity. The results show that the freeze–thaw cycles significantly changed the soil pore structure and soil water retention capacity. Freeze–thaw cycles increased the total imaged porosity and pore connectivity, leading to a complex pore structure and an irregular of pore shape. Relative to the CK treatment, soils under the FT.20 treatment exhibited a higher saturated water content (SWC) by 100.0%, but a lower field capacity (FC) by 14.0% and available water content (AWC) by 31.3%. No differences in the permanent wilting point (PWP) were found between the different treatments. The soil pore structure became more porous and complex with an increasing number of freeze–thaw cycles, resulting in the changes in soil water retention capacity. The porosities of 100–500 μm (Pd₁₀₀–₅₀₀) were a better predictor of SWC, with an increasing exponential function. The porosities of elongated pores (PE) predicted FC and AWC with a decreasing exponential function. These findings aim to improve the understanding of soil pore structure as a result of the effects of freeze–thaw on the generation mechanism of snowmelt runoff and soil erosion. |
ArticleNumber | 115170 |
Author | Han, Wei Liu, Bo Zhu, Longxiang Zhao, Xue Ma, Renming Zhang, Yuxin Fan, Haoming |
Author_xml | – sequence: 1 givenname: Bo surname: Liu fullname: Liu, Bo email: 2019200169@stu.syau.edu.cn organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China – sequence: 2 givenname: Haoming surname: Fan fullname: Fan, Haoming email: fanhaoming@syau.edu.cn organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China – sequence: 3 givenname: Wei surname: Han fullname: Han, Wei email: hanwei@syau.edu.cn organization: College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China – sequence: 4 givenname: Longxiang surname: Zhu fullname: Zhu, Longxiang email: zhulongxiang@stu.syau.edu.cn organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China – sequence: 5 givenname: Xue surname: Zhao fullname: Zhao, Xue email: 2020220055@stu.syau.edu.cn organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China – sequence: 6 givenname: Yuxin surname: Zhang fullname: Zhang, Yuxin email: 2020220069@stu.syau.edu.cn organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China – sequence: 7 givenname: Renming orcidid: 0000-0003-4366-6307 surname: Ma fullname: Ma, Renming email: marenming@syau.edu.cn organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China |
BookMark | eNqFkc1u1DAUhS3USkxbXgF5ySaD7SR2gliARoUiDWJTJHbWjXMz4yGxg-20Gt6j74tHAxs2Xd0fne_q6pwrcuG8Q0Jec7bmjMu3h_UOfY9hgrVggq85r7liL8iKN0oUUtTtBVmxrCwUk_wluYrxkEfFBFuRp611P63b0ejtSB8hYaABE7pkvaMGZjA2HWnydPYBaUxhMWnJndlDAJPlNiZrIu0gYk8z86MIcKTGT_OS8ib5ye8CzPvjO7rZW4cR6Vc_jjb6kS4u_02HgPgbi7SHR4rDgCbdkMsBxoiv_tZr8v3T7f3mrth--_xl83FbQCmbVEhVGVOB6TsjuxJRDVyBalCWQwNdXfbYNq0YJK-EaSXDTjal6FjFG-SCsaq8Jm_Od-fgfy0Yk55sNDiO4NAvUYu65q3gitdZ-v4sNcHHGHDQ2Rg4uZQC2FFzpk9p6IP-l4Y-paHPaWRc_ofPwU4Qjs-DH84gZh8eLAYdjUVnsLchO6V7b5878QcyXK5W |
CitedBy_id | crossref_primary_10_1016_j_still_2024_106041 crossref_primary_10_1016_j_catena_2021_105867 crossref_primary_10_1016_j_envpol_2024_125143 crossref_primary_10_1016_j_cscm_2025_e04279 crossref_primary_10_1016_j_jhydrol_2022_129052 crossref_primary_10_1016_j_still_2024_106103 crossref_primary_10_7717_peerj_18442 crossref_primary_10_3390_agronomy14081608 crossref_primary_10_1038_s41598_025_93668_0 crossref_primary_10_1016_j_still_2023_105950 crossref_primary_10_1016_j_still_2024_106264 crossref_primary_10_1016_j_geoderma_2024_117020 crossref_primary_10_1016_j_still_2023_105797 crossref_primary_10_1016_j_enggeo_2024_107785 crossref_primary_10_1016_j_jhazmat_2022_130084 crossref_primary_10_3390_f14010132 crossref_primary_10_1016_j_still_2022_105559 crossref_primary_10_28948_ngumuh_1131247 crossref_primary_10_1016_j_catena_2023_107250 crossref_primary_10_1016_j_soilbio_2024_109642 crossref_primary_10_1016_j_catena_2025_108881 crossref_primary_10_1016_j_scitotenv_2024_174125 crossref_primary_10_1007_s11629_021_7143_2 crossref_primary_10_1016_j_geoderma_2021_115674 crossref_primary_10_1016_j_scitotenv_2022_155361 crossref_primary_10_1142_S0218348X2150208X crossref_primary_10_1144_geochem2021_029 crossref_primary_10_1016_j_still_2022_105540 crossref_primary_10_1111_ejss_70030 crossref_primary_10_1134_S1064229324602853 crossref_primary_10_1016_j_coldregions_2024_104276 crossref_primary_10_1029_2024JG008009 crossref_primary_10_1002_ldr_4853 crossref_primary_10_1016_j_catena_2022_106614 crossref_primary_10_1061_JCRGEI_CRENG_878 |
Cites_doi | 10.2136/sssaj1996.03615995006000020011x 10.2136/vzj2014.06.0065 10.1016/j.geoderma.2012.01.009 10.1016/j.still.2014.12.016 10.1016/j.scitotenv.2019.136191 10.1175/JHM538.1 10.1016/S0022-1694(02)00287-1 10.1002/hyp.232 10.4141/cjss2012-060 10.2136/sssaj2011.0096 10.1016/j.still.2008.04.007 10.2136/sssaj1983.03615995004700040032x 10.1016/0167-1987(96)81397-3 10.1002/(SICI)1099-1085(199610)10:10<1305::AID-HYP462>3.0.CO;2-F 10.1016/0016-7061(93)90123-3 10.1002/2016GL069690 10.1111/j.1365-2818.2006.01706.x 10.1016/j.catena.2017.04.026 10.2136/sssaj1968.03615995003200020009x 10.1016/j.jhydrol.2006.05.003 10.1016/j.still.2014.10.017 10.1029/2009WR008087 10.1086/623964 10.1016/j.catena.2016.06.019 10.1016/j.agee.2018.10.007 10.1109/34.777370 10.1002/ppp.1737 10.1016/j.agrformet.2018.01.010 10.1016/j.bone.2010.08.023 10.1016/j.still.2012.04.006 10.2136/sssaj2007.0130 10.4141/cjss2012-044 10.2136/sssaj2013.07.0280 10.2134/agronj2016.10.0590 10.1139/e84-073 10.1016/j.geoderma.2017.10.020 10.1016/j.jhydrol.2018.10.016 10.1016/j.still.2004.07.002 10.1016/j.geoderma.2018.05.007 10.1007/s11629-009-1034-2 10.1029/2011JD016429 10.1046/j.1365-2389.2003.00546.x 10.2136/sssaj2016.08.0271 10.1016/j.soilbio.2005.05.014 10.1016/j.geoderma.2019.07.027 10.1016/j.scitotenv.2019.02.284 10.1017/S1431927607074430 10.1111/ejss.12330 10.1134/S1064229318100150 10.1016/j.agwat.2014.12.008 10.1016/j.agrformet.2018.11.011 10.1016/0013-7952(79)90022-X 10.1016/j.jhydrol.2015.02.027 10.1016/S1002-0160(15)60033-9 10.1016/j.geoderma.2011.01.011 10.1016/j.geoderma.2013.04.012 10.1016/j.geoderma.2013.04.004 10.1016/j.still.2016.08.007 10.1007/s00484-004-0248-9 10.1016/S1002-0160(14)60015-1 10.1002/(SICI)1096-9896(199601)178:1<100::AID-PATH429>3.0.CO;2-K 10.1016/j.geoderma.2017.11.009 10.1016/j.coldregions.2019.05.005 10.1126/science.1097394 10.4028/www.scientific.net/AMM.835.525 10.1111/j.1365-2389.2007.00915.x 10.1002/hyp.10939 10.1029/2009WR008070 10.1016/j.jaridenv.2005.04.005 10.2136/sssaj1980.03615995004400050002x 10.1520/GTJ20180204 10.1016/j.geoderma.2015.10.008 10.1016/j.soilbio.2006.11.017 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2021.115170 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2021_115170 S0016706121002500 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-674cc4acdbc6b3ee7f17a78e63f8ab53de9892f6142c960eb6832b0418e120043 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 22:35:12 EDT 2025 Tue Jul 01 04:04:55 EDT 2025 Thu Apr 24 22:50:32 EDT 2025 Fri Feb 23 02:44:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Freeze–thaw effect X–ray computed tomography Pore characteristic Soil water retention capacity Chinese Mollisol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-674cc4acdbc6b3ee7f17a78e63f8ab53de9892f6142c960eb6832b0418e120043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4366-6307 |
PQID | 2551921715 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551921715 crossref_citationtrail_10_1016_j_geoderma_2021_115170 crossref_primary_10_1016_j_geoderma_2021_115170 elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115170 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lu (b0225) 2016; 142(10), 04016051 Toriwaki, Yonekura (b0355) 2002; 17 Fouli, Cade-Menun, Cutforth (b0100) 2013; 93 Watanabe, Kugisaki (b0385) 2017; 31 Bolte, Cordelières (b0030) 2006; 224 Feng, Shang, Liu (b0090) 2009; 40 Fu, Zhao, Li, Li, Hou, Liu, Ji, Gao, Yu (b0110) 2019; 694(1). 133732 Stähli, Nyberg, Mellander, Jansson, Bishop (b0330) 2001; 15 Chen, Li, Hao, Wei (b0065) 2016; 835 Li, Fan (b0200) 2014; 24 Perret, Prasher, Kacimov (b0290) 2003; 54 Peth, Horn, Beckmann, Donath, Fischer, Smucker (b0295) 2008; 72 Wadell (b0370) 1932; 40 Zhao, Shao, Jia (b0440) 2015; 46 Zhou, Peng, Peth, Xiao (b0465) 2012; 124 Ban, Lei, Liu, Chen (b0010) 2017; 148 Zhou, Fang, Hu, Mooney, Dong, Peng (b0455) 2017; 109 Fazzalari, Parkinson (b0085) 1996; 178 Henry (b0145) 2007; 39 Huang, Gascuel-Odoux, Cros-Cayot (b0150) 2001; 46 Zhao, Xu, Liu, Yao, Tuo, Zhang, Xiao, Peng (b0445) 2017; 165 Zhang, Bing, Yang (b0430) 2015; 34 Ratliff, Ritchie, Cassel (b0315) 1983; 47 Ferreira, T., Rasband, W.S., 2012. ImageJ User Guide–IJ 1.46. imagej.nih.gov/ij/docs/guide/ (accessed 2 October 2012). Jarvis (b0180) 2007; 58 Mady, Shein (b0250) 2020; 21 Iassonov, Gebrenegus, Tuller (b0160) 2009; 45 Wu, Ouyang, Hao, Lin, Liu, Wang (b0400) 2018; 328 Xu, Li, Lan, Wang (b0405) 2019; 164 Oh, Lindquies (b0270) 1999; 21 Barnhart, Molotch, Livneh, Harpold, Knowles, Schneider (b0015) 2016; 43 Dal Ferro, Charrier, Morari (b0070) 2013; 204–205 Yang, Wang (b0410) 2019; 265 Peng, Horn, Hallett (b0280) 2015; 146 Perfect, Kay (b0285) 1995; 36 Sun, Fang, Fei, She (b0340) 2019; 50 Gan, Jia, Shao, Guo, Li (b0115) 2019; 272 Li, Shao, Jia (b0205) 2016; 67 Jiang, Fan, Hou, Liu, Guo, Ma (b0185) 2019; 39 Müller, Katuwal, Young, McLeod, Moldrup, deJonge, Clothier (b0255) 2018; 313 Niu, Yang (b0260) 2006; 7 Granger, Gray, Dyck (b0125) 1984; 21 Hayashi, Ken'Ichirou, Mizuyama (b0140) 2006; 331 Ma, Jiang, Liu, Fan (b0245) 2021; 207 Zhou, Li, Lu (b0460) 2009; 6 Whisler, Klute, Millington (b0390) 1968; 32 Capowiez, Bastardie, Costagliola (b0045) 2006; 38 Li, Shao (b0210) 2006; 64 Van Genuchten (b0365) 1980; 44 Dougherty, Kunzelmann (b0080) 2007; 13 Jabro, Iversen, Evans, Allen, Stevens (b0175) 2014; 78 Ma, Cai, Li, Wang, Xiao, Peng, Yang (b0235) 2015; 149 Zhang, Zhao, Zhang, Zheng (b0420) 2018; 51 Liu, Ma, Fan (b0215) 2021; 206 Wolfe, Schwartz, Lakso, Otsuki, Pool, Shaulis (b0395) 2005; 49 Iwata, Hayashi, Suzuki, Hirota, Hasegawa (b0165) 2010; 46 Bagheri, Nezhad, Rezania (b0025) 2020; 43 Doube, KłOsowski, Arganda-Carreras, Cordelières, Dougherty, Jackson, Schmid, Hutchinson, Shefelbine (b0075) 2010; 47 Zhao, Hu, Li (b0450) 2020; 193 Hayashi, Kamp, Schmidt (b0135) 2003; 270 Sakaki, Smits (b0320) 2015; 14 Capowiez, Sammartino, Michel (b0050) 2011; 162 Stähli, Jansson, Lundin (b0325) 1996; 10 Zhang, Wang, Xiao, Qu, Wang, Li, Aurangzeib, Zhang, Liu (b0425) 2020; 707 Pires, Cássaro, Reichardt, Bacchi (b0300) 2008; 100 Huang, Laften (b0155) 1996; 60 Qi, Ma (b0305) 2010; 31 Bhreasail, Lee, Osullivan, Fenton, Hamilton, Rockett, Connolley (b0020) 2012; 23 Chamberlain, Gow (b0055) 1979; 13 Zhang, Ma, Feng, Xiao, Hou (b0435) 2016; 26 Turunen, Warsta, Paasonen-Kivekäs, Nurminen, Alakukku, Myllys, Koivusalo (b0360) 2015; 150 Rabot, Wiesmeier, Schlüter, Vogel (b0310) 2018; 314 Pagliai, Vignozzi, Pellegrini (b0275) 2004; 79 Garbout, Munkholm, Hansen (b0120) 2013; 204–205 Guo, Liu, Anenkhonov, Shangguan, Sandanov, Korolyuk, Hu, Wu (b0130) 2018; 252 Ma, Cai, Wang, Wang, Li, Xiao, Peng (b0240) 2015; 524 Oades (b0265) 1993; 56 Starkloff, Larsbo, Stolte, Hessel, Ritsema (b0335) 2017; 156 Wang, Li, Li, Hou, Xiao, Ren, Xu, Yu, Su (b0375) 2019; 666 Chen, Chen, Jia, Zhao, Zhang (b0060) 2020; 726 Fu, Yan, Li, Li, Hou, Liu, Ji (b0105) 2019; 353 Jiang, Liu, Fan, Ma (b0190) 2019; 56 Wang, Li, Shi, Li, Qin (b0380) 2020; 370 Ala, Liu, Wang, Niu (b0005) 2016; 264 Iwata, Yanai, Yazaki, Hirota (b0170) 2018; 567 Liu, Yang, Zhang, Sun (b0220) 2017; 81 Burt (b0040) 2004 Sun, She, Fei, Wang, Lei (b0345) 2021; 205 Bosson, Sabel, Gustafsson, Sassner, Destouni (b0035) 2012; 117 Kravchenko, Wang, Smucker, Rivers (b0195) 2011; 75 Li, Shi, Flerchinger, Akae, Wang (b0230) 2012; 173–174 Taina, Heck, Deen, Ma (b0350) 2013; 93 Young, Crawford (b0415) 2004; 304 Li (10.1016/j.geoderma.2021.115170_b0210) 2006; 64 Ban (10.1016/j.geoderma.2021.115170_b0010) 2017; 148 Huang (10.1016/j.geoderma.2021.115170_b0150) 2001; 46 Wolfe (10.1016/j.geoderma.2021.115170_b0395) 2005; 49 Jiang (10.1016/j.geoderma.2021.115170_b0185) 2019; 39 Iassonov (10.1016/j.geoderma.2021.115170_b0160) 2009; 45 Stähli (10.1016/j.geoderma.2021.115170_b0325) 1996; 10 Fu (10.1016/j.geoderma.2021.115170_b0110) 2019; 694(1). 133732 Li (10.1016/j.geoderma.2021.115170_b0230) 2012; 173–174 Fu (10.1016/j.geoderma.2021.115170_b0105) 2019; 353 Peng (10.1016/j.geoderma.2021.115170_b0280) 2015; 146 Garbout (10.1016/j.geoderma.2021.115170_b0120) 2013; 204–205 Lu (10.1016/j.geoderma.2021.115170_b0225) 2016; 142(10), 04016051 Toriwaki (10.1016/j.geoderma.2021.115170_b0355) 2002; 17 Whisler (10.1016/j.geoderma.2021.115170_b0390) 1968; 32 Li (10.1016/j.geoderma.2021.115170_b0205) 2016; 67 Yang (10.1016/j.geoderma.2021.115170_b0410) 2019; 265 Zhang (10.1016/j.geoderma.2021.115170_b0435) 2016; 26 Bolte (10.1016/j.geoderma.2021.115170_b0030) 2006; 224 Granger (10.1016/j.geoderma.2021.115170_b0125) 1984; 21 Sakaki (10.1016/j.geoderma.2021.115170_b0320) 2015; 14 Barnhart (10.1016/j.geoderma.2021.115170_b0015) 2016; 43 Taina (10.1016/j.geoderma.2021.115170_b0350) 2013; 93 Fazzalari (10.1016/j.geoderma.2021.115170_b0085) 1996; 178 Fouli (10.1016/j.geoderma.2021.115170_b0100) 2013; 93 Wadell (10.1016/j.geoderma.2021.115170_b0370) 1932; 40 Dougherty (10.1016/j.geoderma.2021.115170_b0080) 2007; 13 Watanabe (10.1016/j.geoderma.2021.115170_b0385) 2017; 31 Pagliai (10.1016/j.geoderma.2021.115170_b0275) 2004; 79 Peth (10.1016/j.geoderma.2021.115170_b0295) 2008; 72 Liu (10.1016/j.geoderma.2021.115170_b0220) 2017; 81 Ma (10.1016/j.geoderma.2021.115170_b0240) 2015; 524 Wu (10.1016/j.geoderma.2021.115170_b0400) 2018; 328 Zhang (10.1016/j.geoderma.2021.115170_b0430) 2015; 34 Doube (10.1016/j.geoderma.2021.115170_b0075) 2010; 47 Hayashi (10.1016/j.geoderma.2021.115170_b0140) 2006; 331 Li (10.1016/j.geoderma.2021.115170_b0200) 2014; 24 Gan (10.1016/j.geoderma.2021.115170_b0115) 2019; 272 Capowiez (10.1016/j.geoderma.2021.115170_b0045) 2006; 38 Wang (10.1016/j.geoderma.2021.115170_b0380) 2020; 370 10.1016/j.geoderma.2021.115170_b0095 Niu (10.1016/j.geoderma.2021.115170_b0260) 2006; 7 Oades (10.1016/j.geoderma.2021.115170_b0265) 1993; 56 Ratliff (10.1016/j.geoderma.2021.115170_b0315) 1983; 47 Chamberlain (10.1016/j.geoderma.2021.115170_b0055) 1979; 13 Rabot (10.1016/j.geoderma.2021.115170_b0310) 2018; 314 Mady (10.1016/j.geoderma.2021.115170_b0250) 2020; 21 Bhreasail (10.1016/j.geoderma.2021.115170_b0020) 2012; 23 Xu (10.1016/j.geoderma.2021.115170_b0405) 2019; 164 Zhang (10.1016/j.geoderma.2021.115170_b0425) 2020; 707 Hayashi (10.1016/j.geoderma.2021.115170_b0135) 2003; 270 Sun (10.1016/j.geoderma.2021.115170_b0340) 2019; 50 Stähli (10.1016/j.geoderma.2021.115170_b0330) 2001; 15 Van Genuchten (10.1016/j.geoderma.2021.115170_b0365) 1980; 44 Oh (10.1016/j.geoderma.2021.115170_b0270) 1999; 21 Qi (10.1016/j.geoderma.2021.115170_b0305) 2010; 31 Chen (10.1016/j.geoderma.2021.115170_b0065) 2016; 835 Ma (10.1016/j.geoderma.2021.115170_b0235) 2015; 149 Zhao (10.1016/j.geoderma.2021.115170_b0445) 2017; 165 Starkloff (10.1016/j.geoderma.2021.115170_b0335) 2017; 156 Bosson (10.1016/j.geoderma.2021.115170_b0035) 2012; 117 Perret (10.1016/j.geoderma.2021.115170_b0290) 2003; 54 Henry (10.1016/j.geoderma.2021.115170_b0145) 2007; 39 Ala (10.1016/j.geoderma.2021.115170_b0005) 2016; 264 Iwata (10.1016/j.geoderma.2021.115170_b0165) 2010; 46 Zhang (10.1016/j.geoderma.2021.115170_b0420) 2018; 51 Huang (10.1016/j.geoderma.2021.115170_b0155) 1996; 60 Kravchenko (10.1016/j.geoderma.2021.115170_b0195) 2011; 75 Bagheri (10.1016/j.geoderma.2021.115170_b0025) 2020; 43 Zhao (10.1016/j.geoderma.2021.115170_b0440) 2015; 46 Feng (10.1016/j.geoderma.2021.115170_b0090) 2009; 40 Guo (10.1016/j.geoderma.2021.115170_b0130) 2018; 252 Dal Ferro (10.1016/j.geoderma.2021.115170_b0070) 2013; 204–205 Zhao (10.1016/j.geoderma.2021.115170_b0450) 2020; 193 Zhou (10.1016/j.geoderma.2021.115170_b0455) 2017; 109 Chen (10.1016/j.geoderma.2021.115170_b0060) 2020; 726 Turunen (10.1016/j.geoderma.2021.115170_b0360) 2015; 150 Wang (10.1016/j.geoderma.2021.115170_b0375) 2019; 666 Iwata (10.1016/j.geoderma.2021.115170_b0170) 2018; 567 Jabro (10.1016/j.geoderma.2021.115170_b0175) 2014; 78 Sun (10.1016/j.geoderma.2021.115170_b0345) 2021; 205 Zhou (10.1016/j.geoderma.2021.115170_b0465) 2012; 124 Liu (10.1016/j.geoderma.2021.115170_b0215) 2021; 206 Zhou (10.1016/j.geoderma.2021.115170_b0460) 2009; 6 Müller (10.1016/j.geoderma.2021.115170_b0255) 2018; 313 Jarvis (10.1016/j.geoderma.2021.115170_b0180) 2007; 58 Capowiez (10.1016/j.geoderma.2021.115170_b0050) 2011; 162 Burt (10.1016/j.geoderma.2021.115170_b0040) 2004 Ma (10.1016/j.geoderma.2021.115170_b0245) 2021; 207 Young (10.1016/j.geoderma.2021.115170_b0415) 2004; 304 Pires (10.1016/j.geoderma.2021.115170_b0300) 2008; 100 Jiang (10.1016/j.geoderma.2021.115170_b0190) 2019; 56 Perfect (10.1016/j.geoderma.2021.115170_b0285) 1995; 36 |
References_xml | – volume: 38 start-page: 285 year: 2006 end-page: 293 ident: b0045 article-title: Sublethal effects of imidacloprid on the burrowing behaviour of two earthworm species: Modifications of the 3D burrow systems in artificial cores and consequences on gas diffusion in soil publication-title: Soil Biol. Biochem. – volume: 304 start-page: 1634 year: 2004 end-page: 1637 ident: b0415 article-title: Interactions and self–organization in the soil–microbe complex publication-title: Science – volume: 93 start-page: 485 year: 2013 end-page: 496 ident: b0100 article-title: Freeze–thaw cycles and soil water content effects on infiltration rate of three Saskatchewan soils publication-title: Can. J. Soil Sci. – volume: 524 start-page: 44 year: 2015 end-page: 52 ident: b0240 article-title: Partial least squares regression for linking aggregate pore characteristics to the detachment of undisturbed soil by simulating concentrated flow in Ultisols (subtropical china) publication-title: J. Hydrol. – volume: 207 start-page: 1 year: 2021 end-page: 10 ident: b0245 article-title: Effects of pore structure characterized by synchrotron–based micro–computed tomography on aggregate stability of black soil under freeze–thaw cycles publication-title: Soil Till. Res. – volume: 313 start-page: 82 year: 2018 end-page: 91 ident: b0255 article-title: Characterising and linking X–ray CT derived macroporosity parameters to infiltration in soils with contrasting structures publication-title: Geoderma – volume: 45 start-page: 706 year: 2009 end-page: 715 ident: b0160 article-title: Segmentation of X–ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures publication-title: Water Resour. Res. – volume: 47 start-page: 770 year: 1983 ident: b0315 article-title: Field–measured limits of soil water availability as related to laboratory–measured properties publication-title: Soil Sci. Soc. Am. J. – volume: 109 start-page: 2871 year: 2017 end-page: 2880 ident: b0455 article-title: Inorganic fertilization effects on the structure of a calcareous silt loam soil publication-title: Agron. J. – volume: 331 start-page: 85 year: 2006 end-page: 102 ident: b0140 article-title: Changes in pore size distribution and hydraulic properties of forest soil resulting from structural development publication-title: J. Hydrol. – volume: 44 start-page: 892 year: 1980 end-page: 898 ident: b0365 article-title: A closed–form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. – volume: 56 start-page: 340 year: 2019 end-page: 349 ident: b0190 article-title: Macropore structure characteristics of black soil under freeze–thaw condition publication-title: Acta Pedologica Sinica – volume: 93 start-page: 533 year: 2013 end-page: 553 ident: b0350 article-title: Quantification of freeze–thaw related structure in cultivated topsoils using X–ray computer tomography publication-title: Can. J. Soil Sci. – volume: 148 start-page: 153 year: 2017 end-page: 159 ident: b0010 article-title: Comparative study of erosion processes of thawed and non–frozen soil by concentrated meltwater flow publication-title: Catena – volume: 149 start-page: 1 year: 2015 end-page: 11 ident: b0235 article-title: Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X–ray micro-computed tomography publication-title: Soil Till. Res. – volume: 17 start-page: 183 year: 2002 end-page: 209 ident: b0355 article-title: Euler number and connectivity indexes of a three dimensional digital picture publication-title: Forma – volume: 314 start-page: 122 year: 2018 end-page: 137 ident: b0310 article-title: Soil structure as an indicator of soil functions: A review publication-title: Geoderma – volume: 178 start-page: 100 year: 1996 end-page: 105 ident: b0085 article-title: Fractal dimension and architecture of trabecular bone publication-title: J. Pathol. – volume: 264 start-page: 132 year: 2016 end-page: 139 ident: b0005 article-title: Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere publication-title: Geoderma – volume: 204–205 start-page: 84 year: 2013 end-page: 93 ident: b0070 article-title: Dual–scale micro–CT assessment of soil structure in a long–term fertilization experiment publication-title: Geoderma – volume: 81 start-page: 459 year: 2017 end-page: 467 ident: b0220 article-title: Soil erosion as affected by freeze–thaw regime and initial soil moisture content publication-title: Soil Sci. Soc. Am. J. – volume: 21 start-page: 590 year: 1999 end-page: 602 ident: b0270 article-title: Image thresholding by indicator kriging publication-title: IEEE T. Pattern Anal. – volume: 694(1). 133732 start-page: 1 year: 2019 end-page: 14 ident: b0110 article-title: Effects of biochar application during different periods on soil structures and water retention in seasonally frozen soil areas publication-title: Sci. Total Environ. – volume: 72 start-page: 897 year: 2008 end-page: 907 ident: b0295 article-title: Three–dimensional quantification of intra–aggregate pore–space features using synchrotron–radiation–based microtomography publication-title: Soil Sci. Soc. Am. J. – volume: 353 start-page: 459 year: 2019 end-page: 467 ident: b0105 article-title: Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles publication-title: Geoderma – volume: 272 start-page: 206 year: 2019 end-page: 217 ident: b0115 article-title: Permanent gully increases the heterogeneity of soil water retention capacity across a slope–gully system publication-title: Agr. Ecosyst. Environ. – volume: 24 start-page: 285 year: 2014 end-page: 290 ident: b0200 article-title: Effect of freeze–thaw on water stability of aggregates in a black soil of Northeast China publication-title: Pedosphere – volume: 7 start-page: 937 year: 2006 end-page: 952 ident: b0260 article-title: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale publication-title: J. Hydrometeorol. – volume: 206 start-page: 1 year: 2021 end-page: 11 ident: b0215 article-title: Evaluation of the impact of freeze–thaw cycles on pore structure characteristics of black soil using X–ray computed tomography publication-title: Soil Till. Res. – volume: 835 start-page: 525 year: 2016 end-page: 530 ident: b0065 article-title: Influence of freezing–thawing on shear strength of frozen soil in Northeast China publication-title: Appl. Mech. Mater. – volume: 567 start-page: 280 year: 2018 end-page: 289 ident: b0170 article-title: Effects of a snow–compaction treatment on soil freezing, snowmelt runoff, and soil nitrate movement: a field–scale paired–plot experiment publication-title: J. Hydrol. – volume: 39 start-page: 4080 year: 2019 end-page: 4087 ident: b0185 article-title: Characterization of aggregate microstructure of black soil with different number of freeze–thaw cycles by synchrotron–based micro–computed tomography publication-title: Acta Ecol. Sinica – volume: 193 start-page: 1 year: 2020 end-page: 9 ident: b0450 article-title: Analysis of the intra–aggregate pore structures in three soil types using X–ray computed tomography publication-title: Catena – volume: 162 start-page: 124 year: 2011 end-page: 131 ident: b0050 article-title: Using X–ray tomography to quantify earthworm bioturbation non–destructively in repacked soil cores publication-title: Geoderma – volume: 10 start-page: 1305 year: 1996 end-page: 1316 ident: b0325 article-title: Preferential water flow in a frozen soil – A two-domain model approach publication-title: Hydrol. Process. – volume: 31 start-page: 133 year: 2010 end-page: 143 ident: b0305 article-title: State–of–art of research on mechanical properties of frozen soils publication-title: Rock Soil Mech. – volume: 21 year: 2020 ident: b0250 article-title: Assessment of pore space changes during drying and wetting cycles in hysteresis of soil water retention curve in Russia using X–ray computed tomography publication-title: Geoderma Reg. – volume: 79 start-page: 131 year: 2004 end-page: 143 ident: b0275 article-title: Soil structure and the effect of management practices publication-title: Soil Till. Res. – volume: 47 start-page: 1076 year: 2010 end-page: 1079 ident: b0075 article-title: BoneJ: Free and extensible bone image analysis in imageJ publication-title: Bone – year: 2004 ident: b0040 article-title: Soil survey laboratory methods manual – volume: 142(10), 04016051 start-page: 1 year: 2016 end-page: 15 ident: b0225 article-title: Generalized soil water retention equation for adsorption and capillarity publication-title: J. Geotech. Geoenviron. Eng. – volume: 146 start-page: 1 year: 2015 end-page: 3 ident: b0280 article-title: Soil structure and its functions in ecosystems: Phase matter & scale matter publication-title: Soil Till. Res. – volume: 54 start-page: 569 year: 2003 end-page: 579 ident: b0290 article-title: Mass fractal dimension of soil macropores using computed tomography: From the box–counting to the cube–counting algorithm publication-title: Eur. J. Soil Sci. – volume: 205 start-page: 1 year: 2021 end-page: 12 ident: b0345 article-title: Three–dimensional fractal characteristics of soil pore structure and their relationships with hydraulic parameters in biochar–amended saline soil publication-title: Soil Till. Res. – volume: 43 start-page: 20180204 year: 2020 ident: b0025 article-title: A CRS oedometer cell for unsaturated and non-isothermal tests publication-title: Geotech. Test. J. – volume: 40 start-page: 1006 year: 2009 end-page: 1009 ident: b0090 article-title: Comparative study on the soil water retention curve between macroporous soil and homogeneous soil publication-title: Chin. J. Soil Sci. – volume: 173–174 start-page: 28 year: 2012 end-page: 33 ident: b0230 article-title: Simulation of freezing and thawing soils in Inner Mongolia Hetao Irrigation District, China publication-title: Geoderma – volume: 726 start-page: 1 year: 2020 end-page: 10 ident: b0060 article-title: Influences of forest cover on soil freeze–thaw dynamics and greenhouse gas emissions through the regulation of snow regimes: A comparison study of the farmland and forest plantation publication-title: Sci. Total Environ. – volume: 165 start-page: 239 year: 2017 end-page: 246 ident: b0445 article-title: Quantification of soil aggregate microstructure on abandoned cropland during vegetative succession using synchrotron radiation–based micro–computed tomography publication-title: Soil Till. Res. – volume: 204–205 start-page: 15 year: 2013 end-page: 22 ident: b0120 article-title: Temporal dynamics for soil aggregates determined using X–ray CT scanning publication-title: Geoderma – volume: 224 start-page: 213 year: 2006 end-page: 232 ident: b0030 article-title: A guided tour into subcellular colocalization analysis in light microscopy publication-title: J. Microsc. – volume: 46 start-page: 177 year: 2001 end-page: 188 ident: b0150 article-title: Hillslope topographic and hydrologic effects on overland flow and erosion publication-title: Catena – volume: 51 start-page: 1240 year: 2018 end-page: 1251 ident: b0420 article-title: Research on the influence of water vapor diffusion and evaporation on water and heat transfer in frozen soil publication-title: Eurasian Soil Sci+. – volume: 64 start-page: 77 year: 2006 end-page: 96 ident: b0210 article-title: Change of soil physical properties under long–term natural vegetation restoration in the Loess Plateau of China publication-title: J. Arid Environ. – volume: 370 start-page: 1 year: 2020 end-page: 9 ident: b0380 article-title: Estimating the water characteristic curve for soil containing residual plastic film based on an improved pore–size distribution publication-title: Geoderma – volume: 13 start-page: 1678 year: 2007 end-page: 1679 ident: b0080 article-title: Computing local thickness of 3D structures with imagej publication-title: Microsc. Microanal. – volume: 75 start-page: 1658 year: 2011 end-page: 1666 ident: b0195 article-title: Long–term differences in tillage and land use affect intra–aggregate pore heterogeneity publication-title: Soil Sci. Soc. Am. J. – volume: 43 start-page: 8006 year: 2016 end-page: 8016 ident: b0015 article-title: Snowmelt rate dictates streamflow publication-title: Geophys. Res. Lett. – volume: 58 start-page: 523 year: 2007 end-page: 546 ident: b0180 article-title: A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality publication-title: Eur. J. Soil Sci. – volume: 32 start-page: 167 year: 1968 end-page: 174 ident: b0390 article-title: Analysis of steady–state evapotranspiration from a soil column publication-title: Soil Sci. Soc. Am. J. – volume: 26 start-page: 167 year: 2016 end-page: 179 ident: b0435 article-title: Reconstruction of soil particle composition during freeze–thaw cycling: A review publication-title: Pedosphere – volume: 6 start-page: 173 year: 2009 end-page: 180 ident: b0460 article-title: Micromorphological analysis of soil structure under no tillage management in the black soil zone of Northeast China publication-title: J. Mt. Sci-Engl. – volume: 60 start-page: 408 year: 1996 end-page: 416 ident: b0155 article-title: Seepage and soil erosion for a clay loam soil publication-title: Soil Sci. Soc. Am. J. – volume: 36 start-page: 1 year: 1995 end-page: 20 ident: b0285 article-title: Applications of fractals in soil and tillage research: a review publication-title: Soil Till. Res. – reference: Ferreira, T., Rasband, W.S., 2012. ImageJ User Guide–IJ 1.46. imagej.nih.gov/ij/docs/guide/ (accessed 2 October 2012). – volume: 15 start-page: 927 year: 2001 end-page: 941 ident: b0330 article-title: Soil frost effects on soil water and runoff dynamics along a boreal transect: 2 Simulations publication-title: Hydrol. Process. – volume: 707 year: 2020 ident: b0425 article-title: Quantitative studies of gully slope erosion and soil physiochemical properties during freeze–thaw cycling in a Mollisol region publication-title: Sci. Total Environ. – volume: 34 start-page: 3597 year: 2015 end-page: 3603 ident: b0430 article-title: Influences of freeze–thaw cycles on mechanical porperties of silty clay based on SEM and MIP test publication-title: Chin. J. Rock Mech. Eng. – volume: 67 start-page: 266 year: 2016 end-page: 275 ident: b0205 article-title: Application of X–ray tomography to quantify macropore characteristics of loess soil under two perennial plants publication-title: Eur. J. Soil Sci. – volume: 56 start-page: 377 year: 1993 end-page: 400 ident: b0265 article-title: The role of biology in the formation, stabilization and degradation of soil structure publication-title: Geoderma – volume: 156 start-page: 365 year: 2017 end-page: 374 ident: b0335 article-title: Quantifying the impact of a succession of freezing–thawing cycles on the pore network of a silty clay loam and a loamy sand topsoil using X–ray tomography publication-title: Catena – volume: 328 start-page: 56 year: 2018 end-page: 65 ident: b0400 article-title: Assessment of soil erosion characteristics in response to temperature and precipitation in a freeze-thaw watershed publication-title: Geoderma – volume: 117 start-page: D05120 year: 2012 ident: b0035 article-title: Influences of shifts in climate, landscape, and permafrost on terrestrial hydrology publication-title: J. Geophys. Res. Atmos. – volume: 252 start-page: 10 year: 2018 end-page: 17 ident: b0130 article-title: Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze–thaw processes publication-title: Agr. Forest. Meteorol. – volume: 78 start-page: 737 year: 2014 end-page: 744 ident: b0175 article-title: Repeated freeze–thaw cycle effects on soil compaction in a clayloam in Northeastern Montana publication-title: Soil Sci. Soc. Am. J. – volume: 100 start-page: 72 year: 2008 end-page: 77 ident: b0300 article-title: Soil porous system changes quantified by analyzing soil water retention curve modifications publication-title: Soil Till. Res. – volume: 40 start-page: 443 year: 1932 end-page: 451 ident: b0370 article-title: Volume, shape, and roundness of rock particles publication-title: J. Geol. – volume: 150 start-page: 139 year: 2015 end-page: 151 ident: b0360 article-title: Effects of terrain slope on long–term and seasonal water balances in clayey, subsurface drained agricultural fields in high latitude conditions publication-title: Agr. Water Manage. – volume: 46 start-page: W09504 year: 2010 ident: b0165 article-title: Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: a paired plot experiment publication-title: Water Resour. Res. – volume: 46 start-page: 68 year: 2015 end-page: 73 ident: b0440 article-title: Study on the effect of freeze–thaw cycles on saturated soil hydraulic conductivity in Loess Area publication-title: Chin. J. Soil Sci. – volume: 14 start-page: 1 year: 2015 end-page: 7 ident: b0320 article-title: Water retention characteristics and pore structure of binary mixtures publication-title: Vadose Zone J. – volume: 49 start-page: 303 year: 2005 end-page: 309 ident: b0395 article-title: Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA publication-title: Int. J. Biometeorol. – volume: 124 start-page: 17 year: 2012 end-page: 23 ident: b0465 article-title: Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron–based micro–computed tomography publication-title: Soil Till. Res. – volume: 21 start-page: 669 year: 1984 end-page: 677 ident: b0125 article-title: Snowmelt infiltration to frozen prairie soil publication-title: Can. J. Earth Sci. – volume: 50 start-page: 242 year: 2019 end-page: 249 ident: b0340 article-title: Structure and hydraulic characteristics of saline soil improved by applying biochar based on micro–CT scanning publication-title: Trans. Chin. Soc. Agr. Mach. – volume: 666 start-page: 721 year: 2019 end-page: 730 ident: b0375 article-title: The effects of freeze–thaw process on soil water migration in dam and slope farmland on the loess plateau, china publication-title: Sci. Total Environ. – volume: 270 start-page: 214 year: 2003 end-page: 229 ident: b0135 article-title: Focused infiltration of snowmelt water in partially frozen soil under small depressions publication-title: J. Hydrol. – volume: 31 start-page: 270 year: 2017 end-page: 278 ident: b0385 article-title: Effect of macropores on soil freezing and thawing with infiltration publication-title: Hydrol. Process. – volume: 164 year: 2019 ident: b0405 article-title: Shear strength and damage mechanism of saline intact loess after freeze–thaw cycling publication-title: Cold Reg. Sci. Technol. – volume: 265 start-page: 280 year: 2019 end-page: 294 ident: b0410 article-title: Water storage effect of soil freeze–thaw process and its impacts on soil hydro–thermal regime variations publication-title: Agr. Forest Meteorol. – volume: 23 start-page: 170 year: 2012 end-page: 176 ident: b0020 article-title: In–situ bservation of cracks in frozen soil using synchrotron tomography publication-title: Permafrost Periglac. – volume: 39 start-page: 977 year: 2007 end-page: 986 ident: b0145 article-title: Soil freeze–thaw cycle experiments: Trends, methodological weaknesses and suggested improvements publication-title: Soil Biol. Biochem. – volume: 13 start-page: 73 year: 1979 end-page: 92 ident: b0055 article-title: Effect of freezing and thawing on the permeability and structure of soils publication-title: Eng. Geol. – volume: 60 start-page: 408 issue: 2 year: 1996 ident: 10.1016/j.geoderma.2021.115170_b0155 article-title: Seepage and soil erosion for a clay loam soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1996.03615995006000020011x – volume: 193 start-page: 1 issue: 104622 year: 2020 ident: 10.1016/j.geoderma.2021.115170_b0450 article-title: Analysis of the intra–aggregate pore structures in three soil types using X–ray computed tomography publication-title: Catena – volume: 14 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.geoderma.2021.115170_b0320 article-title: Water retention characteristics and pore structure of binary mixtures publication-title: Vadose Zone J. doi: 10.2136/vzj2014.06.0065 – volume: 370 start-page: 1 issue: 114341 year: 2020 ident: 10.1016/j.geoderma.2021.115170_b0380 article-title: Estimating the water characteristic curve for soil containing residual plastic film based on an improved pore–size distribution publication-title: Geoderma – volume: 173–174 start-page: 28 year: 2012 ident: 10.1016/j.geoderma.2021.115170_b0230 article-title: Simulation of freezing and thawing soils in Inner Mongolia Hetao Irrigation District, China publication-title: Geoderma doi: 10.1016/j.geoderma.2012.01.009 – year: 2004 ident: 10.1016/j.geoderma.2021.115170_b0040 – volume: 149 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2021.115170_b0235 article-title: Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X–ray micro-computed tomography publication-title: Soil Till. Res. doi: 10.1016/j.still.2014.12.016 – volume: 707 year: 2020 ident: 10.1016/j.geoderma.2021.115170_b0425 article-title: Quantitative studies of gully slope erosion and soil physiochemical properties during freeze–thaw cycling in a Mollisol region publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.136191 – volume: 7 start-page: 937 issue: 5 year: 2006 ident: 10.1016/j.geoderma.2021.115170_b0260 article-title: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale publication-title: J. Hydrometeorol. doi: 10.1175/JHM538.1 – volume: 34 start-page: 3597 issue: S1 year: 2015 ident: 10.1016/j.geoderma.2021.115170_b0430 article-title: Influences of freeze–thaw cycles on mechanical porperties of silty clay based on SEM and MIP test publication-title: Chin. J. Rock Mech. Eng. – volume: 270 start-page: 214 issue: 3–4 year: 2003 ident: 10.1016/j.geoderma.2021.115170_b0135 article-title: Focused infiltration of snowmelt water in partially frozen soil under small depressions publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00287-1 – volume: 15 start-page: 927 issue: 6 year: 2001 ident: 10.1016/j.geoderma.2021.115170_b0330 article-title: Soil frost effects on soil water and runoff dynamics along a boreal transect: 2 Simulations publication-title: Hydrol. Process. doi: 10.1002/hyp.232 – volume: 93 start-page: 485 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2021.115170_b0100 article-title: Freeze–thaw cycles and soil water content effects on infiltration rate of three Saskatchewan soils publication-title: Can. J. Soil Sci. doi: 10.4141/cjss2012-060 – volume: 39 start-page: 4080 issue: 11 year: 2019 ident: 10.1016/j.geoderma.2021.115170_b0185 article-title: Characterization of aggregate microstructure of black soil with different number of freeze–thaw cycles by synchrotron–based micro–computed tomography publication-title: Acta Ecol. Sinica – volume: 75 start-page: 1658 year: 2011 ident: 10.1016/j.geoderma.2021.115170_b0195 article-title: Long–term differences in tillage and land use affect intra–aggregate pore heterogeneity publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0096 – volume: 100 start-page: 72 issue: 1–2 year: 2008 ident: 10.1016/j.geoderma.2021.115170_b0300 article-title: Soil porous system changes quantified by analyzing soil water retention curve modifications publication-title: Soil Till. Res. doi: 10.1016/j.still.2008.04.007 – volume: 47 start-page: 770 issue: 4 year: 1983 ident: 10.1016/j.geoderma.2021.115170_b0315 article-title: Field–measured limits of soil water availability as related to laboratory–measured properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1983.03615995004700040032x – volume: 50 start-page: 242 issue: 2 year: 2019 ident: 10.1016/j.geoderma.2021.115170_b0340 article-title: Structure and hydraulic characteristics of saline soil improved by applying biochar based on micro–CT scanning publication-title: Trans. Chin. Soc. Agr. Mach. – volume: 694(1). 133732 start-page: 1 year: 2019 ident: 10.1016/j.geoderma.2021.115170_b0110 article-title: Effects of biochar application during different periods on soil structures and water retention in seasonally frozen soil areas publication-title: Sci. Total Environ. – volume: 36 start-page: 1 issue: 1–2 year: 1995 ident: 10.1016/j.geoderma.2021.115170_b0285 article-title: Applications of fractals in soil and tillage research: a review publication-title: Soil Till. Res. doi: 10.1016/0167-1987(96)81397-3 – volume: 46 start-page: 68 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2021.115170_b0440 article-title: Study on the effect of freeze–thaw cycles on saturated soil hydraulic conductivity in Loess Area publication-title: Chin. J. Soil Sci. – volume: 10 start-page: 1305 year: 1996 ident: 10.1016/j.geoderma.2021.115170_b0325 article-title: Preferential water flow in a frozen soil – A two-domain model approach publication-title: Hydrol. Process. doi: 10.1002/(SICI)1099-1085(199610)10:10<1305::AID-HYP462>3.0.CO;2-F – volume: 56 start-page: 377 year: 1993 ident: 10.1016/j.geoderma.2021.115170_b0265 article-title: The role of biology in the formation, stabilization and degradation of soil structure publication-title: Geoderma doi: 10.1016/0016-7061(93)90123-3 – volume: 43 start-page: 8006 issue: 15 year: 2016 ident: 10.1016/j.geoderma.2021.115170_b0015 article-title: Snowmelt rate dictates streamflow publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL069690 – volume: 224 start-page: 213 issue: 3 year: 2006 ident: 10.1016/j.geoderma.2021.115170_b0030 article-title: A guided tour into subcellular colocalization analysis in light microscopy publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2006.01706.x – volume: 156 start-page: 365 year: 2017 ident: 10.1016/j.geoderma.2021.115170_b0335 article-title: Quantifying the impact of a succession of freezing–thawing cycles on the pore network of a silty clay loam and a loamy sand topsoil using X–ray tomography publication-title: Catena doi: 10.1016/j.catena.2017.04.026 – volume: 207 start-page: 1 issue: 104855 year: 2021 ident: 10.1016/j.geoderma.2021.115170_b0245 article-title: Effects of pore structure characterized by synchrotron–based micro–computed tomography on aggregate stability of black soil under freeze–thaw cycles publication-title: Soil Till. Res. – volume: 32 start-page: 167 issue: 2 year: 1968 ident: 10.1016/j.geoderma.2021.115170_b0390 article-title: Analysis of steady–state evapotranspiration from a soil column publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1968.03615995003200020009x – volume: 206 start-page: 1 issue: 104810 year: 2021 ident: 10.1016/j.geoderma.2021.115170_b0215 article-title: Evaluation of the impact of freeze–thaw cycles on pore structure characteristics of black soil using X–ray computed tomography publication-title: Soil Till. Res. – volume: 31 start-page: 133 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2021.115170_b0305 article-title: State–of–art of research on mechanical properties of frozen soils publication-title: Rock Soil Mech. – volume: 331 start-page: 85 issue: 1–2 year: 2006 ident: 10.1016/j.geoderma.2021.115170_b0140 article-title: Changes in pore size distribution and hydraulic properties of forest soil resulting from structural development publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.05.003 – volume: 146 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2021.115170_b0280 article-title: Soil structure and its functions in ecosystems: Phase matter & scale matter publication-title: Soil Till. Res. doi: 10.1016/j.still.2014.10.017 – volume: 46 start-page: 177 issue: 2 year: 2001 ident: 10.1016/j.geoderma.2021.115170_b0150 article-title: Hillslope topographic and hydrologic effects on overland flow and erosion publication-title: Catena – volume: 45 start-page: 706 issue: 9 year: 2009 ident: 10.1016/j.geoderma.2021.115170_b0160 article-title: Segmentation of X–ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures publication-title: Water Resour. Res. doi: 10.1029/2009WR008087 – volume: 40 start-page: 443 year: 1932 ident: 10.1016/j.geoderma.2021.115170_b0370 article-title: Volume, shape, and roundness of rock particles publication-title: J. Geol. doi: 10.1086/623964 – volume: 148 start-page: 153 year: 2017 ident: 10.1016/j.geoderma.2021.115170_b0010 article-title: Comparative study of erosion processes of thawed and non–frozen soil by concentrated meltwater flow publication-title: Catena doi: 10.1016/j.catena.2016.06.019 – ident: 10.1016/j.geoderma.2021.115170_b0095 – volume: 142(10), 04016051 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2021.115170_b0225 article-title: Generalized soil water retention equation for adsorption and capillarity publication-title: J. Geotech. Geoenviron. Eng. – volume: 272 start-page: 206 year: 2019 ident: 10.1016/j.geoderma.2021.115170_b0115 article-title: Permanent gully increases the heterogeneity of soil water retention capacity across a slope–gully system publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2018.10.007 – volume: 21 start-page: 590 issue: 7 year: 1999 ident: 10.1016/j.geoderma.2021.115170_b0270 article-title: Image thresholding by indicator kriging publication-title: IEEE T. Pattern Anal. doi: 10.1109/34.777370 – volume: 23 start-page: 170 issue: 2 year: 2012 ident: 10.1016/j.geoderma.2021.115170_b0020 article-title: In–situ bservation of cracks in frozen soil using synchrotron tomography publication-title: Permafrost Periglac. doi: 10.1002/ppp.1737 – volume: 252 start-page: 10 year: 2018 ident: 10.1016/j.geoderma.2021.115170_b0130 article-title: Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze–thaw processes publication-title: Agr. Forest. Meteorol. doi: 10.1016/j.agrformet.2018.01.010 – volume: 47 start-page: 1076 issue: 6 year: 2010 ident: 10.1016/j.geoderma.2021.115170_b0075 article-title: BoneJ: Free and extensible bone image analysis in imageJ publication-title: Bone doi: 10.1016/j.bone.2010.08.023 – volume: 124 start-page: 17 year: 2012 ident: 10.1016/j.geoderma.2021.115170_b0465 article-title: Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron–based micro–computed tomography publication-title: Soil Till. Res. doi: 10.1016/j.still.2012.04.006 – volume: 72 start-page: 897 issue: 4 year: 2008 ident: 10.1016/j.geoderma.2021.115170_b0295 article-title: Three–dimensional quantification of intra–aggregate pore–space features using synchrotron–radiation–based microtomography publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0130 – volume: 93 start-page: 533 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2021.115170_b0350 article-title: Quantification of freeze–thaw related structure in cultivated topsoils using X–ray computer tomography publication-title: Can. J. Soil Sci. doi: 10.4141/cjss2012-044 – volume: 78 start-page: 737 issue: 3 year: 2014 ident: 10.1016/j.geoderma.2021.115170_b0175 article-title: Repeated freeze–thaw cycle effects on soil compaction in a clayloam in Northeastern Montana publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.07.0280 – volume: 109 start-page: 2871 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2021.115170_b0455 article-title: Inorganic fertilization effects on the structure of a calcareous silt loam soil publication-title: Agron. J. doi: 10.2134/agronj2016.10.0590 – volume: 21 start-page: 669 year: 1984 ident: 10.1016/j.geoderma.2021.115170_b0125 article-title: Snowmelt infiltration to frozen prairie soil publication-title: Can. J. Earth Sci. doi: 10.1139/e84-073 – volume: 313 start-page: 82 year: 2018 ident: 10.1016/j.geoderma.2021.115170_b0255 article-title: Characterising and linking X–ray CT derived macroporosity parameters to infiltration in soils with contrasting structures publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.020 – volume: 567 start-page: 280 year: 2018 ident: 10.1016/j.geoderma.2021.115170_b0170 article-title: Effects of a snow–compaction treatment on soil freezing, snowmelt runoff, and soil nitrate movement: a field–scale paired–plot experiment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.10.016 – volume: 79 start-page: 131 issue: 2 year: 2004 ident: 10.1016/j.geoderma.2021.115170_b0275 article-title: Soil structure and the effect of management practices publication-title: Soil Till. Res. doi: 10.1016/j.still.2004.07.002 – volume: 205 start-page: 1 issue: 104809 year: 2021 ident: 10.1016/j.geoderma.2021.115170_b0345 article-title: Three–dimensional fractal characteristics of soil pore structure and their relationships with hydraulic parameters in biochar–amended saline soil publication-title: Soil Till. Res. – volume: 328 start-page: 56 year: 2018 ident: 10.1016/j.geoderma.2021.115170_b0400 article-title: Assessment of soil erosion characteristics in response to temperature and precipitation in a freeze-thaw watershed publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.007 – volume: 6 start-page: 173 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2021.115170_b0460 article-title: Micromorphological analysis of soil structure under no tillage management in the black soil zone of Northeast China publication-title: J. Mt. Sci-Engl. doi: 10.1007/s11629-009-1034-2 – volume: 117 start-page: D05120 issue: D5 year: 2012 ident: 10.1016/j.geoderma.2021.115170_b0035 article-title: Influences of shifts in climate, landscape, and permafrost on terrestrial hydrology publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2011JD016429 – volume: 54 start-page: 569 year: 2003 ident: 10.1016/j.geoderma.2021.115170_b0290 article-title: Mass fractal dimension of soil macropores using computed tomography: From the box–counting to the cube–counting algorithm publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2003.00546.x – volume: 40 start-page: 1006 issue: 5 year: 2009 ident: 10.1016/j.geoderma.2021.115170_b0090 article-title: Comparative study on the soil water retention curve between macroporous soil and homogeneous soil publication-title: Chin. J. Soil Sci. – volume: 81 start-page: 459 issue: 3 year: 2017 ident: 10.1016/j.geoderma.2021.115170_b0220 article-title: Soil erosion as affected by freeze–thaw regime and initial soil moisture content publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2016.08.0271 – volume: 38 start-page: 285 issue: 2 year: 2006 ident: 10.1016/j.geoderma.2021.115170_b0045 article-title: Sublethal effects of imidacloprid on the burrowing behaviour of two earthworm species: Modifications of the 3D burrow systems in artificial cores and consequences on gas diffusion in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.05.014 – volume: 353 start-page: 459 year: 2019 ident: 10.1016/j.geoderma.2021.115170_b0105 article-title: Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles publication-title: Geoderma doi: 10.1016/j.geoderma.2019.07.027 – volume: 56 start-page: 340 issue: 2 year: 2019 ident: 10.1016/j.geoderma.2021.115170_b0190 article-title: Macropore structure characteristics of black soil under freeze–thaw condition publication-title: Acta Pedologica Sinica – volume: 666 start-page: 721 year: 2019 ident: 10.1016/j.geoderma.2021.115170_b0375 article-title: The effects of freeze–thaw process on soil water migration in dam and slope farmland on the loess plateau, china publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.284 – volume: 13 start-page: 1678 issue: S02 year: 2007 ident: 10.1016/j.geoderma.2021.115170_b0080 article-title: Computing local thickness of 3D structures with imagej publication-title: Microsc. Microanal. doi: 10.1017/S1431927607074430 – volume: 67 start-page: 266 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2021.115170_b0205 article-title: Application of X–ray tomography to quantify macropore characteristics of loess soil under two perennial plants publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12330 – volume: 51 start-page: 1240 issue: 10 year: 2018 ident: 10.1016/j.geoderma.2021.115170_b0420 article-title: Research on the influence of water vapor diffusion and evaporation on water and heat transfer in frozen soil publication-title: Eurasian Soil Sci+. doi: 10.1134/S1064229318100150 – volume: 21 year: 2020 ident: 10.1016/j.geoderma.2021.115170_b0250 article-title: Assessment of pore space changes during drying and wetting cycles in hysteresis of soil water retention curve in Russia using X–ray computed tomography publication-title: Geoderma Reg. – volume: 150 start-page: 139 year: 2015 ident: 10.1016/j.geoderma.2021.115170_b0360 article-title: Effects of terrain slope on long–term and seasonal water balances in clayey, subsurface drained agricultural fields in high latitude conditions publication-title: Agr. Water Manage. doi: 10.1016/j.agwat.2014.12.008 – volume: 265 start-page: 280 year: 2019 ident: 10.1016/j.geoderma.2021.115170_b0410 article-title: Water storage effect of soil freeze–thaw process and its impacts on soil hydro–thermal regime variations publication-title: Agr. Forest Meteorol. doi: 10.1016/j.agrformet.2018.11.011 – volume: 13 start-page: 73 issue: 1 year: 1979 ident: 10.1016/j.geoderma.2021.115170_b0055 article-title: Effect of freezing and thawing on the permeability and structure of soils publication-title: Eng. Geol. doi: 10.1016/0013-7952(79)90022-X – volume: 524 start-page: 44 year: 2015 ident: 10.1016/j.geoderma.2021.115170_b0240 article-title: Partial least squares regression for linking aggregate pore characteristics to the detachment of undisturbed soil by simulating concentrated flow in Ultisols (subtropical china) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.02.027 – volume: 26 start-page: 167 issue: 2 year: 2016 ident: 10.1016/j.geoderma.2021.115170_b0435 article-title: Reconstruction of soil particle composition during freeze–thaw cycling: A review publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60033-9 – volume: 162 start-page: 124 year: 2011 ident: 10.1016/j.geoderma.2021.115170_b0050 article-title: Using X–ray tomography to quantify earthworm bioturbation non–destructively in repacked soil cores publication-title: Geoderma doi: 10.1016/j.geoderma.2011.01.011 – volume: 204–205 start-page: 84 year: 2013 ident: 10.1016/j.geoderma.2021.115170_b0070 article-title: Dual–scale micro–CT assessment of soil structure in a long–term fertilization experiment publication-title: Geoderma doi: 10.1016/j.geoderma.2013.04.012 – volume: 204–205 start-page: 15 year: 2013 ident: 10.1016/j.geoderma.2021.115170_b0120 article-title: Temporal dynamics for soil aggregates determined using X–ray CT scanning publication-title: Geoderma doi: 10.1016/j.geoderma.2013.04.004 – volume: 165 start-page: 239 year: 2017 ident: 10.1016/j.geoderma.2021.115170_b0445 article-title: Quantification of soil aggregate microstructure on abandoned cropland during vegetative succession using synchrotron radiation–based micro–computed tomography publication-title: Soil Till. Res. doi: 10.1016/j.still.2016.08.007 – volume: 49 start-page: 303 year: 2005 ident: 10.1016/j.geoderma.2021.115170_b0395 article-title: Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-004-0248-9 – volume: 726 start-page: 1 issue: 138403 year: 2020 ident: 10.1016/j.geoderma.2021.115170_b0060 article-title: Influences of forest cover on soil freeze–thaw dynamics and greenhouse gas emissions through the regulation of snow regimes: A comparison study of the farmland and forest plantation publication-title: Sci. Total Environ. – volume: 24 start-page: 285 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2021.115170_b0200 article-title: Effect of freeze–thaw on water stability of aggregates in a black soil of Northeast China publication-title: Pedosphere doi: 10.1016/S1002-0160(14)60015-1 – volume: 178 start-page: 100 issue: 1 year: 1996 ident: 10.1016/j.geoderma.2021.115170_b0085 article-title: Fractal dimension and architecture of trabecular bone publication-title: J. Pathol. doi: 10.1002/(SICI)1096-9896(199601)178:1<100::AID-PATH429>3.0.CO;2-K – volume: 17 start-page: 183 issue: 3 year: 2002 ident: 10.1016/j.geoderma.2021.115170_b0355 article-title: Euler number and connectivity indexes of a three dimensional digital picture publication-title: Forma – volume: 314 start-page: 122 year: 2018 ident: 10.1016/j.geoderma.2021.115170_b0310 article-title: Soil structure as an indicator of soil functions: A review publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.009 – volume: 164 year: 2019 ident: 10.1016/j.geoderma.2021.115170_b0405 article-title: Shear strength and damage mechanism of saline intact loess after freeze–thaw cycling publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2019.05.005 – volume: 304 start-page: 1634 issue: 5677 year: 2004 ident: 10.1016/j.geoderma.2021.115170_b0415 article-title: Interactions and self–organization in the soil–microbe complex publication-title: Science doi: 10.1126/science.1097394 – volume: 835 start-page: 525 year: 2016 ident: 10.1016/j.geoderma.2021.115170_b0065 article-title: Influence of freezing–thawing on shear strength of frozen soil in Northeast China publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.835.525 – volume: 58 start-page: 523 year: 2007 ident: 10.1016/j.geoderma.2021.115170_b0180 article-title: A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2007.00915.x – volume: 31 start-page: 270 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2021.115170_b0385 article-title: Effect of macropores on soil freezing and thawing with infiltration publication-title: Hydrol. Process. doi: 10.1002/hyp.10939 – volume: 46 start-page: W09504 issue: 9 year: 2010 ident: 10.1016/j.geoderma.2021.115170_b0165 article-title: Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: a paired plot experiment publication-title: Water Resour. Res. doi: 10.1029/2009WR008070 – volume: 64 start-page: 77 issue: 1 year: 2006 ident: 10.1016/j.geoderma.2021.115170_b0210 article-title: Change of soil physical properties under long–term natural vegetation restoration in the Loess Plateau of China publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2005.04.005 – volume: 44 start-page: 892 issue: 5 year: 1980 ident: 10.1016/j.geoderma.2021.115170_b0365 article-title: A closed–form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400050002x – volume: 43 start-page: 20180204 issue: 1 year: 2020 ident: 10.1016/j.geoderma.2021.115170_b0025 article-title: A CRS oedometer cell for unsaturated and non-isothermal tests publication-title: Geotech. Test. J. doi: 10.1520/GTJ20180204 – volume: 264 start-page: 132 year: 2016 ident: 10.1016/j.geoderma.2021.115170_b0005 article-title: Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere publication-title: Geoderma doi: 10.1016/j.geoderma.2015.10.008 – volume: 39 start-page: 977 issue: 5 year: 2007 ident: 10.1016/j.geoderma.2021.115170_b0145 article-title: Soil freeze–thaw cycle experiments: Trends, methodological weaknesses and suggested improvements publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.11.017 |
SSID | ssj0017020 |
Score | 2.5502388 |
Snippet | [Display omitted]
•Freeze–thaw effects significantly changed the pore structure of Chinese Mollisol.•Changes in pore structure caused by freeze–thaw affect... Studies have shown that the effects of freeze–thaw action on soil structure have become more frequent and intense with the global warming, in turn, affects the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115170 |
SubjectTerms | Chinese Mollisol field capacity freeze-thaw cycles Freeze–thaw effect Mollisols Pore characteristic porosity runoff snowmelt soil erosion soil pore system soil water retention Soil water retention capacity water content water holding capacity X-radiation X–ray computed tomography |
Title | Linking soil water retention capacity to pore structure characteristics based on X-ray computed tomography: Chinese Mollisol under freeze-thaw effect |
URI | https://dx.doi.org/10.1016/j.geoderma.2021.115170 https://www.proquest.com/docview/2551921715 |
Volume | 401 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoEDKi9RHtUgcTW7jmMn4baqqJZHe6LS3izbmcBWZbfKLqrKgX_B_2UmdiqKkHrgmCgTRTPjeSgz3yfEaxNKE0wIEsvoZam7VtZRN7LT0VK7UpsCuVE8PrHz0_LDwix2xOG4C8NjlTn2p5g-ROt8Z5K1OblYLnnHV9lqOiBgcSLnvr0sK_byNz-vxzxUNc3QjMpKfvqPLeEzshETjg34Q4Wi6GEUkxb_O0H9FaqH_HO0J-7nwhFm6dseiB1cPRT3Zl_6DJ6Bj8SvT4kIATbr5TlcUhXZQ89FMSsfIqXFSDU3bNdARTdCgo4lSYg3UZuBU1sLJLOQvb-CmJgfWpL8lhGu3wITb-MG4ZhRvcmBgbfReuh6xB8ot1_9JaRZkcfi9Ojd58O5zLQL0mtbb6WtyhhLH9sQbdCIVacqX9VodVf7YHSLTd0UHeX1IlL_g8FSVAjTUtWo-MzpJ2J3tV7hUwGdjcZGqjFiEXmnlXpDr7FmXDClVdfsCzPq2sWMSc7UGOduHD47c6ONHNvIJRvti8m13EVC5bhVohlN6W74l6PUcavsq9H2jg4f_1HxK1x_3zjqxxhPrlLm2X-8_7m4y1dpw_GF2CXr40sqdbbhYPDlA3Fn9v7j_OQ3H9MBNw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9swDBWK9LDtMOwT6z45YFchkWXJ9m5BsSJdk5xaIDfBkuktRZcUToai_R_7vyMjuViHAT3saoOGIVLkIyS-J8Qn43PjjfcS81DLXLeNLIOuZKuDpXalNBlyozib28lZ_nVhFnvisJ-F4WuVKffHnL7L1unJMK3m8HK55BlfZYvRjgGLCzn17fvMTmUGYn98fDKZ3x4mFKPEzqisZIM_BoXPyU2sObajIMoUJRCjWLf43zXqr2y9K0FHT8TjhB1hHH_vqdjD1TPxaPytS_wZ-Fz8mkYtBNislxdwRUCyg45xMa8_BKqMgWA3bNdAuBshsseSJYS7xM3A1a0BslnIrr6GEMUfGrL8kUiuPwNrb-MGYcbE3hTDwANpHbQd4g3K7ff6CuJ1kRfi7OjL6eFEJuUFWWtbbqUt8hDyOjQ-WK8Ri1YVdVGi1W1Ze6MbrMoqa6m0Z4FaIPSWEoMf5apExdtOvxSD1XqFrwS0NhgbCGaELPBYK7WHtcaSqcGUVm11IEy_1i4kWnJWx7hw_f2zc9f7yLGPXPTRgRje2l1GYo57Larele5OiDmqHvfafux972j_8aFKvcL1z42jlowp5QplXv_H9z-IB5PT2dRNj-cnb8RDfhMHHt-KAUUCviPks_XvU2T_BuLOA-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+soil+water+retention+capacity+to+pore+structure+characteristics+based+on+X-ray+computed+tomography%3A+Chinese+Mollisol+under+freeze-thaw+effect&rft.jtitle=Geoderma&rft.au=Liu%2C+Bo&rft.au=Fan%2C+Haoming&rft.au=Han%2C+Wei&rft.au=Zhu%2C+Longxiang&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=401&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115170&rft.externalDocID=S0016706121002500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |