Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China
Soil salinization is one of the most important causes for land degradation and desertification and is an important threat to land management, farming activities, water quality, and sustainable development in arid and semi-arid areas. Soil salinization is often characterized with significant spatiote...
Saved in:
Published in | Geoderma Vol. 353; pp. 172 - 187 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil salinization is one of the most important causes for land degradation and desertification and is an important threat to land management, farming activities, water quality, and sustainable development in arid and semi-arid areas. Soil salinization is often characterized with significant spatiotemporal dynamics. The salt-affected soil is predominant in the Ebinur Lake region in the Northwestern China. However, detailed local soil salinity information is ambiguous at the best due to limited monitoring techniques. Nowadays, the availability of Multi-Spectral Instrument (MSI) onboard Sentinel-2, offers unprecedented perspectives for the monitoring and mapping of soil salinity. The use of MSI data is an innovative attempt for salinity detection in arid land. We hypothesize that field observations and MSI data and MSI data-derived spectral indices using the partial least square regression (PLSR) approach will yield fairly accurate regional salinity map. Based on electrical conductivity of 1:5 soil:water extract (EC) of 72 ground-truth measurements (out of 116 sample sites) and various spectral parameters, such as satellite band reflectance, published satellite salinity indices, red-edge indices, newly constructed two-band indices, and three-band indices from MSI data, we built a few inversion models in an attempt to produce the regional salinity maps. Different algorithms including Pearson correlation coefficient method (PCC), variable importance in projection (VIP), Gray relational analysis (GRA), and random forest (RF) were applied for variable selection. The results suggest that both the newly proposed normalized difference index (NDI) [(B12 − B7) / (B12 + B7)] and three-band index (TBI4) [(B12 − B3) / (B3 − B11)] show a better correlation with validation data and could be applied to estimate the soil salinity in the Ebinur Lake region. The established models were validated using the remaining 44 independent ground-based measurements. The RF-PLSR model performed the best across the five models with R2V, RMSEV, and RPD of 0.92, 7.58 dS m−1, and 2.36, respectively. The result from this model was then used to map the soil salinity over the study area. Our analyses suggest that soil salinization changes quite significantly in different seasons. Specifically, soil salinity in the dry season was higher than in the wet season, mostly in the lake area and nearby shores. We contend that the results from the study will be useful for soil salinization monitoring and land reclamation in arid or semi-arid regions outside the current study area.
•The introduction of red-edge bands can enhance the sensitivities of the indices to soil salinity.•Three-band index [(B12 − B3) / (B3 − B11)] shows a best correlation (r = 0.544) with measured EC.•RF-PLSR model was proved a suitable method for soil salinity estimating and mapping.•The study shows a large variability in soil salinity in dry and wet seasons. |
---|---|
AbstractList | Soil salinization is one of the most important causes for land degradation and desertification and is an important threat to land management, farming activities, water quality, and sustainable development in arid and semi-arid areas. Soil salinization is often characterized with significant spatiotemporal dynamics. The salt-affected soil is predominant in the Ebinur Lake region in the Northwestern China. However, detailed local soil salinity information is ambiguous at the best due to limited monitoring techniques. Nowadays, the availability of Multi-Spectral Instrument (MSI) onboard Sentinel-2, offers unprecedented perspectives for the monitoring and mapping of soil salinity. The use of MSI data is an innovative attempt for salinity detection in arid land. We hypothesize that field observations and MSI data and MSI data-derived spectral indices using the partial least square regression (PLSR) approach will yield fairly accurate regional salinity map. Based on electrical conductivity of 1:5 soil:water extract (EC) of 72 ground-truth measurements (out of 116 sample sites) and various spectral parameters, such as satellite band reflectance, published satellite salinity indices, red-edge indices, newly constructed two-band indices, and three-band indices from MSI data, we built a few inversion models in an attempt to produce the regional salinity maps. Different algorithms including Pearson correlation coefficient method (PCC), variable importance in projection (VIP), Gray relational analysis (GRA), and random forest (RF) were applied for variable selection. The results suggest that both the newly proposed normalized difference index (NDI) [(B12 − B7) / (B12 + B7)] and three-band index (TBI4) [(B12 − B3) / (B3 − B11)] show a better correlation with validation data and could be applied to estimate the soil salinity in the Ebinur Lake region. The established models were validated using the remaining 44 independent ground-based measurements. The RF-PLSR model performed the best across the five models with R2V, RMSEV, and RPD of 0.92, 7.58 dS m−1, and 2.36, respectively. The result from this model was then used to map the soil salinity over the study area. Our analyses suggest that soil salinization changes quite significantly in different seasons. Specifically, soil salinity in the dry season was higher than in the wet season, mostly in the lake area and nearby shores. We contend that the results from the study will be useful for soil salinization monitoring and land reclamation in arid or semi-arid regions outside the current study area.
•The introduction of red-edge bands can enhance the sensitivities of the indices to soil salinity.•Three-band index [(B12 − B3) / (B3 − B11)] shows a best correlation (r = 0.544) with measured EC.•RF-PLSR model was proved a suitable method for soil salinity estimating and mapping.•The study shows a large variability in soil salinity in dry and wet seasons. Soil salinization is one of the most important causes for land degradation and desertification and is an important threat to land management, farming activities, water quality, and sustainable development in arid and semi-arid areas. Soil salinization is often characterized with significant spatiotemporal dynamics. The salt-affected soil is predominant in the Ebinur Lake region in the Northwestern China. However, detailed local soil salinity information is ambiguous at the best due to limited monitoring techniques. Nowadays, the availability of Multi-Spectral Instrument (MSI) onboard Sentinel-2, offers unprecedented perspectives for the monitoring and mapping of soil salinity. The use of MSI data is an innovative attempt for salinity detection in arid land. We hypothesize that field observations and MSI data and MSI data-derived spectral indices using the partial least square regression (PLSR) approach will yield fairly accurate regional salinity map. Based on electrical conductivity of 1:5 soil:water extract (EC) of 72 ground-truth measurements (out of 116 sample sites) and various spectral parameters, such as satellite band reflectance, published satellite salinity indices, red-edge indices, newly constructed two-band indices, and three-band indices from MSI data, we built a few inversion models in an attempt to produce the regional salinity maps. Different algorithms including Pearson correlation coefficient method (PCC), variable importance in projection (VIP), Gray relational analysis (GRA), and random forest (RF) were applied for variable selection. The results suggest that both the newly proposed normalized difference index (NDI) [(B12 − B7) / (B12 + B7)] and three-band index (TBI4) [(B12 − B3) / (B3 − B11)] show a better correlation with validation data and could be applied to estimate the soil salinity in the Ebinur Lake region. The established models were validated using the remaining 44 independent ground-based measurements. The RF-PLSR model performed the best across the five models with R2V, RMSEV, and RPD of 0.92, 7.58 dS m−1, and 2.36, respectively. The result from this model was then used to map the soil salinity over the study area. Our analyses suggest that soil salinization changes quite significantly in different seasons. Specifically, soil salinity in the dry season was higher than in the wet season, mostly in the lake area and nearby shores. We contend that the results from the study will be useful for soil salinization monitoring and land reclamation in arid or semi-arid regions outside the current study area. |
Author | Wang, Jingzhe Li, Xiaohang Teng, Dexiong Lizaga, Ivan Chen, Xiangyue Yu, Danlin Ding, Jianli Yuan, Lin Guo, Yahui Zhang, Zipeng Ge, Xiangyu Liang, Jing Ma, Xuankai |
Author_xml | – sequence: 1 givenname: Jingzhe surname: Wang fullname: Wang, Jingzhe organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China – sequence: 2 givenname: Jianli surname: Ding fullname: Ding, Jianli organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China – sequence: 3 givenname: Danlin surname: Yu fullname: Yu, Danlin organization: School of Sociology and Population Studies, Renmin University of China, Beijing, 100872, China – sequence: 4 givenname: Xuankai surname: Ma fullname: Ma, Xuankai organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China – sequence: 5 givenname: Zipeng surname: Zhang fullname: Zhang, Zipeng organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China – sequence: 6 givenname: Xiangyu surname: Ge fullname: Ge, Xiangyu organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China – sequence: 7 givenname: Dexiong surname: Teng fullname: Teng, Dexiong organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China – sequence: 8 givenname: Xiaohang surname: Li fullname: Li, Xiaohang organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China – sequence: 9 givenname: Jing surname: Liang fullname: Liang, Jing organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China – sequence: 10 givenname: Ivan surname: Lizaga fullname: Lizaga, Ivan organization: Department of Soil and Water, Estación Experimental de Aula Dei (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain – sequence: 11 givenname: Xiangyue surname: Chen fullname: Chen, Xiangyue organization: Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China – sequence: 12 givenname: Lin surname: Yuan fullname: Yuan, Lin organization: School of Architecture, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China – sequence: 13 givenname: Yahui surname: Guo fullname: Guo, Yahui organization: Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China |
BookMark | eNqFkc9u1DAQxi3USmwLr4B85NAE20mcjcQBtCpQaRGHtlJv1jiZbGdJ7GB7i_YpeGUSFi5cepo_-n6fNPNdsDPnHTL2RopcCqnf7fMd-g7DCLkSssmFzkUpXrCVXNcq06pqzthKzMqsFlq-ZBcx7uexFkqs2K8NTGBpoHTkvue36BI5HDLFv97e8A4S8N4HPnpHyQdyOw6u4yNM09LPRPQ08AgDucWCHO_C8Y_mJyYeEaJ3cVmnR-TXltwh8C18Rx5wR95d8QdyewK3u-KbR3Lwip33MER8_bdesvtP13ebL9n22-ebzcdtBoVep6zqm7q3pWoKbVuwfQWVXStryworURdWCV1r6LXGUqLtRDNf3rTrWpaF7kGp4pK9PflOwf84YExmpNjiMIBDf4hGFaJSSlXlItUnaRt8jAF7MwUaIRyNFGZJwOzNvwTMkoAR2swJzOD7_8CWEqT57BSAhufxDycc5z88EQYTW0LXYkcB22Q6T89Z_AZyv6lf |
CitedBy_id | crossref_primary_10_1007_s40808_024_02050_y crossref_primary_10_3390_rs13214283 crossref_primary_10_1007_s12665_022_10310_2 crossref_primary_10_3390_rs13224643 crossref_primary_10_7717_peerj_10585 crossref_primary_10_1016_j_still_2024_106124 crossref_primary_10_3390_land13060877 crossref_primary_10_1007_s11356_023_27516_x crossref_primary_10_1007_s40333_023_0094_4 crossref_primary_10_1016_j_catena_2023_107375 crossref_primary_10_7717_peerj_18186 crossref_primary_10_3389_fenvs_2022_994260 crossref_primary_10_1007_s10661_024_13030_1 crossref_primary_10_1016_j_geoderma_2020_114858 crossref_primary_10_1080_01431161_2022_2155080 crossref_primary_10_3390_agronomy15010018 crossref_primary_10_1007_s40333_022_0077_x crossref_primary_10_3389_fpls_2024_1332788 crossref_primary_10_1016_j_compag_2021_106031 crossref_primary_10_1371_journal_pone_0305758 crossref_primary_10_3389_fmars_2022_895172 crossref_primary_10_1002_ldr_4815 crossref_primary_10_1016_j_scitotenv_2023_162558 crossref_primary_10_1016_j_jag_2022_102839 crossref_primary_10_1016_j_geoderma_2021_115656 crossref_primary_10_1111_sum_12772 crossref_primary_10_1117_1_JRS_17_018502 crossref_primary_10_1016_j_jhydrol_2022_128416 crossref_primary_10_3390_rs13081562 crossref_primary_10_3390_rs14051201 crossref_primary_10_3390_rs14184658 crossref_primary_10_1108_GS_05_2022_0049 crossref_primary_10_1109_JSTARS_2022_3145874 crossref_primary_10_3390_rs14133020 crossref_primary_10_3389_feart_2023_1186779 crossref_primary_10_1016_j_agwat_2022_107538 crossref_primary_10_1007_s12517_022_09762_4 crossref_primary_10_1016_j_geoderma_2023_116738 crossref_primary_10_3390_rs15041066 crossref_primary_10_1016_j_scitotenv_2019_136092 crossref_primary_10_3390_su15129440 crossref_primary_10_1016_j_catena_2022_106529 crossref_primary_10_1371_journal_pone_0246672 crossref_primary_10_3390_rs14132985 crossref_primary_10_1007_s10661_021_09543_8 crossref_primary_10_1007_s43538_023_00157_x crossref_primary_10_3390_agriculture14071200 crossref_primary_10_3390_biology10111114 crossref_primary_10_3390_rs15184400 crossref_primary_10_1016_j_geoderma_2020_114729 crossref_primary_10_1016_j_catena_2021_105546 crossref_primary_10_3390_agriengineering7030089 crossref_primary_10_1016_j_rsase_2020_100398 crossref_primary_10_1080_01431161_2021_2009589 crossref_primary_10_1080_01431161_2024_2412804 crossref_primary_10_3390_drones6090257 crossref_primary_10_1134_S2079096122020056 crossref_primary_10_3390_rs13204165 crossref_primary_10_35784_iapgos_5903 crossref_primary_10_3390_rs12172794 crossref_primary_10_1080_19475705_2020_1721573 crossref_primary_10_1007_s10661_024_13055_6 crossref_primary_10_3390_rs14225639 crossref_primary_10_1080_00103624_2023_2211111 crossref_primary_10_1016_j_agwat_2020_106387 crossref_primary_10_3390_rs16081338 crossref_primary_10_1016_j_scitotenv_2021_151882 crossref_primary_10_1016_j_ecolind_2022_109330 crossref_primary_10_3390_app112311145 crossref_primary_10_3390_rs17060987 crossref_primary_10_1016_j_agwat_2024_108718 crossref_primary_10_3390_rs13040769 crossref_primary_10_3390_w17050673 crossref_primary_10_1016_j_still_2023_105744 crossref_primary_10_1016_j_agwat_2024_109007 crossref_primary_10_3390_rs15082104 crossref_primary_10_3389_feart_2022_923447 crossref_primary_10_3390_rs14112602 crossref_primary_10_3389_fpls_2024_1358965 crossref_primary_10_1016_j_pce_2022_103230 crossref_primary_10_3390_land14020297 crossref_primary_10_3390_pollutants4010001 crossref_primary_10_1155_2024_8180765 crossref_primary_10_4081_ija_2022_2126 crossref_primary_10_1080_10106049_2022_2076918 crossref_primary_10_3390_s22166124 crossref_primary_10_2139_ssrn_4116046 crossref_primary_10_3390_s22186890 crossref_primary_10_1016_j_scitotenv_2020_142661 crossref_primary_10_1016_j_catena_2022_106900 crossref_primary_10_1016_j_pedsph_2023_05_004 crossref_primary_10_3390_rs13091729 crossref_primary_10_1016_j_rsase_2023_100969 crossref_primary_10_1016_j_nexus_2025_100374 crossref_primary_10_3390_rs14081804 crossref_primary_10_1016_j_ecolind_2023_110087 crossref_primary_10_3390_rs14071581 crossref_primary_10_1016_j_rsase_2024_101318 crossref_primary_10_1016_j_pce_2023_103400 crossref_primary_10_3390_ijerph20042853 crossref_primary_10_3390_rs14133077 crossref_primary_10_1016_j_still_2021_105284 crossref_primary_10_1016_j_envres_2023_117570 crossref_primary_10_1080_20442041_2021_1924034 crossref_primary_10_3390_rs13234825 crossref_primary_10_1016_j_geoderma_2022_115935 crossref_primary_10_1016_j_scitotenv_2019_136336 crossref_primary_10_1016_j_agwat_2024_109147 crossref_primary_10_1016_j_envpol_2020_115412 crossref_primary_10_3390_rs16173145 crossref_primary_10_3390_s24154930 crossref_primary_10_1080_01431161_2021_1978579 crossref_primary_10_3390_soilsystems9010026 crossref_primary_10_1016_j_ecolind_2022_109648 crossref_primary_10_1109_ACCESS_2020_3020325 crossref_primary_10_3390_rs14194962 crossref_primary_10_1016_j_saa_2022_121416 crossref_primary_10_1038_s41598_024_60033_6 crossref_primary_10_3390_f15010218 crossref_primary_10_3390_rs16244812 crossref_primary_10_24057_2071_9388_2021_006 crossref_primary_10_1016_j_geodrs_2023_e00695 crossref_primary_10_1080_01431161_2023_2209917 crossref_primary_10_3390_rs16040684 crossref_primary_10_1016_j_envres_2020_110636 crossref_primary_10_1080_01431161_2023_2235640 crossref_primary_10_3390_rs15143591 crossref_primary_10_1016_j_scitotenv_2021_146253 crossref_primary_10_1016_j_scitotenv_2024_176620 crossref_primary_10_1016_j_jag_2021_102387 crossref_primary_10_1016_j_scitotenv_2021_146932 crossref_primary_10_3389_fenvs_2021_712831 crossref_primary_10_3390_rs13020305 crossref_primary_10_1016_j_infrared_2023_104826 crossref_primary_10_3390_s20061795 crossref_primary_10_3390_su12208317 crossref_primary_10_1016_j_ecolind_2023_111437 crossref_primary_10_1016_j_geoderma_2023_116697 crossref_primary_10_1016_j_apsoil_2024_105742 crossref_primary_10_1016_j_geoderma_2022_116093 crossref_primary_10_2139_ssrn_3950157 crossref_primary_10_1016_j_ecolind_2023_109904 crossref_primary_10_3390_su11247142 crossref_primary_10_1016_j_geoderma_2020_114793 crossref_primary_10_3390_rs14030472 crossref_primary_10_3390_w14091438 crossref_primary_10_1038_s41598_023_27760_8 crossref_primary_10_1016_j_catena_2023_107197 crossref_primary_10_1016_j_scitotenv_2020_138244 crossref_primary_10_1016_j_agwat_2024_109114 crossref_primary_10_1109_JSTARS_2023_3274579 crossref_primary_10_1016_j_ecolind_2024_112364 crossref_primary_10_7717_peerj_13306 crossref_primary_10_1016_j_saa_2022_121696 crossref_primary_10_1016_j_geoderma_2021_115399 crossref_primary_10_1016_j_asr_2021_10_024 crossref_primary_10_1016_j_atmosenv_2023_119699 crossref_primary_10_1016_j_pce_2020_102895 crossref_primary_10_1080_07038992_2022_2056435 crossref_primary_10_1109_JSTARS_2022_3223935 crossref_primary_10_1002_ldr_4632 crossref_primary_10_3390_rs13234867 crossref_primary_10_1016_j_catena_2022_106492 crossref_primary_10_1016_j_regsus_2021_06_001 crossref_primary_10_1016_j_catena_2024_107824 crossref_primary_10_1016_j_rse_2025_114642 crossref_primary_10_3390_rs16060983 crossref_primary_10_31497_zrzyxb_20210804 crossref_primary_10_1109_TGRS_2022_3227647 crossref_primary_10_3390_rs12030467 crossref_primary_10_1016_j_envres_2022_114870 crossref_primary_10_1051_e3sconf_202022201010 crossref_primary_10_1007_s10653_023_01693_7 crossref_primary_10_3390_land11122307 crossref_primary_10_7717_peerj_9087 crossref_primary_10_1007_s11104_024_06919_w crossref_primary_10_3390_agriculture13081530 crossref_primary_10_1016_j_jhydrol_2024_131336 crossref_primary_10_2139_ssrn_4020072 crossref_primary_10_1007_s11356_023_30394_y crossref_primary_10_1016_j_atmosenv_2021_118273 crossref_primary_10_3390_s23157003 crossref_primary_10_1016_j_ecolind_2023_110037 crossref_primary_10_3390_rs16040642 crossref_primary_10_1007_s10661_023_11007_0 crossref_primary_10_1016_j_agwat_2025_109392 crossref_primary_10_3390_f15122126 crossref_primary_10_1371_journal_pone_0307853 crossref_primary_10_3390_s22197226 crossref_primary_10_1016_j_jenvman_2020_111020 crossref_primary_10_3390_land11112070 crossref_primary_10_3390_su16072706 crossref_primary_10_1007_s11769_022_1293_1 crossref_primary_10_3390_rs15133358 crossref_primary_10_3390_w15244256 crossref_primary_10_3390_rs14236010 crossref_primary_10_1002_ldr_4293 crossref_primary_10_3390_land13050659 crossref_primary_10_1016_j_ocecoaman_2021_105922 crossref_primary_10_3390_rs12203399 crossref_primary_10_3390_w12123360 crossref_primary_10_1007_s00202_024_02756_3 crossref_primary_10_3390_land12040877 crossref_primary_10_1080_10106049_2020_1822925 crossref_primary_10_1016_j_saa_2020_118553 crossref_primary_10_1016_j_scitotenv_2021_145807 crossref_primary_10_1016_j_jag_2022_102969 crossref_primary_10_7717_peerj_8530 crossref_primary_10_3390_rs13061047 crossref_primary_10_1016_j_geodrs_2021_e00399 crossref_primary_10_1016_j_catena_2023_107313 crossref_primary_10_1134_S1064229322080075 crossref_primary_10_3389_fenvs_2025_1533419 crossref_primary_10_3390_rs16163071 crossref_primary_10_3390_agronomy14030523 crossref_primary_10_3390_rs14184448 crossref_primary_10_1016_j_ecoinf_2024_102560 crossref_primary_10_1016_j_iswcr_2023_03_002 crossref_primary_10_3390_rs12244118 crossref_primary_10_3390_agriculture12091490 crossref_primary_10_1016_j_catena_2022_106054 crossref_primary_10_1016_j_saa_2022_121647 crossref_primary_10_1002_ldr_4398 crossref_primary_10_3390_rs15245640 crossref_primary_10_3390_su12156117 crossref_primary_10_1080_15481603_2022_2026638 crossref_primary_10_1016_j_geodrs_2021_e00389 crossref_primary_10_1016_j_scitotenv_2022_157416 |
Cites_doi | 10.1109/IGARSS.2015.7326366 10.1016/j.cherd.2015.06.009 10.1016/j.jag.2017.02.003 10.1016/j.scitotenv.2016.09.043 10.3390/rs6021137 10.1016/j.geoderma.2014.07.028 10.1016/j.biosystemseng.2016.04.015 10.1023/A:1010933404324 10.1016/j.scitotenv.2018.09.075 10.1080/01431160601009698 10.1007/s12665-016-6269-y 10.1016/j.isprsjprs.2015.10.005 10.2134/agronj2013.0088 10.1016/j.geoderma.2018.10.025 10.1016/j.rse.2011.11.026 10.3390/rs10060855 10.1016/j.jag.2012.10.008 10.1016/j.jag.2016.03.005 10.1007/s11852-016-0437-9 10.1016/j.geoderma.2005.10.009 10.1016/j.geoderma.2018.08.006 10.1016/j.geodrs.2014.09.002 10.1016/j.agrformet.2015.12.062 10.3390/rs11070736 10.1016/j.jag.2013.06.002 10.1016/j.rse.2018.09.020 10.1080/01431169408954215 10.1134/S0097807817020166 10.1002/ldr.2890 10.1016/j.cie.2007.12.002 10.1016/j.geoderma.2014.03.025 10.1016/0034-4257(83)90010-X 10.1016/j.jag.2016.03.008 10.1371/journal.pone.0184836 10.1016/j.patrec.2010.03.014 10.1007/s12517-015-2004-3 10.1016/j.proeps.2015.08.062 10.1016/j.scitotenv.2018.06.319 10.1016/j.pce.2010.12.004 10.1016/j.atmosres.2016.04.002 10.1016/j.scitotenv.2017.10.025 10.1016/j.rse.2007.02.005 10.1016/j.jaridenv.2005.08.005 10.2134/jeq2009.0140 10.1016/j.jag.2016.05.009 10.7717/peerj.6926 10.1016/j.rse.2018.09.016 10.1016/S0034-4257(00)00180-2 10.1016/S0034-4257(02)00188-8 10.1016/j.ecolind.2015.01.004 10.1111/j.1365-2389.2011.01358.x 10.1016/j.rse.2011.09.026 10.1016/j.agwat.2004.09.038 10.1016/j.fuproc.2005.08.008 10.2136/sssaj2001.652480x 10.1016/j.geoderma.2005.02.003 10.1016/j.catena.2018.09.019 10.1016/j.catena.2019.02.020 10.1016/j.ecolind.2011.03.025 10.1016/j.geoderma.2014.09.011 10.1016/j.ecolind.2016.11.043 10.1016/j.fcr.2010.11.002 10.7717/peerj.4703 10.3390/rs61110813 10.3390/s18113855 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.06.040 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 187 |
ExternalDocumentID | 10_1016_j_geoderma_2019_06_040 S0016706119304100 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-5f97fb42936bcabf5a5b82bb45e5073b20676af66e41ebd090619c871436fa223 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 19:25:12 EDT 2025 Tue Jul 01 04:04:50 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Fri Feb 23 02:27:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spectral indices Red-edge Soil salinity Remote sensing Sentinel-2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-5f97fb42936bcabf5a5b82bb45e5073b20676af66e41ebd090619c871436fa223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2305222542 |
PQPubID | 24069 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2305222542 crossref_primary_10_1016_j_geoderma_2019_06_040 crossref_citationtrail_10_1016_j_geoderma_2019_06_040 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_06_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Fernández-Manso, Fernández-Manso, Quintano (bb0115) 2016; 50 Zhang, Zeng, Gao, Ouyang, Li, Fang, Zhao (bb0400) 2011; 11 Navarro, Caballero, Silva, Parra, Vázquez, Caldeira (bb0275) 2017; 58 Sibanda, Mutanga, Rouget (bb0315) 2015; 110 Wu, Mhaimeed, Al-Shafie, Ziadat, Dhehibi, Nangia, De Pauw (bb0390) 2014; 2-3 Kobayashi, Lau, Wheaton, Bourke, Kakuta, Tachikawa (bb0185) 2015 Bai, Wang, Zang, Wu, Luo, Wu (bb0025) 2018; 18 Abbas, Khan, Hussain, Hanjra, Akbar (bb0005) 2013; 55-57 Jin, Xu, Song, Li, Wang, Guo (bb0170) 2013; 105 Morán, Granada, Míguez, Porteiro (bb0265) 2006; 87 Khan, Rastoskuev, Sato, Shiozawa (bb0180) 2005; 77 Wang, Tiyip, Ding, Zhang, Liu, Wang, Tashpolat (bb0355) 2017; 12 Fan, Weng, Tao (bb0095) 2016; 52 Lizaga, Gaspar, Quijano, Dercon, Navas (bb0215) 2019; 651 Bannari, El-Battay, Bannari, Rhinane (bb0030) 2018; 10 Triki Fourati, Bouaziz, Benzina, Bouaziz (bb0340) 2015; 8 R Development Core Team (bb0305) 2018 El Harti, Lhissou, Chokmani, Ouzemou, Hassouna, Bachaoui, El Ghmari (bb0085) 2016; 50 Liaw, Wiener (bb0200) 2002; 2 Lobell, Lesch, Corwin, Ulmer, Anderson, Potts, Doolittle, Matos, Baltes (bb0225) 2010; 39 Zou, Zhao, Povey, Mel, Mao (bb0410) 2010; 667 Wold, Martens, Wold (bb0385) 1983 Allbed, Kumar, Aldakheel (bb0015) 2014; 230–231 Lizaga, Quijano, Gaspar, Ramos, Navas (bb0220) 2019; 172 Peng, Xiang, Guo, Shi (bb0285) 2014; 34 Gorji, Sertel, Tanik (bb0140) 2017; 74 Gorji, Tanik, Sertel (bb0135) 2015; 15 Martens, Naes, Naes (bb0250) 1992 Jin, Du, Liu, Wang, Song (bb0175) 2016; 218–219 Allbed, Kumar, Sinha (bb0020) 2014; 6 Genuer, Poggi, Tuleau-Malot (bb0130) 2010; 31 Meng, Zhou, Zhang, Bi (bb0255) 2016; 20 Farifteh, Van der Meer, Atzberger, Carranza (bb0105) 2007; 110 Wang, Ding, Li, Liang, Yu, Aishan, Zhang, Yang, Abulimiti, Liu (bb0365) 2019; 177 Aldabaa, Weindorf, Chakraborty, Sharma, Li (bb0010) 2015; 239-240 Metternicht, Zinck (bb0260) 2003; 85 Louis, Debaecker, Pflug, Main-Knorn, Bieniarz, Müller-Wilm, Cadau, Gascon (bb0230) 2016 He, Geng, Zhu (bb0145) 2015; 102 Kuang, Mouazen (bb0190) 2011; 62 Nawar, Buddenbaum, Hill, Kozak (bb0280) 2014; 6 Deng (bb0065) 2002 Bell, Menges, Ahmad, van Zyl (bb0035) 2001; 75 Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort, Meygret, Spoto, Sy, Marchese, Bargellini (bb0080) 2012; 120 Su, Liu, Wei, Wang, Liu (bb0330) 2016; 23 Wang, Ding, Abulimiti, Cai (bb0360) 2018; 6 Wang, Liu, Yao, Bayin (bb0380) 2017; 44 Ge, Abuduwaili, Ma, Wu, Liu (bb0125) 2016; 178–179 Farifteh, Farshad, George (bb0100) 2006; 130 Kuo, Yang, Huang (bb0195) 2008; 55 Sibanda, Mutanga, Dube, S Vundla, L Mafongoya (bb0320) 2018 Hu, Peng, Zhou, Xu, Zhao, Jiang, Fu, Wang, Shi (bb0160) 2019; 11 Breiman (bb0040) 2001; 45 Hong, Liu, Chen, Liu, Yu, Liu, Cheng (bb0155) 2019; 337 Davis, Wang, Dow (bb0060) 2019 Wang, Tiyip, XIE, FAN, ZHANG, Sawut (bb0350) 2011; 30 Verma, Saxena, Barthwal, Deshmukh (bb0345) 1994; 15 Malenovský, Rott, Cihlar, Schaepman, García-Santos, Fernandes, Berger (bb0245) 2012; 120 Douaoui, Nicolas, Walter (bb0075) 2006; 134 Chang, Laird, Mausbach, Hurburgh (bb0050) 2001; 65 Fernández-Buces, Siebe, Cram, Palacio (bb0110) 2006; 65 Liu, Yin, Kurban, Aishan, You (bb0210) 2016; 75 Cao, Ding, Halik, Su, Ning, Miao, Li (bb0045) 2016; 53 Ma, Yang, Simayi, Gu, Li, Yang, Ding (bb0235) 2018; 29 Sidike, Zhao, Wen (bb0325) 2014; 26 Jackson (bb0165) 1983; 13 ESA (bb0090) 2015 Ling, Zhang, Guo, Xu, Ye, Deng (bb0205) 2017; 574 Peng, Biswas, Jiang, Zhao, Hu, Hu, Shi (bb0295) 2019; 337 Schoeneberger, Wysocki, Benham, Broderson (bb0310) 2002 Tian, Yao, Yang, Cao, Hannaway, Zhu (bb0335) 2011; 120 Yang, Qin, Grussenmeyer, Koehl (bb0395) 2018; 219 Wang, Zhang, Ding, Kung, Latif, Johnson (bb0370) 2018; 615 Clevers, Gitelson (bb0055) 2013; 23 Ma, Wang, Veroustraete, Dong (bb0240) 2007; 28 Peng, Ji, Ma, Li, Chen, Zhou, Shi (bb0290) 2016; 152 Ge, Wang, Ding, Cao, Zhang, Liu, Li (bb0120) 2019; 7 Qing, Yu, Li, Deng (bb0300) 2005; 2005 Zhang, Qi, Gao, Ouyang, Zeng, Zhao (bb0405) 2015; 52 Mueller-Wilm, Devignot, Pessiot (bb0270) 2017 Hong, Chen, Zhang, Chen, Yu, Liu, Liu, Cheng, Liu (bb0150) 2018; 644 Ding, Yu (bb0070) 2014; 235-236 Wang, Zhang, Kung, Johnson (bb0375) 2018; 218 Qing (10.1016/j.geoderma.2019.06.040_bb0300) 2005; 2005 Bannari (10.1016/j.geoderma.2019.06.040_bb0030) 2018; 10 Hong (10.1016/j.geoderma.2019.06.040_bb0155) 2019; 337 Zhang (10.1016/j.geoderma.2019.06.040_bb0405) 2015; 52 Wang (10.1016/j.geoderma.2019.06.040_bb0380) 2017; 44 Meng (10.1016/j.geoderma.2019.06.040_bb0255) 2016; 20 Khan (10.1016/j.geoderma.2019.06.040_bb0180) 2005; 77 Wang (10.1016/j.geoderma.2019.06.040_bb0375) 2018; 218 Yang (10.1016/j.geoderma.2019.06.040_bb0395) 2018; 219 Farifteh (10.1016/j.geoderma.2019.06.040_bb0105) 2007; 110 Farifteh (10.1016/j.geoderma.2019.06.040_bb0100) 2006; 130 Metternicht (10.1016/j.geoderma.2019.06.040_bb0260) 2003; 85 Peng (10.1016/j.geoderma.2019.06.040_bb0285) 2014; 34 Sidike (10.1016/j.geoderma.2019.06.040_bb0325) 2014; 26 El Harti (10.1016/j.geoderma.2019.06.040_bb0085) 2016; 50 Lizaga (10.1016/j.geoderma.2019.06.040_bb0220) 2019; 172 Bai (10.1016/j.geoderma.2019.06.040_bb0025) 2018; 18 Wang (10.1016/j.geoderma.2019.06.040_bb0370) 2018; 615 Jin (10.1016/j.geoderma.2019.06.040_bb0175) 2016; 218–219 Allbed (10.1016/j.geoderma.2019.06.040_bb0015) 2014; 230–231 Ge (10.1016/j.geoderma.2019.06.040_bb0120) 2019; 7 Jin (10.1016/j.geoderma.2019.06.040_bb0170) 2013; 105 Wang (10.1016/j.geoderma.2019.06.040_bb0355) 2017; 12 Zou (10.1016/j.geoderma.2019.06.040_bb0410) 2010; 667 Allbed (10.1016/j.geoderma.2019.06.040_bb0020) 2014; 6 Su (10.1016/j.geoderma.2019.06.040_bb0330) 2016; 23 Lizaga (10.1016/j.geoderma.2019.06.040_bb0215) 2019; 651 Liu (10.1016/j.geoderma.2019.06.040_bb0210) 2016; 75 Cao (10.1016/j.geoderma.2019.06.040_bb0045) 2016; 53 Fernández-Manso (10.1016/j.geoderma.2019.06.040_bb0115) 2016; 50 Jackson (10.1016/j.geoderma.2019.06.040_bb0165) 1983; 13 Wold (10.1016/j.geoderma.2019.06.040_bb0385) 1983 Peng (10.1016/j.geoderma.2019.06.040_bb0290) 2016; 152 Breiman (10.1016/j.geoderma.2019.06.040_bb0040) 2001; 45 Nawar (10.1016/j.geoderma.2019.06.040_bb0280) 2014; 6 Schoeneberger (10.1016/j.geoderma.2019.06.040_bb0310) 2002 Wu (10.1016/j.geoderma.2019.06.040_bb0390) 2014; 2-3 Kuang (10.1016/j.geoderma.2019.06.040_bb0190) 2011; 62 Mueller-Wilm (10.1016/j.geoderma.2019.06.040_bb0270) 2017 Chang (10.1016/j.geoderma.2019.06.040_bb0050) 2001; 65 Tian (10.1016/j.geoderma.2019.06.040_bb0335) 2011; 120 Gorji (10.1016/j.geoderma.2019.06.040_bb0140) 2017; 74 Davis (10.1016/j.geoderma.2019.06.040_bb0060) 2019 R Development Core Team (10.1016/j.geoderma.2019.06.040_bb0305) 2018 Malenovský (10.1016/j.geoderma.2019.06.040_bb0245) 2012; 120 Triki Fourati (10.1016/j.geoderma.2019.06.040_bb0340) 2015; 8 Liaw (10.1016/j.geoderma.2019.06.040_bb0200) 2002; 2 Wang (10.1016/j.geoderma.2019.06.040_bb0360) 2018; 6 Hu (10.1016/j.geoderma.2019.06.040_bb0160) 2019; 11 Douaoui (10.1016/j.geoderma.2019.06.040_bb0075) 2006; 134 Kobayashi (10.1016/j.geoderma.2019.06.040_bb0185) 2015 Sibanda (10.1016/j.geoderma.2019.06.040_bb0315) 2015; 110 Ding (10.1016/j.geoderma.2019.06.040_bb0070) 2014; 235-236 Genuer (10.1016/j.geoderma.2019.06.040_bb0130) 2010; 31 Kuo (10.1016/j.geoderma.2019.06.040_bb0195) 2008; 55 Peng (10.1016/j.geoderma.2019.06.040_bb0295) 2019; 337 Aldabaa (10.1016/j.geoderma.2019.06.040_bb0010) 2015; 239-240 Martens (10.1016/j.geoderma.2019.06.040_bb0250) 1992 Ling (10.1016/j.geoderma.2019.06.040_bb0205) 2017; 574 Morán (10.1016/j.geoderma.2019.06.040_bb0265) 2006; 87 Wang (10.1016/j.geoderma.2019.06.040_bb0365) 2019; 177 Deng (10.1016/j.geoderma.2019.06.040_bb0065) 2002 Drusch (10.1016/j.geoderma.2019.06.040_bb0080) 2012; 120 Ge (10.1016/j.geoderma.2019.06.040_bb0125) 2016; 178–179 Clevers (10.1016/j.geoderma.2019.06.040_bb0055) 2013; 23 ESA (10.1016/j.geoderma.2019.06.040_bb0090) 2015 He (10.1016/j.geoderma.2019.06.040_bb0145) 2015; 102 Hong (10.1016/j.geoderma.2019.06.040_bb0150) 2018; 644 Louis (10.1016/j.geoderma.2019.06.040_bb0230) 2016 Ma (10.1016/j.geoderma.2019.06.040_bb0235) 2018; 29 Zhang (10.1016/j.geoderma.2019.06.040_bb0400) 2011; 11 Bell (10.1016/j.geoderma.2019.06.040_bb0035) 2001; 75 Abbas (10.1016/j.geoderma.2019.06.040_bb0005) 2013; 55-57 Fernández-Buces (10.1016/j.geoderma.2019.06.040_bb0110) 2006; 65 Lobell (10.1016/j.geoderma.2019.06.040_bb0225) 2010; 39 Fan (10.1016/j.geoderma.2019.06.040_bb0095) 2016; 52 Navarro (10.1016/j.geoderma.2019.06.040_bb0275) 2017; 58 Wang (10.1016/j.geoderma.2019.06.040_bb0350) 2011; 30 Gorji (10.1016/j.geoderma.2019.06.040_bb0135) 2015; 15 Ma (10.1016/j.geoderma.2019.06.040_bb0240) 2007; 28 Sibanda (10.1016/j.geoderma.2019.06.040_bb0320) 2018 Verma (10.1016/j.geoderma.2019.06.040_bb0345) 1994; 15 |
References_xml | – year: 2017 ident: bb0270 article-title: S2 MPC Sen2Cor Configuration and User Manual – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0040 article-title: Random forests publication-title: Mach. Learn. – volume: 62 start-page: 629 year: 2011 end-page: 636 ident: bb0190 article-title: Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms publication-title: Eur. J. Soil Sci. – volume: 172 start-page: 516 year: 2019 end-page: 527 ident: bb0220 article-title: Linking land use changes to variation in soil properties in a Mediterranean mountain agroecosystem publication-title: CATENA – volume: 337 start-page: 758 year: 2019 end-page: 769 ident: bb0155 article-title: Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy publication-title: Geoderma – volume: 615 start-page: 918 year: 2018 end-page: 930 ident: bb0370 article-title: Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a bootstrap-BP neural network model and optimal spectral indices publication-title: Sci. Total Environ. – volume: 218 start-page: 104 year: 2018 end-page: 118 ident: bb0375 article-title: New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China publication-title: Remote Sens. Environ. – volume: 55 start-page: 80 year: 2008 end-page: 93 ident: bb0195 article-title: The use of grey relational analysis in solving multiple attribute decision-making problems publication-title: Comput. Ind. Eng. – volume: 651 start-page: 250 year: 2019 end-page: 260 ident: bb0215 article-title: NDVI, 137Cs and nutrients for tracking soil and vegetation development on glacial landforms in the Lake Parón Catchment (Cordillera Blanca, Perú) publication-title: Sci. Total Environ. – volume: 2005 start-page: 2355 year: 2005 end-page: 2357 ident: bb0300 article-title: Application of spectral angle mapping model to rapid assessment of soil salinization in arid area publication-title: Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium – volume: 29 start-page: 551 year: 2018 end-page: 562 ident: bb0235 article-title: Modeling variations in soil salinity in the oasis of Junggar Basin, China publication-title: Land Degrad. Dev. – volume: 23 start-page: 344 year: 2013 end-page: 351 ident: bb0055 article-title: Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 75 start-page: 375 year: 2001 end-page: 384 ident: bb0035 article-title: The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR publication-title: Remote Sens. Environ. – volume: 10 start-page: 855 year: 2018 ident: bb0030 article-title: Sentinel-MSI VNIR and SWIR bands sensitivity analysis for soil salinity discrimination in an arid landscape publication-title: Remote Sens. – volume: 337 start-page: 1309 year: 2019 end-page: 1319 ident: bb0295 article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China publication-title: Geoderma – volume: 30 start-page: 593 year: 2011 end-page: 599 ident: bb0350 article-title: Assessment of soil salinization sensitivity for different types of land use in the Ebinur Lake region in Xinjiang publication-title: Prog. Geogr. – volume: 120 start-page: 25 year: 2012 end-page: 36 ident: bb0080 article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. – volume: 13 start-page: 409 year: 1983 end-page: 421 ident: bb0165 article-title: Spectral indices in N-space publication-title: Remote Sens. Environ. – year: 2016 ident: bb0230 article-title: SENTINEL-2 SEN2COR: L2A Processor for Users – volume: 134 start-page: 217 year: 2006 end-page: 230 ident: bb0075 article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data publication-title: Geoderma – volume: 2-3 start-page: 21 year: 2014 end-page: 31 ident: bb0390 article-title: Mapping soil salinity changes using remote sensing in Central Iraq publication-title: Geoderma Regional – volume: 52 start-page: 480 year: 2015 end-page: 489 ident: bb0405 article-title: Detecting soil salinity with MODIS time series VI data publication-title: Ecol. Indic. – year: 2015 ident: bb0090 article-title: ESA Introducing Sentinel-2 – volume: 52 start-page: 32 year: 2016 end-page: 41 ident: bb0095 article-title: Towards decadal soil salinity mapping using Landsat time series data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 start-page: e6926 year: 2019 ident: bb0120 article-title: Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring publication-title: PeerJ – volume: 219 start-page: 259 year: 2018 end-page: 270 ident: bb0395 article-title: Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery publication-title: Remote Sens. Environ. – volume: 55-57 start-page: 43 year: 2013 end-page: 52 ident: bb0005 article-title: Characterizing soil salinity in irrigated agriculture using a remote sensing approach publication-title: Physics and Chemistry of the Earth, Parts A/B/C – volume: 6 start-page: 1137 year: 2014 end-page: 1157 ident: bb0020 article-title: Mapping and modelling spatial variation in soil salinity in the Al Hassa oasis based on remote sensing indicators and regression techniques publication-title: Remote Sens. – volume: 102 start-page: 1 year: 2015 end-page: 11 ident: bb0145 article-title: Data driven soft sensor development for complex chemical processes using extreme learning machine publication-title: Chem. Eng. Res. Des. – volume: 218–219 start-page: 250 year: 2016 end-page: 260 ident: bb0175 article-title: Remote estimation of soil organic matter content in the Sanjiang Plain, Northeast China: the optimal band algorithm versus the GRA-ANN model publication-title: Agric. For. Meteorol. – volume: 239-240 start-page: 34 year: 2015 end-page: 46 ident: bb0010 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma – volume: 28 start-page: 5523 year: 2007 end-page: 5533 ident: bb0240 article-title: Change in area of Ebinur Lake during the 1998–2005 period publication-title: Int. J. Remote Sens. – volume: 85 start-page: 1 year: 2003 end-page: 20 ident: bb0260 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote Sens. Environ. – volume: 23 start-page: 252 year: 2016 end-page: 256 ident: bb0330 article-title: Change of Ebinur Lake area and its response characteristics of the runoff change publication-title: Research of Soil and Water Conservation – volume: 65 start-page: 644 year: 2006 end-page: 667 ident: bb0110 article-title: Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico publication-title: J. Arid Environ. – start-page: 1 year: 2018 end-page: 19 ident: bb0320 article-title: Estimating LAI and mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 MSI derived red edge bands publication-title: GIScience & Remote Sensing – volume: 110 start-page: 55 year: 2015 end-page: 65 ident: bb0315 article-title: Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 58 start-page: 97 year: 2017 end-page: 106 ident: bb0275 article-title: Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 1552 year: 2011 end-page: 1562 ident: bb0400 article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity publication-title: Ecol. Indic. – volume: 74 start-page: 384 year: 2017 end-page: 391 ident: bb0140 article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey publication-title: Ecol. Indic. – volume: 87 start-page: 123 year: 2006 end-page: 127 ident: bb0265 article-title: Use of grey relational analysis to assess and optimize small biomass boilers publication-title: Fuel Process. Technol. – volume: 574 start-page: 109 year: 2017 end-page: 119 ident: bb0205 article-title: Negative feedback adjustment challenges reconstruction study from tree rings: a study case of response of Populus euphratica to river discontinuous flow and ecological water conveyance publication-title: Sci. Total Environ. – volume: 644 start-page: 1232 year: 2018 end-page: 1243 ident: bb0150 article-title: Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: effects of two-dimensional correlation coefficient and extreme learning machine publication-title: Sci. Total Environ. – volume: 31 start-page: 2225 year: 2010 end-page: 2236 ident: bb0130 article-title: Variable selection using random forests publication-title: Pattern Recogn. Lett. – volume: 120 start-page: 299 year: 2011 end-page: 310 ident: bb0335 article-title: Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance publication-title: Field Crop Res. – volume: 50 start-page: 64 year: 2016 end-page: 73 ident: bb0085 article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 1992 ident: bb0250 article-title: Multivariate calibration – volume: 110 start-page: 59 year: 2007 end-page: 78 ident: bb0105 article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN) publication-title: Remote Sens. Environ. – volume: 177 start-page: 189 year: 2019 end-page: 201 ident: bb0365 article-title: Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment publication-title: CATENA – start-page: 2684 year: 2015 end-page: 2687 ident: bb0185 article-title: Mapping of soil salinity using an airborne hyperspectral sensor in Western Australia publication-title: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – volume: 20 start-page: 271 year: 2016 end-page: 279 ident: bb0255 article-title: Estimating soil salinity in different landscapes of the Yellow River Delta through Landsat OLI/TIRS and ETM+ data publication-title: J. Coast. Conserv. – volume: 34 start-page: 510 year: 2014 end-page: 514 ident: bb0285 article-title: Comparative study on hyperspectral inversion accuracy of soil salt content and electrical conductivity publication-title: Spectrosc. Spectr. Anal. – volume: 6 start-page: e4703 year: 2018 ident: bb0360 article-title: Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake wetland, Northwest China publication-title: PeerJ – volume: 178–179 start-page: 196 year: 2016 end-page: 206 ident: bb0125 article-title: Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China publication-title: Atmos. Res. – volume: 15 start-page: 507 year: 2015 end-page: 512 ident: bb0135 article-title: Soil salinity prediction, monitoring and mapping using modern technologies publication-title: Procedia Earth and Planetary Science – volume: 26 start-page: 156 year: 2014 end-page: 175 ident: bb0325 article-title: Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 77 start-page: 96 year: 2005 end-page: 109 ident: bb0180 article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators publication-title: Agric. Water Manag. – volume: 11 start-page: 736 year: 2019 ident: bb0160 article-title: Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images publication-title: Remote Sens. – start-page: 1 year: 2019 end-page: 20 ident: bb0060 article-title: Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: a case study of agricultural lands in coastal North Carolina publication-title: Int. J. Remote Sens. – year: 2018 ident: bb0305 article-title: R : A Language and Environment for Statistical Computing – volume: 12 start-page: e0184836 year: 2017 ident: bb0355 article-title: Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative publication-title: PLoS One – volume: 65 start-page: 480 year: 2001 end-page: 490 ident: bb0050 article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties journal paper no. J-18766 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, IA publication-title: Soil Sci. Soc. Am. J. – volume: 667 start-page: 14 year: 2010 end-page: 32 ident: bb0410 article-title: Variables selection methods in near-infrared spectroscopy publication-title: Anal. Chim. Acta – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0200 article-title: Classification and regression by randomForest publication-title: R News – volume: 8 start-page: 11175 year: 2015 end-page: 11182 ident: bb0340 article-title: Modeling of soil salinity within a semi-arid region using spectral analysis publication-title: Arab. J. Geosci. – year: 2002 ident: bb0310 article-title: Field Book for Describing and Sampling Soils, Version 2.0 – volume: 15 start-page: 1901 year: 1994 end-page: 1914 ident: bb0345 article-title: Remote sensing technique for mapping salt affected soils publication-title: Int. J. Remote Sens. – volume: 230–231 start-page: 1 year: 2014 end-page: 8 ident: bb0015 article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region publication-title: Geoderma – volume: 152 start-page: 94 year: 2016 end-page: 103 ident: bb0290 article-title: Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers publication-title: Biosyst. Eng. – volume: 44 start-page: 204 year: 2017 end-page: 215 ident: bb0380 article-title: Effect of climate and land use change in Ebinur Lake Basin during the past five decades on hydrology and water resources publication-title: Water Resources – year: 2002 ident: bb0065 article-title: Grey System Theory – volume: 235-236 start-page: 316 year: 2014 end-page: 322 ident: bb0070 article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments publication-title: Geoderma – volume: 105 start-page: 1385 year: 2013 end-page: 1392 ident: bb0170 article-title: Estimation of leaf water content in winter wheat using Grey relational analysis–partial least squares modeling with hyperspectral data publication-title: Agron. J. – volume: 75 start-page: 1477 year: 2016 ident: bb0210 article-title: Spatiotemporal dynamics of land cover and their impacts on potential dust source regions in the Tarim Basin, NW China publication-title: Environ. Earth Sci. – volume: 18 start-page: 3855 year: 2018 ident: bb0025 article-title: Mapping soil alkalinity and salinity in Northern Songnen Plain, China with the HJ-1 hyperspectral imager data and partial least squares regression publication-title: Sensors – volume: 53 start-page: 1399 year: 2016 end-page: 1409 ident: bb0045 article-title: Extraction and modeling of regional soil salinization based on data from GF-1 satellite publication-title: Acta Pedol. Sin. – volume: 39 start-page: 35 year: 2010 end-page: 41 ident: bb0225 article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI publication-title: J. Environ. Qual. – start-page: 286 year: 1983 end-page: 293 ident: bb0385 article-title: The Multivariate Calibration Problem in Chemistry Solved by the PLS Method. Matrix Pencils – volume: 6 start-page: 10813 year: 2014 end-page: 10834 ident: bb0280 article-title: Modeling and mapping of soil salinity with reflectance spectroscopy and Landsat data using two quantitative methods (PLSR and MARS) publication-title: Remote Sens. – volume: 120 start-page: 91 year: 2012 end-page: 101 ident: bb0245 article-title: Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land publication-title: Remote Sens. Environ. – volume: 130 start-page: 191 year: 2006 end-page: 206 ident: bb0100 article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics publication-title: Geoderma – volume: 50 start-page: 170 year: 2016 end-page: 175 ident: bb0115 article-title: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 2684 year: 2015 ident: 10.1016/j.geoderma.2019.06.040_bb0185 article-title: Mapping of soil salinity using an airborne hyperspectral sensor in Western Australia publication-title: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) doi: 10.1109/IGARSS.2015.7326366 – volume: 102 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2019.06.040_bb0145 article-title: Data driven soft sensor development for complex chemical processes using extreme learning machine publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.06.009 – volume: 58 start-page: 97 year: 2017 ident: 10.1016/j.geoderma.2019.06.040_bb0275 article-title: Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2017.02.003 – volume: 574 start-page: 109 year: 2017 ident: 10.1016/j.geoderma.2019.06.040_bb0205 article-title: Negative feedback adjustment challenges reconstruction study from tree rings: a study case of response of Populus euphratica to river discontinuous flow and ecological water conveyance publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.09.043 – volume: 6 start-page: 1137 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2019.06.040_bb0020 article-title: Mapping and modelling spatial variation in soil salinity in the Al Hassa oasis based on remote sensing indicators and regression techniques publication-title: Remote Sens. doi: 10.3390/rs6021137 – year: 2018 ident: 10.1016/j.geoderma.2019.06.040_bb0305 – volume: 235-236 start-page: 316 year: 2014 ident: 10.1016/j.geoderma.2019.06.040_bb0070 article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments publication-title: Geoderma doi: 10.1016/j.geoderma.2014.07.028 – volume: 152 start-page: 94 year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0290 article-title: Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.04.015 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2019.06.040_bb0040 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2002 ident: 10.1016/j.geoderma.2019.06.040_bb0065 – volume: 651 start-page: 250 year: 2019 ident: 10.1016/j.geoderma.2019.06.040_bb0215 article-title: NDVI, 137Cs and nutrients for tracking soil and vegetation development on glacial landforms in the Lake Parón Catchment (Cordillera Blanca, Perú) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.075 – volume: 53 start-page: 1399 issue: 6 year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0045 article-title: Extraction and modeling of regional soil salinization based on data from GF-1 satellite publication-title: Acta Pedol. Sin. – volume: 28 start-page: 5523 issue: 24 year: 2007 ident: 10.1016/j.geoderma.2019.06.040_bb0240 article-title: Change in area of Ebinur Lake during the 1998–2005 period publication-title: Int. J. Remote Sens. doi: 10.1080/01431160601009698 – volume: 75 start-page: 1477 issue: 23 year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0210 article-title: Spatiotemporal dynamics of land cover and their impacts on potential dust source regions in the Tarim Basin, NW China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-6269-y – volume: 110 start-page: 55 year: 2015 ident: 10.1016/j.geoderma.2019.06.040_bb0315 article-title: Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.10.005 – volume: 105 start-page: 1385 issue: 5 year: 2013 ident: 10.1016/j.geoderma.2019.06.040_bb0170 article-title: Estimation of leaf water content in winter wheat using Grey relational analysis–partial least squares modeling with hyperspectral data publication-title: Agron. J. doi: 10.2134/agronj2013.0088 – volume: 337 start-page: 758 year: 2019 ident: 10.1016/j.geoderma.2019.06.040_bb0155 article-title: Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2018.10.025 – volume: 120 start-page: 25 year: 2012 ident: 10.1016/j.geoderma.2019.06.040_bb0080 article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – volume: 10 start-page: 855 issue: 6 year: 2018 ident: 10.1016/j.geoderma.2019.06.040_bb0030 article-title: Sentinel-MSI VNIR and SWIR bands sensitivity analysis for soil salinity discrimination in an arid landscape publication-title: Remote Sens. doi: 10.3390/rs10060855 – volume: 23 start-page: 344 year: 2013 ident: 10.1016/j.geoderma.2019.06.040_bb0055 article-title: Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2012.10.008 – volume: 50 start-page: 170 year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0115 article-title: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.03.005 – volume: 20 start-page: 271 issue: 4 year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0255 article-title: Estimating soil salinity in different landscapes of the Yellow River Delta through Landsat OLI/TIRS and ETM+ data publication-title: J. Coast. Conserv. doi: 10.1007/s11852-016-0437-9 – year: 2002 ident: 10.1016/j.geoderma.2019.06.040_bb0310 – start-page: 1 year: 2019 ident: 10.1016/j.geoderma.2019.06.040_bb0060 article-title: Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: a case study of agricultural lands in coastal North Carolina publication-title: Int. J. Remote Sens. – volume: 134 start-page: 217 issue: 1 year: 2006 ident: 10.1016/j.geoderma.2019.06.040_bb0075 article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data publication-title: Geoderma doi: 10.1016/j.geoderma.2005.10.009 – volume: 337 start-page: 1309 year: 2019 ident: 10.1016/j.geoderma.2019.06.040_bb0295 article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.006 – volume: 2-3 start-page: 21 year: 2014 ident: 10.1016/j.geoderma.2019.06.040_bb0390 article-title: Mapping soil salinity changes using remote sensing in Central Iraq publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2014.09.002 – volume: 218–219 start-page: 250 year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0175 article-title: Remote estimation of soil organic matter content in the Sanjiang Plain, Northeast China: the optimal band algorithm versus the GRA-ANN model publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.12.062 – volume: 30 start-page: 593 issue: 5 year: 2011 ident: 10.1016/j.geoderma.2019.06.040_bb0350 article-title: Assessment of soil salinization sensitivity for different types of land use in the Ebinur Lake region in Xinjiang publication-title: Prog. Geogr. – volume: 11 start-page: 736 issue: 7 year: 2019 ident: 10.1016/j.geoderma.2019.06.040_bb0160 article-title: Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images publication-title: Remote Sens. doi: 10.3390/rs11070736 – volume: 26 start-page: 156 year: 2014 ident: 10.1016/j.geoderma.2019.06.040_bb0325 article-title: Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2013.06.002 – volume: 218 start-page: 104 year: 2018 ident: 10.1016/j.geoderma.2019.06.040_bb0375 article-title: New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.020 – volume: 15 start-page: 1901 issue: 9 year: 1994 ident: 10.1016/j.geoderma.2019.06.040_bb0345 article-title: Remote sensing technique for mapping salt affected soils publication-title: Int. J. Remote Sens. doi: 10.1080/01431169408954215 – volume: 44 start-page: 204 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2019.06.040_bb0380 article-title: Effect of climate and land use change in Ebinur Lake Basin during the past five decades on hydrology and water resources publication-title: Water Resources doi: 10.1134/S0097807817020166 – volume: 23 start-page: 252 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0330 article-title: Change of Ebinur Lake area and its response characteristics of the runoff change publication-title: Research of Soil and Water Conservation – volume: 29 start-page: 551 issue: 3 year: 2018 ident: 10.1016/j.geoderma.2019.06.040_bb0235 article-title: Modeling variations in soil salinity in the oasis of Junggar Basin, China publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2890 – volume: 55 start-page: 80 issue: 1 year: 2008 ident: 10.1016/j.geoderma.2019.06.040_bb0195 article-title: The use of grey relational analysis in solving multiple attribute decision-making problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2007.12.002 – volume: 667 start-page: 14 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2019.06.040_bb0410 article-title: Variables selection methods in near-infrared spectroscopy publication-title: Anal. Chim. Acta – volume: 230–231 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2019.06.040_bb0015 article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region publication-title: Geoderma doi: 10.1016/j.geoderma.2014.03.025 – volume: 13 start-page: 409 issue: 5 year: 1983 ident: 10.1016/j.geoderma.2019.06.040_bb0165 article-title: Spectral indices in N-space publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(83)90010-X – volume: 2005 start-page: 2355 year: 2005 ident: 10.1016/j.geoderma.2019.06.040_bb0300 article-title: Application of spectral angle mapping model to rapid assessment of soil salinization in arid area – volume: 50 start-page: 64 year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0085 article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.03.008 – year: 1992 ident: 10.1016/j.geoderma.2019.06.040_bb0250 – volume: 12 start-page: e0184836 issue: 9 year: 2017 ident: 10.1016/j.geoderma.2019.06.040_bb0355 article-title: Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative publication-title: PLoS One doi: 10.1371/journal.pone.0184836 – volume: 31 start-page: 2225 issue: 14 year: 2010 ident: 10.1016/j.geoderma.2019.06.040_bb0130 article-title: Variable selection using random forests publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2010.03.014 – volume: 8 start-page: 11175 issue: 12 year: 2015 ident: 10.1016/j.geoderma.2019.06.040_bb0340 article-title: Modeling of soil salinity within a semi-arid region using spectral analysis publication-title: Arab. J. Geosci. doi: 10.1007/s12517-015-2004-3 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.geoderma.2019.06.040_bb0200 article-title: Classification and regression by randomForest publication-title: R News – year: 2017 ident: 10.1016/j.geoderma.2019.06.040_bb0270 – volume: 15 start-page: 507 year: 2015 ident: 10.1016/j.geoderma.2019.06.040_bb0135 article-title: Soil salinity prediction, monitoring and mapping using modern technologies publication-title: Procedia Earth and Planetary Science doi: 10.1016/j.proeps.2015.08.062 – volume: 644 start-page: 1232 year: 2018 ident: 10.1016/j.geoderma.2019.06.040_bb0150 article-title: Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: effects of two-dimensional correlation coefficient and extreme learning machine publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.319 – volume: 55-57 start-page: 43 year: 2013 ident: 10.1016/j.geoderma.2019.06.040_bb0005 article-title: Characterizing soil salinity in irrigated agriculture using a remote sensing approach publication-title: Physics and Chemistry of the Earth, Parts A/B/C doi: 10.1016/j.pce.2010.12.004 – volume: 178–179 start-page: 196 year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0125 article-title: Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2016.04.002 – volume: 615 start-page: 918 year: 2018 ident: 10.1016/j.geoderma.2019.06.040_bb0370 article-title: Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a bootstrap-BP neural network model and optimal spectral indices publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.025 – volume: 110 start-page: 59 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2019.06.040_bb0105 article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.005 – volume: 65 start-page: 644 issue: 4 year: 2006 ident: 10.1016/j.geoderma.2019.06.040_bb0110 article-title: Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2005.08.005 – volume: 39 start-page: 35 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2019.06.040_bb0225 article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0140 – volume: 52 start-page: 32 year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0095 article-title: Towards decadal soil salinity mapping using Landsat time series data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.05.009 – volume: 7 start-page: e6926 year: 2019 ident: 10.1016/j.geoderma.2019.06.040_bb0120 article-title: Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring publication-title: PeerJ doi: 10.7717/peerj.6926 – volume: 219 start-page: 259 year: 2018 ident: 10.1016/j.geoderma.2019.06.040_bb0395 article-title: Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.016 – volume: 75 start-page: 375 issue: 3 year: 2001 ident: 10.1016/j.geoderma.2019.06.040_bb0035 article-title: The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00180-2 – volume: 85 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2019.06.040_bb0260 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00188-8 – volume: 52 start-page: 480 year: 2015 ident: 10.1016/j.geoderma.2019.06.040_bb0405 article-title: Detecting soil salinity with MODIS time series VI data publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.01.004 – volume: 34 start-page: 510 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2019.06.040_bb0285 article-title: Comparative study on hyperspectral inversion accuracy of soil salt content and electrical conductivity publication-title: Spectrosc. Spectr. Anal. – start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2019.06.040_bb0320 article-title: Estimating LAI and mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 MSI derived red edge bands publication-title: GIScience & Remote Sensing – volume: 62 start-page: 629 issue: 4 year: 2011 ident: 10.1016/j.geoderma.2019.06.040_bb0190 article-title: Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2011.01358.x – volume: 120 start-page: 91 year: 2012 ident: 10.1016/j.geoderma.2019.06.040_bb0245 article-title: Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.026 – volume: 77 start-page: 96 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2019.06.040_bb0180 article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2004.09.038 – start-page: 286 year: 1983 ident: 10.1016/j.geoderma.2019.06.040_bb0385 – volume: 87 start-page: 123 issue: 2 year: 2006 ident: 10.1016/j.geoderma.2019.06.040_bb0265 article-title: Use of grey relational analysis to assess and optimize small biomass boilers publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2005.08.008 – volume: 65 start-page: 480 issue: 2 year: 2001 ident: 10.1016/j.geoderma.2019.06.040_bb0050 article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties journal paper no. J-18766 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, IA publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.652480x – year: 2016 ident: 10.1016/j.geoderma.2019.06.040_bb0230 – volume: 130 start-page: 191 issue: 3 year: 2006 ident: 10.1016/j.geoderma.2019.06.040_bb0100 article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics publication-title: Geoderma doi: 10.1016/j.geoderma.2005.02.003 – volume: 172 start-page: 516 year: 2019 ident: 10.1016/j.geoderma.2019.06.040_bb0220 article-title: Linking land use changes to variation in soil properties in a Mediterranean mountain agroecosystem publication-title: CATENA doi: 10.1016/j.catena.2018.09.019 – volume: 177 start-page: 189 year: 2019 ident: 10.1016/j.geoderma.2019.06.040_bb0365 article-title: Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment publication-title: CATENA doi: 10.1016/j.catena.2019.02.020 – volume: 11 start-page: 1552 issue: 6 year: 2011 ident: 10.1016/j.geoderma.2019.06.040_bb0400 article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2011.03.025 – volume: 239-240 start-page: 34 year: 2015 ident: 10.1016/j.geoderma.2019.06.040_bb0010 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.011 – volume: 74 start-page: 384 year: 2017 ident: 10.1016/j.geoderma.2019.06.040_bb0140 article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2016.11.043 – volume: 120 start-page: 299 issue: 2 year: 2011 ident: 10.1016/j.geoderma.2019.06.040_bb0335 article-title: Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance publication-title: Field Crop Res. doi: 10.1016/j.fcr.2010.11.002 – volume: 6 start-page: e4703 year: 2018 ident: 10.1016/j.geoderma.2019.06.040_bb0360 article-title: Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake wetland, Northwest China publication-title: PeerJ doi: 10.7717/peerj.4703 – volume: 6 start-page: 10813 issue: 11 year: 2014 ident: 10.1016/j.geoderma.2019.06.040_bb0280 article-title: Modeling and mapping of soil salinity with reflectance spectroscopy and Landsat data using two quantitative methods (PLSR and MARS) publication-title: Remote Sens. doi: 10.3390/rs61110813 – volume: 18 start-page: 3855 issue: 11 year: 2018 ident: 10.1016/j.geoderma.2019.06.040_bb0025 article-title: Mapping soil alkalinity and salinity in Northern Songnen Plain, China with the HJ-1 hyperspectral imager data and partial least squares regression publication-title: Sensors doi: 10.3390/s18113855 – year: 2015 ident: 10.1016/j.geoderma.2019.06.040_bb0090 |
SSID | ssj0017020 |
Score | 2.6602185 |
Snippet | Soil salinization is one of the most important causes for land degradation and desertification and is an important threat to land management, farming... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 172 |
SubjectTerms | algorithms arid lands China desertification dry season electrical conductivity farming systems lakes land degradation land restoration least squares monitoring Red-edge reflectance Remote sensing salinity satellites semiarid zones Sentinel-2 Soil salinity soil salinization Spectral indices sustainable development water quality wet season |
Title | Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.06.040 https://www.proquest.com/docview/2305222542 |
Volume | 353 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXMqh6oMKWoqmEkfSdbK2Nz6uVqClBS6AtDfL3jirLIuD9qGKC3-hf7kz3gQBQuLQY6yMFXnGnm-cmW8YO_SFH-vMl0mWqzwRhUoTbVNUSNHV1nv0QJYKhc8v1PBa_BrJ0QYbtLUwlFbZnP3rMz2e1s1Ip1nNzl1VUY1vqnrojhCCcJFyituF6JGV_3x4TPNIe7yhZkxVQm8_qRKeoo6o4VjkH0p15PGkS5DXHdSLozr6n5MP7H0DHKG__raPbMOHT2y7P5k35Bn-M_s7QM8Xk13voS7hkhKBgp8lGZxfngLlggJCVLiN25ju88CGAm4tUTRMSGJRVzNYWCqWxCmqAMX8Pr7zxy-BbhPRRGkYQSMcY0i9msOZvfFA3R3qcASjKkzR3CZHENty77Drk-OrwTBpGi4ktqvyZSJL3SsdeqiucmPrSmmlyzPnhPQIG7uOqN6VLZXyIvWu4BrXU49zaqGuSotA4wvbDHXwuwwQZ2mei8xxizFYyXVBDeqldJroX7jYY7JdZTNu2MipKcbMtGlnU9Nqx5B2DOXfCb7HOo9yd2s-jjcldKtE88yyDDqNN2V_tFo3uO3oX4oNvl4tDEZukkJlkX39j_m_sXf0tK5t3Geby_nKf0eQs3QH0YoP2Fb_9Pfw4h-g1vwq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaK9LDtMOyJdU8O2LFGZEdSrGMQtEjWJJe2QG6CFMuB01Qu8sDQX7G_PNKRi20Y0MOutikYIiV-lMiPjH3zhV_ozJdJlqs8EYVKE21TVEjR09Z79ECWCoWnMzW6Ft_ncn7Ehm0tDKVVxr3_sKc3u3V80o2z2b2rKqrxTVUf3RFCEC5SjnH7MbFTyQ47HowvRrOHy4Q-j-yMqUpI4LdC4RWqiXqONRREqW6oPOkc5N8-6q_dunFB5y_Y84gdYXD4vZfsyIdX7NlguYn8Gf41-zlE59fku95DXcIl5QIFv04ymF6OgdJBAVEq3DYrmY70wIYCbi2xNCxJYltXa9haqpfEIaoAxea--eaH3wEdKKKV0mPEjXCGUfV-AxN744EaPNThFOZVWKHFLU-h6cz9hl2fn10NR0nsuZDYnsp3iSx1v3TopHrKLawrpZUuz5wT0iNy7Dlie1e2VMqL1LuCa5xPvcipi7oqLWKNt6wT6uDfMUCopXkuMscthmEl1wX1qJfSaWKA4eKEyXaWzSISklNfjLVpM89WptWOIe0YSsET_IR1H-TuDpQcj0roVonmD-My6Dcelf3aat3gyqPrFBt8vd8aDN4kRcsie_8f439hT0ZX04mZjGcXH9hTenModfzIOrvN3n9CzLNzn6NN_wJB1f7b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capability+of+Sentinel-2+MSI+data+for+monitoring+and+mapping+of+soil+salinity+in+dry+and+wet+seasons+in+the+Ebinur+Lake+region%2C+Xinjiang%2C+China&rft.jtitle=Geoderma&rft.au=Wang%2C+Jingzhe&rft.au=Ding%2C+Jianli&rft.au=Yu%2C+Danlin&rft.au=Ma%2C+Xuankai&rft.date=2019-11-01&rft.issn=0016-7061&rft.volume=353+p.172-187&rft.spage=172&rft.epage=187&rft_id=info:doi/10.1016%2Fj.geoderma.2019.06.040&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |