Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China

Soil salinization is one of the most important causes for land degradation and desertification and is an important threat to land management, farming activities, water quality, and sustainable development in arid and semi-arid areas. Soil salinization is often characterized with significant spatiote...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 353; pp. 172 - 187
Main Authors Wang, Jingzhe, Ding, Jianli, Yu, Danlin, Ma, Xuankai, Zhang, Zipeng, Ge, Xiangyu, Teng, Dexiong, Li, Xiaohang, Liang, Jing, Lizaga, Ivan, Chen, Xiangyue, Yuan, Lin, Guo, Yahui
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil salinization is one of the most important causes for land degradation and desertification and is an important threat to land management, farming activities, water quality, and sustainable development in arid and semi-arid areas. Soil salinization is often characterized with significant spatiotemporal dynamics. The salt-affected soil is predominant in the Ebinur Lake region in the Northwestern China. However, detailed local soil salinity information is ambiguous at the best due to limited monitoring techniques. Nowadays, the availability of Multi-Spectral Instrument (MSI) onboard Sentinel-2, offers unprecedented perspectives for the monitoring and mapping of soil salinity. The use of MSI data is an innovative attempt for salinity detection in arid land. We hypothesize that field observations and MSI data and MSI data-derived spectral indices using the partial least square regression (PLSR) approach will yield fairly accurate regional salinity map. Based on electrical conductivity of 1:5 soil:water extract (EC) of 72 ground-truth measurements (out of 116 sample sites) and various spectral parameters, such as satellite band reflectance, published satellite salinity indices, red-edge indices, newly constructed two-band indices, and three-band indices from MSI data, we built a few inversion models in an attempt to produce the regional salinity maps. Different algorithms including Pearson correlation coefficient method (PCC), variable importance in projection (VIP), Gray relational analysis (GRA), and random forest (RF) were applied for variable selection. The results suggest that both the newly proposed normalized difference index (NDI) [(B12 − B7) / (B12 + B7)] and three-band index (TBI4) [(B12 − B3) / (B3 − B11)] show a better correlation with validation data and could be applied to estimate the soil salinity in the Ebinur Lake region. The established models were validated using the remaining 44 independent ground-based measurements. The RF-PLSR model performed the best across the five models with R2V, RMSEV, and RPD of 0.92, 7.58 dS m−1, and 2.36, respectively. The result from this model was then used to map the soil salinity over the study area. Our analyses suggest that soil salinization changes quite significantly in different seasons. Specifically, soil salinity in the dry season was higher than in the wet season, mostly in the lake area and nearby shores. We contend that the results from the study will be useful for soil salinization monitoring and land reclamation in arid or semi-arid regions outside the current study area. •The introduction of red-edge bands can enhance the sensitivities of the indices to soil salinity.•Three-band index [(B12 − B3) / (B3 − B11)] shows a best correlation (r = 0.544) with measured EC.•RF-PLSR model was proved a suitable method for soil salinity estimating and mapping.•The study shows a large variability in soil salinity in dry and wet seasons.
AbstractList Soil salinization is one of the most important causes for land degradation and desertification and is an important threat to land management, farming activities, water quality, and sustainable development in arid and semi-arid areas. Soil salinization is often characterized with significant spatiotemporal dynamics. The salt-affected soil is predominant in the Ebinur Lake region in the Northwestern China. However, detailed local soil salinity information is ambiguous at the best due to limited monitoring techniques. Nowadays, the availability of Multi-Spectral Instrument (MSI) onboard Sentinel-2, offers unprecedented perspectives for the monitoring and mapping of soil salinity. The use of MSI data is an innovative attempt for salinity detection in arid land. We hypothesize that field observations and MSI data and MSI data-derived spectral indices using the partial least square regression (PLSR) approach will yield fairly accurate regional salinity map. Based on electrical conductivity of 1:5 soil:water extract (EC) of 72 ground-truth measurements (out of 116 sample sites) and various spectral parameters, such as satellite band reflectance, published satellite salinity indices, red-edge indices, newly constructed two-band indices, and three-band indices from MSI data, we built a few inversion models in an attempt to produce the regional salinity maps. Different algorithms including Pearson correlation coefficient method (PCC), variable importance in projection (VIP), Gray relational analysis (GRA), and random forest (RF) were applied for variable selection. The results suggest that both the newly proposed normalized difference index (NDI) [(B12 − B7) / (B12 + B7)] and three-band index (TBI4) [(B12 − B3) / (B3 − B11)] show a better correlation with validation data and could be applied to estimate the soil salinity in the Ebinur Lake region. The established models were validated using the remaining 44 independent ground-based measurements. The RF-PLSR model performed the best across the five models with R2V, RMSEV, and RPD of 0.92, 7.58 dS m−1, and 2.36, respectively. The result from this model was then used to map the soil salinity over the study area. Our analyses suggest that soil salinization changes quite significantly in different seasons. Specifically, soil salinity in the dry season was higher than in the wet season, mostly in the lake area and nearby shores. We contend that the results from the study will be useful for soil salinization monitoring and land reclamation in arid or semi-arid regions outside the current study area. •The introduction of red-edge bands can enhance the sensitivities of the indices to soil salinity.•Three-band index [(B12 − B3) / (B3 − B11)] shows a best correlation (r = 0.544) with measured EC.•RF-PLSR model was proved a suitable method for soil salinity estimating and mapping.•The study shows a large variability in soil salinity in dry and wet seasons.
Soil salinization is one of the most important causes for land degradation and desertification and is an important threat to land management, farming activities, water quality, and sustainable development in arid and semi-arid areas. Soil salinization is often characterized with significant spatiotemporal dynamics. The salt-affected soil is predominant in the Ebinur Lake region in the Northwestern China. However, detailed local soil salinity information is ambiguous at the best due to limited monitoring techniques. Nowadays, the availability of Multi-Spectral Instrument (MSI) onboard Sentinel-2, offers unprecedented perspectives for the monitoring and mapping of soil salinity. The use of MSI data is an innovative attempt for salinity detection in arid land. We hypothesize that field observations and MSI data and MSI data-derived spectral indices using the partial least square regression (PLSR) approach will yield fairly accurate regional salinity map. Based on electrical conductivity of 1:5 soil:water extract (EC) of 72 ground-truth measurements (out of 116 sample sites) and various spectral parameters, such as satellite band reflectance, published satellite salinity indices, red-edge indices, newly constructed two-band indices, and three-band indices from MSI data, we built a few inversion models in an attempt to produce the regional salinity maps. Different algorithms including Pearson correlation coefficient method (PCC), variable importance in projection (VIP), Gray relational analysis (GRA), and random forest (RF) were applied for variable selection. The results suggest that both the newly proposed normalized difference index (NDI) [(B12 − B7) / (B12 + B7)] and three-band index (TBI4) [(B12 − B3) / (B3 − B11)] show a better correlation with validation data and could be applied to estimate the soil salinity in the Ebinur Lake region. The established models were validated using the remaining 44 independent ground-based measurements. The RF-PLSR model performed the best across the five models with R2V, RMSEV, and RPD of 0.92, 7.58 dS m−1, and 2.36, respectively. The result from this model was then used to map the soil salinity over the study area. Our analyses suggest that soil salinization changes quite significantly in different seasons. Specifically, soil salinity in the dry season was higher than in the wet season, mostly in the lake area and nearby shores. We contend that the results from the study will be useful for soil salinization monitoring and land reclamation in arid or semi-arid regions outside the current study area.
Author Wang, Jingzhe
Li, Xiaohang
Teng, Dexiong
Lizaga, Ivan
Chen, Xiangyue
Yu, Danlin
Ding, Jianli
Yuan, Lin
Guo, Yahui
Zhang, Zipeng
Ge, Xiangyu
Liang, Jing
Ma, Xuankai
Author_xml – sequence: 1
  givenname: Jingzhe
  surname: Wang
  fullname: Wang, Jingzhe
  organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China
– sequence: 2
  givenname: Jianli
  surname: Ding
  fullname: Ding, Jianli
  organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China
– sequence: 3
  givenname: Danlin
  surname: Yu
  fullname: Yu, Danlin
  organization: School of Sociology and Population Studies, Renmin University of China, Beijing, 100872, China
– sequence: 4
  givenname: Xuankai
  surname: Ma
  fullname: Ma, Xuankai
  organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China
– sequence: 5
  givenname: Zipeng
  surname: Zhang
  fullname: Zhang, Zipeng
  organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China
– sequence: 6
  givenname: Xiangyu
  surname: Ge
  fullname: Ge, Xiangyu
  organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China
– sequence: 7
  givenname: Dexiong
  surname: Teng
  fullname: Teng, Dexiong
  organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China
– sequence: 8
  givenname: Xiaohang
  surname: Li
  fullname: Li, Xiaohang
  organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China
– sequence: 9
  givenname: Jing
  surname: Liang
  fullname: Liang, Jing
  organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China
– sequence: 10
  givenname: Ivan
  surname: Lizaga
  fullname: Lizaga, Ivan
  organization: Department of Soil and Water, Estación Experimental de Aula Dei (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
– sequence: 11
  givenname: Xiangyue
  surname: Chen
  fullname: Chen, Xiangyue
  organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China
– sequence: 12
  givenname: Lin
  surname: Yuan
  fullname: Yuan, Lin
  organization: School of Architecture, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
– sequence: 13
  givenname: Yahui
  surname: Guo
  fullname: Guo, Yahui
  organization: Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
BookMark eNqFkc9u1DAQxi3USmwLr4B85NAE20mcjcQBtCpQaRGHtlJv1jiZbGdJ7GB7i_YpeGUSFi5cepo_-n6fNPNdsDPnHTL2RopcCqnf7fMd-g7DCLkSssmFzkUpXrCVXNcq06pqzthKzMqsFlq-ZBcx7uexFkqs2K8NTGBpoHTkvue36BI5HDLFv97e8A4S8N4HPnpHyQdyOw6u4yNM09LPRPQ08AgDucWCHO_C8Y_mJyYeEaJ3cVmnR-TXltwh8C18Rx5wR95d8QdyewK3u-KbR3Lwip33MER8_bdesvtP13ebL9n22-ebzcdtBoVep6zqm7q3pWoKbVuwfQWVXStryworURdWCV1r6LXGUqLtRDNf3rTrWpaF7kGp4pK9PflOwf84YExmpNjiMIBDf4hGFaJSSlXlItUnaRt8jAF7MwUaIRyNFGZJwOzNvwTMkoAR2swJzOD7_8CWEqT57BSAhufxDycc5z88EQYTW0LXYkcB22Q6T89Z_AZyv6lf
CitedBy_id crossref_primary_10_1007_s40808_024_02050_y
crossref_primary_10_3390_rs13214283
crossref_primary_10_1007_s12665_022_10310_2
crossref_primary_10_3390_rs13224643
crossref_primary_10_7717_peerj_10585
crossref_primary_10_1016_j_still_2024_106124
crossref_primary_10_3390_land13060877
crossref_primary_10_1007_s11356_023_27516_x
crossref_primary_10_1007_s40333_023_0094_4
crossref_primary_10_1016_j_catena_2023_107375
crossref_primary_10_7717_peerj_18186
crossref_primary_10_3389_fenvs_2022_994260
crossref_primary_10_1007_s10661_024_13030_1
crossref_primary_10_1016_j_geoderma_2020_114858
crossref_primary_10_1080_01431161_2022_2155080
crossref_primary_10_3390_agronomy15010018
crossref_primary_10_1007_s40333_022_0077_x
crossref_primary_10_3389_fpls_2024_1332788
crossref_primary_10_1016_j_compag_2021_106031
crossref_primary_10_1371_journal_pone_0305758
crossref_primary_10_3389_fmars_2022_895172
crossref_primary_10_1002_ldr_4815
crossref_primary_10_1016_j_scitotenv_2023_162558
crossref_primary_10_1016_j_jag_2022_102839
crossref_primary_10_1016_j_geoderma_2021_115656
crossref_primary_10_1111_sum_12772
crossref_primary_10_1117_1_JRS_17_018502
crossref_primary_10_1016_j_jhydrol_2022_128416
crossref_primary_10_3390_rs13081562
crossref_primary_10_3390_rs14051201
crossref_primary_10_3390_rs14184658
crossref_primary_10_1108_GS_05_2022_0049
crossref_primary_10_1109_JSTARS_2022_3145874
crossref_primary_10_3390_rs14133020
crossref_primary_10_3389_feart_2023_1186779
crossref_primary_10_1016_j_agwat_2022_107538
crossref_primary_10_1007_s12517_022_09762_4
crossref_primary_10_1016_j_geoderma_2023_116738
crossref_primary_10_3390_rs15041066
crossref_primary_10_1016_j_scitotenv_2019_136092
crossref_primary_10_3390_su15129440
crossref_primary_10_1016_j_catena_2022_106529
crossref_primary_10_1371_journal_pone_0246672
crossref_primary_10_3390_rs14132985
crossref_primary_10_1007_s10661_021_09543_8
crossref_primary_10_1007_s43538_023_00157_x
crossref_primary_10_3390_agriculture14071200
crossref_primary_10_3390_biology10111114
crossref_primary_10_3390_rs15184400
crossref_primary_10_1016_j_geoderma_2020_114729
crossref_primary_10_1016_j_catena_2021_105546
crossref_primary_10_3390_agriengineering7030089
crossref_primary_10_1016_j_rsase_2020_100398
crossref_primary_10_1080_01431161_2021_2009589
crossref_primary_10_1080_01431161_2024_2412804
crossref_primary_10_3390_drones6090257
crossref_primary_10_1134_S2079096122020056
crossref_primary_10_3390_rs13204165
crossref_primary_10_35784_iapgos_5903
crossref_primary_10_3390_rs12172794
crossref_primary_10_1080_19475705_2020_1721573
crossref_primary_10_1007_s10661_024_13055_6
crossref_primary_10_3390_rs14225639
crossref_primary_10_1080_00103624_2023_2211111
crossref_primary_10_1016_j_agwat_2020_106387
crossref_primary_10_3390_rs16081338
crossref_primary_10_1016_j_scitotenv_2021_151882
crossref_primary_10_1016_j_ecolind_2022_109330
crossref_primary_10_3390_app112311145
crossref_primary_10_3390_rs17060987
crossref_primary_10_1016_j_agwat_2024_108718
crossref_primary_10_3390_rs13040769
crossref_primary_10_3390_w17050673
crossref_primary_10_1016_j_still_2023_105744
crossref_primary_10_1016_j_agwat_2024_109007
crossref_primary_10_3390_rs15082104
crossref_primary_10_3389_feart_2022_923447
crossref_primary_10_3390_rs14112602
crossref_primary_10_3389_fpls_2024_1358965
crossref_primary_10_1016_j_pce_2022_103230
crossref_primary_10_3390_land14020297
crossref_primary_10_3390_pollutants4010001
crossref_primary_10_1155_2024_8180765
crossref_primary_10_4081_ija_2022_2126
crossref_primary_10_1080_10106049_2022_2076918
crossref_primary_10_3390_s22166124
crossref_primary_10_2139_ssrn_4116046
crossref_primary_10_3390_s22186890
crossref_primary_10_1016_j_scitotenv_2020_142661
crossref_primary_10_1016_j_catena_2022_106900
crossref_primary_10_1016_j_pedsph_2023_05_004
crossref_primary_10_3390_rs13091729
crossref_primary_10_1016_j_rsase_2023_100969
crossref_primary_10_1016_j_nexus_2025_100374
crossref_primary_10_3390_rs14081804
crossref_primary_10_1016_j_ecolind_2023_110087
crossref_primary_10_3390_rs14071581
crossref_primary_10_1016_j_rsase_2024_101318
crossref_primary_10_1016_j_pce_2023_103400
crossref_primary_10_3390_ijerph20042853
crossref_primary_10_3390_rs14133077
crossref_primary_10_1016_j_still_2021_105284
crossref_primary_10_1016_j_envres_2023_117570
crossref_primary_10_1080_20442041_2021_1924034
crossref_primary_10_3390_rs13234825
crossref_primary_10_1016_j_geoderma_2022_115935
crossref_primary_10_1016_j_scitotenv_2019_136336
crossref_primary_10_1016_j_agwat_2024_109147
crossref_primary_10_1016_j_envpol_2020_115412
crossref_primary_10_3390_rs16173145
crossref_primary_10_3390_s24154930
crossref_primary_10_1080_01431161_2021_1978579
crossref_primary_10_3390_soilsystems9010026
crossref_primary_10_1016_j_ecolind_2022_109648
crossref_primary_10_1109_ACCESS_2020_3020325
crossref_primary_10_3390_rs14194962
crossref_primary_10_1016_j_saa_2022_121416
crossref_primary_10_1038_s41598_024_60033_6
crossref_primary_10_3390_f15010218
crossref_primary_10_3390_rs16244812
crossref_primary_10_24057_2071_9388_2021_006
crossref_primary_10_1016_j_geodrs_2023_e00695
crossref_primary_10_1080_01431161_2023_2209917
crossref_primary_10_3390_rs16040684
crossref_primary_10_1016_j_envres_2020_110636
crossref_primary_10_1080_01431161_2023_2235640
crossref_primary_10_3390_rs15143591
crossref_primary_10_1016_j_scitotenv_2021_146253
crossref_primary_10_1016_j_scitotenv_2024_176620
crossref_primary_10_1016_j_jag_2021_102387
crossref_primary_10_1016_j_scitotenv_2021_146932
crossref_primary_10_3389_fenvs_2021_712831
crossref_primary_10_3390_rs13020305
crossref_primary_10_1016_j_infrared_2023_104826
crossref_primary_10_3390_s20061795
crossref_primary_10_3390_su12208317
crossref_primary_10_1016_j_ecolind_2023_111437
crossref_primary_10_1016_j_geoderma_2023_116697
crossref_primary_10_1016_j_apsoil_2024_105742
crossref_primary_10_1016_j_geoderma_2022_116093
crossref_primary_10_2139_ssrn_3950157
crossref_primary_10_1016_j_ecolind_2023_109904
crossref_primary_10_3390_su11247142
crossref_primary_10_1016_j_geoderma_2020_114793
crossref_primary_10_3390_rs14030472
crossref_primary_10_3390_w14091438
crossref_primary_10_1038_s41598_023_27760_8
crossref_primary_10_1016_j_catena_2023_107197
crossref_primary_10_1016_j_scitotenv_2020_138244
crossref_primary_10_1016_j_agwat_2024_109114
crossref_primary_10_1109_JSTARS_2023_3274579
crossref_primary_10_1016_j_ecolind_2024_112364
crossref_primary_10_7717_peerj_13306
crossref_primary_10_1016_j_saa_2022_121696
crossref_primary_10_1016_j_geoderma_2021_115399
crossref_primary_10_1016_j_asr_2021_10_024
crossref_primary_10_1016_j_atmosenv_2023_119699
crossref_primary_10_1016_j_pce_2020_102895
crossref_primary_10_1080_07038992_2022_2056435
crossref_primary_10_1109_JSTARS_2022_3223935
crossref_primary_10_1002_ldr_4632
crossref_primary_10_3390_rs13234867
crossref_primary_10_1016_j_catena_2022_106492
crossref_primary_10_1016_j_regsus_2021_06_001
crossref_primary_10_1016_j_catena_2024_107824
crossref_primary_10_1016_j_rse_2025_114642
crossref_primary_10_3390_rs16060983
crossref_primary_10_31497_zrzyxb_20210804
crossref_primary_10_1109_TGRS_2022_3227647
crossref_primary_10_3390_rs12030467
crossref_primary_10_1016_j_envres_2022_114870
crossref_primary_10_1051_e3sconf_202022201010
crossref_primary_10_1007_s10653_023_01693_7
crossref_primary_10_3390_land11122307
crossref_primary_10_7717_peerj_9087
crossref_primary_10_1007_s11104_024_06919_w
crossref_primary_10_3390_agriculture13081530
crossref_primary_10_1016_j_jhydrol_2024_131336
crossref_primary_10_2139_ssrn_4020072
crossref_primary_10_1007_s11356_023_30394_y
crossref_primary_10_1016_j_atmosenv_2021_118273
crossref_primary_10_3390_s23157003
crossref_primary_10_1016_j_ecolind_2023_110037
crossref_primary_10_3390_rs16040642
crossref_primary_10_1007_s10661_023_11007_0
crossref_primary_10_1016_j_agwat_2025_109392
crossref_primary_10_3390_f15122126
crossref_primary_10_1371_journal_pone_0307853
crossref_primary_10_3390_s22197226
crossref_primary_10_1016_j_jenvman_2020_111020
crossref_primary_10_3390_land11112070
crossref_primary_10_3390_su16072706
crossref_primary_10_1007_s11769_022_1293_1
crossref_primary_10_3390_rs15133358
crossref_primary_10_3390_w15244256
crossref_primary_10_3390_rs14236010
crossref_primary_10_1002_ldr_4293
crossref_primary_10_3390_land13050659
crossref_primary_10_1016_j_ocecoaman_2021_105922
crossref_primary_10_3390_rs12203399
crossref_primary_10_3390_w12123360
crossref_primary_10_1007_s00202_024_02756_3
crossref_primary_10_3390_land12040877
crossref_primary_10_1080_10106049_2020_1822925
crossref_primary_10_1016_j_saa_2020_118553
crossref_primary_10_1016_j_scitotenv_2021_145807
crossref_primary_10_1016_j_jag_2022_102969
crossref_primary_10_7717_peerj_8530
crossref_primary_10_3390_rs13061047
crossref_primary_10_1016_j_geodrs_2021_e00399
crossref_primary_10_1016_j_catena_2023_107313
crossref_primary_10_1134_S1064229322080075
crossref_primary_10_3389_fenvs_2025_1533419
crossref_primary_10_3390_rs16163071
crossref_primary_10_3390_agronomy14030523
crossref_primary_10_3390_rs14184448
crossref_primary_10_1016_j_ecoinf_2024_102560
crossref_primary_10_1016_j_iswcr_2023_03_002
crossref_primary_10_3390_rs12244118
crossref_primary_10_3390_agriculture12091490
crossref_primary_10_1016_j_catena_2022_106054
crossref_primary_10_1016_j_saa_2022_121647
crossref_primary_10_1002_ldr_4398
crossref_primary_10_3390_rs15245640
crossref_primary_10_3390_su12156117
crossref_primary_10_1080_15481603_2022_2026638
crossref_primary_10_1016_j_geodrs_2021_e00389
crossref_primary_10_1016_j_scitotenv_2022_157416
Cites_doi 10.1109/IGARSS.2015.7326366
10.1016/j.cherd.2015.06.009
10.1016/j.jag.2017.02.003
10.1016/j.scitotenv.2016.09.043
10.3390/rs6021137
10.1016/j.geoderma.2014.07.028
10.1016/j.biosystemseng.2016.04.015
10.1023/A:1010933404324
10.1016/j.scitotenv.2018.09.075
10.1080/01431160601009698
10.1007/s12665-016-6269-y
10.1016/j.isprsjprs.2015.10.005
10.2134/agronj2013.0088
10.1016/j.geoderma.2018.10.025
10.1016/j.rse.2011.11.026
10.3390/rs10060855
10.1016/j.jag.2012.10.008
10.1016/j.jag.2016.03.005
10.1007/s11852-016-0437-9
10.1016/j.geoderma.2005.10.009
10.1016/j.geoderma.2018.08.006
10.1016/j.geodrs.2014.09.002
10.1016/j.agrformet.2015.12.062
10.3390/rs11070736
10.1016/j.jag.2013.06.002
10.1016/j.rse.2018.09.020
10.1080/01431169408954215
10.1134/S0097807817020166
10.1002/ldr.2890
10.1016/j.cie.2007.12.002
10.1016/j.geoderma.2014.03.025
10.1016/0034-4257(83)90010-X
10.1016/j.jag.2016.03.008
10.1371/journal.pone.0184836
10.1016/j.patrec.2010.03.014
10.1007/s12517-015-2004-3
10.1016/j.proeps.2015.08.062
10.1016/j.scitotenv.2018.06.319
10.1016/j.pce.2010.12.004
10.1016/j.atmosres.2016.04.002
10.1016/j.scitotenv.2017.10.025
10.1016/j.rse.2007.02.005
10.1016/j.jaridenv.2005.08.005
10.2134/jeq2009.0140
10.1016/j.jag.2016.05.009
10.7717/peerj.6926
10.1016/j.rse.2018.09.016
10.1016/S0034-4257(00)00180-2
10.1016/S0034-4257(02)00188-8
10.1016/j.ecolind.2015.01.004
10.1111/j.1365-2389.2011.01358.x
10.1016/j.rse.2011.09.026
10.1016/j.agwat.2004.09.038
10.1016/j.fuproc.2005.08.008
10.2136/sssaj2001.652480x
10.1016/j.geoderma.2005.02.003
10.1016/j.catena.2018.09.019
10.1016/j.catena.2019.02.020
10.1016/j.ecolind.2011.03.025
10.1016/j.geoderma.2014.09.011
10.1016/j.ecolind.2016.11.043
10.1016/j.fcr.2010.11.002
10.7717/peerj.4703
10.3390/rs61110813
10.3390/s18113855
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.06.040
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 187
ExternalDocumentID 10_1016_j_geoderma_2019_06_040
S0016706119304100
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-5f97fb42936bcabf5a5b82bb45e5073b20676af66e41ebd090619c871436fa223
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 19:25:12 EDT 2025
Tue Jul 01 04:04:50 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Fri Feb 23 02:27:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spectral indices
Red-edge
Soil salinity
Remote sensing
Sentinel-2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-5f97fb42936bcabf5a5b82bb45e5073b20676af66e41ebd090619c871436fa223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2305222542
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_2305222542
crossref_primary_10_1016_j_geoderma_2019_06_040
crossref_citationtrail_10_1016_j_geoderma_2019_06_040
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_06_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fernández-Manso, Fernández-Manso, Quintano (bb0115) 2016; 50
Zhang, Zeng, Gao, Ouyang, Li, Fang, Zhao (bb0400) 2011; 11
Navarro, Caballero, Silva, Parra, Vázquez, Caldeira (bb0275) 2017; 58
Sibanda, Mutanga, Rouget (bb0315) 2015; 110
Wu, Mhaimeed, Al-Shafie, Ziadat, Dhehibi, Nangia, De Pauw (bb0390) 2014; 2-3
Kobayashi, Lau, Wheaton, Bourke, Kakuta, Tachikawa (bb0185) 2015
Bai, Wang, Zang, Wu, Luo, Wu (bb0025) 2018; 18
Abbas, Khan, Hussain, Hanjra, Akbar (bb0005) 2013; 55-57
Jin, Xu, Song, Li, Wang, Guo (bb0170) 2013; 105
Morán, Granada, Míguez, Porteiro (bb0265) 2006; 87
Khan, Rastoskuev, Sato, Shiozawa (bb0180) 2005; 77
Wang, Tiyip, Ding, Zhang, Liu, Wang, Tashpolat (bb0355) 2017; 12
Fan, Weng, Tao (bb0095) 2016; 52
Lizaga, Gaspar, Quijano, Dercon, Navas (bb0215) 2019; 651
Bannari, El-Battay, Bannari, Rhinane (bb0030) 2018; 10
Triki Fourati, Bouaziz, Benzina, Bouaziz (bb0340) 2015; 8
R Development Core Team (bb0305) 2018
El Harti, Lhissou, Chokmani, Ouzemou, Hassouna, Bachaoui, El Ghmari (bb0085) 2016; 50
Liaw, Wiener (bb0200) 2002; 2
Lobell, Lesch, Corwin, Ulmer, Anderson, Potts, Doolittle, Matos, Baltes (bb0225) 2010; 39
Zou, Zhao, Povey, Mel, Mao (bb0410) 2010; 667
Wold, Martens, Wold (bb0385) 1983
Allbed, Kumar, Aldakheel (bb0015) 2014; 230–231
Lizaga, Quijano, Gaspar, Ramos, Navas (bb0220) 2019; 172
Peng, Xiang, Guo, Shi (bb0285) 2014; 34
Gorji, Sertel, Tanik (bb0140) 2017; 74
Gorji, Tanik, Sertel (bb0135) 2015; 15
Martens, Naes, Naes (bb0250) 1992
Jin, Du, Liu, Wang, Song (bb0175) 2016; 218–219
Allbed, Kumar, Sinha (bb0020) 2014; 6
Genuer, Poggi, Tuleau-Malot (bb0130) 2010; 31
Meng, Zhou, Zhang, Bi (bb0255) 2016; 20
Farifteh, Van der Meer, Atzberger, Carranza (bb0105) 2007; 110
Wang, Ding, Li, Liang, Yu, Aishan, Zhang, Yang, Abulimiti, Liu (bb0365) 2019; 177
Aldabaa, Weindorf, Chakraborty, Sharma, Li (bb0010) 2015; 239-240
Metternicht, Zinck (bb0260) 2003; 85
Louis, Debaecker, Pflug, Main-Knorn, Bieniarz, Müller-Wilm, Cadau, Gascon (bb0230) 2016
He, Geng, Zhu (bb0145) 2015; 102
Kuang, Mouazen (bb0190) 2011; 62
Nawar, Buddenbaum, Hill, Kozak (bb0280) 2014; 6
Deng (bb0065) 2002
Bell, Menges, Ahmad, van Zyl (bb0035) 2001; 75
Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort, Meygret, Spoto, Sy, Marchese, Bargellini (bb0080) 2012; 120
Su, Liu, Wei, Wang, Liu (bb0330) 2016; 23
Wang, Ding, Abulimiti, Cai (bb0360) 2018; 6
Wang, Liu, Yao, Bayin (bb0380) 2017; 44
Ge, Abuduwaili, Ma, Wu, Liu (bb0125) 2016; 178–179
Farifteh, Farshad, George (bb0100) 2006; 130
Kuo, Yang, Huang (bb0195) 2008; 55
Sibanda, Mutanga, Dube, S Vundla, L Mafongoya (bb0320) 2018
Hu, Peng, Zhou, Xu, Zhao, Jiang, Fu, Wang, Shi (bb0160) 2019; 11
Breiman (bb0040) 2001; 45
Hong, Liu, Chen, Liu, Yu, Liu, Cheng (bb0155) 2019; 337
Davis, Wang, Dow (bb0060) 2019
Wang, Tiyip, XIE, FAN, ZHANG, Sawut (bb0350) 2011; 30
Verma, Saxena, Barthwal, Deshmukh (bb0345) 1994; 15
Malenovský, Rott, Cihlar, Schaepman, García-Santos, Fernandes, Berger (bb0245) 2012; 120
Douaoui, Nicolas, Walter (bb0075) 2006; 134
Chang, Laird, Mausbach, Hurburgh (bb0050) 2001; 65
Fernández-Buces, Siebe, Cram, Palacio (bb0110) 2006; 65
Liu, Yin, Kurban, Aishan, You (bb0210) 2016; 75
Cao, Ding, Halik, Su, Ning, Miao, Li (bb0045) 2016; 53
Ma, Yang, Simayi, Gu, Li, Yang, Ding (bb0235) 2018; 29
Sidike, Zhao, Wen (bb0325) 2014; 26
Jackson (bb0165) 1983; 13
ESA (bb0090) 2015
Ling, Zhang, Guo, Xu, Ye, Deng (bb0205) 2017; 574
Peng, Biswas, Jiang, Zhao, Hu, Hu, Shi (bb0295) 2019; 337
Schoeneberger, Wysocki, Benham, Broderson (bb0310) 2002
Tian, Yao, Yang, Cao, Hannaway, Zhu (bb0335) 2011; 120
Yang, Qin, Grussenmeyer, Koehl (bb0395) 2018; 219
Wang, Zhang, Ding, Kung, Latif, Johnson (bb0370) 2018; 615
Clevers, Gitelson (bb0055) 2013; 23
Ma, Wang, Veroustraete, Dong (bb0240) 2007; 28
Peng, Ji, Ma, Li, Chen, Zhou, Shi (bb0290) 2016; 152
Ge, Wang, Ding, Cao, Zhang, Liu, Li (bb0120) 2019; 7
Qing, Yu, Li, Deng (bb0300) 2005; 2005
Zhang, Qi, Gao, Ouyang, Zeng, Zhao (bb0405) 2015; 52
Mueller-Wilm, Devignot, Pessiot (bb0270) 2017
Hong, Chen, Zhang, Chen, Yu, Liu, Liu, Cheng, Liu (bb0150) 2018; 644
Ding, Yu (bb0070) 2014; 235-236
Wang, Zhang, Kung, Johnson (bb0375) 2018; 218
Qing (10.1016/j.geoderma.2019.06.040_bb0300) 2005; 2005
Bannari (10.1016/j.geoderma.2019.06.040_bb0030) 2018; 10
Hong (10.1016/j.geoderma.2019.06.040_bb0155) 2019; 337
Zhang (10.1016/j.geoderma.2019.06.040_bb0405) 2015; 52
Wang (10.1016/j.geoderma.2019.06.040_bb0380) 2017; 44
Meng (10.1016/j.geoderma.2019.06.040_bb0255) 2016; 20
Khan (10.1016/j.geoderma.2019.06.040_bb0180) 2005; 77
Wang (10.1016/j.geoderma.2019.06.040_bb0375) 2018; 218
Yang (10.1016/j.geoderma.2019.06.040_bb0395) 2018; 219
Farifteh (10.1016/j.geoderma.2019.06.040_bb0105) 2007; 110
Farifteh (10.1016/j.geoderma.2019.06.040_bb0100) 2006; 130
Metternicht (10.1016/j.geoderma.2019.06.040_bb0260) 2003; 85
Peng (10.1016/j.geoderma.2019.06.040_bb0285) 2014; 34
Sidike (10.1016/j.geoderma.2019.06.040_bb0325) 2014; 26
El Harti (10.1016/j.geoderma.2019.06.040_bb0085) 2016; 50
Lizaga (10.1016/j.geoderma.2019.06.040_bb0220) 2019; 172
Bai (10.1016/j.geoderma.2019.06.040_bb0025) 2018; 18
Wang (10.1016/j.geoderma.2019.06.040_bb0370) 2018; 615
Jin (10.1016/j.geoderma.2019.06.040_bb0175) 2016; 218–219
Allbed (10.1016/j.geoderma.2019.06.040_bb0015) 2014; 230–231
Ge (10.1016/j.geoderma.2019.06.040_bb0120) 2019; 7
Jin (10.1016/j.geoderma.2019.06.040_bb0170) 2013; 105
Wang (10.1016/j.geoderma.2019.06.040_bb0355) 2017; 12
Zou (10.1016/j.geoderma.2019.06.040_bb0410) 2010; 667
Allbed (10.1016/j.geoderma.2019.06.040_bb0020) 2014; 6
Su (10.1016/j.geoderma.2019.06.040_bb0330) 2016; 23
Lizaga (10.1016/j.geoderma.2019.06.040_bb0215) 2019; 651
Liu (10.1016/j.geoderma.2019.06.040_bb0210) 2016; 75
Cao (10.1016/j.geoderma.2019.06.040_bb0045) 2016; 53
Fernández-Manso (10.1016/j.geoderma.2019.06.040_bb0115) 2016; 50
Jackson (10.1016/j.geoderma.2019.06.040_bb0165) 1983; 13
Wold (10.1016/j.geoderma.2019.06.040_bb0385) 1983
Peng (10.1016/j.geoderma.2019.06.040_bb0290) 2016; 152
Breiman (10.1016/j.geoderma.2019.06.040_bb0040) 2001; 45
Nawar (10.1016/j.geoderma.2019.06.040_bb0280) 2014; 6
Schoeneberger (10.1016/j.geoderma.2019.06.040_bb0310) 2002
Wu (10.1016/j.geoderma.2019.06.040_bb0390) 2014; 2-3
Kuang (10.1016/j.geoderma.2019.06.040_bb0190) 2011; 62
Mueller-Wilm (10.1016/j.geoderma.2019.06.040_bb0270) 2017
Chang (10.1016/j.geoderma.2019.06.040_bb0050) 2001; 65
Tian (10.1016/j.geoderma.2019.06.040_bb0335) 2011; 120
Gorji (10.1016/j.geoderma.2019.06.040_bb0140) 2017; 74
Davis (10.1016/j.geoderma.2019.06.040_bb0060) 2019
R Development Core Team (10.1016/j.geoderma.2019.06.040_bb0305) 2018
Malenovský (10.1016/j.geoderma.2019.06.040_bb0245) 2012; 120
Triki Fourati (10.1016/j.geoderma.2019.06.040_bb0340) 2015; 8
Liaw (10.1016/j.geoderma.2019.06.040_bb0200) 2002; 2
Wang (10.1016/j.geoderma.2019.06.040_bb0360) 2018; 6
Hu (10.1016/j.geoderma.2019.06.040_bb0160) 2019; 11
Douaoui (10.1016/j.geoderma.2019.06.040_bb0075) 2006; 134
Kobayashi (10.1016/j.geoderma.2019.06.040_bb0185) 2015
Sibanda (10.1016/j.geoderma.2019.06.040_bb0315) 2015; 110
Ding (10.1016/j.geoderma.2019.06.040_bb0070) 2014; 235-236
Genuer (10.1016/j.geoderma.2019.06.040_bb0130) 2010; 31
Kuo (10.1016/j.geoderma.2019.06.040_bb0195) 2008; 55
Peng (10.1016/j.geoderma.2019.06.040_bb0295) 2019; 337
Aldabaa (10.1016/j.geoderma.2019.06.040_bb0010) 2015; 239-240
Martens (10.1016/j.geoderma.2019.06.040_bb0250) 1992
Ling (10.1016/j.geoderma.2019.06.040_bb0205) 2017; 574
Morán (10.1016/j.geoderma.2019.06.040_bb0265) 2006; 87
Wang (10.1016/j.geoderma.2019.06.040_bb0365) 2019; 177
Deng (10.1016/j.geoderma.2019.06.040_bb0065) 2002
Drusch (10.1016/j.geoderma.2019.06.040_bb0080) 2012; 120
Ge (10.1016/j.geoderma.2019.06.040_bb0125) 2016; 178–179
Clevers (10.1016/j.geoderma.2019.06.040_bb0055) 2013; 23
ESA (10.1016/j.geoderma.2019.06.040_bb0090) 2015
He (10.1016/j.geoderma.2019.06.040_bb0145) 2015; 102
Hong (10.1016/j.geoderma.2019.06.040_bb0150) 2018; 644
Louis (10.1016/j.geoderma.2019.06.040_bb0230) 2016
Ma (10.1016/j.geoderma.2019.06.040_bb0235) 2018; 29
Zhang (10.1016/j.geoderma.2019.06.040_bb0400) 2011; 11
Bell (10.1016/j.geoderma.2019.06.040_bb0035) 2001; 75
Abbas (10.1016/j.geoderma.2019.06.040_bb0005) 2013; 55-57
Fernández-Buces (10.1016/j.geoderma.2019.06.040_bb0110) 2006; 65
Lobell (10.1016/j.geoderma.2019.06.040_bb0225) 2010; 39
Fan (10.1016/j.geoderma.2019.06.040_bb0095) 2016; 52
Navarro (10.1016/j.geoderma.2019.06.040_bb0275) 2017; 58
Wang (10.1016/j.geoderma.2019.06.040_bb0350) 2011; 30
Gorji (10.1016/j.geoderma.2019.06.040_bb0135) 2015; 15
Ma (10.1016/j.geoderma.2019.06.040_bb0240) 2007; 28
Sibanda (10.1016/j.geoderma.2019.06.040_bb0320) 2018
Verma (10.1016/j.geoderma.2019.06.040_bb0345) 1994; 15
References_xml – year: 2017
  ident: bb0270
  article-title: S2 MPC Sen2Cor Configuration and User Manual
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0040
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 62
  start-page: 629
  year: 2011
  end-page: 636
  ident: bb0190
  article-title: Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms
  publication-title: Eur. J. Soil Sci.
– volume: 172
  start-page: 516
  year: 2019
  end-page: 527
  ident: bb0220
  article-title: Linking land use changes to variation in soil properties in a Mediterranean mountain agroecosystem
  publication-title: CATENA
– volume: 337
  start-page: 758
  year: 2019
  end-page: 769
  ident: bb0155
  article-title: Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy
  publication-title: Geoderma
– volume: 615
  start-page: 918
  year: 2018
  end-page: 930
  ident: bb0370
  article-title: Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a bootstrap-BP neural network model and optimal spectral indices
  publication-title: Sci. Total Environ.
– volume: 218
  start-page: 104
  year: 2018
  end-page: 118
  ident: bb0375
  article-title: New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China
  publication-title: Remote Sens. Environ.
– volume: 55
  start-page: 80
  year: 2008
  end-page: 93
  ident: bb0195
  article-title: The use of grey relational analysis in solving multiple attribute decision-making problems
  publication-title: Comput. Ind. Eng.
– volume: 651
  start-page: 250
  year: 2019
  end-page: 260
  ident: bb0215
  article-title: NDVI, 137Cs and nutrients for tracking soil and vegetation development on glacial landforms in the Lake Parón Catchment (Cordillera Blanca, Perú)
  publication-title: Sci. Total Environ.
– volume: 2005
  start-page: 2355
  year: 2005
  end-page: 2357
  ident: bb0300
  article-title: Application of spectral angle mapping model to rapid assessment of soil salinization in arid area
  publication-title: Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium
– volume: 29
  start-page: 551
  year: 2018
  end-page: 562
  ident: bb0235
  article-title: Modeling variations in soil salinity in the oasis of Junggar Basin, China
  publication-title: Land Degrad. Dev.
– volume: 23
  start-page: 344
  year: 2013
  end-page: 351
  ident: bb0055
  article-title: Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 75
  start-page: 375
  year: 2001
  end-page: 384
  ident: bb0035
  article-title: The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 855
  year: 2018
  ident: bb0030
  article-title: Sentinel-MSI VNIR and SWIR bands sensitivity analysis for soil salinity discrimination in an arid landscape
  publication-title: Remote Sens.
– volume: 337
  start-page: 1309
  year: 2019
  end-page: 1319
  ident: bb0295
  article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
  publication-title: Geoderma
– volume: 30
  start-page: 593
  year: 2011
  end-page: 599
  ident: bb0350
  article-title: Assessment of soil salinization sensitivity for different types of land use in the Ebinur Lake region in Xinjiang
  publication-title: Prog. Geogr.
– volume: 120
  start-page: 25
  year: 2012
  end-page: 36
  ident: bb0080
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 409
  year: 1983
  end-page: 421
  ident: bb0165
  article-title: Spectral indices in N-space
  publication-title: Remote Sens. Environ.
– year: 2016
  ident: bb0230
  article-title: SENTINEL-2 SEN2COR: L2A Processor for Users
– volume: 134
  start-page: 217
  year: 2006
  end-page: 230
  ident: bb0075
  article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data
  publication-title: Geoderma
– volume: 2-3
  start-page: 21
  year: 2014
  end-page: 31
  ident: bb0390
  article-title: Mapping soil salinity changes using remote sensing in Central Iraq
  publication-title: Geoderma Regional
– volume: 52
  start-page: 480
  year: 2015
  end-page: 489
  ident: bb0405
  article-title: Detecting soil salinity with MODIS time series VI data
  publication-title: Ecol. Indic.
– year: 2015
  ident: bb0090
  article-title: ESA Introducing Sentinel-2
– volume: 52
  start-page: 32
  year: 2016
  end-page: 41
  ident: bb0095
  article-title: Towards decadal soil salinity mapping using Landsat time series data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: e6926
  year: 2019
  ident: bb0120
  article-title: Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring
  publication-title: PeerJ
– volume: 219
  start-page: 259
  year: 2018
  end-page: 270
  ident: bb0395
  article-title: Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery
  publication-title: Remote Sens. Environ.
– volume: 55-57
  start-page: 43
  year: 2013
  end-page: 52
  ident: bb0005
  article-title: Characterizing soil salinity in irrigated agriculture using a remote sensing approach
  publication-title: Physics and Chemistry of the Earth, Parts A/B/C
– volume: 6
  start-page: 1137
  year: 2014
  end-page: 1157
  ident: bb0020
  article-title: Mapping and modelling spatial variation in soil salinity in the Al Hassa oasis based on remote sensing indicators and regression techniques
  publication-title: Remote Sens.
– volume: 102
  start-page: 1
  year: 2015
  end-page: 11
  ident: bb0145
  article-title: Data driven soft sensor development for complex chemical processes using extreme learning machine
  publication-title: Chem. Eng. Res. Des.
– volume: 218–219
  start-page: 250
  year: 2016
  end-page: 260
  ident: bb0175
  article-title: Remote estimation of soil organic matter content in the Sanjiang Plain, Northeast China: the optimal band algorithm versus the GRA-ANN model
  publication-title: Agric. For. Meteorol.
– volume: 239-240
  start-page: 34
  year: 2015
  end-page: 46
  ident: bb0010
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
– volume: 28
  start-page: 5523
  year: 2007
  end-page: 5533
  ident: bb0240
  article-title: Change in area of Ebinur Lake during the 1998–2005 period
  publication-title: Int. J. Remote Sens.
– volume: 85
  start-page: 1
  year: 2003
  end-page: 20
  ident: bb0260
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sens. Environ.
– volume: 23
  start-page: 252
  year: 2016
  end-page: 256
  ident: bb0330
  article-title: Change of Ebinur Lake area and its response characteristics of the runoff change
  publication-title: Research of Soil and Water Conservation
– volume: 65
  start-page: 644
  year: 2006
  end-page: 667
  ident: bb0110
  article-title: Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico
  publication-title: J. Arid Environ.
– start-page: 1
  year: 2018
  end-page: 19
  ident: bb0320
  article-title: Estimating LAI and mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 MSI derived red edge bands
  publication-title: GIScience & Remote Sensing
– volume: 110
  start-page: 55
  year: 2015
  end-page: 65
  ident: bb0315
  article-title: Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 58
  start-page: 97
  year: 2017
  end-page: 106
  ident: bb0275
  article-title: Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 1552
  year: 2011
  end-page: 1562
  ident: bb0400
  article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity
  publication-title: Ecol. Indic.
– volume: 74
  start-page: 384
  year: 2017
  end-page: 391
  ident: bb0140
  article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey
  publication-title: Ecol. Indic.
– volume: 87
  start-page: 123
  year: 2006
  end-page: 127
  ident: bb0265
  article-title: Use of grey relational analysis to assess and optimize small biomass boilers
  publication-title: Fuel Process. Technol.
– volume: 574
  start-page: 109
  year: 2017
  end-page: 119
  ident: bb0205
  article-title: Negative feedback adjustment challenges reconstruction study from tree rings: a study case of response of Populus euphratica to river discontinuous flow and ecological water conveyance
  publication-title: Sci. Total Environ.
– volume: 644
  start-page: 1232
  year: 2018
  end-page: 1243
  ident: bb0150
  article-title: Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: effects of two-dimensional correlation coefficient and extreme learning machine
  publication-title: Sci. Total Environ.
– volume: 31
  start-page: 2225
  year: 2010
  end-page: 2236
  ident: bb0130
  article-title: Variable selection using random forests
  publication-title: Pattern Recogn. Lett.
– volume: 120
  start-page: 299
  year: 2011
  end-page: 310
  ident: bb0335
  article-title: Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance
  publication-title: Field Crop Res.
– volume: 50
  start-page: 64
  year: 2016
  end-page: 73
  ident: bb0085
  article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 1992
  ident: bb0250
  article-title: Multivariate calibration
– volume: 110
  start-page: 59
  year: 2007
  end-page: 78
  ident: bb0105
  article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN)
  publication-title: Remote Sens. Environ.
– volume: 177
  start-page: 189
  year: 2019
  end-page: 201
  ident: bb0365
  article-title: Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment
  publication-title: CATENA
– start-page: 2684
  year: 2015
  end-page: 2687
  ident: bb0185
  article-title: Mapping of soil salinity using an airborne hyperspectral sensor in Western Australia
  publication-title: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
– volume: 20
  start-page: 271
  year: 2016
  end-page: 279
  ident: bb0255
  article-title: Estimating soil salinity in different landscapes of the Yellow River Delta through Landsat OLI/TIRS and ETM+ data
  publication-title: J. Coast. Conserv.
– volume: 34
  start-page: 510
  year: 2014
  end-page: 514
  ident: bb0285
  article-title: Comparative study on hyperspectral inversion accuracy of soil salt content and electrical conductivity
  publication-title: Spectrosc. Spectr. Anal.
– volume: 6
  start-page: e4703
  year: 2018
  ident: bb0360
  article-title: Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake wetland, Northwest China
  publication-title: PeerJ
– volume: 178–179
  start-page: 196
  year: 2016
  end-page: 206
  ident: bb0125
  article-title: Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China
  publication-title: Atmos. Res.
– volume: 15
  start-page: 507
  year: 2015
  end-page: 512
  ident: bb0135
  article-title: Soil salinity prediction, monitoring and mapping using modern technologies
  publication-title: Procedia Earth and Planetary Science
– volume: 26
  start-page: 156
  year: 2014
  end-page: 175
  ident: bb0325
  article-title: Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 77
  start-page: 96
  year: 2005
  end-page: 109
  ident: bb0180
  article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators
  publication-title: Agric. Water Manag.
– volume: 11
  start-page: 736
  year: 2019
  ident: bb0160
  article-title: Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images
  publication-title: Remote Sens.
– start-page: 1
  year: 2019
  end-page: 20
  ident: bb0060
  article-title: Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: a case study of agricultural lands in coastal North Carolina
  publication-title: Int. J. Remote Sens.
– year: 2018
  ident: bb0305
  article-title: R : A Language and Environment for Statistical Computing
– volume: 12
  start-page: e0184836
  year: 2017
  ident: bb0355
  article-title: Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative
  publication-title: PLoS One
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: bb0050
  article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties journal paper no. J-18766 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, IA
  publication-title: Soil Sci. Soc. Am. J.
– volume: 667
  start-page: 14
  year: 2010
  end-page: 32
  ident: bb0410
  article-title: Variables selection methods in near-infrared spectroscopy
  publication-title: Anal. Chim. Acta
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0200
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 8
  start-page: 11175
  year: 2015
  end-page: 11182
  ident: bb0340
  article-title: Modeling of soil salinity within a semi-arid region using spectral analysis
  publication-title: Arab. J. Geosci.
– year: 2002
  ident: bb0310
  article-title: Field Book for Describing and Sampling Soils, Version 2.0
– volume: 15
  start-page: 1901
  year: 1994
  end-page: 1914
  ident: bb0345
  article-title: Remote sensing technique for mapping salt affected soils
  publication-title: Int. J. Remote Sens.
– volume: 230–231
  start-page: 1
  year: 2014
  end-page: 8
  ident: bb0015
  article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region
  publication-title: Geoderma
– volume: 152
  start-page: 94
  year: 2016
  end-page: 103
  ident: bb0290
  article-title: Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers
  publication-title: Biosyst. Eng.
– volume: 44
  start-page: 204
  year: 2017
  end-page: 215
  ident: bb0380
  article-title: Effect of climate and land use change in Ebinur Lake Basin during the past five decades on hydrology and water resources
  publication-title: Water Resources
– year: 2002
  ident: bb0065
  article-title: Grey System Theory
– volume: 235-236
  start-page: 316
  year: 2014
  end-page: 322
  ident: bb0070
  article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments
  publication-title: Geoderma
– volume: 105
  start-page: 1385
  year: 2013
  end-page: 1392
  ident: bb0170
  article-title: Estimation of leaf water content in winter wheat using Grey relational analysis–partial least squares modeling with hyperspectral data
  publication-title: Agron. J.
– volume: 75
  start-page: 1477
  year: 2016
  ident: bb0210
  article-title: Spatiotemporal dynamics of land cover and their impacts on potential dust source regions in the Tarim Basin, NW China
  publication-title: Environ. Earth Sci.
– volume: 18
  start-page: 3855
  year: 2018
  ident: bb0025
  article-title: Mapping soil alkalinity and salinity in Northern Songnen Plain, China with the HJ-1 hyperspectral imager data and partial least squares regression
  publication-title: Sensors
– volume: 53
  start-page: 1399
  year: 2016
  end-page: 1409
  ident: bb0045
  article-title: Extraction and modeling of regional soil salinization based on data from GF-1 satellite
  publication-title: Acta Pedol. Sin.
– volume: 39
  start-page: 35
  year: 2010
  end-page: 41
  ident: bb0225
  article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI
  publication-title: J. Environ. Qual.
– start-page: 286
  year: 1983
  end-page: 293
  ident: bb0385
  article-title: The Multivariate Calibration Problem in Chemistry Solved by the PLS Method. Matrix Pencils
– volume: 6
  start-page: 10813
  year: 2014
  end-page: 10834
  ident: bb0280
  article-title: Modeling and mapping of soil salinity with reflectance spectroscopy and Landsat data using two quantitative methods (PLSR and MARS)
  publication-title: Remote Sens.
– volume: 120
  start-page: 91
  year: 2012
  end-page: 101
  ident: bb0245
  article-title: Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land
  publication-title: Remote Sens. Environ.
– volume: 130
  start-page: 191
  year: 2006
  end-page: 206
  ident: bb0100
  article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics
  publication-title: Geoderma
– volume: 50
  start-page: 170
  year: 2016
  end-page: 175
  ident: bb0115
  article-title: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 2684
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.040_bb0185
  article-title: Mapping of soil salinity using an airborne hyperspectral sensor in Western Australia
  publication-title: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
  doi: 10.1109/IGARSS.2015.7326366
– volume: 102
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.040_bb0145
  article-title: Data driven soft sensor development for complex chemical processes using extreme learning machine
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.06.009
– volume: 58
  start-page: 97
  year: 2017
  ident: 10.1016/j.geoderma.2019.06.040_bb0275
  article-title: Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2017.02.003
– volume: 574
  start-page: 109
  year: 2017
  ident: 10.1016/j.geoderma.2019.06.040_bb0205
  article-title: Negative feedback adjustment challenges reconstruction study from tree rings: a study case of response of Populus euphratica to river discontinuous flow and ecological water conveyance
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.09.043
– volume: 6
  start-page: 1137
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.040_bb0020
  article-title: Mapping and modelling spatial variation in soil salinity in the Al Hassa oasis based on remote sensing indicators and regression techniques
  publication-title: Remote Sens.
  doi: 10.3390/rs6021137
– year: 2018
  ident: 10.1016/j.geoderma.2019.06.040_bb0305
– volume: 235-236
  start-page: 316
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.040_bb0070
  article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.07.028
– volume: 152
  start-page: 94
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0290
  article-title: Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.04.015
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2019.06.040_bb0040
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2002
  ident: 10.1016/j.geoderma.2019.06.040_bb0065
– volume: 651
  start-page: 250
  year: 2019
  ident: 10.1016/j.geoderma.2019.06.040_bb0215
  article-title: NDVI, 137Cs and nutrients for tracking soil and vegetation development on glacial landforms in the Lake Parón Catchment (Cordillera Blanca, Perú)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.075
– volume: 53
  start-page: 1399
  issue: 6
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0045
  article-title: Extraction and modeling of regional soil salinization based on data from GF-1 satellite
  publication-title: Acta Pedol. Sin.
– volume: 28
  start-page: 5523
  issue: 24
  year: 2007
  ident: 10.1016/j.geoderma.2019.06.040_bb0240
  article-title: Change in area of Ebinur Lake during the 1998–2005 period
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160601009698
– volume: 75
  start-page: 1477
  issue: 23
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0210
  article-title: Spatiotemporal dynamics of land cover and their impacts on potential dust source regions in the Tarim Basin, NW China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-6269-y
– volume: 110
  start-page: 55
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.040_bb0315
  article-title: Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.10.005
– volume: 105
  start-page: 1385
  issue: 5
  year: 2013
  ident: 10.1016/j.geoderma.2019.06.040_bb0170
  article-title: Estimation of leaf water content in winter wheat using Grey relational analysis–partial least squares modeling with hyperspectral data
  publication-title: Agron. J.
  doi: 10.2134/agronj2013.0088
– volume: 337
  start-page: 758
  year: 2019
  ident: 10.1016/j.geoderma.2019.06.040_bb0155
  article-title: Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.10.025
– volume: 120
  start-page: 25
  year: 2012
  ident: 10.1016/j.geoderma.2019.06.040_bb0080
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– volume: 10
  start-page: 855
  issue: 6
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.040_bb0030
  article-title: Sentinel-MSI VNIR and SWIR bands sensitivity analysis for soil salinity discrimination in an arid landscape
  publication-title: Remote Sens.
  doi: 10.3390/rs10060855
– volume: 23
  start-page: 344
  year: 2013
  ident: 10.1016/j.geoderma.2019.06.040_bb0055
  article-title: Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2012.10.008
– volume: 50
  start-page: 170
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0115
  article-title: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.03.005
– volume: 20
  start-page: 271
  issue: 4
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0255
  article-title: Estimating soil salinity in different landscapes of the Yellow River Delta through Landsat OLI/TIRS and ETM+ data
  publication-title: J. Coast. Conserv.
  doi: 10.1007/s11852-016-0437-9
– year: 2002
  ident: 10.1016/j.geoderma.2019.06.040_bb0310
– start-page: 1
  year: 2019
  ident: 10.1016/j.geoderma.2019.06.040_bb0060
  article-title: Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: a case study of agricultural lands in coastal North Carolina
  publication-title: Int. J. Remote Sens.
– volume: 134
  start-page: 217
  issue: 1
  year: 2006
  ident: 10.1016/j.geoderma.2019.06.040_bb0075
  article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.10.009
– volume: 337
  start-page: 1309
  year: 2019
  ident: 10.1016/j.geoderma.2019.06.040_bb0295
  article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.006
– volume: 2-3
  start-page: 21
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.040_bb0390
  article-title: Mapping soil salinity changes using remote sensing in Central Iraq
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2014.09.002
– volume: 218–219
  start-page: 250
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0175
  article-title: Remote estimation of soil organic matter content in the Sanjiang Plain, Northeast China: the optimal band algorithm versus the GRA-ANN model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.12.062
– volume: 30
  start-page: 593
  issue: 5
  year: 2011
  ident: 10.1016/j.geoderma.2019.06.040_bb0350
  article-title: Assessment of soil salinization sensitivity for different types of land use in the Ebinur Lake region in Xinjiang
  publication-title: Prog. Geogr.
– volume: 11
  start-page: 736
  issue: 7
  year: 2019
  ident: 10.1016/j.geoderma.2019.06.040_bb0160
  article-title: Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images
  publication-title: Remote Sens.
  doi: 10.3390/rs11070736
– volume: 26
  start-page: 156
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.040_bb0325
  article-title: Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2013.06.002
– volume: 218
  start-page: 104
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.040_bb0375
  article-title: New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.020
– volume: 15
  start-page: 1901
  issue: 9
  year: 1994
  ident: 10.1016/j.geoderma.2019.06.040_bb0345
  article-title: Remote sensing technique for mapping salt affected soils
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169408954215
– volume: 44
  start-page: 204
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2019.06.040_bb0380
  article-title: Effect of climate and land use change in Ebinur Lake Basin during the past five decades on hydrology and water resources
  publication-title: Water Resources
  doi: 10.1134/S0097807817020166
– volume: 23
  start-page: 252
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0330
  article-title: Change of Ebinur Lake area and its response characteristics of the runoff change
  publication-title: Research of Soil and Water Conservation
– volume: 29
  start-page: 551
  issue: 3
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.040_bb0235
  article-title: Modeling variations in soil salinity in the oasis of Junggar Basin, China
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2890
– volume: 55
  start-page: 80
  issue: 1
  year: 2008
  ident: 10.1016/j.geoderma.2019.06.040_bb0195
  article-title: The use of grey relational analysis in solving multiple attribute decision-making problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2007.12.002
– volume: 667
  start-page: 14
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2019.06.040_bb0410
  article-title: Variables selection methods in near-infrared spectroscopy
  publication-title: Anal. Chim. Acta
– volume: 230–231
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.040_bb0015
  article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.025
– volume: 13
  start-page: 409
  issue: 5
  year: 1983
  ident: 10.1016/j.geoderma.2019.06.040_bb0165
  article-title: Spectral indices in N-space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(83)90010-X
– volume: 2005
  start-page: 2355
  year: 2005
  ident: 10.1016/j.geoderma.2019.06.040_bb0300
  article-title: Application of spectral angle mapping model to rapid assessment of soil salinization in arid area
– volume: 50
  start-page: 64
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0085
  article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.03.008
– year: 1992
  ident: 10.1016/j.geoderma.2019.06.040_bb0250
– volume: 12
  start-page: e0184836
  issue: 9
  year: 2017
  ident: 10.1016/j.geoderma.2019.06.040_bb0355
  article-title: Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0184836
– volume: 31
  start-page: 2225
  issue: 14
  year: 2010
  ident: 10.1016/j.geoderma.2019.06.040_bb0130
  article-title: Variable selection using random forests
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2010.03.014
– volume: 8
  start-page: 11175
  issue: 12
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.040_bb0340
  article-title: Modeling of soil salinity within a semi-arid region using spectral analysis
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-015-2004-3
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.geoderma.2019.06.040_bb0200
  article-title: Classification and regression by randomForest
  publication-title: R News
– year: 2017
  ident: 10.1016/j.geoderma.2019.06.040_bb0270
– volume: 15
  start-page: 507
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.040_bb0135
  article-title: Soil salinity prediction, monitoring and mapping using modern technologies
  publication-title: Procedia Earth and Planetary Science
  doi: 10.1016/j.proeps.2015.08.062
– volume: 644
  start-page: 1232
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.040_bb0150
  article-title: Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: effects of two-dimensional correlation coefficient and extreme learning machine
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.319
– volume: 55-57
  start-page: 43
  year: 2013
  ident: 10.1016/j.geoderma.2019.06.040_bb0005
  article-title: Characterizing soil salinity in irrigated agriculture using a remote sensing approach
  publication-title: Physics and Chemistry of the Earth, Parts A/B/C
  doi: 10.1016/j.pce.2010.12.004
– volume: 178–179
  start-page: 196
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0125
  article-title: Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2016.04.002
– volume: 615
  start-page: 918
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.040_bb0370
  article-title: Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a bootstrap-BP neural network model and optimal spectral indices
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.025
– volume: 110
  start-page: 59
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2019.06.040_bb0105
  article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.005
– volume: 65
  start-page: 644
  issue: 4
  year: 2006
  ident: 10.1016/j.geoderma.2019.06.040_bb0110
  article-title: Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2005.08.005
– volume: 39
  start-page: 35
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2019.06.040_bb0225
  article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0140
– volume: 52
  start-page: 32
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0095
  article-title: Towards decadal soil salinity mapping using Landsat time series data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.05.009
– volume: 7
  start-page: e6926
  year: 2019
  ident: 10.1016/j.geoderma.2019.06.040_bb0120
  article-title: Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring
  publication-title: PeerJ
  doi: 10.7717/peerj.6926
– volume: 219
  start-page: 259
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.040_bb0395
  article-title: Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.016
– volume: 75
  start-page: 375
  issue: 3
  year: 2001
  ident: 10.1016/j.geoderma.2019.06.040_bb0035
  article-title: The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00180-2
– volume: 85
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2019.06.040_bb0260
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00188-8
– volume: 52
  start-page: 480
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.040_bb0405
  article-title: Detecting soil salinity with MODIS time series VI data
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.01.004
– volume: 34
  start-page: 510
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.040_bb0285
  article-title: Comparative study on hyperspectral inversion accuracy of soil salt content and electrical conductivity
  publication-title: Spectrosc. Spectr. Anal.
– start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.040_bb0320
  article-title: Estimating LAI and mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 MSI derived red edge bands
  publication-title: GIScience & Remote Sensing
– volume: 62
  start-page: 629
  issue: 4
  year: 2011
  ident: 10.1016/j.geoderma.2019.06.040_bb0190
  article-title: Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2011.01358.x
– volume: 120
  start-page: 91
  year: 2012
  ident: 10.1016/j.geoderma.2019.06.040_bb0245
  article-title: Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.026
– volume: 77
  start-page: 96
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2019.06.040_bb0180
  article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2004.09.038
– start-page: 286
  year: 1983
  ident: 10.1016/j.geoderma.2019.06.040_bb0385
– volume: 87
  start-page: 123
  issue: 2
  year: 2006
  ident: 10.1016/j.geoderma.2019.06.040_bb0265
  article-title: Use of grey relational analysis to assess and optimize small biomass boilers
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2005.08.008
– volume: 65
  start-page: 480
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2019.06.040_bb0050
  article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties journal paper no. J-18766 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, IA
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652480x
– year: 2016
  ident: 10.1016/j.geoderma.2019.06.040_bb0230
– volume: 130
  start-page: 191
  issue: 3
  year: 2006
  ident: 10.1016/j.geoderma.2019.06.040_bb0100
  article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.02.003
– volume: 172
  start-page: 516
  year: 2019
  ident: 10.1016/j.geoderma.2019.06.040_bb0220
  article-title: Linking land use changes to variation in soil properties in a Mediterranean mountain agroecosystem
  publication-title: CATENA
  doi: 10.1016/j.catena.2018.09.019
– volume: 177
  start-page: 189
  year: 2019
  ident: 10.1016/j.geoderma.2019.06.040_bb0365
  article-title: Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.02.020
– volume: 11
  start-page: 1552
  issue: 6
  year: 2011
  ident: 10.1016/j.geoderma.2019.06.040_bb0400
  article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2011.03.025
– volume: 239-240
  start-page: 34
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.040_bb0010
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.011
– volume: 74
  start-page: 384
  year: 2017
  ident: 10.1016/j.geoderma.2019.06.040_bb0140
  article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2016.11.043
– volume: 120
  start-page: 299
  issue: 2
  year: 2011
  ident: 10.1016/j.geoderma.2019.06.040_bb0335
  article-title: Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2010.11.002
– volume: 6
  start-page: e4703
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.040_bb0360
  article-title: Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake wetland, Northwest China
  publication-title: PeerJ
  doi: 10.7717/peerj.4703
– volume: 6
  start-page: 10813
  issue: 11
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.040_bb0280
  article-title: Modeling and mapping of soil salinity with reflectance spectroscopy and Landsat data using two quantitative methods (PLSR and MARS)
  publication-title: Remote Sens.
  doi: 10.3390/rs61110813
– volume: 18
  start-page: 3855
  issue: 11
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.040_bb0025
  article-title: Mapping soil alkalinity and salinity in Northern Songnen Plain, China with the HJ-1 hyperspectral imager data and partial least squares regression
  publication-title: Sensors
  doi: 10.3390/s18113855
– year: 2015
  ident: 10.1016/j.geoderma.2019.06.040_bb0090
SSID ssj0017020
Score 2.6602185
Snippet Soil salinization is one of the most important causes for land degradation and desertification and is an important threat to land management, farming...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 172
SubjectTerms algorithms
arid lands
China
desertification
dry season
electrical conductivity
farming systems
lakes
land degradation
land restoration
least squares
monitoring
Red-edge
reflectance
Remote sensing
salinity
satellites
semiarid zones
Sentinel-2
Soil salinity
soil salinization
Spectral indices
sustainable development
water quality
wet season
Title Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China
URI https://dx.doi.org/10.1016/j.geoderma.2019.06.040
https://www.proquest.com/docview/2305222542
Volume 353
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXMqh6oMKWoqmEkfSdbK2Nz6uVqClBS6AtDfL3jirLIuD9qGKC3-hf7kz3gQBQuLQY6yMFXnGnm-cmW8YO_SFH-vMl0mWqzwRhUoTbVNUSNHV1nv0QJYKhc8v1PBa_BrJ0QYbtLUwlFbZnP3rMz2e1s1Ip1nNzl1VUY1vqnrojhCCcJFyituF6JGV_3x4TPNIe7yhZkxVQm8_qRKeoo6o4VjkH0p15PGkS5DXHdSLozr6n5MP7H0DHKG__raPbMOHT2y7P5k35Bn-M_s7QM8Xk13voS7hkhKBgp8lGZxfngLlggJCVLiN25ju88CGAm4tUTRMSGJRVzNYWCqWxCmqAMX8Pr7zxy-BbhPRRGkYQSMcY0i9msOZvfFA3R3qcASjKkzR3CZHENty77Drk-OrwTBpGi4ktqvyZSJL3SsdeqiucmPrSmmlyzPnhPQIG7uOqN6VLZXyIvWu4BrXU49zaqGuSotA4wvbDHXwuwwQZ2mei8xxizFYyXVBDeqldJroX7jYY7JdZTNu2MipKcbMtGlnU9Nqx5B2DOXfCb7HOo9yd2s-jjcldKtE88yyDDqNN2V_tFo3uO3oX4oNvl4tDEZukkJlkX39j_m_sXf0tK5t3Geby_nKf0eQs3QH0YoP2Fb_9Pfw4h-g1vwq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaK9LDtMOyJdU8O2LFGZEdSrGMQtEjWJJe2QG6CFMuB01Qu8sDQX7G_PNKRi20Y0MOutikYIiV-lMiPjH3zhV_ozJdJlqs8EYVKE21TVEjR09Z79ECWCoWnMzW6Ft_ncn7Ehm0tDKVVxr3_sKc3u3V80o2z2b2rKqrxTVUf3RFCEC5SjnH7MbFTyQ47HowvRrOHy4Q-j-yMqUpI4LdC4RWqiXqONRREqW6oPOkc5N8-6q_dunFB5y_Y84gdYXD4vZfsyIdX7NlguYn8Gf41-zlE59fku95DXcIl5QIFv04ymF6OgdJBAVEq3DYrmY70wIYCbi2xNCxJYltXa9haqpfEIaoAxea--eaH3wEdKKKV0mPEjXCGUfV-AxN744EaPNThFOZVWKHFLU-h6cz9hl2fn10NR0nsuZDYnsp3iSx1v3TopHrKLawrpZUuz5wT0iNy7Dlie1e2VMqL1LuCa5xPvcipi7oqLWKNt6wT6uDfMUCopXkuMscthmEl1wX1qJfSaWKA4eKEyXaWzSISklNfjLVpM89WptWOIe0YSsET_IR1H-TuDpQcj0roVonmD-My6Dcelf3aat3gyqPrFBt8vd8aDN4kRcsie_8f439hT0ZX04mZjGcXH9hTenModfzIOrvN3n9CzLNzn6NN_wJB1f7b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capability+of+Sentinel-2+MSI+data+for+monitoring+and+mapping+of+soil+salinity+in+dry+and+wet+seasons+in+the+Ebinur+Lake+region%2C+Xinjiang%2C+China&rft.jtitle=Geoderma&rft.au=Wang%2C+Jingzhe&rft.au=Ding%2C+Jianli&rft.au=Yu%2C+Danlin&rft.au=Ma%2C+Xuankai&rft.date=2019-11-01&rft.issn=0016-7061&rft.volume=353+p.172-187&rft.spage=172&rft.epage=187&rft_id=info:doi/10.1016%2Fj.geoderma.2019.06.040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon